Bypassing mitochondrial defects rescues Huntington's phenotypes in Drosophila
Huntington's disease (HD) is a fatal neurodegenerative disease with limited treatment options. Human and animal studies have suggested that metabolic and mitochondrial dysfunctions contribute to HD pathogenesis. Here, we use high-resolution respirometry to uncover defective mitochondrial oxidat...
Saved in:
Published in | Neurobiology of disease Vol. 185; p. 106236 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.09.2023
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0969-9961 1095-953X 1095-953X |
DOI | 10.1016/j.nbd.2023.106236 |
Cover
Abstract | Huntington's disease (HD) is a fatal neurodegenerative disease with limited treatment options. Human and animal studies have suggested that metabolic and mitochondrial dysfunctions contribute to HD pathogenesis. Here, we use high-resolution respirometry to uncover defective mitochondrial oxidative phosphorylation and electron transfer capacity when a mutant huntingtin fragment is targeted to neurons or muscles in Drosophila and find that enhancing mitochondrial function can ameliorate these defects. In particular, we find that co-expression of parkin, an E3 ubiquitin ligase critical for mitochondrial dynamics and homeostasis, produces significant enhancement of mitochondrial respiration when expressed either in neurons or muscles, resulting in significant rescue of neurodegeneration, viability and longevity in HD model flies. Targeting mutant HTT to muscles results in larger mitochondria and higher mitochondrial mass, while co-expression of parkin increases mitochondrial fission and decreases mass. Furthermore, directly addressing HD-mediated defects in the fly's mitochondrial electron transport system, by rerouting electrons to either bypass mitochondrial complex I or complexes III-IV, significantly increases mitochondrial respiration and results in a striking rescue of all phenotypes arising from neuronal mutant huntingtin expression. These observations suggest that bypassing impaired mitochondrial respiratory complexes in HD may have therapeutic potential for the treatment of this devastating disorder.
•Huntington's disease model fruit flies exhibit mitochondrial dysfunction.•The E3 ubiquitin ligase parkin ameliorates these defects in fly neurons and muscles.•Parkin ameliorates shortened lifespan and neurodegeneration in these flies.•Bypassing electron flow to mitochondrial complexes I or III-IV is neuroprotective.•Modulating mitochondrial function is a possible route for therapy. |
---|---|
AbstractList | Huntington's disease (HD) is a fatal neurodegenerative disease with limited treatment options. Human and animal studies have suggested that metabolic and mitochondrial dysfunctions contribute to HD pathogenesis. Here, we use high-resolution respirometry to uncover defective mitochondrial oxidative phosphorylation and electron transfer capacity when a mutant huntingtin fragment is targeted to neurons or muscles in Drosophila and find that enhancing mitochondrial function can ameliorate these defects. In particular, we find that co-expression of parkin, an E3 ubiquitin ligase critical for mitochondrial dynamics and homeostasis, produces significant enhancement of mitochondrial respiration when expressed either in neurons or muscles, resulting in significant rescue of neurodegeneration, viability and longevity in HD model flies. Targeting mutant HTT to muscles results in larger mitochondria and higher mitochondrial mass, while co-expression of parkin increases mitochondrial fission and decreases mass. Furthermore, directly addressing HD-mediated defects in the fly's mitochondrial electron transport system, by rerouting electrons to either bypass mitochondrial complex I or complexes III-IV, significantly increases mitochondrial respiration and results in a striking rescue of all phenotypes arising from neuronal mutant huntingtin expression. These observations suggest that bypassing impaired mitochondrial respiratory complexes in HD may have therapeutic potential for the treatment of this devastating disorder. Huntington's disease (HD) is a fatal neurodegenerative disease with limited treatment options. Human and animal studies have suggested that metabolic and mitochondrial dysfunctions contribute to HD pathogenesis. Here, we use high-resolution respirometry to uncover defective mitochondrial oxidative phosphorylation and electron transfer capacity when a mutant huntingtin fragment is targeted to neurons or muscles in Drosophila and find that enhancing mitochondrial function can ameliorate these defects. In particular, we find that co-expression of parkin, an E3 ubiquitin ligase critical for mitochondrial dynamics and homeostasis, produces significant enhancement of mitochondrial respiration when expressed either in neurons or muscles, resulting in significant rescue of neurodegeneration, viability and longevity in HD model flies. Targeting mutant HTT to muscles results in larger mitochondria and higher mitochondrial mass, while co-expression of parkin increases mitochondrial fission and decreases mass. Furthermore, directly addressing HD-mediated defects in the fly's mitochondrial electron transport system, by rerouting electrons to either bypass mitochondrial complex I or complexes III-IV, significantly increases mitochondrial respiration and results in a striking rescue of all phenotypes arising from neuronal mutant huntingtin expression. These observations suggest that bypassing impaired mitochondrial respiratory complexes in HD may have therapeutic potential for the treatment of this devastating disorder.Huntington's disease (HD) is a fatal neurodegenerative disease with limited treatment options. Human and animal studies have suggested that metabolic and mitochondrial dysfunctions contribute to HD pathogenesis. Here, we use high-resolution respirometry to uncover defective mitochondrial oxidative phosphorylation and electron transfer capacity when a mutant huntingtin fragment is targeted to neurons or muscles in Drosophila and find that enhancing mitochondrial function can ameliorate these defects. In particular, we find that co-expression of parkin, an E3 ubiquitin ligase critical for mitochondrial dynamics and homeostasis, produces significant enhancement of mitochondrial respiration when expressed either in neurons or muscles, resulting in significant rescue of neurodegeneration, viability and longevity in HD model flies. Targeting mutant HTT to muscles results in larger mitochondria and higher mitochondrial mass, while co-expression of parkin increases mitochondrial fission and decreases mass. Furthermore, directly addressing HD-mediated defects in the fly's mitochondrial electron transport system, by rerouting electrons to either bypass mitochondrial complex I or complexes III-IV, significantly increases mitochondrial respiration and results in a striking rescue of all phenotypes arising from neuronal mutant huntingtin expression. These observations suggest that bypassing impaired mitochondrial respiratory complexes in HD may have therapeutic potential for the treatment of this devastating disorder. Huntington's disease (HD) is a fatal neurodegenerative disease with limited treatment options. Human and animal studies have suggested that metabolic and mitochondrial dysfunctions contribute to HD pathogenesis. Here, we use high-resolution respirometry to uncover defective mitochondrial oxidative phosphorylation and electron transfer capacity when a mutant huntingtin fragment is targeted to neurons or muscles in Drosophila and find that enhancing mitochondrial function can ameliorate these defects. In particular, we find that co-expression of parkin, an E3 ubiquitin ligase critical for mitochondrial dynamics and homeostasis, produces significant enhancement of mitochondrial respiration when expressed either in neurons or muscles, resulting in significant rescue of neurodegeneration, viability and longevity in HD model flies. Targeting mutant HTT to muscles results in larger mitochondria and higher mitochondrial mass, while co-expression of parkin increases mitochondrial fission and decreases mass. Furthermore, directly addressing HD-mediated defects in the fly's mitochondrial electron transport system, by rerouting electrons to either bypass mitochondrial complex I or complexes III-IV, significantly increases mitochondrial respiration and results in a striking rescue of all phenotypes arising from neuronal mutant huntingtin expression. These observations suggest that bypassing impaired mitochondrial respiratory complexes in HD may have therapeutic potential for the treatment of this devastating disorder. •Huntington's disease model fruit flies exhibit mitochondrial dysfunction.•The E3 ubiquitin ligase parkin ameliorates these defects in fly neurons and muscles.•Parkin ameliorates shortened lifespan and neurodegeneration in these flies.•Bypassing electron flow to mitochondrial complexes I or III-IV is neuroprotective.•Modulating mitochondrial function is a possible route for therapy. |
ArticleNumber | 106236 |
Author | Repici, Mariaelena Boytcheva, Kalina V. Giorgini, Flaviano Rosato, Ezio del Popolo, Ivana Marcou, Kyriaki Kyriacou, Charalambos P. Allcock, Natalie Campesan, Susanna Straatman-Iwanowska, Anna Cotton, Victoria E. |
