FM19G11-Loaded Gold Nanoparticles Enhance the Proliferation and Self-Renewal of Ependymal Stem Progenitor Cells Derived from ALS Mice
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease affecting motor neurons. In ALS mice, neurodegeneration is associated with the proliferative restorative attempts of ependymal stem progenitor cells (epSPCs) that normally lie in a quiescent in the spinal cord. Thus, modu...
Saved in:
Published in | Cells (Basel, Switzerland) Vol. 8; no. 3; p. 279 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
23.03.2019
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 2073-4409 2073-4409 |
DOI | 10.3390/cells8030279 |
Cover
Abstract | Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease affecting motor neurons. In ALS mice, neurodegeneration is associated with the proliferative restorative attempts of ependymal stem progenitor cells (epSPCs) that normally lie in a quiescent in the spinal cord. Thus, modulation of the proliferation of epSPCs may represent a potential strategy to counteract neurodegeneration. Recent studies demonstrated that FM19G11, a hypoxia-inducible factor modulator, induces epSPC self-renewal and proliferation. The aim of the study was to investigate whether FM19G11-loaded gold nanoparticles (NPs) can affect self-renewal and proliferation processes in epSPCs isolated from G93A-SOD1 mice at disease onset. We discovered elevated levels of SOX2, OCT4, AKT1, and AKT3, key genes associated with pluripotency, self-renewal, and proliferation, in G93A-SOD1 epSPCs at the transcriptional and protein levels after treatment with FM19G11-loaded NPs. We also observed an increase in the levels of the mitochondrial uncoupling protein (UCP) gene in treated cells. FM19G11-loaded NPs treatment also affected the expression of the cell cycle-related microRNA (miR)-19a, along with its target gene PTEN, in G93A-SOD1 epSPCs. Overall our findings establish the significant impact of FM19G11-loaded NPs on the cellular pathways involved in self-renewal and proliferation in G93A-SOD1 epSPCs, thus providing an impetus to the design of novel tailored approaches to delay ALS disease progression. |
---|---|
AbstractList | Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease affecting motor neurons. In ALS mice, neurodegeneration is associated with the proliferative restorative attempts of ependymal stem progenitor cells (epSPCs) that normally lie in a quiescent in the spinal cord. Thus, modulation of the proliferation of epSPCs may represent a potential strategy to counteract neurodegeneration. Recent studies demonstrated that FM19G11, a hypoxia-inducible factor modulator, induces epSPC self-renewal and proliferation. The aim of the study was to investigate whether FM19G11-loaded gold nanoparticles (NPs) can affect self-renewal and proliferation processes in epSPCs isolated from G93A-SOD1 mice at disease onset. We discovered elevated levels of SOX2, OCT4, AKT1, and AKT3, key genes associated with pluripotency, self-renewal, and proliferation, in G93A-SOD1 epSPCs at the transcriptional and protein levels after treatment with FM19G11-loaded NPs. We also observed an increase in the levels of the mitochondrial uncoupling protein (UCP) gene in treated cells. FM19G11-loaded NPs treatment also affected the expression of the cell cycle-related microRNA (miR)-19a, along with its target gene PTEN, in G93A-SOD1 epSPCs. Overall our findings establish the significant impact of FM19G11-loaded NPs on the cellular pathways involved in self-renewal and proliferation in G93A-SOD1 epSPCs, thus providing an impetus to the design of novel tailored approaches to delay ALS disease progression.Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease affecting motor neurons. In ALS mice, neurodegeneration is associated with the proliferative restorative attempts of ependymal stem progenitor cells (epSPCs) that normally lie in a quiescent in the spinal cord. Thus, modulation of the proliferation of epSPCs may represent a potential strategy to counteract neurodegeneration. Recent studies demonstrated that FM19G11, a hypoxia-inducible factor modulator, induces epSPC self-renewal and proliferation. The aim of the study was to investigate whether FM19G11-loaded gold nanoparticles (NPs) can affect self-renewal and proliferation processes in epSPCs isolated from G93A-SOD1 mice at disease onset. We discovered elevated levels of SOX2, OCT4, AKT1, and AKT3, key genes associated with pluripotency, self-renewal, and proliferation, in G93A-SOD1 epSPCs at the transcriptional and protein levels after treatment with FM19G11-loaded NPs. We also observed an increase in the levels of the mitochondrial uncoupling protein (UCP) gene in treated cells. FM19G11-loaded NPs treatment also affected the expression of the cell cycle-related microRNA (miR)-19a, along with its target gene PTEN, in G93A-SOD1 epSPCs. Overall our findings establish the significant impact of FM19G11-loaded NPs on the cellular pathways involved in self-renewal and proliferation in G93A-SOD1 epSPCs, thus providing an impetus to the design of novel tailored approaches to delay ALS disease progression. Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease affecting motor neurons. In ALS mice, neurodegeneration is associated with the proliferative restorative attempts of ependymal stem progenitor cells (epSPCs) that normally lie in a quiescent in the spinal cord. Thus, modulation of the proliferation of epSPCs may represent a potential strategy to counteract neurodegeneration. Recent studies demonstrated that FM19G11, a hypoxia-inducible factor modulator, induces epSPC self-renewal and proliferation. The aim of the study was to investigate whether FM19G11-loaded gold nanoparticles (NPs) can affect self-renewal and proliferation processes in epSPCs isolated from G93A-SOD1 mice at disease onset. We discovered elevated levels of SOX2, OCT4, AKT1, and AKT3, key genes associated with pluripotency, self-renewal, and proliferation, in G93A-SOD1 epSPCs at the transcriptional and protein levels after treatment with FM19G11-loaded NPs. We also observed an increase in the levels of the mitochondrial uncoupling protein (UCP) gene in treated cells. FM19G11-loaded NPs treatment also affected the expression of the cell cycle-related microRNA (miR)-19a, along with its target gene PTEN, in G93A-SOD1 epSPCs. Overall our findings establish the significant impact of FM19G11-loaded NPs on the cellular pathways involved in self-renewal and proliferation in G93A-SOD1 epSPCs, thus providing an impetus to the design of novel tailored approaches to delay ALS disease progression. Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease affecting motor neurons. In ALS mice, neurodegeneration is associated with the proliferative restorative attempts of ependymal stem progenitor cells (epSPCs) that normally lie in a quiescent in the spinal cord. Thus, modulation of the proliferation of epSPCs may represent a potential strategy to counteract neurodegeneration. Recent studies demonstrated that FM19G11, a hypoxia-inducible factor modulator, induces epSPC self-renewal and proliferation. The aim of the study was to investigate whether FM19G11-loaded gold nanoparticles (NPs) can affect self-renewal and proliferation processes in epSPCs isolated from G93A-SOD1 mice at disease onset. We discovered elevated levels of SOX2, OCT4, AKT1, and AKT3, key genes associated with pluripotency, self-renewal, and proliferation, in G93A-SOD1 epSPCs at the transcriptional and protein levels after treatment with FM19G11-loaded NPs. We also observed an increase in the levels of the mitochondrial uncoupling protein ( ) gene in treated cells. FM19G11-loaded NPs treatment also affected the expression of the cell cycle-related microRNA (miR)-19a, along with its target gene PTEN, in G93A-SOD1 epSPCs. Overall our findings establish the significant impact of FM19G11-loaded NPs on the cellular pathways involved in self-renewal and proliferation in G93A-SOD1 epSPCs, thus providing an impetus to the design of novel tailored approaches to delay ALS disease progression. Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease affecting motor neurons. In ALS mice, neurodegeneration is associated with the proliferative restorative attempts of ependymal stem progenitor cells (epSPCs) that normally lie in a quiescent in the spinal cord. Thus, modulation of the proliferation of epSPCs may represent a potential strategy to counteract neurodegeneration. Recent studies demonstrated that FM19G11, a hypoxia-inducible factor modulator, induces epSPC self-renewal and proliferation. The aim of the study was to investigate whether FM19G11-loaded gold nanoparticles (NPs) can affect self-renewal and proliferation processes in epSPCs isolated from G93A-SOD1 mice at disease onset. We discovered elevated levels of SOX2, OCT4, AKT1, and AKT3, key genes associated with pluripotency, self-renewal, and proliferation, in G93A-SOD1 epSPCs at the transcriptional and protein levels after treatment with FM19G11-loaded NPs. We also observed an increase in the levels of the mitochondrial uncoupling protein ( UCP ) gene in treated cells. FM19G11-loaded NPs treatment also affected the expression of the cell cycle-related microRNA (miR)-19a, along with its target gene PTEN, in G93A-SOD1 epSPCs. Overall our findings establish the significant impact of FM19G11-loaded NPs on the cellular pathways involved in self-renewal and proliferation in G93A-SOD1 epSPCs, thus providing an impetus to the design of novel tailored approaches to delay ALS disease progression. |
