Nanopatterned protein microrings from a diatom that direct silica morphogenesis

Diatoms are eukaryotic microalgae that produce species-specifically structured cell walls made of SiO₂ (silica). Formation of the intricate silica structures of diatoms is regarded as a paradigm for biomolecule-controlled self-assembly of three-dimensional, nano- to microscale-patterned inorganic ma...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 108; no. 8; pp. 3175 - 3180
Main Authors Scheffel, André, Poulsen, Nicole, Shian, Samuel, Kröger, Nils
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 22.02.2011
National Acad Sciences
SeriesFrom the Cover
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.1012842108

Cover

Abstract Diatoms are eukaryotic microalgae that produce species-specifically structured cell walls made of SiO₂ (silica). Formation of the intricate silica structures of diatoms is regarded as a paradigm for biomolecule-controlled self-assembly of three-dimensional, nano- to microscale-patterned inorganic materials. Silica formation involves long-chain polyamines and phosphoproteins (silaffins and silacidins), which are readily soluble in water, and spontaneously form dynamic supramolecular assemblies that accelerate silica deposition and influence silica morphogenesis in vitro. However, synthesis of diatom-like silica structure in vitro has not yet been accomplished, indicating that additional components are required. Here we describe the discovery and intracellular location of six novel proteins (cingulins) that are integral components of a silica-forming organic matrix (microrings) in the diatom Thalassiosira pseudonana. The cingulin-containing microrings are specifically associated with girdle bands, which constitute a substantial part of diatom biosilica. Remarkably, the microrings exhibit protein-based nanopatterns that closely resemble characteristic features of the girdle band silica nanopatterns. Upon the addition of silicic acid the microrings become rapidly mineralized in vitro generating nanopatterned silica replicas of the microring structures. A silica-forming organic matrix with characteristic nanopatterns was also discovered in the diatom Coscinodiscus wailesii, which suggests that preassembled protein-based templates might be general components of the cellular machinery for silica morphogenesis in diatoms. These data provide fundamentally new insight into the molecular mechanisms of biological silica morphogenesis, and may lead to the development of self-assembled 3D mineral forming protein scaffolds with designed nanopatterns for a host of applications in nanotechnology.
AbstractList Diatoms are eukaryotic microalgae that produce species-specifically structured cell walls made of SiO(2) (silica). Formation of the intricate silica structures of diatoms is regarded as a paradigm for biomolecule-controlled self-assembly of three-dimensional, nano- to microscale-patterned inorganic materials. Silica formation involves long-chain polyamines and phosphoproteins (silaffins and silacidins), which are readily soluble in water, and spontaneously form dynamic supramolecular assemblies that accelerate silica deposition and influence silica morphogenesis in vitro. However, synthesis of diatom-like silica structure in vitro has not yet been accomplished, indicating that additional components are required. Here we describe the discovery and intracellular location of six novel proteins (cingulins) that are integral components of a silica-forming organic matrix (microrings) in the diatom Thalassiosira pseudonana. The cingulin-containing microrings are specifically associated with girdle bands, which constitute a substantial part of diatom biosilica. Remarkably, the microrings exhibit protein-based nanopatterns that closely resemble characteristic features of the girdle band silica nanopatterns. Upon the addition of silicic acid the microrings become rapidly mineralized in vitro generating nanopatterned silica replicas of the microring structures. A silica-forming organic matrix with characteristic nanopatterns was also discovered in the diatom Coscinodiscus wailesii, which suggests that preassembled protein-based templates might be general components of the cellular machinery for silica morphogenesis in diatoms. These data provide fundamentally new insight into the molecular mechanisms of biological silica morphogenesis, and may lead to the development of self-assembled 3D mineral forming protein scaffolds with designed nanopatterns for a host of applications in nanotechnology.Diatoms are eukaryotic microalgae that produce species-specifically structured cell walls made of SiO(2) (silica). Formation of the intricate silica structures of diatoms is regarded as a paradigm for biomolecule-controlled self-assembly of three-dimensional, nano- to microscale-patterned inorganic materials. Silica formation involves long-chain polyamines and phosphoproteins (silaffins and silacidins), which are readily soluble in water, and spontaneously form dynamic supramolecular assemblies that accelerate silica deposition and influence silica morphogenesis in vitro. However, synthesis