Author_xml | – sequence: 1 givenname: Susanna surname: Campesan fullname: Campesan, Susanna email: sc17@le.ac.uk organization: Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK – sequence: 2 givenname: Ivana surname: del Popolo fullname: del Popolo, Ivana organization: Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK – sequence: 3 givenname: Kyriaki surname: Marcou fullname: Marcou, Kyriaki organization: Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK – sequence: 4 givenname: Anna surname: Straatman-Iwanowska fullname: Straatman-Iwanowska, Anna organization: Electron Microscopy Facility, Core Biotechnology Services, Adrian Building, University of Leicester, University Road, Leicester LE1 7RH, Leicestershire, UK – sequence: 5 givenname: Mariaelena surname: Repici fullname: Repici, Mariaelena organization: Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK – sequence: 6 givenname: Kalina V. surname: Boytcheva fullname: Boytcheva, Kalina V. organization: Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK – sequence: 7 givenname: Victoria E. surname: Cotton fullname: Cotton, Victoria E. organization: Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK – sequence: 8 givenname: Natalie surname: Allcock fullname: Allcock, Natalie organization: Electron Microscopy Facility, Core Biotechnology Services, Adrian Building, University of Leicester, University Road, Leicester LE1 7RH, Leicestershire, UK – sequence: 9 givenname: Ezio surname: Rosato fullname: Rosato, Ezio organization: Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK – sequence: 10 givenname: Charalambos P. surname: Kyriacou fullname: Kyriacou, Charalambos P. organization: Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK – sequence: 11 givenname: Flaviano surname: Giorgini fullname: Giorgini, Flaviano email: fg36@le.ac.uk organization: Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37495179$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtvEzEUhS1URNPCD2CDZgebBD_G9lisaHm0UhEbkNhZdzx3GoeJPdgOUv49DilddFFW1r0637HuOWfkJMSAhLxkdMUoU283q9APK065qLPiQj0hC0aNXBopfpyQBTXKLI1R7JSc5byhlDFp9DNyKnRrJNNmQb5c7GfI2YfbZutLdOsYhuRhagYc0ZXcJMxuh7m52oVSVSWG17mZ1xhi2c9170PzIcUc57Wf4Dl5OsKU8cXde06-f_r47fJqefP18_Xl-5ulk4yXJXKqey2Rdi2VQiBKMYIzwmA3AgfWd5pDB0xpRRlXEsCxjirQGrUcsBfn5ProO0TY2Dn5LaS9jeDt30VMtxZS8W5CO_K27bnUTkrd0qHeLXsllTKM6kHwg9ebo9ec4q96abFbnx1OEwSMu2x51woqtDFtlb66k-76LQ73H_-LswrYUeBqJDnheC9h1B4qsxtbK7OHyuyxssroB4zzBYqPoSTw06PkuyOJNerfHpPNzmNwOPhUu6tZ-Edp84B2kw_ewfQT9_9h_wCpH8G4 |
CitedBy_id | crossref_primary_10_1515_revneuro_2024_0080 crossref_primary_10_1016_j_lfs_2024_122562 crossref_primary_10_3390_cells13231944 crossref_primary_10_3390_ijms252111794 |
Cites_doi | 10.1093/hmg/ddr235 10.1172/JCI70911 10.1002/mds.21550 10.1016/j.mad.2005.09.010 10.1371/journal.pone.0016746 10.1210/er.2002-0012 10.1093/brain/119.6.2085 10.1016/j.pneurobio.2011.10.004 10.1089/ars.2017.7321 10.1038/s41467-017-00525-4 10.1016/S1474-4422(10)70245-3 10.3389/fphys.2014.00380 10.1523/JNEUROSCI.16-09-03019.1996 10.1212/WNL.28.1.23 10.7554/eLife.03558 10.1128/MCB.24.18.8195-8209.2004 10.1016/j.mad.2016.09.003 10.1002/mds.20373 10.1073/pnas.1221132110 10.1002/ana.410130116 10.1186/s13024-020-00363-x 10.1196/annals.1427.018 10.1038/nrm3028 10.1073/pnas.0911187107 10.1242/dmm.038737 10.1016/j.cell.2006.09.015 10.1093/hmg/ddt601 10.1111/imb.12608 10.1038/nature04779 10.1093/hmg/ddn273 10.1073/pnas.0803998105 10.1016/j.cell.2011.02.010 10.1212/01.WNL.0000031791.10922.CF 10.1038/sj.embor.7400601 10.1007/978-1-61779-382-0_3 10.1093/hmg/dds117 10.1073/pnas.0911539107 10.1371/journal.pone.0225214 10.1002/emmm.201000102 10.1212/WNL.43.12.2689 10.1073/pnas.1113884108 10.1074/jbc.M007033200 10.1002/ana.1085 10.1111/j.1399-3054.2009.01248.x 10.1038/nature04788 10.1128/JB.180.16.4051-4055.1998 10.1016/j.redox.2020.101450 10.1371/journal.pone.0050644 10.1016/j.cmet.2016.03.009 10.1007/s00702-009-0328-4 10.1073/pnas.96.14.8271 10.1038/35099568 10.1007/s11745-015-4110-0 10.1016/j.cmet.2006.10.004 10.1523/JNEUROSCI.0106-08.2008 10.1073/pnas.1216197110 10.1073/pnas.0602493103 10.1097/00005072-197404000-00008 10.1016/j.freeradbiomed.2013.04.016 10.1046/j.1471-4159.1998.70020794.x 10.1113/JP277157 10.1371/journal.pbio.1000298 10.1074/jbc.M600922200 10.1038/77060 10.1093/hmg/ddq322 10.1083/jcb.200809125 10.1016/j.mito.2007.02.001 10.1111/j.1474-9726.2010.00546.x 10.1002/1531-8249(200007)48:1<72::AID-ANA11>3.0.CO;2-I 10.1002/ana.410410514 10.1002/mdc3.12308 10.1002/emmm.200900001 10.1016/j.cmet.2009.03.004 10.1038/nn.3721 10.1371/journal.pgen.1002456 10.1113/jphysiol.2012.230185 10.1073/pnas.0914569107 10.1093/hmg/ddq419 10.1073/pnas.0737556100 10.1073/pnas.0913485107 10.1016/j.cub.2011.04.028 10.1038/nm.2313 10.1093/hmg/dds096 10.1111/j.1432-1033.1992.tb16587.x 10.1111/ene.13413 10.1080/1521-6540400000876 10.1016/j.brainres.2004.10.030 10.1371/journal.pgen.1003182 10.1038/ng.2732 10.1016/j.yjmcc.2003.10.015 10.1016/j.freeradbiomed.2021.01.018 10.1111/j.1471-4159.2011.07318.x 10.1038/cddis.2014.581 10.1083/jcb.201007013 10.18388/abp.2003_3649 10.1371/journal.pone.0010054 10.1016/0022-510X(85)90112-1 10.1212/01.wnl.0000334276.09729.0e 10.1038/nmeth.2019 |
ContentType | Journal Article |
Copyright | 2023 The Authors 2023 Copyright © 2023. Published by Elsevier Inc. Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2023 The Authors – notice: 2023 – notice: Copyright © 2023. Published by Elsevier Inc. – notice: Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 DOA |
DOI | 10.1016/j.nbd.2023.106236 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic DOAJ |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ (Directory of Open Access Journals) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1095-953X |
ExternalDocumentID | oai_doaj_org_article_f244b257c55740d4955b65669107d32b 37495179 10_1016_j_nbd_2023_106236 S0969996123002516 |
Genre | Journal Article |
GroupedDBID | --- --K --M .1- .55 .FO .GJ .~1 0R~ 123 1B1 1P~ 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABJNI ABMAC ABMZM ABTEW ABWVN ABXDB ACDAQ ACGFO ACGFS ACIEU ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFGL ADMUD ADNMO ADVLN ADXHL AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGWIK AGYEJ AIEXJ AIGII AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CAG COF CS3 DM4 DU5 EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU G-Q GBLVA GROUPED_DOAJ HVGLF HZ~ IHE J1W K-O KOM M41 MO0 MOBAO N9A O-L O9- OAUVE OK1 OP~ OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SCC SDF SDG SDP SES SEW SSH SSN SSZ T5K X7M XPP Z5R ZGI ZMT ZU3 ~G- 0SF 6I. AACTN AAFTH AFCTW AFKWA AJOXV AMFUW NCXOZ RIG AAYXX AGRNS CITATION NPM 7X8 |
ID | FETCH-LOGICAL-c512t-e207b75e0840533ee53fac939e8fa2a1b872a8a167601265aac1806a77e75deb3 |
IEDL.DBID | AIKHN |
ISSN | 0969-9961 1095-953X |
IngestDate | Wed Aug 27 01:32:07 EDT 2025 Fri Sep 05 12:28:34 EDT 2025 Thu Apr 03 07:04:55 EDT 2025 Thu Apr 24 22:53:09 EDT 2025 Tue Jul 01 03:07:38 EDT 2025 Tue Dec 03 03:45:25 EST 2024 Tue Aug 26 16:34:33 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Mitochondrial dysfunction Huntingtin Huntington's disease Neurodegeneration Parkin |
Language | English |
License | This is an open access article under the CC BY license. This is an open access article under the CC BY-NC-ND license. Copyright © 2023. Published by Elsevier Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c512t-e207b75e0840533ee53fac939e8fa2a1b872a8a167601265aac1806a77e75deb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0969996123002516 |
PMID | 37495179 |
PQID | 2843037994 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f244b257c55740d4955b65669107d32b proquest_miscellaneous_2843037994 pubmed_primary_37495179 crossref_primary_10_1016_j_nbd_2023_106236 crossref_citationtrail_10_1016_j_nbd_2023_106236 elsevier_sciencedirect_doi_10_1016_j_nbd_2023_106236 elsevier_clinicalkey_doi_10_1016_j_nbd_2023_106236 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-01 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Neurobiology of disease |
PublicationTitleAlternate | Neurobiol Dis |
PublicationYear | 2023 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Schindelin (bb0355) 2012; 9 Weydt (bb0485) 2006; 4 Antonini (bb0010) 1996; 119 Sandoval (bb0340) 2014; 3 Greene (bb0150) 2003; 100 Narendra, Tanaka, Suen, Youle (bb0250) 2008; 183 Cui (bb0075) 2006; 127 Yano (bb0495) 2014; 17 De Vries, Van Witzenburg, Grivell, Marres (bb0090) 1992; 203 Rana (bb0315) 2017; 8 Brouillet (bb0025) 1998; 70 Small, McAlister-Henn (bb0400) 1998; 180 Vilain (bb0465) 2012; 8 Khalil (bb0195) 2015; 6 Leduc-Gaudet, Reynaud, Hussain, Gouspillou (bb0210) 2019; 597 El-Khoury (bb0110) 2013; 9 Steinert (bb0430) 2012; 21 Andreassen (bb0005) 2001; 50 Poole, Thomas, Yu, Vincow, Pallanck (bb0295) 2010; 5 Ross, Tabrizi (bb0330) 2011; 10 Pesta, Gnaiger (bb0280) 2012; 810 Yang (bb0490) 2006; 103 Scialo (bb0365) 2016; 23 Song (bb0405) 2011; 17 Youle, Narendra (bb0500) 2011; 12 Zielonka, Piotrowska, Marcinkowski, Mielcarek (bb0515) 2014; 5 Dassa, Dufour, Goncalves, Jacobs, Rustin (bb0080) 2009; 137 Ehinger, Morota, Hansson, Paul, Elmer (bb0105) 2016; 3 Vincow (bb0470) 2013; 110 Djoussé (bb0100) 2002; 59 Gnaiger (bb0140) 2014 Butterworth, Yates, Reynolds (bb0040) 1985; 67 Squitieri (bb0415) 2006; 127 Lodi (bb0215) 2000; 48 Vives-Bauza (bb0475) 2010; 107 Vartiainen (bb0460) 2014; 7 Steffan (bb0425) 2001; 413 Goebel, Heipertz, Scholz, Iqbal, Tellez-Nagel (bb0145) 1978; 28 Scialò (bb0370) 2020; 32 Orr (bb0260) 2008; 28 Mason (bb0220) 2013; 45 Saft (bb0335) 2005; 20 Polyzos, McMurray (bb0290) 2017; 161 Larsen (bb0205) 2012; 590 Clark (bb0065) 2006; 441 Scialo, Sanz (bb0360) 2021; 164 Kemppainen (bb0190) 2014; 23 Glauser, Sonnay, Stafa, Moore (bb0135) 2011; 118 Maxwell, Wang, McIntosh (bb0225) 1999; 96 Puigserver, Spiegelman (bb0300) 2003; 24 Sbodio, Snyder, Paul (bb0350) 2019; 30 McDonald, Vanlerberghe (bb0235) 2004; 56 Gegg (bb0125) 2010; 19 McDonald, Vanlerberghe (bb0240) 2006; 1 Reynolds, Prost, Mark (bb0320) 2005; 1031 Sorbi, Bird, Blass (bb0410) 1983; 13 Cho, Hur, Graniel, Benzer, Walker (bb0060) 2012; 7 Hargreaves (bb0165) 2007; 7 Seo, Wang, Flotte, Yagi, Matsuno-Yagi (bb0375) 2000; 275 Park (bb0275) 2006; 441 Fernandez-Ayala (bb0120) 2009; 9 Campesan (bb0045) 2011; 21 Rodinova (bb0325) 2019; 12 Watts, Kline, Thornton, Grattan, Brar (bb0480) 2004; 36 Feigin (bb0115) 2001; 42 Browne (bb0035) 1997; 41 Cha (bb0050) 2020; 29 Zhang (bb0510) 2011; 108 Kosinski (bb0200) 2007; 22 Trushina (bb0450) 2004; 24 Tanaka (bb0440) 2010; 191 Juszczuk, Rychter (bb0185) 2003; 50 Dassa (bb0085) 2009; 1 Deng, Dodson, Huang, Guo (bb0095) 2008; 105 Guo (bb0155) 2013; 123 Ziviani, Tao, Whitworth (bb0520) 2010; 107 Humphrey (bb0170) 2012; 21 Seo, Nakamaru-Ogiso, Flotte, Matsuno-Yagi, Yagi (bb0380) 2006; 281 Hakkaart, Dassa, Jacobs, Rustin (bb0160) 2006; 7 Jenkins, Koroshetz, Beal, Rosen (bb0175) 1993; 43 Johri, Chandra, Flint Beal (bb0180) 2013; 62 George, Jacobs (bb0130) 2019; 8 Mejia, Chau, Sparagna, Sipione, Hatch (bb0245) 2016; 51 Bahadorani (bb0020) 2010; 9 Si (bb0395) 2019; 14 Suen, Narendra, Tanaka, Manfredi, Youle (bb0435) 2010; 107 Browne (bb0030) 2008; 1147 Tsunemi, La Spada (bb0455) 2012; 97 Aziz (bb0015) 2008; 71 Squitieri (bb0420) 2010; 117 Yu, Sun, Guo, Lu (bb0505) 2011; 20 Narendra (bb0255) 2010; 8 Rakovic (bb0305) 2011; 6 Rana, Rera, Walker (bb0310) 2013; 110 Sanz (bb0345) 2010; 107 Shimura (bb0385) 2000; 25 McColgan, Tabrizi (bb0230) 2018; 25 Shin (bb0390) 2011; 144 Chiang (bb0055) 2010; 19 Pallos (bb0270) 2008; 17 Tellez-Nagel, Johnson, Terry (bb0445) 1974; 33 Costa (bb0070) 2010; 2 Pirooznia (bb0285) 2020; 15 Palfi (bb0265) 1996; 16 Cui (10.1016/j.nbd.2023.106236_bb0075) 2006; 127 Pirooznia (10.1016/j.nbd.2023.106236_bb0285) 2020; 15 Pallos (10.1016/j.nbd.2023.106236_bb0270) 2008; 17 Steinert (10.1016/j.nbd.2023.106236_bb0430) 2012; 21 Song (10.1016/j.nbd.2023.106236_bb0405) 2011; 17 Clark (10.1016/j.nbd.2023.106236_bb0065) 2006; 441 Mejia (10.1016/j.nbd.2023.106236_bb0245) 2016; 51 Weydt (10.1016/j.nbd.2023.106236_bb0485) 2006; 4 Ross (10.1016/j.nbd.2023.106236_bb0330) 2011; 10 Seo (10.1016/j.nbd.2023.106236_bb0380) 2006; 281 Orr (10.1016/j.nbd.2023.106236_bb0260) 2008; 28 Shin (10.1016/j.nbd.2023.106236_bb0390) 2011; 144 Sorbi (10.1016/j.nbd.2023.106236_bb0410) 1983; 13 Seo (10.1016/j.nbd.2023.106236_bb0375) 2000; 275 Humphrey (10.1016/j.nbd.2023.106236_bb0170) 2012; 21 De Vries (10.1016/j.nbd.2023.106236_bb0090) 1992; 203 Cho (10.1016/j.nbd.2023.106236_bb0060) 2012; 7 Chiang (10.1016/j.nbd.2023.106236_bb0055) 2010; 19 Larsen (10.1016/j.nbd.2023.106236_bb0205) 2012; 590 Puigserver (10.1016/j.nbd.2023.106236_bb0300) 2003; 24 Narendra (10.1016/j.nbd.2023.106236_bb0255) 2010; 8 Gnaiger (10.1016/j.nbd.2023.106236_bb0140) 2014 Youle (10.1016/j.nbd.2023.106236_bb0500) 2011; 12 Djoussé (10.1016/j.nbd.2023.106236_bb0100) 2002; 59 Squitieri (10.1016/j.nbd.2023.106236_bb0415) 2006; 127 Browne (10.1016/j.nbd.2023.106236_bb0030) 2008; 1147 Costa (10.1016/j.nbd.2023.106236_bb0070) 2010; 2 Trushina (10.1016/j.nbd.2023.106236_bb0450) 2004; 24 Rana (10.1016/j.nbd.2023.106236_bb0315) 2017; 8 Feigin (10.1016/j.nbd.2023.106236_bb0115) 2001; 42 McDonald (10.1016/j.nbd.2023.106236_bb0240) 2006; 1 Cha (10.1016/j.nbd.2023.106236_bb0050) 2020; 29 Antonini (10.1016/j.nbd.2023.106236_bb0010) 1996; 119 Maxwell (10.1016/j.nbd.2023.106236_bb0225) 1999; 96 Tanaka (10.1016/j.nbd.2023.106236_bb0440) 2010; 191 Greene (10.1016/j.nbd.2023.106236_bb0150) 2003; 100 Vives-Bauza (10.1016/j.nbd.2023.106236_bb0475) 2010; 107 Aziz (10.1016/j.nbd.2023.106236_bb0015) 2008; 71 Bahadorani (10.1016/j.nbd.2023.106236_bb0020) 2010; 9 Ehinger (10.1016/j.nbd.2023.106236_bb0105) 2016; 3 Sandoval (10.1016/j.nbd.2023.106236_bb0340) 2014; 3 El-Khoury (10.1016/j.nbd.2023.106236_bb0110) 2013; 9 Poole (10.1016/j.nbd.2023.106236_bb0295) 2010; 5 Scialo (10.1016/j.nbd.2023.106236_bb0360) 2021; 164 Dassa (10.1016/j.nbd.2023.106236_bb0080) 2009; 137 Polyzos (10.1016/j.nbd.2023.106236_bb0290) 2017; 161 Vartiainen (10.1016/j.nbd.2023.106236_bb0460) 2014; 7 Fernandez-Ayala (10.1016/j.nbd.2023.106236_bb0120) 2009; 9 Vincow (10.1016/j.nbd.2023.106236_bb0470) 2013; 110 Gegg (10.1016/j.nbd.2023.106236_bb0125) 2010; 19 Browne (10.1016/j.nbd.2023.106236_bb0035) 1997; 41 Rakovic (10.1016/j.nbd.2023.106236_bb0305) 2011; 6 Andreassen (10.1016/j.nbd.2023.106236_bb0005) 2001; 50 Dassa (10.1016/j.nbd.2023.106236_bb0085) 2009; 1 Vilain (10.1016/j.nbd.2023.106236_bb0465) 2012; 8 Yang (10.1016/j.nbd.2023.106236_bb0490) 2006; 103 McDonald (10.1016/j.nbd.2023.106236_bb0235) 2004; 56 Si (10.1016/j.nbd.2023.106236_bb0395) 2019; 14 Steffan (10.1016/j.nbd.2023.106236_bb0425) 2001; 413 Palfi (10.1016/j.nbd.2023.106236_bb0265) 1996; 16 Schindelin (10.1016/j.nbd.2023.106236_bb0355) 2012; 9 Pesta (10.1016/j.nbd.2023.106236_bb0280) 2012; 810 Tellez-Nagel (10.1016/j.nbd.2023.106236_bb0445) 1974; 33 Jenkins (10.1016/j.nbd.2023.106236_bb0175) 1993; 43 Shimura (10.1016/j.nbd.2023.106236_bb0385) 2000; 25 Juszczuk (10.1016/j.nbd.2023.106236_bb0185) 2003; 50 Lodi (10.1016/j.nbd.2023.106236_bb0215) 2000; 48 Hargreaves (10.1016/j.nbd.2023.106236_bb0165) 2007; 7 Guo (10.1016/j.nbd.2023.106236_bb0155) 2013; 123 Kosinski (10.1016/j.nbd.2023.106236_bb0200) 2007; 22 Sbodio (10.1016/j.nbd.2023.106236_bb0350) 2019; 30 Rana (10.1016/j.nbd.2023.106236_bb0310) 2013; 110 Saft (10.1016/j.nbd.2023.106236_bb0335) 2005; 20 Ziviani (10.1016/j.nbd.2023.106236_bb0520) 2010; 107 Brouillet (10.1016/j.nbd.2023.106236_bb0025) 1998; 70 Yu (10.1016/j.nbd.2023.106236_bb0505) 2011; 20 Small (10.1016/j.nbd.2023.106236_bb0400) 1998; 180 Rodinova (10.1016/j.nbd.2023.106236_bb0325) 2019; 12 Hakkaart (10.1016/j.nbd.2023.106236_bb0160) 2006; 7 Campesan (10.1016/j.nbd.2023.106236_bb0045) 2011; 21 Goebel (10.1016/j.nbd.2023.106236_bb0145) 1978; 28 Butterworth (10.1016/j.nbd.2023.106236_bb0040) 1985; 67 Glauser (10.1016/j.nbd.2023.106236_bb0135) 2011; 118 Scialò (10.1016/j.nbd.2023.106236_bb0370) 2020; 32 Leduc-Gaudet (10.1016/j.nbd.2023.106236_bb0210) 2019; 597 Tsunemi (10.1016/j.nbd.2023.106236_bb0455) 2012; 97 Deng (10.1016/j.nbd.2023.106236_bb0095) 2008; 105 Kemppainen (10.1016/j.nbd.2023.106236_bb0190) 2014; 23 Narendra (10.1016/j.nbd.2023.106236_bb0250) 2008; 183 Sanz (10.1016/j.nbd.2023.106236_bb0345) 2010; 107 Mason (10.1016/j.nbd.2023.106236_bb0220) 2013; 45 McColgan (10.1016/j.nbd.2023.106236_bb0230) 2018; 25 Watts (10.1016/j.nbd.2023.106236_bb0480) 2004; 36 Zhang (10.1016/j.nbd.2023.106236_bb0510) 2011; 108 Squitieri (10.1016/j.nbd.2023.106236_bb0420) 2010; 117 Khalil (10.1016/j.nbd.2023.106236_bb0195) 2015; 6 Johri (10.1016/j.nbd.2023.106236_bb0180) 2013; 62 Park (10.1016/j.nbd.2023.106236_bb0275) 2006; 441 Reynolds (10.1016/j.nbd.2023.106236_bb0320) 2005; 1031 Yano (10.1016/j.nbd.2023.106236_bb0495) 2014; 17 George (10.1016/j.nbd.2023.106236_bb0130) 2019; 8 Suen (10.1016/j.nbd.2023.106236_bb0435) 2010; 107 Zielonka (10.1016/j.nbd.2023.106236_bb0515) 2014; 5 Scialo (10.1016/j.nbd.2023.106236_bb0365) 2016; 23 |
References_xml | – volume: 56 start-page: 333 year: 2004 end-page: 341 ident: bb0235 article-title: Branched mitochondrial electron transport in the animalia: presence of alternative oxidase in several animal Phyla publication-title: IUBMB Life – volume: 5 year: 2010 ident: bb0295 article-title: The mitochondrial fusion-promoting factor mitofusin is a substrate of the PINK1/parkin pathway publication-title: PLoS One – volume: 25 start-page: 24 year: 2018 end-page: 34 ident: bb0230 article-title: Huntington’s disease: a clinical review publication-title: Eur. J. Neurol. – volume: 8 year: 2012 ident: bb0465 article-title: The yeast complex I equivalent NADH dehydrogenase rescues pink1 mutants publication-title: PLoS Genet. – volume: 43 start-page: 2689 year: 1993 ident: bb0175 article-title: Evidence for irnnairment of energy metabofism in vivo in Huntington’s disease using localized 1H NMR spectroscopy publication-title: Neurology – volume: 6 year: 2011 ident: bb0305 article-title: Mutations in PINK1 and Parkin impair ubiquitination of Mitofusins in human fibroblasts publication-title: PLoS One – volume: 21 start-page: 961 year: 2011 end-page: 966 ident: bb0045 article-title: The kynurenine pathway modulates neurodegeneration in a Drosophila model of Huntington’s disease publication-title: Curr. Biol. – volume: 24 start-page: 8195 year: 2004 end-page: 8209 ident: bb0450 article-title: Mutant huntingtin impairs axonal trafficking in mammalian neurons in vivo and in vitro publication-title: Mol. Cell. Biol. – volume: 23 start-page: 2078 year: 2014 end-page: 2093 ident: bb0190 article-title: Expression of alternative oxidase in Drosophila ameliorates diverse phenotypes due to cytochrome oxidase deficiency publication-title: Hum. Mol. Genet. – volume: 191 start-page: 1367 year: 2010 end-page: 1380 ident: bb0440 article-title: Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin publication-title: J. Cell Biol. – volume: 118 start-page: 636 year: 2011 end-page: 645 ident: bb0135 article-title: Parkin promotes the ubiquitination and degradation of the mitochondrial fusion factor mitofusin 1 publication-title: J. Neurochem. – volume: 105 start-page: 14503 year: 2008 end-page: 14508 ident: bb0095 article-title: The Parkinson’s disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 15 start-page: 17 year: 2020 ident: bb0285 article-title: PARIS induced defects in mitochondrial biogenesis drive dopamine neuron loss under conditions of parkin or PINK1 deficiency publication-title: Mol. Neurodegener. – volume: 48 start-page: 72 year: 2000 end-page: 76 ident: bb0215 article-title: Abnormal in vivo skeletal muscle energy metabolism in Huntington’s disease and dentatorubropallidoluysian atrophy publication-title: Ann. Neurol. – volume: 127 start-page: 217 year: 2006 end-page: 220 ident: bb0415 article-title: Severe ultrastructural mitochondrial changes in lymphoblasts homozygous for Huntington disease mutation publication-title: Mech. Ageing Dev. – volume: 137 start-page: 427 year: 2009 end-page: 434 ident: bb0080 article-title: The alternative oxidase, a tool for compensating cytochrome c oxidase deficiency in human cells publication-title: Physiol. Plant. – volume: 36 start-page: 141 year: 2004 end-page: 150 ident: bb0480 article-title: Metabolic dysfunction and depletion of mitochondria in hearts of septic rats publication-title: J. Mol. Cell. Cardiol. – volume: 7 start-page: 635 year: 2014 end-page: 648 ident: bb0460 article-title: Phenotypic rescue of a Drosophila model of mitochondrial ANT1 disease publication-title: Dis. Model. Mech. – volume: 30 start-page: 1450 year: 2019 end-page: 1499 ident: bb0350 article-title: Redox mechanisms in neurodegeneration: from disease outcomes to therapeutic opportunities publication-title: Antioxid. Redox Signal. – volume: 110 start-page: 6400 year: 2013 end-page: 6405 ident: bb0470 article-title: The PINK1–Parkin pathway promotes both mitophagy and selective respiratory chain turnover in vivo publication-title: Proc. Natl. Acad. Sci. – volume: 6 year: 2015 ident: bb0195 article-title: PINK1-induced mitophagy promotes neuroprotection in Huntington’s disease publication-title: Cell Death Dis. – volume: 3 year: 2014 ident: bb0340 article-title: Mitochondrial fusion but not fission regulates larval growth and synaptic development through steroid hormone production publication-title: Elife – volume: 1 start-page: 357 year: 2006 end-page: 364 ident: bb0240 article-title: Origins, evolutionary history, and taxonomic distribution of alternative oxidase and plastoquinol terminal oxidase publication-title: Comp. Biochem. Physiol. Part D Genom. Proteom. – year: 2014 ident: bb0140 article-title: Mitochondrial Pathways and Respiratory Control – volume: 32 year: 2020 ident: bb0370 article-title: Mitochondrial complex I derived ROS regulate stress adaptation in Drosophila melanogaster publication-title: Redox Biol. – volume: 8 start-page: 448 year: 2017 ident: bb0315 article-title: Promoting