Author | Mantegazza, Renato Isaia, Davide Andreozzi, Patrizia Stellacci, Francesco Krol, Silke Bernasconi, Pia Marcuzzo, Stefania Denora, Nunzio Moreno-Manzano, Victoria Cavalcante, Paola Bonanno, Silvia Sanavio, Barbara Salvati, Elisa Zacheo, Antonella Malacarne, Claudia Mellado-López, Maravillas Laquintana, Valentino |
AuthorAffiliation | 10 Neuronal and Tissue Regeneration Laboratory, Prince Felipe Research Institute (CIPF), 46512 Valencia, Spain; mmellado@cipf.es (M.M.-L.); vmorenom@cipf.es (V.M.-M.) 9 IRCCS Azienda Ospedaliera Specializzata in Gastroenterologia “Saverio de Bellis”, 70013 Castellana Grotte, Italy 3 Laboratory for Translational Nanotechnology, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy; zacheo@yahoo.com (A.Z.); silke.krol@aol.com (S.K.) 6 IFOM, the FIRC Institute for Molecular Oncology Foundation, IFOM-IEO Campus, 20139 Milan, Italy; eli.salvati@gmail.com 8 Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), STI IMX SUNMIL, MXG 030 (Bâtiment MXG), CH-1015 Lausanne, Switzerland; francesco.stellacci@epfl.ch 2 Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Development and Stem Cells, CNRS UMR7104, INSERM U964, Université de Strasbourg, 67404 Illkirch CU Strasbourg, France; isaiad@igbmc.fr 7 CIC biomaGUNE, 20014 San Sebastian, Spain; p |
AuthorAffiliation_xml | – name: 3 Laboratory for Translational Nanotechnology, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy; zacheo@yahoo.com (A.Z.); silke.krol@aol.com (S.K.) – name: 4 Department of Pharmacy—Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70124 Bari, Italy; valentino.laquintana@uniba.it (V.L.); nunzio.denora@uniba.it (N.D.) – name: 5 Laboratory for Nanomedicine, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, 20133 Milan, Italy; barbara.sanavio@gmail.com – name: 2 Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Development and Stem Cells, CNRS UMR7104, INSERM U964, Université de Strasbourg, 67404 Illkirch CU Strasbourg, France; isaiad@igbmc.fr – name: 1 Neurology IV—Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, 20133 Milan, Italy; silvia.bonanno@istituto-besta.it (S.B.); malacarne.c17@gmail.com (C.M.); paola.cavalcante@istituto-besta.it (P.C.); renato.mantegazza@istituto-besta.it (R.M.) – name: 6 IFOM, the FIRC Institute for Molecular Oncology Foundation, IFOM-IEO Campus, 20139 Milan, Italy; eli.salvati@gmail.com – name: 10 Neuronal and Tissue Regeneration Laboratory, Prince Felipe Research Institute (CIPF), 46512 Valencia, Spain; mmellado@cipf.es (M.M.-L.); vmorenom@cipf.es (V.M.-M.) – name: 8 Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), STI IMX SUNMIL, MXG 030 (Bâtiment MXG), CH-1015 Lausanne, Switzerland; francesco.stellacci@epfl.ch – name: 7 CIC biomaGUNE, 20014 San Sebastian, Spain; pandreozzi@cicbiomagune.es – name: 9 IRCCS Azienda Ospedaliera Specializzata in Gastroenterologia “Saverio de Bellis”, 70013 Castellana Grotte, Italy |
Author_xml | – sequence: 1 givenname: Stefania surname: Marcuzzo fullname: Marcuzzo, Stefania – sequence: 2 givenname: Davide surname: Isaia fullname: Isaia, Davide – sequence: 3 givenname: Silvia orcidid: 0000-0002-8823-6821 surname: Bonanno fullname: Bonanno, Silvia – sequence: 4 givenname: Claudia surname: Malacarne fullname: Malacarne, Claudia – sequence: 5 givenname: Paola surname: Cavalcante fullname: Cavalcante, Paola – sequence: 6 givenname: Antonella surname: Zacheo fullname: Zacheo, Antonella – sequence: 7 givenname: Valentino orcidid: 0000-0003-1266-638X surname: Laquintana fullname: Laquintana, Valentino – sequence: 8 givenname: Nunzio surname: Denora fullname: Denora, Nunzio – sequence: 9 givenname: Barbara orcidid: 0000-0001-5837-4097 surname: Sanavio fullname: Sanavio, Barbara – sequence: 10 givenname: Elisa surname: Salvati fullname: Salvati, Elisa – sequence: 11 givenname: Patrizia surname: Andreozzi fullname: Andreozzi, Patrizia – sequence: 12 givenname: Francesco surname: Stellacci fullname: Stellacci, Francesco – sequence: 13 givenname: Silke surname: Krol fullname: Krol, Silke – sequence: 14 givenname: Maravillas surname: Mellado-López fullname: Mellado-López, Maravillas – sequence: 15 givenname: Renato orcidid: 0000-0002-9810-5737 surname: Mantegazza fullname: Mantegazza, Renato – sequence: 16 givenname: Victoria orcidid: 0000-0002-6035-9491 surname: Moreno-Manzano fullname: Moreno-Manzano, Victoria – sequence: 17 givenname: Pia orcidid: 0000-0003-0869-2104 surname: Bernasconi fullname: Bernasconi, Pia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30909571$$D View this record in MEDLINE/PubMed https://hal.science/hal-03676434$$DView record in HAL |