of diatom-like silica structure in vitro has not yet been accomplished, indicating that additional components are required. Here we describe the discovery and intracellular location of six novel proteins (cingulins) that are integral components of a silica-forming organic matrix (microrings) in the diatom Thalassiosira pseudonana. The cingulin-containing microrings are specifically associated with girdle bands, which constitute a substantial part of diatom biosilica. Remarkably, the microrings exhibit protein-based nanopatterns that closely resemble characteristic features of the girdle band silica nanopatterns. Upon the addition of silicic acid the microrings become rapidly mineralized in vitro generating nanopatterned silica replicas of the microring structures. A silica-forming organic matrix with characteristic nanopatterns was also discovered in the diatom Coscinodiscus wailesii, which suggests that preassembled protein-based templates might be general components of the cellular machinery for silica morphogenesis in diatoms. These data provide fundamentally new insight into the molecular mechanisms of biological silica morphogenesis, and may lead to the development of self-assembled 3D mineral forming protein scaffolds with designed nanopatterns for a host of applications in nanotechnology.
Diatoms are eukaryotic microalgae that produce species-specifically structured cell walls made of SiO 2 (silica). Formation of the intricate silica structures of diatoms is regarded as a paradigm for biomolecule-controlled self-assembly of three-dimensional, nano- to microscale-patterned inorganic materials. Silica formation involves long-chain polyamines and phosphoproteins (silaffins and silacidins), which are readily soluble in water, and spontaneously form dynamic supramolecular assemblies that accelerate silica deposition and influence silica morphogenesis in vitro. However, synthesis of diatom-like silica structure in vitro has not yet been accomplished, indicating that additional components are required. Here we describe the discovery and intracellular location of six novel proteins (cingulins) that are integral components of a silica-forming organic matrix (microrings) in the diatom Thalassiosira pseudonana . The cingulin-containing microrings are specifically associated with girdle bands, which constitute a substantial part of diatom biosilica. Remarkably, the microrings exhibit protein-based nanopatterns that closely resemble characteristic features of the girdle band silica nanopatterns. Upon the addition of silicic acid the microrings become rapidly mineralized in vitro generating nanopatterned silica replicas of the microring structures. A silica-forming organic matrix with characteristic nanopatterns was also discovered in the diatom Coscinodiscus wailesii , which suggests that preassembled protein-based templates might be general components of the cellular machinery for silica morphogenesis in diatoms. These data provide fundamentally new insight into the molecular mechanisms of biological silica morphogenesis, and may lead to the development of self-assembled 3D mineral forming protein scaffolds with designed nanopatterns for a host of applications in nanotechnology.
Diatoms are eukaryotic microalgae that produce species-specifically structured cell walls made of SiO(2) (silica). Formation of the intricate silica structures of diatoms is regarded as a paradigm for biomolecule-controlled self-assembly of three-dimensional, nano- to microscale-patterned inorganic materials. Silica formation involves long-chain polyamines and phosphoproteins (silaffins and silacidins), which are readily soluble in water, and spontaneously form dynamic supramolecular assemblies that accelerate silica deposition and influence silica morphogenesis in vitro. However, synthesis of diatom-like silica structure in vitro has not yet been accomplished, indicating that additional components are required. Here we describe the discovery and intracellular location of six novel proteins (cingulins) that are integral components of a silica-forming organic matrix (microrings) in the diatom Thalassiosira pseudonana. The cingulin-containing microrings are specifically associated with girdle bands, which constitute a substantial part of diatom biosilica. Remarkably, the microrings exhibit protein-based nanopatterns that closely resemble characteristic features of the girdle band silica nanopatterns. Upon the addition of silicic acid the microrings become rapidly mineralized in vitro generating nanopatterned silica replicas of the microring structures. A silica-forming organic matrix with characteristic nanopatterns was also discovered in the diatom Coscinodiscus wailesii, which suggests that preassembled protein-based templates might be general components of the cellular machinery for silica morphogenesis in diatoms. These data provide fundamentally new insight into the molecular mechanisms of biological silica morphogenesis, and may lead to the development of self-assembled 3D mineral forming protein scaffolds with designed nanopatterns for a host of applications in nanotechnology.