Drp1-mediated mitochondrial fission in midlife prolongs healthy lifespan of Drosophila melanogaster publication-title: Nat. Commun. – volume: 110 year: 2013 ident: bb0310 article-title: Parkin overexpression during aging reduces proteotoxicity, alters mitochondrial dynamics, and extends lifespan publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 12 year: 2019 ident: bb0325 article-title: Deterioration of mitochondrial bioenergetics and ultrastructure impairment in skeletal muscle of a transgenic minipig model in the early stages of Huntington’s disease publication-title: Dis. Model. Mech. – volume: 17 start-page: 3767 year: 2008 end-page: 3775 ident: bb0270 article-title: Inhibition of specific HDACs and sirtuins suppresses pathogenesis in a Drosophila model of Huntington’s disease publication-title: Hum. Mol. Genet. – volume: 19 start-page: 4861 year: 2010 end-page: 4870 ident: bb0125 article-title: Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy publication-title: Hum. Mol. Genet. – volume: 9 start-page: 676 year: 2012 end-page: 682 ident: bb0355 article-title: Fiji: an open-source platform for biological-image analysis publication-title: Nat. Methods – volume: 17 start-page: 822 year: 2014 end-page: 831 ident: bb0495 article-title: Inhibition of mitochondrial protein import by mutant huntingtin publication-title: Nat. Neurosci. – volume: 50 start-page: 112 year: 2001 end-page: 116 ident: bb0005 article-title: Dichloroacetate exerts therapeutic effects in transgenic mouse models of Huntington’s disease publication-title: Ann. Neurol. – volume: 62 start-page: 37 year: 2013 end-page: 46 ident: bb0180 article-title: PGC-1α, mitochondrial dysfunction, and Huntington’s disease publication-title: Free Radic. Biol. Med. – volume: 97 start-page: 142 year: 2012 end-page: 151 ident: bb0455 article-title: PGC-1α at the intersection of bioenergetics regulation and neuron function: from Huntington’s disease to Parkinson’s disease and beyond publication-title: Prog. Neurobiol. – volume: 144 start-page: 689 year: 2011 end-page: 702 ident: bb0390 article-title: PARIS (ZNF746) repression of PGC-1alpha contributes to neurodegeneration in Parkinson’s disease publication-title: Cell – volume: 13 start-page: 72 year: 1983 end-page: 78 ident: bb0410 article-title: Decreased pyruvate dehydrogenase complex activity in Huntington and Alzheimer brain publication-title: Ann. Neurol. – volume: 67 start-page: 161 year: 1985 end-page: 171 ident: bb0040 article-title: Distribution of phosphate-activated glutaminase, succinic dehydrogenase, pyruvate dehydrogenase and gamma-glutamyl transpeptidase in post-mortem brain from Huntington’s disease and agonal cases publication-title: J. Neurol. Sci. – volume: 119 start-page: 2085 year: 1996 end-page: 2095 ident: bb0010 article-title: Striatal glucose metabolism and dopamine D2 receptor binding in asymptomatic gene carriers and patients with Huntington's disease publication-title: Brain – volume: 29 start-page: 56 year: 2020 end-page: 65 ident: bb0050 article-title: Parkin expression reverses mitochondrial dysfunction in fused in sarcoma-induced amyotrophic lateral sclerosis publication-title: Insect Mol. Biol. – volume: 810 start-page: 25 year: 2012 end-page: 58 ident: bb0280 article-title: High-resolution respirometry: OXPHOS protocols for human cells and permeabilized fibers from small biopsies of human muscle publication-title: Methods Mol. Biol. – volume: 25 start-page: 302 year: 2000 end-page: 305 ident: bb0385 article-title: Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase publication-title: Nat. Genet. – volume: 281 start-page: 14250 year: 2006 end-page: 14255 ident: bb0380 article-title: In vivo complementation of complex I by the yeast Ndi1 enzyme. Possible application for treatment of Parkinson disease publication-title: J. Biol. Chem. – volume: 19 start-page: 4043 year: 2010 end-page: 4058 ident: bb0055 article-title: Modulation of energy deficiency in Huntington’s disease via activation of the peroxisome proliferator-activated receptor gamma publication-title: Hum. Mol. Genet. – volume: 1 start-page: 30 year: 2009 end-page: 36 ident: bb0085 article-title: Expression of the alternative oxidase complements cytochrome c oxidase deficiency in human cells publication-title: EMBO Mol. Med. – volume: 3 start-page: 472 year: 2016 end-page: 482 ident: bb0105 article-title: Mitochondrial respiratory function in peripheral blood cells from huntington’s disease patients publication-title: Mov. Disord. Clin. Pract. – volume: 24 start-page: 78 year: 2003 end-page: 90 ident: bb0300 article-title: Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator publication-title: Endocr. Rev. – volume: 23 start-page: 725 year: 2016 end-page: 734 ident: bb0365 article-title: Mitochondrial ROS produced via reverse Electron transport extend animal lifespan publication-title: Cell Metab. – volume: 161 start-page: 181 year: 2017 end-page: 197 ident: bb0290 article-title: The chicken or the egg: mitochondrial dysfunction as a cause or consequence of toxicity in Huntington’s disease publication-title: Mech. Ageing Dev. – volume: 1031 start-page: 82 year: 2005 end-page: 89 ident: bb0320 article-title: Heterogeneity in 1H-MRS profiles of presymptomatic and early manifest Huntington’s disease publication-title: Brain Res. – volume: 16 start-page: 3019 year: 1996 end-page: 3025 ident: bb0265 article-title: Chronic 3-nitropropionic acid treatment in baboons replicates the cognitive and motor deficits of Huntington’s disease publication-title: J. Neurosci. – volume: 51 start-page: 561 year: 2016 end-page: 569 ident: bb0245 article-title: Reduced mitochondrial function in human huntington disease lymphoblasts is not due to alterations in cardiolipin metabolism or mitochondrial supercomplex assembly publication-title: Lipids – volume: 107 start-page: 11835 year: 2010 end-page: 11840 ident: bb0435 article-title: Parkin overexpression selects against a deleterious mtDNA mutation in heteroplasmic cybrid cells publication-title: Proc. Natl. Acad. Sci. – volume: 7 start-page: e50644 year: 2012 ident: bb0060 article-title: Expression of yeast NDI1 rescues a Drosophila complex I assembly defect publication-title: PLoS One – volume: 17 start-page: 377 year: 2011 end-page: 382 ident: bb0405 article-title: Mutant huntingtin binds the mitochondrial fission GTPase dynamin-related protein-1 and increases its enzymatic activity publication-title: Nat. Med. – volume: 28 start-page: 2783 year: 2008 end-page: 2792 ident: bb0260 article-title: N-terminal mutant huntingtin associates with mitochondria and impairs mitochondrial trafficking publication-title: J. Neurosci. – volume: 108 start-page: 16259 year: 2011 end-page: 16264 ident: bb0510 article-title: Parkin, a p53 target gene, mediates the role of p53 in glucose metabolism and the Warburg effect publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 10 start-page: 83 year: 2011 end-page: 98 ident: bb0330 article-title: Huntington’s disease: from molecular pathogenesis to clinical treatment publication-title: Lancet Neurol. – volume: 597 start-page: 1975 year: 2019 end-page: 1991 ident: bb0210 article-title: Parkin overexpression protects from ageing-related loss of muscle mass and strength publication-title: J. Physiol. – volume: 8 year: 2019 ident: bb0130 article-title: Minimal effects of spargel (PGC-1) overexpression in a Drosophila mitochondrial disease model publication-title: Biol. Open – volume: 183 start-page: 795 year: 2008 end-page: 803 ident: bb0250 article-title: Parkin is recruited selectively to impaired mitochondria and promotes their autophagy publication-title: J. Cell Biol. – volume: 9 start-page: 191 year: 2010 end-page: 202 ident: bb0020 article-title: Neuronal expression of a single-subunit yeast NADH–ubiquinone oxidoreductase (Ndi1) extends Drosophila lifespan publication-title: Aging Cell – volume: 590 start-page: 3349 year: 2012 end-page: 3360 ident: bb0205 article-title: Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects publication-title: J. Physiol. – volume: 9 start-page: 449 year: 2009 end-page: 460 ident: bb0120 article-title: Expression of the Ciona intestinalis alternative oxidase (AOX) in Drosophila complements defects in mitochondrial oxidative phosphorylation publication-title: Cell Metab. – volume: 21 start-page: 2698 year: 2012 end-page: 2712 ident: bb0170 article-title: Alternative oxidase rescues mitochondria-mediated dopaminergic cell loss in Drosophila publication-title: Hum. Mol. Genet. – volume: 117 start-page: 77 year: 2010 end-page: 83 ident: bb0420 article-title: Abnormal morphology of peripheral cell tissues from patients with Huntington disease publication-title: J. Neural Transm. (Vienna) – volume: 1147 start-page: 358 year: 2008 end-page: 382 ident: bb0030 article-title: Mitochondria and Huntington’s disease pathogenesis: insight from genetic and chemical models publication-title: Ann. N. Y. Acad. Sci. – volume: 441 start-page: 1162 year: 2006 end-page: 1166 ident: bb0065 article-title: Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin publication-title: Nature – volume: 28 start-page: 23 year: 1978 end-page: 31 ident: bb0145 article-title: Juvenile Huntington chorea: clinical, ultrastructural, and biochemical studies publication-title: Neurology – volume: 203 start-page: 587 year: 1992 end-page: 592 ident: bb0090 article-title: Primary structure and import pathway of the rotenone-insensitive NADH-ubiquinone oxidoreductase of mitochondria from Saccharomyces cerevisiae publication-title: Eur. J. Biochem. – volume: 107 start-page: 5018 year: 2010 end-page: 5023 ident: bb0520 article-title: <em>Drosophila</em> Parkin requires PINK1 for mitochondrial translocation and ubiquitinates Mitofusin publication-title: Proc. Natl. Acad. Sci. – volume: 12 start-page: 9 year: 2011 end-page: 14 ident: bb0500 article-title: Mechanisms of mitophagy publication-title: Nat. Rev. Mol. Cell Biol. – volume: 50 start-page: 1257 year: 2003 end-page: 1271 ident: bb0185 article-title: Alternative oxidase in higher plants publication-title: Acta Biochim. Pol. – volume: 100 start-page: 4078 year: 2003 end-page: 4083 ident: bb0150 article-title: Mitochondrial pathology and apoptotic muscle degeneration in <em>Drosophila parkin</em> mutants publication-title: Proc. Natl. Acad. Sci. – volume: 127 start-page: 59 year: 2006 end-page: 69 ident: bb0075 