BookMark | eNptkk1vEzEQhleoiJbSG2dkiQtILNhrr72-VIpCmlZKARE4W17vOHG1sYN3E9QfwP_G24QqjfDFX8-874w9L7MTHzxk2WuCP1Iq8ScDbdtVmOJCyGfZWYEFzRnD8uRgfZpddN0dTqMinODyRXZKscSyFOQs-3N1S-SUkHwWdAMNmoa2QV-0D2sde2da6NDEL7U3gPoloG8xtM5C1L0LHmnfoDm0Nv8OHn7rFgWLJmvwzf0qbeY9rIaABXjXh4jGQ67oM0S3TUY2hhUazebo1hl4lT23uu3gYj-fZz-vJj_G1_ns6_RmPJrlpiRFnwMjHDcMZMHLijHOaqhrqEgpGgIlo0yTRla25AJTW3OtTSVMbXSJbYG5LOl5drPTbYK-U-voVjreq6CdejgIcaH2ZStKwZbCSqOhYAXFNW40BkGFIZYbXCSty53WelOvoDHg-6jbJ6JPb7xbqkXYKs54xSVPAu93AsujsOvRTA1nmHLBU1Vbkth3e7MYfm2g69XKdcPnaw9h06mCSFFVgpIqoW-P0LuwiT49qypKVlFKcDWYvznM_tH_X2ck4MMOMDF0XQT7iBCsht5Th72X8OIIN65_6JJUu2v_H_QXSBjbcA |
CitedBy_id | crossref_primary_10_1021_acs_molpharmaceut_1c00297 crossref_primary_10_1021_acs_bioconjchem_2c00007 crossref_primary_10_2174_1389450121666200106105633 crossref_primary_10_3390_mi15111382 crossref_primary_10_1002_mabi_202400150 crossref_primary_10_1080_00207454_2024_2362200 crossref_primary_10_1007_s12035_023_03730_z crossref_primary_10_1016_j_ejmech_2024_117080 crossref_primary_10_1002_jcp_30624 crossref_primary_10_3390_cells10082045 crossref_primary_10_1515_tjb_2019_0255 crossref_primary_10_3390_cells11193095 crossref_primary_10_2147_IJN_S395010 crossref_primary_10_3389_fbioe_2021_629832 crossref_primary_10_3390_ijms21093243 crossref_primary_10_3390_antiox12101877 crossref_primary_10_1007_s40291_023_00654_1 crossref_primary_10_3390_polym15092196 crossref_primary_10_1016_j_coph_2019_11_008 crossref_primary_10_1016_j_biopha_2024_116380 crossref_primary_10_1016_j_matdes_2021_110240 crossref_primary_10_1093_brain_awad014 crossref_primary_10_2147_IJN_S347187 crossref_primary_10_2174_1567205020666230911125646 |
Cites_doi | 10.1089/scd.2006.0120 10.1016/j.drudis.2006.12.008 10.1039/C8BM01208C 10.1093/brain/awq345 10.1111/j.1471-4159.2007.04610.x 10.1016/j.molmed.2015.11.001 10.1016/j.tins.2008.03.003 10.1016/j.expneurol.2013.12.007 10.1016/S0169-328X(03)00025-1 10.1161/CIRCRESAHA.109.201590 10.1074/jbc.M109.008326 10.1073/pnas.0702683104 10.1016/j.neuropharm.2017.06.007 10.1038/362059a0 10.1038/nmat2202 10.1021/ja990513+ 10.1002/stem.1189 10.2217/17435889.3.4.507 10.1007/s12035-013-8507-6 10.1007/s004019900173 10.1016/j.expneurol.2011.05.007 10.1038/35097565 10.1073/pnas.93.7.3155 10.1016/j.nano.2014.12.014 10.1080/14660820510035351 10.1016/S0022-510X(03)00186-2 10.1093/bmb/ldp049 10.1038/nbt.1957 10.1002/jps.24322 10.1038/nrn1767 10.1038/nrneurol.2011.150 10.1227/01.NEU.0000255350.71700.37 10.2337/db06-0900 10.1038/nprot.2009.173 10.1016/j.expneurol.2017.03.018 |
ContentType | Journal Article |
Copyright | 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License 2019 by the authors. 2019 |
Copyright_xml | – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: 2019 by the authors. 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M7P P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 1XC 5PM DOA |
DOI | 10.3390/cells8030279 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Genetics Abstracts Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2073-4409 |
ExternalDocumentID | oai_doaj_org_article_33ef57f9cae24230b0da0e737c1f6c02 PMC6468696 oai_HAL_hal_03676434v1 30909571 10_3390_cells8030279 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | United States--US |
GeographicLocations_xml | – name: United States--US |
GroupedDBID | 53G 5VS 8FE 8FH AADQD AAFWJ AAYXX ABDBF ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BBNVY BCNDV BENPR BHPHI CCPQU CITATION DIK EBD ESX GROUPED_DOAJ HCIFZ HYE IAO KQ8 LK8 M48 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PROAC RPM CGR CUY CVF ECM EIF NPM 8FD ABUWG AZQEC DWQXO FR3 GNUQQ P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 PUEGO 1XC ADRAZ IHR IPNFZ ITC RIG 5PM |
ID | FETCH-LOGICAL-c512t-e4160d4e926584464bebbe8157d1e5434a1d98f56703fb6aac87cbca50f206953 |
IEDL.DBID | M48 |
ISSN | 2073-4409 |