Diatoms are eukaryotic microalgae that produce species-specifically structured cell walls made of SiO₂ (silica). Formation of the intricate silica structures of diatoms is regarded as a paradigm for biomolecule-controlled self-assembly of three-dimensional, nano- to microscale-patterned inorganic materials. Silica formation involves long-chain polyamines and phosphoproteins (silaffins and silacidins), which are readily soluble in water, and spontaneously form dynamic supramolecular assemblies that accelerate silica deposition and influence silica morphogenesis in vitro. However, synthesis of diatom-like silica structure in vitro has not yet been accomplished, indicating that additional components are required. Here we describe the discovery and intracellular location of six novel proteins (cingulins) that are integral components of a silica-forming organic matrix (microrings) in the diatom Thalassiosira pseudonana. The cingulin-containing microrings are specifically associated with girdle bands, which constitute a substantial part of diatom biosilica. Remarkably, the microrings exhibit protein-based nanopatterns that closely resemble characteristic features of the girdle band silica nanopatterns. Upon the addition of silicic acid the microrings become rapidly mineralized in vitro generating nanopatterned silica replicas of the microring structures. A silica-forming organic matrix with characteristic nanopatterns was also discovered in the diatom Coscinodiscus wailesii, which suggests that preassembled protein-based templates might be general components of the cellular machinery for silica morphogenesis in diatoms. These data provide fundamentally new insight into the molecular mechanisms of biological silica morphogenesis, and may lead to the development of self-assembled 3D mineral forming protein scaffolds with designed nanopatterns for a host of applications in nanotechnology.
Diatoms are eukaryotic microalgae that produce species-specifically structured cell walls made of ... (silica). Formation of the intricate silica structures of diatoms is regarded as a paradigm for biomolecule-controlled self-assembly of three-dimensional, nano- to microscale-patterned inorganic materials. Silica formation involves long-chain polyamines and phosphoproteins (silaffins and silacidins), which are readily soluble in water, and spontaneously form dynamic supramolecular assemblies that accelerate silica deposition and influence silica morphogenesis in vitro. However, synthesis of diatom-like silica structure in vitro has not yet been accomplished, indicating that additional components are required. Here we describe the discovery and intracellular location of six novel proteins (cingulins) that are integral components of a silica-forming organic matrix (microrings) in the diatom Thalassiosira pseudonana. The cingulin-containing microrings are specifically associated with girdle bands, which constitute a substantial part of diatom biosilica. Remarkably, the microrings exhibit protein-based nanopatterns that closely resemble characteristic features of the girdle band silica nanopatterns. Upon the addition of silicic acid the microrings become rapidly mineralized in vitro generating nanopatterned silica replicas of the microring structures. A silica-forming organic matrix with characteristic nanopatterns was also discovered in the diatom Coscinodiscus wailesii, which suggests that preassembled protein-based templates might be general components of the cellular machinery for silica morphogenesis in diatoms. These data provide fundamentally new insight into the molecular mechanisms of biological silica morphogenesis, and may lead to the development of self-assembled 3D mineral forming protein scaffolds with designed nanopatterns for a host of applications in nanotechnology. (ProQuest: ... denotes formulae/symbols omitted.)