article-title: Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration publication-title: Cell – volume: 103 start-page: 10793 year: 2006 end-page: 10798 ident: bb0490 article-title: Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 41 start-page: 646 year: 1997 end-page: 653 ident: bb0035 article-title: Oxidative damage and metabolic dysfunction in Huntington’s disease: selective vulnerability of the basal ganglia publication-title: Ann. Neurol. – volume: 441 start-page: 1157 year: 2006 end-page: 1161 ident: bb0275 article-title: Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin publication-title: Nature – volume: 33 start-page: 308 year: 1974 end-page: 332 ident: bb0445 article-title: Studies on brain biopsies of patients with Huntington’s chorea publication-title: J. Neuropathol. Exp. Neurol. – volume: 20 start-page: 3227 year: 2011 end-page: 3240 ident: bb0505 article-title: The PINK1/Parkin pathway regulates mitochondrial dynamics and function in mammalian hippocampal and dopaminergic neurons publication-title: Hum. Mol. Genet. – volume: 123 start-page: 5371 year: 2013 end-page: 5388 ident: bb0155 article-title: Inhibition of mitochondrial fragmentation diminishes Huntington’s disease-associated neurodegeneration publication-title: J. Clin. Invest. – volume: 275 start-page: 37774 year: 2000 end-page: 37778 ident: bb0375 article-title: Use of the NADH-quinone oxidoreductase (NDI1) gene of Saccharomyces cerevisiae as a possible cure for complex I defects in human cells publication-title: J. Biol. Chem. – volume: 59 start-page: 1325 year: 2002 end-page: 1330 ident: bb0100 article-title: Weight loss in early stage of Huntington's disease publication-title: Neurology – volume: 70 start-page: 794 year: 1998 end-page: 805 ident: bb0025 article-title: Partial inhibition of brain succinate dehydrogenase by 3-nitropropionic acid is sufficient to initiate striatal degeneration in rat publication-title: J. Neurochem. – volume: 107 start-page: 9105 year: 2010 end-page: 9110 ident: bb0345 article-title: Expression of the yeast NADH dehydrogenase Ndi1 in Drosophila confers increased lifespan independently of dietary restriction publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 71 start-page: 1506 year: 2008 end-page: 1513 ident: bb0015 article-title: Weight loss in Huntington disease increases with higher CAG repeat number publication-title: Neurology – volume: 8 year: 2010 ident: bb0255 article-title: PINK1 is selectively stabilized on impaired mitochondria to activate Parkin publication-title: PLoS Biol. – volume: 180 start-page: 4051 year: 1998 end-page: 4055 ident: bb0400 article-title: Identification of a cytosolically directed NADH dehydrogenase in mitochondria of Saccharomyces cerevisiae publication-title: J. Bacteriol. – volume: 14 year: 2019 ident: bb0395 article-title: Overexpression of pink1 or parkin in indirect flight muscles promotes mitochondrial proteostasis and extends lifespan in Drosophila melanogaster publication-title: PLoS One – volume: 413 start-page: 739 year: 2001 end-page: 743 ident: bb0425 article-title: Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila publication-title: Nature – volume: 5 year: 2014 ident: bb0515 article-title: Skeletal muscle pathology in Huntington’s disease publication-title: Front. Physiol. – volume: 107 start-page: 378 year: 2010 end-page: 383 ident: bb0475 article-title: PINK1-dependent recruitment of Parkin to mitochondria in mitophagy publication-title: Proc. Natl. Acad. Sci. – volume: 9 year: 2013 ident: bb0110 article-title: Alternative oxidase expression in the mouse enables bypassing cytochrome c oxidase blockade and limits mitochondrial ROS overproduction publication-title: PLoS Genet. – volume: 7 start-page: 341 year: 2006 end-page: 345 ident: bb0160 article-title: Allotopic expression of a mitochondrial alternative oxidase confers cyanide resistance to human cell respiration publication-title: EMBO Rep. – volume: 45 start-page: 1249 year: 2013 end-page: 1254 ident: bb0220 article-title: Glutathione peroxidase activity is neuroprotective in models of Huntington’s disease publication-title: Nat. Genet. – volume: 22 start-page: 1637 year: 2007 end-page: 1640 ident: bb0200 article-title: Myopathy as a first symptom of Huntington’s disease in a Marathon runner publication-title: Mov. Disord. – volume: 164 start-page: 187 year: 2021 end-page: 205 ident: bb0360 article-title: Coenzyme Q redox signalling and longevity publication-title: Free Radic. Biol. Med. – volume: 2 start-page: 490 year: 2010 end-page: 503 ident: bb0070 article-title: Mitochondrial fission and cristae disruption increase the response of cell models of Huntington's disease to apoptotic stimuli publication-title: EMBO Mol. Med. – volume: 42 start-page: 1591 year: 2001 end-page: 1595 ident: bb0115 article-title: Metabolic network abnormalities in early Huntington’s disease: an [(18)F]FDG PET study publication-title: J. Nucl. Med. – volume: 20 start-page: 674 year: 2005 end-page: 679 ident: bb0335 article-title: Mitochondrial impairment in patients and asymptomatic mutation carriers of Huntington’s disease publication-title: Mov. Disord. – volume: 21 start-page: 2912 year: 2012 end-page: 2922 ident: bb0430 article-title: Rab11 rescues synaptic dysfunction and behavioural deficits in a Drosophila model of Huntington’s disease publication-title: Hum. Mol. Genet. – volume: 4 start-page: 349 year: 2006 end-page: 362 ident: bb0485 article-title: Thermoregulatory and metabolic defects in Huntington’s disease transgenic mice implicate PGC-1alpha in Huntington’s disease neurodegeneration publication-title: Cell Metab. – volume: 7 start-page: 284 year: 2007 end-page: 287 ident: bb0165 article-title: Inhibition of mitochondrial complex IV leads to secondary loss complex II-III activity: implications for the pathogenesis and treatment of mitochondrial encephalomyopathies publication-title: Mitochondrion – volume: 96 start-page: 8271 year: 1999 end-page: 8276 ident: bb0225 article-title: The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 41 start-page: 646 year: 1997 end-page: 653 ident: bb0035 article-title: Oxidative damage and metabolic dysfunction in Huntington's disease: selective vulnerability of the basal ganglia publication-title: Ann. Neurol. – volume: 17 start-page: 3767 year: 2008 end-page: 3775 ident: bb0270 article-title: Inhibition of specific HDACs and sirtuins suppresses pathogenesis in a Drosophila model of Huntington's disease publication-title: Hum. Mol. Genet. – volume: 21 start-page: 961 year: 2011 end-page: 966 ident: bb0045 article-title: The kynurenine pathway modulates neurodegeneration in a Drosophila model of Huntington's disease publication-title: Curr. Biol. – volume: 1031 start-page: 82 year: 2005 end-page: 89 ident: bb0320 article-title: Heterogeneity in 1H-MRS profiles of presymptomatic and early manifest Huntington's disease publication-title: Brain Res. – volume: 5 year: 2014 ident: bb0515 article-title: Skeletal muscle pathology in Huntington's disease publication-title: Front. Physiol. – volume: 33 start-page: 308 year: 1974 end-page: 332 ident: bb0445 article-title: Studies on brain biopsies of patients with Huntington's chorea publication-title: J. Neuropathol. Exp. Neurol. – volume: 6 year: 2015 ident: bb0195 article-title: PINK1-induced mitophagy promotes neuroprotection in Huntington's disease publication-title: Cell Death Dis. – volume: 48 start-page: 72 year: 2000 end-page: 76 ident: bb0215 article-title: Abnormal in vivo skeletal muscle energy metabolism in Huntington's disease and dentatorubropallidoluysian atrophy publication-title: Ann. Neurol. – volume: 4 start-page: 349 year: 2006 end-page: 362 ident: bb0485 article-title: Thermoregulatory and metabolic defects in Huntington's disease transgenic mice implicate PGC-1alpha in Huntington's disease neurodegeneration publication-title: Cell Metab. – volume: 97 start-page: 142 year: 2012 end-page: 151 ident: bb0455 article-title: PGC-1α at the intersection of bioenergetics regulation and neuron function: from Huntington's disease to Parkinson's disease and beyond publication-title: Prog. Neurobiol. – volume: 161 start-page: 181 year: 2017 end-page: 197 ident: bb0290 article-title: The chicken or the egg: mitochondrial dysfunction as a cause or consequence of toxicity in Huntington's disease publication-title: Mech. Ageing Dev. – volume: 3 start-page: 472 year: 2016 end-page: 482 ident: bb0105 article-title: Mitochondrial respiratory function in peripheral blood cells from huntington's disease patients publication-title: Mov. Disord. Clin. Pract. – volume: 144 start-page: 689 year: 2011 end-page: 702 ident: bb0390 article-title: PARIS (ZNF746) repression of PGC-1alpha contributes to neurodegeneration in Parkinson's disease publication-title: Cell – volume: 50 start-page: 112 year: 2001 end-page: 116 ident: bb0005 article-title: Dichloroacetate exerts therapeutic effects in transgenic mouse models of Huntington's disease publication-title: Ann. Neurol. – volume: 21 start-page: 2912 year: 2012 end-page: 2922 ident: bb0430 article-title: Rab11 rescues synaptic dysfunction and behavioural deficits in a Drosophila model of Huntington's disease publication-title: Hum. Mol. Genet. – volume: 123 start-page: 5371 year: 2013 end-page: 5388 ident: bb0155 article-title: Inhibition of mitochondrial fragmentation diminishes Huntington's disease-associated neurodegeneration publication-title: J. Clin. Invest. – volume: 10 start-page: 83 year: 2011 end-page: 98 ident: bb0330 article-title: Huntington's disease: from molecular pathogenesis to clinical treatment publication-title: Lancet Neurol. – volume: 22 start-page: 1637 year: 2007 end-page: 1640 ident: bb0200 article-title: Myopathy as a first symptom of Huntington's disease in a Marathon runner publication-title: Mov. Disord. – volume: 16 start-page: 3019 year: 1996 end-page: 3025 ident: bb0265 article-title: Chronic 3-nitropropionic acid treatment in baboons replicates the cognitive and motor deficits of Huntington's disease publication-title: J. Neurosci. – volume: 20 start-page: 674 year: 2005 end-page: 679 ident: bb0335 article-title: Mitochondrial impairment in patients and asymptomatic mutation carriers of Huntington's disease publication-title: Mov. Disord. – volume: 43 start-page: 2689 year: 1993 ident: bb0175 article-title: Evidence for irnnairment of energy metabofism in vivo in Huntington's disease using localized 1H NMR