IngestDate | Wed Aug 27 01:24:26 EDT 2025 Thu Aug 21 14:13:20 EDT 2025 Fri Sep 12 12:46:28 EDT 2025 Fri Sep 05 12:40:43 EDT 2025 Fri Jul 25 12:03:06 EDT 2025 Thu Jan 02 22:58:50 EST 2025 Tue Jul 01 01:05:50 EDT 2025 Thu Apr 24 23:00:55 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | nanoparticles amyotrophic lateral sclerosis FM19G11 G93A-SOD1 mouse model ependymal stem progenitor cells |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c512t-e4160d4e926584464bebbe8157d1e5434a1d98f56703fb6aac87cbca50f206953 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 PMCID: PMC6468696 |
ORCID | 0000-0002-9810-5737 0000-0001-5837-4097 0000-0002-8823-6821 0000-0003-0869-2104 0000-0002-6035-9491 0000-0003-1266-638X |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/cells8030279 |
PMID | 30909571 |
PQID | 2548331086 |
PQPubID | 2032536 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_33ef57f9cae24230b0da0e737c1f6c02 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6468696 hal_primary_oai_HAL_hal_03676434v1 proquest_miscellaneous_2197887318 proquest_journals_2548331086 pubmed_primary_30909571 crossref_primary_10_3390_cells8030279 crossref_citationtrail_10_3390_cells8030279 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-03-23 |
PublicationDateYYYYMMDD | 2019-03-23 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-23 day: 23 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Cells (Basel, Switzerland) |
PublicationTitleAlternate | Cells |
PublicationYear | 2019 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Manninger (ref_25) 2005; 26 Yang (ref_21) 2018; 7 Thong (ref_15) 2007; 56 Orrell (ref_24) 2009; 93 Tu (ref_6) 1996; 93 Templeton (ref_22) 1999; 121 Achilli (ref_4) 2005; 6 Kim (ref_37) 2009; 4 Marcuzzo (ref_8) 2017; 293 Marcuzzo (ref_7) 2011; 231 Rosen (ref_5) 1993; 362 Li (ref_35) 2003; 111 Fisslthaler (ref_16) 2009; 105 Rohas (ref_18) 2007; 104 Cho (ref_30) 2008; 3 Guan (ref_10) 2007; 102 Cleveland (ref_3) 2001; 2 Verma (ref_20) 2008; 7 Neuwelt (ref_26) 2007; 60 Kirby (ref_32) 2011; 134 Tsang (ref_17) 2007; 12 Marcuzzo (ref_11) 2014; 253 Saunders (ref_27) 2008; 31 Shibata (ref_31) 2000; 100 Gendelman (ref_28) 2015; 11 Ilieva (ref_34) 2003; 215 Erceg (ref_14) 2012; 30 Andrews (ref_36) 2005; 6 Chi (ref_9) 2007; 16 Mazibuko (ref_29) 2015; 104 Hester (ref_12) 2011; 29 Tsai (ref_23) 2017; 123 Andersen (ref_1) 2011; 7 Royo (ref_19) 2010; 15 Peviani (ref_33) 2014; 49 Toscano (ref_2) 2016; 22 Erceg (ref_13) 2010; 285 |
References_xml | – volume: 16 start-page: 579 year: 2007 ident: ref_9 article-title: Temporal response of neural progenitor cells to disease onset and progression in amyotrophic lateral sclerosis-like transgenic mice publication-title: Stem Cells Dev. doi: 10.1089/scd.2006.0120 – volume: 26 start-page: 2290 year: 2005 ident: ref_25 article-title: An exploratory study of ferumoxtran-10 nanoparticles as a blood-brain barrier imaging agent targeting phagocytic cells in CNS inflammatory lesions publication-title: Am. J. Neuroradiol. – volume: 12 start-page: 112 year: 2007 ident: ref_17 article-title: Targeting mammalian target of rapamycin (mTOR) for health and diseases publication-title: Drug Discov. Today doi: 10.1016/j.drudis.2006.12.008 – volume: 7 start-page: 113 year: 2018 ident: ref_21 article-title: Targeting small molecule drugs to T cells with antibody-directed cell-penetrating gold nanoparticles publication-title: Biomater. Sci. doi: 10.1039/C8BM01208C – volume: 134 start-page: 506 year: 2011 ident: ref_32 article-title: Kinase B pathway linked to motor neuron survival in human superoxide dismutase 1-related amyotrophic lateral sclerosis publication-title: Brain doi: 10.1093/brain/awq345 – volume: 102 start-page: 1125 year: 2007 ident: ref_10 article-title: Increased stem cell proliferation in the spinal cord of adult amyotrophic lateral sclerosis transgenic mice publication-title: J. Neurochem. doi: 10.1111/j.1471-4159.2007.04610.x – volume: 22 start-page: 53 year: 2016 ident: ref_2 article-title: The ‘Omics’ of Amyotrophic Lateral Sclerosis publication-title: Trends Mol. Med. doi: 10.1016/j.molmed.2015.11.001 – volume: 31 start-page: 279 year: 2008 ident: ref_27 article-title: Barriers in the brain: A renaissance? publication-title: Trends Neurosci. doi: 10.1016/j.tins.2008.03.003 – volume: 253 start-page: 91 year: 2014 ident: ref_11 article-title: Altered miRNA expression is associated with neuronal fate in G93A-SOD1 ependymal stem progenitor cells publication-title: Exp. Neurol. doi: 