Diatoms are eukaryotic microalgae that produce species-specifically structured cell walls made of SiO2 (silica). Formation of the intricate silica structures of diatoms is regarded as a paradigm for biomolecule-controlled self-assembly of three-dimensional, nano- to microscale-patterned inorganic materials. Silica formation involves long-chain polyamines and phosphoproteins (silaffins and silacidins), which are readily soluble in water, and spontaneously form dynamic supramolecular assemblies that accelerate silica deposition and influence silica morphogenesis in vitro. However, synthesis of diatom-like silica structure in vitro has not yet been accomplished, indicating that additional components are required. Here we describe the discovery and intracellular location of six novel proteins (cingulins) that are integral components of a silica-forming organic matrix (microrings) in the diatom Thalassiosira pseudonana. The cingulin-containing microrings are specifically associated with girdle bands, which constitute a substantial part of diatom biosilica. Remarkably, the microrings exhibit protein-based nanopatterns that closely resemble characteristic features of the girdle band silica nanopatterns. Upon the addition of silicic acid the microrings become rapidly mineralized in vitro generating nanopatterned silica replicas of the microring structures. A silica-forming organic matrix with characteristic nanopatterns was also discovered in the diatom Coscinodiscus wailesii, which suggests that preassembled protein-based templates might be general components of the cellular machinery for silica morphogenesis in diatoms. These data provide fundamentally new insight into the molecular mechanisms of biological silica morphogenesis, and may lead to the development of self-assembled 3D mineral forming protein scaffolds with designed nanopatterns for a host of applications in nanotechnology.
Diatoms are eukaryot microalgae that produce species-specifically structured cell walls made of SiO₂ (silica). Formation of the intricate silica structures of diatoms is regarded as a paradigm for biomolecule-controlled self-assembly of three-dimensional, nano-to microscale-patterned inorganic materials. Silica formation involves long-chain polyamines and phosphoproteins (silaffins and silacidins), which are readily soluble in water, and spontaneously form dynamic supramolecular assemblies that accelerate silica deposition and influence silica morphogenesis in vitro. However, synthesis of diatom-like silica structure in vitro has not yet been accomplished, indicating that additional components are required. Here we describe the discovery and intracellular location of six novel proteins (cingulins) that are integral components of a silica-forming organic matrix (microrings) in the diatom Thalassiosira pseudonana. The cingulin-containing microrings are specifically associated with girdle bands, which constitute a substantial part of diatom biosilica. Remarkably, the microrings exhibit protein-based nanopatterns that closely resemble characteristic features of the girdle band silica nanopatterns. Upon the addition of silicic acid the microrings become rapidly mineralized in vitro generating nanopatterned silica replicas of the microring structures. A silica-forming organic matrix with characteristic nanopatterns was also discovered in the diatom Coscinodiscus wailesii, which suggests that preassembled protein-based templates might be general components of the cellular machinery for silica morphogenesis in diatoms. These data provide fundamentally new insight into the molecular mechanisms of biological silica morphogenesis, and may lead to the development of self-assembled 3D mineral forming protein scaffolds with designed nanopatterns for a host of applications in nanotechnology.