spectroscopy publication-title: Neurology – volume: 12 year: 2019 ident: bb0325 article-title: Deterioration of mitochondrial bioenergetics and ultrastructure impairment in skeletal muscle of a transgenic minipig model in the early stages of Huntington's disease publication-title: Dis. Model. Mech. – volume: 1147 start-page: 358 year: 2008 end-page: 382 ident: bb0030 article-title: Mitochondria and Huntington's disease pathogenesis: insight from genetic and chemical models publication-title: Ann. N. Y. Acad. Sci. – volume: 67 start-page: 161 year: 1985 end-page: 171 ident: bb0040 article-title: Distribution of phosphate-activated glutaminase, succinic dehydrogenase, pyruvate dehydrogenase and gamma-glutamyl transpeptidase in post-mortem brain from Huntington's disease and agonal cases publication-title: J. Neurol. Sci. – volume: 45 start-page: 1249 year: 2013 end-page: 1254 ident: bb0220 article-title: Glutathione peroxidase activity is neuroprotective in models of Huntington's disease publication-title: Nat. Genet. – volume: 19 start-page: 4043 year: 2010 end-page: 4058 ident: bb0055 article-title: Modulation of energy deficiency in Huntington's disease via activation of the peroxisome proliferator-activated receptor gamma publication-title: Hum. Mol. Genet. – volume: 25 start-page: 24 year: 2018 end-page: 34 ident: bb0230 article-title: Huntington's disease: a clinical review publication-title: Eur. J. Neurol. – volume: 105 start-page: 14503 year: 2008 end-page: 14508 ident: bb0095 article-title: The Parkinson's disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 42 start-page: 1591 year: 2001 end-page: 1595 ident: bb0115 article-title: Metabolic network abnormalities in early Huntington's disease: an [(18)F]FDG PET study publication-title: J. Nucl. Med. – volume: 62 start-page: 37 year: 2013 end-page: 46 ident: bb0180 article-title: PGC-1α, mitochondrial dysfunction, and Huntington's disease publication-title: Free Radic. Biol. Med. – volume: 20 start-page: 3227 year: 2011 ident: 10.1016/j.nbd.2023.106236_bb0505 article-title: The PINK1/Parkin pathway regulates mitochondrial dynamics and function in mammalian hippocampal and dopaminergic neurons publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddr235 – volume: 123 start-page: 5371 year: 2013 ident: 10.1016/j.nbd.2023.106236_bb0155 article-title: Inhibition of mitochondrial fragmentation diminishes Huntington’s disease-associated neurodegeneration publication-title: J. Clin. Invest. doi: 10.1172/JCI70911 – volume: 22 start-page: 1637 year: 2007 ident: 10.1016/j.nbd.2023.106236_bb0200 article-title: Myopathy as a first symptom of Huntington’s disease in a Marathon runner publication-title: Mov. Disord. doi: 10.1002/mds.21550 – volume: 127 start-page: 217 year: 2006 ident: 10.1016/j.nbd.2023.106236_bb0415 article-title: Severe ultrastructural mitochondrial changes in lymphoblasts homozygous for Huntington disease mutation publication-title: Mech. Ageing Dev. doi: 10.1016/j.mad.2005.09.010 – volume: 6 year: 2011 ident: 10.1016/j.nbd.2023.106236_bb0305 article-title: Mutations in PINK1 and Parkin impair ubiquitination of Mitofusins in human fibroblasts publication-title: PLoS One doi: 10.1371/journal.pone.0016746 – volume: 24 start-page: 78 year: 2003 ident: 10.1016/j.nbd.2023.106236_bb0300 article-title: Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator publication-title: Endocr. Rev. doi: 10.1210/er.2002-0012 – volume: 119 start-page: 2085 issue: Pt 6 year: 1996 ident: 10.1016/j.nbd.2023.106236_bb0010 article-title: Striatal glucose metabolism and dopamine D2 receptor binding in asymptomatic gene carriers and patients with Huntington's disease publication-title: Brain doi: 10.1093/brain/119.6.2085 – volume: 97 start-page: 142 year: 2012 ident: 10.1016/j.nbd.2023.106236_bb0455 article-title: PGC-1α at the intersection of bioenergetics regulation and neuron function: from Huntington’s disease to Parkinson’s disease and beyond publication-title: Prog. Neurobiol. doi: 10.1016/j.pneurobio.2011.10.004 – volume: 30 start-page: 1450 year: 2019 ident: 10.1016/j.nbd.2023.106236_bb0350 article-title: Redox mechanisms in neurodegeneration: from disease outcomes to therapeutic opportunities publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2017.7321 – volume: 8 start-page: 448 year: 2017 ident: 10.1016/j.nbd.2023.106236_bb0315 article-title: Promoting Drp1-mediated mitochondrial fission in midlife prolongs healthy lifespan of Drosophila melanogaster publication-title: Nat. Commun. doi: 10.1038/s41467-017-00525-4 – volume: 10 start-page: 83 year: 2011 ident: 10.1016/j.nbd.2023.106236_bb0330 article-title: Huntington’s disease: from molecular pathogenesis to clinical treatment publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(10)70245-3 – volume: 5 year: 2014 ident: 10.1016/j.nbd.2023.106236_bb0515 article-title: Skeletal muscle pathology in Huntington’s disease publication-title: Front. Physiol. doi: 10.3389/fphys.2014.00380 – volume: 16 start-page: 3019 year: 1996 ident: 10.1016/j.nbd.2023.106236_bb0265 article-title: Chronic 3-nitropropionic acid treatment in baboons replicates the cognitive and motor deficits of Huntington’s disease publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.16-09-03019.1996 – volume: 28 start-page: 23 year: 1978 ident: 10.1016/j.nbd.2023.106236_bb0145 article-title: Juvenile Huntington chorea: clinical, ultrastructural, and biochemical studies publication-title: Neurology doi: 10.1212/WNL.28.1.23 – volume: 3 year: 2014 ident: 10.1016/j.nbd.2023.106236_bb0340 article-title: Mitochondrial fusion but not fission regulates larval growth and synaptic development through steroid hormone production publication-title: Elife doi: 10.7554/eLife.03558 – volume: 24 start-page: 8195 year: 2004 ident: 10.1016/j.nbd.2023.106236_bb0450 article-title: Mutant huntingtin impairs axonal trafficking in mammalian neurons in vivo and in vitro publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.24.18.8195-8209.2004 – volume: 161 start-page: 181 year: 2017 ident: 10.1016/j.nbd.2023.106236_bb0290 article-title: The chicken or the egg: mitochondrial dysfunction as a cause or consequence of toxicity in Huntington’s disease publication-title: Mech. Ageing Dev. doi: 10.1016/j.mad.2016.09.003 – volume: 20 start-page: 674 year: 2005 ident: 10.1016/j.nbd.2023.106236_bb0335 article-title: Mitochondrial impairment in patients and asymptomatic mutation carriers of Huntington’s disease publication-title: Mov. Disord. doi: 10.1002/mds.20373 – volume: 110 start-page: 6400 year: 2013 ident: 10.1016/j.nbd.2023.106236_bb0470 article-title: The PINK1–Parkin pathway promotes both mitophagy and selective respiratory chain turnover in vivo publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1221132110 – volume: 13 start-page: 72 year: 1983 ident: 10.1016/j.nbd.2023.106236_bb0410 article-title: Decreased pyruvate dehydrogenase complex activity in Huntington and Alzheimer brain publication-title: Ann. Neurol. doi: 10.1002/ana.410130116 – year: 2014 ident: 10.1016/j.nbd.2023.106236_bb0140 – volume: 15 start-page: 17 year: 2020 ident: 10.1016/j.nbd.2023.106236_bb0285 article-title: PARIS induced defects in mitochondrial biogenesis drive dopamine neuron loss under conditions of parkin or PINK1 deficiency publication-title: Mol. Neurodegener. doi: 10.1186/s13024-020-00363-x – volume: 1147 start-page: 358 year: 2008 ident: 10.1016/j.nbd.2023.106236_bb0030 article-title: Mitochondria and Huntington’s disease pathogenesis: insight from genetic and chemical models publication-title: Ann. N. Y. Acad. Sci. doi: 10.1196/annals.1427.018 – volume: 12 start-page: 9 year: 2011 ident: 10.1016/j.nbd.2023.106236_bb0500 article-title: Mechanisms of mitophagy publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3028 – volume: 107 start-page: 378 year: 2010 ident: 10.1016/j.nbd.2023.106236_bb0475 article-title: PINK1-dependent recruitment of Parkin to mitochondria in mitophagy publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0911187107 – volume: 12 year: 2019 ident: 10.1016/j.nbd.2023.106236_bb0325 article-title: Deterioration of mitochondrial bioenergetics and ultrastructure impairment in skeletal muscle of a transgenic minipig model in the early stages of Huntington’s disease publication-title: Dis. Model. Mech. doi: 10.1242/dmm.038737 – volume: 127 start-page: 59 year: 2006 ident: 10.1016/j.nbd.2023.106236_bb0075 article-title: Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration publication-title: Cell doi: 10.1016/j.cell.2006.09.015 – volume: 23 start-page: 2078 year: 2014 ident: 10.1016/j.nbd.2023.106236_bb0190 article-title: Expression of alternative oxidase in Drosophila ameliorates diverse phenotypes due to cytochrome oxidase deficiency publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddt601 – volume: 29 start-page: 56 year: 2020 ident: 10.1016/j.nbd.2023.106236_bb0050 article-title: Parkin expression reverses mitochondrial dysfunction in fused in sarcoma-induced amyotrophic lateral sclerosis publication-title: Insect Mol. Biol. doi: 10.1111/imb.12608 – volume: 441 start-page: 1162 year: 2006 ident: 10.1016/j.nbd.2023.106236_bb0065 article-title: Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin publication-title: Nature doi: 10.1038/nature04779 – volume: 17 start-page: 3767 year: 2008 ident: 10.1016/j.nbd.2023.106236_bb0270 article-title: Inhibition of specific HDACs and sirtuins suppresses pathogenesis in a Drosophila model of Huntington’s disease publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddn273 – volume: 105 start-page: 14503 year: 2008 ident: 10.1016/j.nbd.2023.106236_bb0095 article-title: The Parkinson’s disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0803998105 – volume: 144 start-page: 689 year: 2011 ident: 10.1016/j.nbd.2023.106236_bb0390 article-title: PARIS (ZNF746) repression of PGC-1alpha contributes to neurodegeneration in Parkinson’s disease publication-title: Cell doi: 10.1016/j.cell.2011.02.010 – volume: 59 start-page: 1325 year: 2002 ident: 10.1016/j.nbd.2023.106236_bb0100 article-title: Weight loss in early stage of Huntington's disease publication-title: Neurology doi: 10.1212/01.WNL.0000031791.10922.CF – volume: 7 start-page: 341 year: 2006 ident: 10.1016/j.nbd.2023.106236_bb0160 article-title: Allotopic expression of a mitochondrial alternative oxidase confers cyanide resistance to human cell respiration publication-title: EMBO