10.1016/j.expneurol.2013.12.007 – volume: 111 start-page: 155 year: 2003 ident: ref_35 article-title: VEGF-induced activation of the PI3-K/Akt pathway reduces mutant SOD1-mediated motor neuron cell death publication-title: Mol. Brain Res. doi: 10.1016/S0169-328X(03)00025-1 – volume: 105 start-page: 114 year: 2009 ident: ref_16 article-title: Activation and signaling by the AMP-activated protein kinase in endothelial cells publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.109.201590 – volume: 285 start-page: 1333 year: 2010 ident: ref_13 article-title: FM19G11, a new hypoxia-inducible factor (HIF) modulator, affects stem cell differentiation status publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.008326 – volume: 104 start-page: 7933 year: 2007 ident: ref_18 article-title: A fundamental system of cellular energy homeostasis regulated by PGC-1alpha publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0702683104 – volume: 15 start-page: 2803 year: 2010 ident: ref_19 article-title: FM19G11: A new modulator of HIF that links mTOR activation with the DNA damage checkpoint pathways publication-title: Cell Cycle – volume: 123 start-page: 175 year: 2017 ident: ref_23 article-title: PTEN, a negative regulator of PI3K/Akt signaling, sustains brain stem cardiovascular regulation during mevinphos intoxication publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2017.06.007 – volume: 362 start-page: 59 year: 1993 ident: ref_5 article-title: Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis publication-title: Nature doi: 10.1038/362059a0 – volume: 7 start-page: 588 year: 2008 ident: ref_20 article-title: Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles publication-title: Nat. Mater. doi: 10.1038/nmat2202 – volume: 121 start-page: 7081 year: 1999 ident: ref_22 article-title: Redox and fluorophore functionalization of water-soluble, tiopronin-protected gold clusters publication-title: J. Am. Chem. Soc. doi: 10.1021/ja990513+ – volume: 30 start-page: 2221 year: 2012 ident: ref_14 article-title: FM19G11 favors spinal cord injury regeneration and stem cell self-renewal by mitochondrial uncoupling and glucose metabolism induction publication-title: Stem Cells doi: 10.1002/stem.1189 – volume: 3 start-page: 507 year: 2008 ident: ref_30 article-title: Functionalized mesoporous silica nanoparticle-based drug delivery system to rescue acrolein-mediated cell death publication-title: Nanomedicine doi: 10.2217/17435889.3.4.507 – volume: 49 start-page: 136 year: 2014 ident: ref_33 article-title: Specific induction of Akt3 in spinal cord motor neurons is neuroprotective in a mouse model of familial amyotrophic lateral sclerosis publication-title: Mol. Neurobiol. doi: 10.1007/s12035-013-8507-6 – volume: 100 start-page: 275 year: 2000 ident: ref_31 article-title: Nonoxidative protein glycation is implicated in familial amyotrophic lateral sclerosis with superoxide dismutase-1 mutation publication-title: Acta Neuropathol. doi: 10.1007/s004019900173 – volume: 231 start-page: 30 year: 2011 ident: ref_7 article-title: Hind limb muscle atrophy precedes cerebral neuronal degeneration in G93A-SOD1 mouse model of amyotrophic lateral sclerosis: A longitudinal MRI study publication-title: Exp. Neurol. doi: 10.1016/j.expneurol.2011.05.007 – volume: 2 start-page: 806 year: 2001 ident: ref_3 article-title: From Charcot to Lou Gehrig: Deciphering selective motor neuron death in ALS publication-title: Nat. Rev. Neurosci. doi: 10.1038/35097565 – volume: 93 start-page: 3155 year: 1996 ident: ref_6 article-title: Transgenic mice carrying a human mutant superoxide dismutase transgene develop neuronal cytoskeletal pathology resembling human amyotrophic lateral sclerosis lesions publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.93.7.3155 – volume: 11 start-page: 751 year: 2015 ident: ref_28 article-title: Nanoneuromedicines for degenerative, inflammatory, and infectious nervous system diseases publication-title: Nanomedicine doi: 10.1016/j.nano.2014.12.014 – volume: 6 start-page: 111 year: 2005 ident: ref_4 article-title: The SOD1 transgene in the G93Amouse model of amyotrophic lateral sclerosis lies on distal mouse chromosome 12 publication-title: Amyotroph. Lateral Scler. Other Motor Neuron Disord. doi: 10.1080/14660820510035351 – volume: 215 start-page: 57 year: 2003 ident: ref_34 article-title: Sustained induction of survival p-AKT and p-ERK signals after transient hypoxia in mice spinal cord with G93A mutant human SOD1 protein publication-title: J. Neurol. Sci. doi: 