Author Scheffel, André
Poulsen, Nicole
Kröger, Nils
Shian, Samuel
Author_xml – sequence: 1
  fullname: Scheffel, André
– sequence: 2
  fullname: Poulsen, Nicole
– sequence: 3
  fullname: Shian, Samuel
– sequence: 4
  fullname: Kröger, Nils
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21300899$$D View this record in MEDLINE/PubMed
BookMark eNqFks9vFCEUx4mpsdvq2ZM66UUvYx8DDHAxMY2_ksYetGfCMMwumxkYgTXxvy-TbbfaQz3xTb6f94X3eCfoyAdvEXqJ4T0GTs5nr1NRuBG0wSCeoBUGieuWSjhCK4CG18Whx-gkpS0ASCbgGTpuMAEQUq7Q1Xftw6xzttHbvppjyNb5anImhuj8OlVDDFOlq97pXETe6Fx0tCZXyY3O6GoKcd6EtfU2ufQcPR30mOyL2_MUXX_-9PPia3159eXbxcfL2jDc5LrvBs4ayjhhrYSub00naYfZYIscrNaMGT5wKrrO9kQSaQbdmY6Q1rSUko6cog_73HnXTbY31ueoRzVHN-n4RwXt1L-Odxu1Dr8VAUopFiXg7W1ADL92NmU1uWTsOGpvwy4pCRwzzqn8LykYa6AB3hby3aMkFpgLAoSygp49QLdhF30ZWckjHCgRvECv_27y0N3d9xXgfA-U30op2uGAYFDLgqhlQdT9gpQK9qDCuKyzC8uU3PhI3d1TFuP-FqGEIpgvDb3aA9uUQzwQFEMLEnDx3-z9QQel19Eldf2jKQZgSVtWxA17-d1o
CitedBy_id crossref_primary_10_1128_AEM_06698_11
crossref_primary_10_1073_pnas_1205816109
crossref_primary_10_1111_nph_19646
crossref_primary_10_1074_jbc_M113_469379
crossref_primary_10_1016_j_margen_2017_07_001
crossref_primary_10_3390_plants10112395
crossref_primary_10_1021_bm2001457
crossref_primary_10_1016_j_nanoso_2024_101395
crossref_primary_10_1038_ncomms11926
crossref_primary_10_1111_j_1440_1835_2012_00652_x
crossref_primary_10_3389_fmars_2018_00125
crossref_primary_10_1002_2015JG002970
crossref_primary_10_1038_s41598_017_04921_0
crossref_primary_10_1039_C4TB01838A
crossref_primary_10_1007_s43939_020_00003_7
crossref_primary_10_1016_j_ejop_2013_06_002
crossref_primary_10_1146_annurev_marine_032122_104001
crossref_primary_10_1016_j_carres_2012_11_001
crossref_primary_10_1021_acsomega_7b01769
crossref_primary_10_1039_D0ME00131G
crossref_primary_10_2216_15_105_1
crossref_primary_10_1186_s12915_017_0391_5
crossref_primary_10_1021_ja411822s
crossref_primary_10_1039_c2sc20687k
crossref_primary_10_1021_acs_langmuir_0c00336
crossref_primary_10_1002_ange_201507327
crossref_primary_10_1021_acsabm_8b00520
crossref_primary_10_1038_s41598_018_21810_2
crossref_primary_10_1186_1471_2164_13_499
crossref_primary_10_1038_srep06117
crossref_primary_10_1016_j_pep_2014_12_012
crossref_primary_10_1039_c1jm12490k
crossref_primary_10_1371_journal_pone_0061675
crossref_primary_10_1002_nadc_201182146
crossref_primary_10_1039_C4NR02662D
crossref_primary_10_1016_j_jcis_2020_10_114
crossref_primary_10_1002_anie_202404105
crossref_primary_10_1021_acs_langmuir_6b03311
crossref_primary_10_1242_bio_035519
crossref_primary_10_1016_j_ccr_2016_06_003
crossref_primary_10_1016_j_jbiosc_2024_01_012
crossref_primary_10_1002_lpor_201700224
crossref_primary_10_1007_s10534_016_9987_4
crossref_primary_10_1111_jpy_13437
crossref_primary_10_1002_anie_201507327
crossref_primary_10_1002_wnan_1284
crossref_primary_10_3389_fmars_2023_1291294
crossref_primary_10_1002_anie_201105114
crossref_primary_10_1039_c0cc05648k
crossref_primary_10_1002_jbio_201200198
crossref_primary_10_1038_s41467_023_36112_z