Rep. doi: 10.1038/sj.embor.7400601 – volume: 810 start-page: 25 year: 2012 ident: 10.1016/j.nbd.2023.106236_bb0280 article-title: High-resolution respirometry: OXPHOS protocols for human cells and permeabilized fibers from small biopsies of human muscle publication-title: Methods Mol. Biol. doi: 10.1007/978-1-61779-382-0_3 – volume: 21 start-page: 2912 year: 2012 ident: 10.1016/j.nbd.2023.106236_bb0430 article-title: Rab11 rescues synaptic dysfunction and behavioural deficits in a Drosophila model of Huntington’s disease publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/dds117 – volume: 107 start-page: 9105 year: 2010 ident: 10.1016/j.nbd.2023.106236_bb0345 article-title: Expression of the yeast NADH dehydrogenase Ndi1 in Drosophila confers increased lifespan independently of dietary restriction publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0911539107 – volume: 14 year: 2019 ident: 10.1016/j.nbd.2023.106236_bb0395 article-title: Overexpression of pink1 or parkin in indirect flight muscles promotes mitochondrial proteostasis and extends lifespan in Drosophila melanogaster publication-title: PLoS One doi: 10.1371/journal.pone.0225214 – volume: 2 start-page: 490 year: 2010 ident: 10.1016/j.nbd.2023.106236_bb0070 article-title: Mitochondrial fission and cristae disruption increase the response of cell models of Huntington's disease to apoptotic stimuli publication-title: EMBO Mol. Med. doi: 10.1002/emmm.201000102 – volume: 43 start-page: 2689 year: 1993 ident: 10.1016/j.nbd.2023.106236_bb0175 article-title: Evidence for irnnairment of energy metabofism in vivo in Huntington’s disease using localized 1H NMR spectroscopy publication-title: Neurology doi: 10.1212/WNL.43.12.2689 – volume: 108 start-page: 16259 year: 2011 ident: 10.1016/j.nbd.2023.106236_bb0510 article-title: Parkin, a p53 target gene, mediates the role of p53 in glucose metabolism and the Warburg effect publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1113884108 – volume: 275 start-page: 37774 year: 2000 ident: 10.1016/j.nbd.2023.106236_bb0375 article-title: Use of the NADH-quinone oxidoreductase (NDI1) gene of Saccharomyces cerevisiae as a possible cure for complex I defects in human cells publication-title: J. Biol. Chem. doi: 10.1074/jbc.M007033200 – volume: 7 start-page: 635 year: 2014 ident: 10.1016/j.nbd.2023.106236_bb0460 article-title: Phenotypic rescue of a Drosophila model of mitochondrial ANT1 disease publication-title: Dis. Model. Mech. – volume: 50 start-page: 112 year: 2001 ident: 10.1016/j.nbd.2023.106236_bb0005 article-title: Dichloroacetate exerts therapeutic effects in transgenic mouse models of Huntington’s disease publication-title: Ann. Neurol. doi: 10.1002/ana.1085 – volume: 137 start-page: 427 year: 2009 ident: 10.1016/j.nbd.2023.106236_bb0080 article-title: The alternative oxidase, a tool for compensating cytochrome c oxidase deficiency in human cells publication-title: Physiol. Plant. doi: 10.1111/j.1399-3054.2009.01248.x – volume: 441 start-page: 1157 year: 2006 ident: 10.1016/j.nbd.2023.106236_bb0275 article-title: Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin publication-title: Nature doi: 10.1038/nature04788 – volume: 180 start-page: 4051 year: 1998 ident: 10.1016/j.nbd.2023.106236_bb0400 article-title: Identification of a cytosolically directed NADH dehydrogenase in mitochondria of Saccharomyces cerevisiae publication-title: J. Bacteriol. doi: 10.1128/JB.180.16.4051-4055.1998 – volume: 32 year: 2020 ident: 10.1016/j.nbd.2023.106236_bb0370 article-title: Mitochondrial complex I derived ROS regulate stress adaptation in Drosophila melanogaster publication-title: Redox Biol. doi: 10.1016/j.redox.2020.101450 – volume: 7 start-page: e50644 year: 2012 ident: 10.1016/j.nbd.2023.106236_bb0060 article-title: Expression of yeast NDI1 rescues a Drosophila complex I assembly defect publication-title: PLoS One doi: 10.1371/journal.pone.0050644 – volume: 23 start-page: 725 year: 2016 ident: 10.1016/j.nbd.2023.106236_bb0365 article-title: Mitochondrial ROS produced via reverse Electron transport extend animal lifespan publication-title: Cell Metab. doi: 10.1016/j.cmet.2016.03.009 – volume: 117 start-page: 77 year: 2010 ident: 10.1016/j.nbd.2023.106236_bb0420 article-title: Abnormal morphology of peripheral cell tissues from patients with Huntington disease publication-title: J. Neural Transm. (Vienna) doi: 10.1007/s00702-009-0328-4 – volume: 96 start-page: 8271 year: 1999 ident: 10.1016/j.nbd.2023.106236_bb0225 article-title: The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.96.14.8271 – volume: 413 start-page: 739 year: 2001 ident: 10.1016/j.nbd.2023.106236_bb0425 article-title: Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila publication-title: Nature doi: 10.1038/35099568 – volume: 51 start-page: 561 year: 2016 ident: 10.1016/j.nbd.2023.106236_bb0245 article-title: Reduced mitochondrial function in human huntington disease lymphoblasts is not due to alterations in cardiolipin metabolism or mitochondrial supercomplex assembly publication-title: Lipids doi: 10.1007/s11745-015-4110-0 – volume: 4 start-page: 349 year: 2006 ident: 10.1016/j.nbd.2023.106236_bb0485 article-title: Thermoregulatory and metabolic defects in Huntington’s disease transgenic mice implicate PGC-1alpha in Huntington’s disease neurodegeneration publication-title: Cell Metab. doi: 10.1016/j.cmet.2006.10.004 – volume: 28 start-page: 2783 year: 2008 ident: 10.1016/j.nbd.2023.106236_bb0260 article-title: N-terminal mutant huntingtin associates with mitochondria and impairs mitochondrial trafficking publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0106-08.2008 – volume: 110 year: 2013 ident: 10.1016/j.nbd.2023.106236_bb0310 article-title: Parkin overexpression during aging reduces proteotoxicity, alters mitochondrial dynamics, and extends lifespan publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1216197110 – volume: 103 start-page: 10793 year: 2006 ident: 10.1016/j.nbd.2023.106236_bb0490 article-title: Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0602493103 – volume: 33 start-page: 308 year: 1974 ident: 10.1016/j.nbd.2023.106236_bb0445 article-title: Studies on brain biopsies of patients with Huntington’s chorea publication-title: J. Neuropathol. Exp. Neurol. doi: 10.1097/00005072-197404000-00008 – volume: 62 start-page: 37 year: 2013 ident: 10.1016/j.nbd.2023.106236_bb0180 article-title: PGC-1α, mitochondrial dysfunction, and Huntington’s disease publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2013.04.016 – volume: 70 start-page: 794 year: 1998 ident: 10.1016/j.nbd.2023.106236_bb0025 article-title: Partial inhibition of brain succinate dehydrogenase by 3-nitropropionic acid is sufficient to initiate striatal degeneration in rat publication-title: J. Neurochem. doi: 10.1046/j.1471-4159.1998.70020794.x – volume: 597 start-page: 1975 year: 2019 ident: 10.1016/j.nbd.2023.106236_bb0210 article-title: Parkin overexpression protects from ageing-related loss of muscle mass and strength publication-title: J. Physiol. doi: 10.1113/JP277157 – volume: 8 year: 2010 ident: 10.1016/j.nbd.2023.106236_bb0255 article-title: PINK1 is selectively stabilized on impaired mitochondria to activate Parkin publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1000298 – volume: 281 start-page: 14250 year: 2006 ident: 10.1016/j.nbd.2023.106236_bb0380 article-title: In vivo complementation of complex I by the yeast Ndi1 enzyme. Possible application for treatment of Parkinson disease publication-title: J. Biol. Chem. doi: 10.1074/jbc.M600922200 – volume: 25 start-page: 302 year: 2000 ident: 10.1016/j.nbd.2023.106236_bb0385 article-title: Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase publication-title: Nat. Genet. doi: 10.1038/77060 – volume: 19 start-page: 4043 year: 2010 ident: 10.1016/j.nbd.2023.106236_bb0055 article-title: Modulation of energy deficiency in Huntington’s disease via activation of the peroxisome proliferator-activated receptor gamma publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddq322 – volume: 183 start-page: 795 year: 2008 ident: 10.1016/j.nbd.2023.106236_bb0250 article-title: Parkin is recruited selectively to impaired mitochondria and promotes their autophagy publication-title: J. Cell Biol. doi: 10.1083/jcb.200809125 – volume: 7 start-page: 284 year: 2007 ident: 10.1016/j.nbd.2023.106236_bb0165 article-title: Inhibition of mitochondrial complex IV leads to secondary loss complex II-III activity: implications for the pathogenesis and treatment of mitochondrial encephalomyopathies publication-title: Mitochondrion doi: 10.1016/j.mito.2007.02.001 – volume: 9 start-page: 191 year: 2010 ident: 10.1016/j.nbd.2023.106236_bb0020 article-title: Neuronal expression of a single-subunit yeast NADH–ubiquinone oxidoreductase (Ndi1) extends Drosophila lifespan publication-title: Aging Cell doi: 10.1111/j.1474-9726.2010.00546.x – volume: 1 start-page: 357 year: 2006 ident: 10.1016/j.nbd.2023.106236_bb0240 article-title: Origins, evolutionary history, and taxonomic distribution of alternative oxidase and plastoquinol terminal oxidase publication-title: Comp. Biochem. Physiol. Part D Genom. Proteom. – volume: 48 start-page: 72 year: 2000 ident: 10.1016/j.nbd.2023.106236_bb0215 article-title: Abnormal in vivo skeletal muscle energy metabolism in Huntington’s disease and dentatorubropallidoluysian atrophy publication-title: Ann. Neurol. doi: 10.1002/1531-8249(200007)48:1<72::AID-ANA11>3.0.CO;2-I – volume: 41 start-page: 646 year: 1997 ident: 10.1016/j.nbd.2023.106236_bb0035 article-title: Oxidative damage and metabolic dysfunction in Huntington’s disease: selective vulnerability of the basal ganglia publication-title: Ann. Neurol. doi: 10.1002/ana.410410514 – volume: 3 start-page: 472 year: 2016 ident: 10.1016/j.nbd.2023.106236_bb0105 article-title: Mitochondrial respiratory function in peripheral blood cells from huntington’s disease patients publication-title: Mov. Disord. Clin. Pract. doi: 10.1002/mdc3.12308 – volume: 1 start-page: 30 year: 2009 ident: 10.1016/j.nbd.2023.106236_bb0085 article-title: Expression of the alternative oxidase complements cytochrome c oxidase deficiency in human cells publication-title: EMBO Mol. Med. doi: 10.1002/emmm.200900001 – volume: 9 start-page: 449 year: 2009 ident: 10.1016/j.nbd.2023.106236_bb0120 article-title: Expression of the Ciona intestinalis alternative oxidase (AOX) in Drosophila complements defects in