10.1016/S0022-510X(03)00186-2 – volume: 93 start-page: 145 year: 2009 ident: ref_24 article-title: Motor neuron disease: Systematic reviews of treatment for ALS and SMA publication-title: Br. Med. Bull. doi: 10.1093/bmb/ldp049 – volume: 29 start-page: 824 year: 2011 ident: ref_12 article-title: Astrocytes from familial and sporadic ALS patients are toxic to motor neurons publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1957 – volume: 104 start-page: 1213 year: 2015 ident: ref_29 article-title: A review of the potential role of nano-enabled drug delivery technologies in amyotrophic lateral sclerosis: Lessons learned from other neurodegenerative disorders publication-title: J. Pharm. Sci. doi: 10.1002/jps.24322 – volume: 6 start-page: 829 year: 2005 ident: ref_36 article-title: Mitochondrial uncoupling proteins in the CNS: In support of function and survival publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn1767 – volume: 7 start-page: 603 year: 2011 ident: ref_1 article-title: Clinical genetics of amyotrophic lateral sclerosis: What do we really know? publication-title: Nat. Rev. Neurol. doi: 10.1038/nrneurol.2011.150 – volume: 60 start-page: 601 year: 2007 ident: ref_26 article-title: The potential of ferumoxytol nanoparticle magnetic resonance imaging, perfusion, and angiography in central nervous system malignancy: A pilot study publication-title: Neurosurgery doi: 10.1227/01.NEU.0000255350.71700.37 – volume: 56 start-page: 414 year: 2007 ident: ref_15 article-title: The Rab GTPase-activating protein AS160 integrates Akt, protein kinase C, and AMP-activated protein kinase signals regulating GLUT4 traffic publication-title: Diabetes doi: 10.2337/db06-0900 – volume: 4 start-page: 1464 year: 2009 ident: ref_37 article-title: Generation of induced pluripotent stem cells from neural stem cells publication-title: Nat. Protoc. doi: 10.1038/nprot.2009.173 – volume: 293 start-page: 43 year: 2017 ident: ref_8 article-title: A longitudinal DTI and histological study of the spinal cord reveals early pathological alterations in G93A-SOD1 mouse model of amyotrophic lateral sclerosis publication-title: Exp. Neurol. doi: 10.1016/j.expneurol.2017.03.018 |
SSID | ssj0000816105 |
Score | 2.2652588 |
Snippet | Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease affecting motor neurons. In ALS mice, neurodegeneration is associated with the... |
SourceID | doaj pubmedcentral hal proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 279 |
SubjectTerms | AKT1 protein Amyotrophic Lateral Sclerosis Animals Benzamides - pharmacology Biomarkers - metabolism Cell cycle Cell Cycle - drug effects Cell proliferation Cell Proliferation - drug effects Cell Self Renewal - drug effects Cell self-renewal Cellular Biology Ependyma - cytology ependymal stem progenitor cells FM19G11 G93A-SOD1 mouse model Gene expression Gene Expression Regulation - drug effects Gold - chemistry Humans Hypoxia Hypoxia-inducible factors Kinases Life Sciences Ligands Metal Nanoparticles - chemistry Mice, Transgenic MicroRNAs MicroRNAs - genetics MicroRNAs - metabolism miRNA Mitochondria Motor neurons Nanoparticles Neurodegeneration Neurodegenerative diseases Oct-4 protein Octamer Transcription Factor-3 - metabolism Pluripotency Pluripotent Stem Cells - metabolism Progenitor cells Proteins Proto-Oncogene Proteins c-akt - metabolism PTEN Phosphohydrolase - metabolism PTEN protein SOXB1 Transcription Factors - metabolism Spinal cord Spinal cord injuries Stem cells Stem Cells - cytology Stem Cells - drug effects Superoxide dismutase Superoxide Dismutase-1 - metabolism Transcription Uncoupling Protein 2 - metabolism |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR1db9Mw0EKTkHhBjM_AQAbBE4pmx4kTP5bRrkItQpRJe4v8cVaRugRt3ab9AP43d0lWtSDEC4-xzx-5O99Hcr5j7K0DGTSqkjSEYNBBAZ9WEmKqo1PKly6L3V2Y-Wc9Pck_nRanW6W-KCasTw_cI-5QKYhFGY23QKpfOBGsgFKVXkbt-zSSwogtZ6qTwRVaMqLoI90V-vWH9B38ohL0m87s6KAuVT9qliUFQv5pZf4eLLmlfSYP2P3BbOSjfrv77A40D9ndvpDkzSP2czKX5ljKdNbaAIEft6vAUXCiRzwEvvFxsyQCczT4-Bcq1ROhJz63TeALWMX0K8q9a1yljXxMpXFvzvBhsYYzGoCMhof_nB_RG_KPyLhXuBDdTuGj2YLPUeA8ZieT8bejaToUWEg96vl1CmiNiZCDycgOyXXuwDmoZFEGCXTn1MpgqlhoFAvRaWt9VXpHRRRiJrQp1BO217QNPGMcipBZH1QGONAaV5VW5x5MRI9FOasT9v4W5bUfso9TEYxVjV4IEajeJlDC3m2gf_RZN_4C94Got4GhXNldA3JQPSC4_hcHJewN0n5njuloVlOboHx2iIcrmbCDW9aoh1N-UaNzXSlFtaoS9nrTjeeT9mgbaC8RRhoK2ETRmbCnPSdtllLIuKYocfJyh8d29rLb03xfdjnAda4rbfTz_4GAF-wemoGGIusydcD21ueX8BJNrbV71Z2qX1ziKH8 