mitochondrial oxidative phosphorylation publication-title: Cell Metab. doi: 10.1016/j.cmet.2009.03.004 – volume: 17 start-page: 822 year: 2014 ident: 10.1016/j.nbd.2023.106236_bb0495 article-title: Inhibition of mitochondrial protein import by mutant huntingtin publication-title: Nat. Neurosci. doi: 10.1038/nn.3721 – volume: 8 year: 2019 ident: 10.1016/j.nbd.2023.106236_bb0130 article-title: Minimal effects of spargel (PGC-1) overexpression in a Drosophila mitochondrial disease model publication-title: Biol. Open – volume: 8 year: 2012 ident: 10.1016/j.nbd.2023.106236_bb0465 article-title: The yeast complex I equivalent NADH dehydrogenase rescues pink1 mutants publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1002456 – volume: 590 start-page: 3349 year: 2012 ident: 10.1016/j.nbd.2023.106236_bb0205 article-title: Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects publication-title: J. Physiol. doi: 10.1113/jphysiol.2012.230185 – volume: 107 start-page: 11835 year: 2010 ident: 10.1016/j.nbd.2023.106236_bb0435 article-title: Parkin overexpression selects against a deleterious mtDNA mutation in heteroplasmic cybrid cells publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0914569107 – volume: 19 start-page: 4861 year: 2010 ident: 10.1016/j.nbd.2023.106236_bb0125 article-title: Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddq419 – volume: 100 start-page: 4078 year: 2003 ident: 10.1016/j.nbd.2023.106236_bb0150 article-title: Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0737556100 – volume: 107 start-page: 5018 year: 2010 ident: 10.1016/j.nbd.2023.106236_bb0520 article-title: Drosophila Parkin requires PINK1 for mitochondrial translocation and ubiquitinates Mitofusin publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0913485107 – volume: 21 start-page: 961 year: 2011 ident: 10.1016/j.nbd.2023.106236_bb0045 article-title: The kynurenine pathway modulates neurodegeneration in a Drosophila model of Huntington’s disease publication-title: Curr. Biol. doi: 10.1016/j.cub.2011.04.028 – volume: 17 start-page: 377 year: 2011 ident: 10.1016/j.nbd.2023.106236_bb0405 article-title: Mutant huntingtin binds the mitochondrial fission GTPase dynamin-related protein-1 and increases its enzymatic activity publication-title: Nat. Med. doi: 10.1038/nm.2313 – volume: 21 start-page: 2698 year: 2012 ident: 10.1016/j.nbd.2023.106236_bb0170 article-title: Alternative oxidase rescues mitochondria-mediated dopaminergic cell loss in Drosophila publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/dds096 – volume: 203 start-page: 587 year: 1992 ident: 10.1016/j.nbd.2023.106236_bb0090 article-title: Primary structure and import pathway of the rotenone-insensitive NADH-ubiquinone oxidoreductase of mitochondria from Saccharomyces cerevisiae publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1992.tb16587.x – volume: 25 start-page: 24 year: 2018 ident: 10.1016/j.nbd.2023.106236_bb0230 article-title: Huntington’s disease: a clinical review publication-title: Eur. J. Neurol. doi: 10.1111/ene.13413 – volume: 56 start-page: 333 year: 2004 ident: 10.1016/j.nbd.2023.106236_bb0235 article-title: Branched mitochondrial electron transport in the animalia: presence of alternative oxidase in several animal Phyla publication-title: IUBMB Life doi: 10.1080/1521-6540400000876 – volume: 1031 start-page: 82 year: 2005 ident: 10.1016/j.nbd.2023.106236_bb0320 article-title: Heterogeneity in 1H-MRS profiles of presymptomatic and early manifest Huntington’s disease publication-title: Brain Res. doi: 10.1016/j.brainres.2004.10.030 – volume: 9 year: 2013 ident: 10.1016/j.nbd.2023.106236_bb0110 article-title: Alternative oxidase expression in the mouse enables bypassing cytochrome c oxidase blockade and limits mitochondrial ROS overproduction publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1003182 – volume: 45 start-page: 1249 year: 2013 ident: 10.1016/j.nbd.2023.106236_bb0220 article-title: Glutathione peroxidase activity is neuroprotective in models of Huntington’s disease publication-title: Nat. Genet. doi: 10.1038/ng.2732 – volume: 36 start-page: 141 year: 2004 ident: 10.1016/j.nbd.2023.106236_bb0480 article-title: Metabolic dysfunction and depletion of mitochondria in hearts of septic rats publication-title: J. Mol. Cell. Cardiol. doi: 10.1016/j.yjmcc.2003.10.015 – volume: 164 start-page: 187 year: 2021 ident: 10.1016/j.nbd.2023.106236_bb0360 article-title: Coenzyme Q redox signalling and longevity publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2021.01.018 – volume: 118 start-page: 636 year: 2011 ident: 10.1016/j.nbd.2023.106236_bb0135 article-title: Parkin promotes the ubiquitination and degradation of the mitochondrial fusion factor mitofusin 1 publication-title: J. Neurochem. doi: 10.1111/j.1471-4159.2011.07318.x – volume: 6 year: 2015 ident: 10.1016/j.nbd.2023.106236_bb0195 article-title: PINK1-induced mitophagy promotes neuroprotection in Huntington’s disease publication-title: Cell Death Dis. doi: 10.1038/cddis.2014.581 – volume: 191 start-page: 1367 year: 2010 ident: 10.1016/j.nbd.2023.106236_bb0440 article-title: Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin publication-title: J. Cell Biol. doi: 10.1083/jcb.201007013 – volume: 50 start-page: 1257 year: 2003 ident: 10.1016/j.nbd.2023.106236_bb0185 article-title: Alternative oxidase in higher plants publication-title: Acta Biochim. Pol. doi: 10.18388/abp.2003_3649 – volume: 5 year: 2010 ident: 10.1016/j.nbd.2023.106236_bb0295 article-title: The mitochondrial fusion-promoting factor mitofusin is a substrate of the PINK1/parkin pathway publication-title: PLoS One doi: 10.1371/journal.pone.0010054 – volume: 42 start-page: 1591 year: 2001 ident: 10.1016/j.nbd.2023.106236_bb0115 article-title: Metabolic network abnormalities in early Huntington’s disease: an [(18)F]FDG PET study publication-title: J. Nucl. Med. – volume: 67 start-page: 161 year: 1985 ident: 10.1016/j.nbd.2023.106236_bb0040 article-title: Distribution of phosphate-activated glutaminase, succinic dehydrogenase, pyruvate dehydrogenase and gamma-glutamyl transpeptidase in post-mortem brain from Huntington’s disease and agonal cases publication-title: J. Neurol. Sci. doi: 10.1016/0022-510X(85)90112-1 – volume: 71 start-page: 1506 year: 2008 ident: 10.1016/j.nbd.2023.106236_bb0015 article-title: Weight loss in Huntington disease increases with higher CAG repeat number publication-title: Neurology doi: 10.1212/01.wnl.0000334276.09729.0e – volume: 9 start-page: 676 year: 2012 ident: 10.1016/j.nbd.2023.106236_bb0355 article-title: Fiji: an open-source platform for biological-image analysis publication-title: Nat. Methods doi: 10.1038/nmeth.2019 |
SSID | ssj0011597 |
Score | 2.466985 |
Snippet | Huntington's disease (HD) is a fatal neurodegenerative disease with limited treatment options. Human and animal studies have suggested that metabolic and... |
SourceID | doaj proquest pubmed crossref elsevier |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 106236 |
SubjectTerms | Huntingtin Huntington's disease Mitochondrial dysfunction Neurodegeneration Parkin |
SummonAdditionalLinks | – databaseName: DOAJ dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA-yg3gRdX7MLyKIglBMk6Zpj5s6hjBPCt5CkqYw2brh5sH_3pekLXrQXTy2NE3y8pLf7yUv7yF0GSutKDcqyoqSRYmN40iL0kRFmeZJQphN_KWw8VM6ekkeX_nrt1RfzicshAcOgrstAX806JXhXCSkAD7PteMgAHOiYFS71ZfkpDGm6vMDAGnRnGF6b65Ku7CglMEzAH76A4V8sP4fYPQb2fSgM9xB2zVbxP3Qyl20Yas91O1XYCnPPvEV9v6bfmN8D22O62PyLhoPPhdAigGV8AxmLKxwVeEUDRfWe29gsLENVIxHIVEE8L_rJXbeXnO3JbvEkwrfv_sMB5Op2kcvw4fnu1FU502IDMD3KrKUCC24JWC8AZuzlrNSmZzlNisVVbHOBFWZilPnD0NTrpSJM5IqIazgBVjXB6hTzSt7hDDQJUrSXFnBMhgHohg3nClLC5EKW-Y9RBo5SlMHFXe5Laay8R57kyB66UQvg-h76KYtsggRNf76eOAGp_3QBcP2L0BFZK0icp2K9BBthlY2901hhYQfTf6qOWkL1WQkkIx1xS4a3ZEwUd3pi6rs_GMpgQcAXRB5nvTQYVCqtltMQKNhaTz-j-6eoC3XoOAId4o6q_cPewbMaaXP_ST5AtAbEZQ priority: 102 providerName: Directory of Open Access Journals |
Title | Bypassing mitochondrial defects rescues Huntington's phenotypes in Drosophila |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0969996123002516 https://dx.doi.org/10.1016/j.nbd.2023.106236 https://www.ncbi.nlm.nih.gov/pubmed/37495179 https://www.proquest.com/docview/2843037994 https://doaj.org/article/f244b257c55740d4955b65669107d32b |
Volume | 185 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6SDZReSpv0sX0sKpQWCu7aetrHTdqwbdlc2kBuQrLl4JJ4l93NIZf89oxk2bCHptCjhMaSR6OZb6TRCOBDZqyhojRJXtUs4S7LEqvqMqlqWXCeMsfDpbDFmZyf8x8X4mIPTvq7MD6sMur-TqcHbR1rppGb01XTTH8h-PZoHVVvAMpyHw4oWvt8BAez7z_nZ8NhAlrscGsa2yeeoD_cDGFerfX5QinDMiIBuWOeQhb_HSv1NxQarNHpU3gSYSSZdSN9BnuuPYSjWYsu9PUt-UhCYGfYMT-ER4t4fn4Ei-PbFaJlNFfkGpcyqr628hJIKhfCOgg63yV2TObdCxIIDD9tiA8DW_q92g1pWvJ1HZ4-aK7Mczg__fb7ZJ7EBxWSEu36NnE0VVYJl6JXhzDPOcFqUxascHltqMlsrqjJTSZ9oAyVwpgyy1NplHJKVOh2v4BRu2zdKyCIo2gqC-MUyzm3qWGiFMw4WimpXF2MIe35qMuYbdw_enGl-7CyPxpZrz3rdcf6MXweSFZdqo2HGh_7yRka-izZoWK5vtRRTHSN2MWiTiqFUDyt0BcU1uNXhEiqYtSOgfZTq_uLqKg68UPNQz3zgWhHUv9F9r6XHY0r2B_LmNYtbzYaAQLiCFUUfAwvO6EafospHDTqzNf_1-kbeOxLXUzcWxht1zfuHYKorZ3A_pe7bBKXyiRsRdwD0BIYSw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VrQRcUGl5LFAwEgIJKdrEjzg5bgtVSrt7oZV6s2zHQUFtdrW7PfTfM3Ye0h7aShzj2LEzHs98Y49nAL4k2mgqrI6ysmIRd0kSGVnZqKzSnPOYOR4uhc3maXHJf12Jqx047u_CeLfKTva3Mj1I665k0lFzsqzryW8E3x6to-gNQDl9ArvcJ7Uewe709KyYD4cJqLHDrWmsH_kG_eFmcPNqjI8XShk-IxJIt9RTiOK_paXuQ6FBG53swYsORpJpO9KXsOOafTiYNmhC39yRryQ4doYd8314OuvOzw9gdnS3RLSM6orc4FJG0deUngNJ6YJbB0Hj22LHpGgzSCAw_LYm3g1s4fdq16RuyI9VSH1QX-tXcHny8-K4iLqECpFFvb6JHI2lkcLFaNUhzHNOsErbnOUuqzTVickk1ZlOUu8oQ1OhtU2yONVSOilKNLtfw6hZNO4tEMRRNE5z7STLODexZsIKph0tZSpdlY8h7umobBdt3Ce9uFa9W9lfhaRXnvSqJf0Yvg9Nlm2ojYcqH_nJGSr6KNmhYLH6ozo2URViF4MyyQoheVyiLSiMx68IkWTJqBkD7adW9RdRUXTih-qHeuZDoy1OfazZ5553FK5gfyyjG7e4XSsECIgjZJ7zMbxpmWr4LSZx0Cgz3_1fp5_gWXExO1fnp_Oz9_Dcv2n94z7AaLO6dYcIqDbmY7dg_gHTFRk8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bypassing+mitochondrial+defects+rescues+Huntington%27s+phenotypes+in+Drosophila&rft.jtitle=Neurobiology+of+disease&rft.au=Campesan%2C+Susanna&rft.au=del+Popolo%2C+Ivana&rft.au=Marcou%2C+Kyriaki&rft.au=Straatman-Iwanowska%2C+Anna&rft.date=2023-09-01&rft.pub=Elsevier+Inc&rft.issn=0969-9961&rft.volume=185&rft_id=info:doi/10.1016%2Fj.nbd.2023.106236&rft.externalDocID=S0969996123002516 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0969-9961&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0969-9961&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0969-9961&client=summon |