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdGJyReEN8LDGQQPKFocT6c-AGhbnSrUFtNK5P2FvnjTJG6ZHTd0P4A_m_ukrSsIHhMYseO73z-nXO-H2NvDQgncSkJnXMKHRSwYSHAh9KbJLG5iX1zFmY8kcPT9PNZdrbFJquzMBRWubKJjaF2taU98j10ZIokIV6gjxffQ2KNor-rKwoN3VEruA9NirE7bBtNchb12Pb-YHJ8st51IZoJRBRtBHyC_v4e7Y9fFhH9vlMba1OTwh9XnBkFSP6NPv8Mory1Kh0-YPc7OMn7rfwfsi2oHrG7LcHkzWP283As1JEQ4ajWDhw_queOo0FFT7kLiOODakaC5wgE-TFR-HholYLryvEpzH14gvbwB7ZSez4gytybc7yYLuGcKqAColFY8AP6Qv4JFfoaG6JTK7w_mvIxGqIn7PRw8OVgGHbEC6HF9X8ZAqK0yKWgYsInqUwNGAOFyHIngM6iauFU4TOJ5sIbqbUtcmuIXMHHkVRZ8pT1qrqCHcYhc7G2LokBK2plilzL1ILy6MkkRsuAvV8NeWm7rOREjjEv0TshAZW3BRSwd-vSF202jn-U2yfprctQDu3mRr34WnYDjLXAZ7lXVgOByshETkeQJ7kVXtooDtgblP3GO4b9UUn3Ispzh-NwLQK2u1KNspv9l-VvXQ3Y6_VjnLfUR11BfYVlhKJATjSpAXvWatK6qSRSiHxzfHm-oWMbfdl8Un2bNbnBZSoLqeTz_3frBbuHwE9RLF2c7LLecnEFLxFcLc2rbsb8AoVbJjA priority: 102 providerName: ProQuest |
Title | FM19G11-Loaded Gold Nanoparticles Enhance the Proliferation and Self-Renewal of Ependymal Stem Progenitor Cells Derived from ALS Mice |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30909571 https://www.proquest.com/docview/2548331086 https://www.proquest.com/docview/2197887318 https://hal.science/hal-03676434 https://pubmed.ncbi.nlm.nih.gov/PMC6468696 https://doaj.org/article/33ef57f9cae24230b0da0e737c1f6c02 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1bb9MwFD4am0B7QdwJjMogeEJhcS5O_IBQN9pVqJ2mlUp7i-zYpkhdAl036A_gf3NOklYrY49NfEntz8ffSY7PB_BWW24EbiW-MUaig2ILP-PW-cLpKCpSHbr6LMzoWAwm8Zez5GwLVmqj7QBe_Ne1Iz2pyXz24ffP5Sdc8B_J40SXfZ9ecV9kAX2Bk3dgp_5SREF8LdGvbXKGzKaOZwwR036MXk0TBX-jgV24FwUSiUfKN7aqOqM_bkBTipe8SUb_jam8tkn1H8D9ll2ybgOHh7Bly0dwt9GbXD6GP_0Rl0ec-8NKGWvYUTUzDO0rOs5tfBzrlVPCAUNeyE5I0cfZBiNMlYaN7cz5p2gef2EvlWM9UtBdnuOP8cKeUwXEI9qIOTukP8s-I76vsCM6xMK6wzEboV16ApN-7-vhwG91GPwC6cDCt0jaAhNbGRJdiUWsrdY240lquKWjqYobmblEoPVwWihVZGmhSWvBhYGQSfQUtsuqtM-B2cSEqjBRaLGikjpLlYgLKx06NpFWwoP3qyHPizZJOWllzHJ0Vmiu8utz5cG7dekfTXKOW8od0Oyty1BK7fpCNf-WtwOMtaxLUicLZYljBjowKrBplBbciSIIPXiDc7_RxqA7zOlaQGnvcByuuAd7K2jkKyzn6INnUUSSVh68Xt_GZUzPqEpbXWIZLimuEy2sB88aJK27WuHRg3QDYxvPsnmn_D6tU4WLWGRCihe3tvkSdpECSoqqC6M92F7ML-0rpFkL3YGdg97xyWmnfk3RqdfTX_4aJr4 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VqRBcEG8MBRZET8iq13bW3kOF0jZpSpOoalqpN3efBCm1S5K2yg_gb_HbmLGd0IDg1qPtXe96Z3Ye65n5CPmoLDMcVIlvjBHgoFjtp8w6nzsVRTpRoStzYfoD3j2Nv5w1z9bIz0UuDIZVLmRiKahNofGMfAscmTSKEBfo8-V3H1Gj8O_qAkJD1tAKZrssMVYndhza-Q24cNPtgz2g92YYdtonu12_RhnwNSi7mW_BJAlMbEWIyjjmsbJK2ZQ1E8MsJl5KZkTqmhz2hlNcSp0mWiGSgAsDLhA1AlTAeowHKA2yvtMeHB0vT3kQ1gIsmCriPopEsIXn8dM0wN-FYkUXlpABoOFGGJD5t7X7Z9DmLS3YeUQe1uYrbVX89pis2fwJuVcBWs6fkh-dPhP7jPm9Qhpr6H4xNhQEOHjmdQAebecjZDQKhic9QsggZysmpDI3dGjHzj8G-XsDoxSOthGid34BF8OZvcAOwPAghCZ0F7-Q7sEGuoaBMEuGtnpD2gfB94yc3gkJnpNGXuT2JaG2aUKpTRRa6CiFShPJY22FA88pUpJ75NNiyTNdV0FHMI5xBt4QEii7TSCPbC5bX1bVP_7Rbgept2yDNbvLG8Xka1YvMPSyrpk4oaVFIzZQgZGBTaJEM8d1EHrkA9B-5R3dVi_DewHW1YN1uGYe2ViwRlZLm2n2e2945P3yMcgJnKPMbXEFbZjAwFEQ4R55UXHScqgoEGBpJ_DyZIXHVuay-iT_NiprkfOYp1zwV_-f1jtyv3vS72W9g8Hha_IAjE6BcXxhtEEas8mVfQOG3Uy9rXcPJed3vWF_AehDYoE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamTSBeEHcCAwxiTyhanKRO_DChbm3XsbaqVibtLfhKkbpktN2m_gD-HL-Kc5K0rCB422MSO3Z87s7x-Qh5rywzHEyJb4wREKBY7afMOp87FUU6UaErz8L0B7x7Gn86a5xtkJ_LszCYVrnUiaWiNoXGPfJdCGTSKCpxgVydFjFsdT5efPcRQQr_tC7hNGQNs2D2ynJj9SGPY7u4hnButnfUAtrvhGGn_fmg69eIA74Gwzf3LbgngYmtCNEwxzxWVimbskZimMVDmJIZkboGBzlxikup00QrRBVwYcAFIkiAOdhKwOpDILi13x4MT1Y7PghxAd5MlX0fRSLYxb35WRrgr0OxZhdL-ACwdmNMzvzb8_0zgfOGRew8IPdrV5Y2K957SDZs_ojcqcAtF4_Jj06fiUPG_F4hjTX0sJgYCsocovQ6GY-28zEyHQUnlA4RPsjZiiGpzA0d2YnzT0AXX8MohaNthOtdnMPFaG7PsQMwPyikKT3AL6QtEKYrGAhPzNBmb0T7oASfkNNbIcFTspkXuX1OqG2YUGoThRY6SqHSRPJYW-EgioqU5B75sFzyTNcV0RGYY5JBZIQEym4SyCM7q9YXVSWQf7TbR-qt2mD97vJGMf2a1QsMvaxrJE5oadGhDVRgZGCTKNHMcR2EHnkHtF97R7fZy_BegDX2YB2umEe2l6yR1Zpnlv2WE4-8XT0GnYFzlLktLqENE5hECurcI88qTloNFQUCvO4EXp6s8djaXNaf5N_GZV1yHvOUC_7i_9N6Q-6C4Ga9o8HxS3IP_E-BKX1htE0259NL-wp8vLl6XQsPJV9uW15_AZdqZsU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FM19G11-Loaded+Gold+Nanoparticles+Enhance+the+Proliferation+and+Self-Renewal+of+Ependymal+Stem+Progenitor+Cells+Derived+from+ALS+Mice&rft.jtitle=Cells+%28Basel%2C+Switzerland%29&rft.au=Marcuzzo%2C+Stefania&rft.au=Isaia%2C+Davide&rft.au=Bonanno%2C+Silvia&rft.au=Malacarne%2C+Claudia&rft.date=2019-03-23&rft.issn=2073-4409&rft.eissn=2073-4409&rft.volume=8&rft.issue=3&rft_id=info:doi/10.3390%2Fcells8030279&rft_id=info%3Apmid%2F30909571&rft.externalDocID=30909571 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4409&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4409&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4409&client=summon |