crossref_primary_10_1016_j_bmc_2013_04_006
crossref_primary_10_1016_j_margen_2013_12_005
crossref_primary_10_1021_acssynbio_5b00191
crossref_primary_10_1186_s12915_017_0400_8
crossref_primary_10_1007_s11120_014_0048_y
crossref_primary_10_1016_j_jsb_2018_07_005
crossref_primary_10_1038_s41598_017_13613_8
crossref_primary_10_1111_jpy_12214
crossref_primary_10_1007_s12268_013_0261_9
crossref_primary_10_1021_acs_jpcb_5b06455
crossref_primary_10_1371_journal_pone_0159128
crossref_primary_10_1038_s43705_022_00136_1
crossref_primary_10_1007_s10853_015_8875_6
crossref_primary_10_1002_ange_201105114
crossref_primary_10_1039_C9OB02438G
crossref_primary_10_1038_s41467_024_52211_x
crossref_primary_10_1016_j_febslet_2011_07_038
crossref_primary_10_1016_j_algal_2021_102554
crossref_primary_10_1002_ciuz_201300621
crossref_primary_10_1007_s10126_020_09976_1
crossref_primary_10_1074_jbc_M115_706440
crossref_primary_10_1007_s43939_021_00011_1
crossref_primary_10_1039_c1ob05406f
crossref_primary_10_1039_C4CC05820H
crossref_primary_10_1007_s43939_021_00005_z
crossref_primary_10_1002_asia_201100563
crossref_primary_10_1007_s10811_022_02715_0
crossref_primary_10_1002_aisy_202300467
crossref_primary_10_1021_acs_iecr_6b01839
crossref_primary_10_1186_s42833_020_00016_9
crossref_primary_10_1002_ange_202404105
crossref_primary_10_1016_j_jcis_2017_07_115
crossref_primary_10_1021_ar300321e
crossref_primary_10_1038_s41467_021_24944_6
crossref_primary_10_1038_s42003_023_05002_x
crossref_primary_10_1016_j_jsb_2020_107665
crossref_primary_10_1039_D2OB00390B
crossref_primary_10_1101_cshperspect_a023929
crossref_primary_10_1007_s10126_020_09967_2
crossref_primary_10_1038_srep36824
crossref_primary_10_3389_fpls_2022_1006072
crossref_primary_10_1111_tpj_15765
crossref_primary_10_1021_cm201988g
crossref_primary_10_1016_j_margen_2014_01_006
crossref_primary_10_1021_acs_langmuir_4c01576
crossref_primary_10_1111_tpj_14309
crossref_primary_10_1186_s13068_023_02389_x
crossref_primary_10_1128_JB_00447_15
crossref_primary_10_5802_crgeos_107
crossref_primary_10_1088_2040_8986_aaff39
crossref_primary_10_1016_j_semcdb_2015_06_007
crossref_primary_10_1021_pr400803w
crossref_primary_10_3390_md13085297
crossref_primary_10_1186_s13007_016_0148_0
crossref_primary_10_1021_acs_chemrev_1c00669
crossref_primary_10_1038_s41564_023_01498_5
crossref_primary_10_1016_j_orggeochem_2012_02_010
crossref_primary_10_1093_jxb_eraa258
crossref_primary_10_1007_s10811_017_1177_4
crossref_primary_10_1016_j_envpol_2023_121005
crossref_primary_10_1016_j_gene_2014_11_055
crossref_primary_10_3389_fmars_2018_00022
crossref_primary_10_1007_s00249_013_0889_x
crossref_primary_10_1093_bbb_zbab069
crossref_primary_10_1186_s42833_020_00017_8
crossref_primary_10_1021_acs_langmuir_6b02575
crossref_primary_10_1098_rsif_2013_0067
crossref_primary_10_1039_C4BM00310A
crossref_primary_10_1111_jpy_13362
crossref_primary_10_3390_nano4030792
crossref_primary_10_1029_2010GC003437
crossref_primary_10_1039_C4AN01982B
crossref_primary_10_1002_smll_201500169
crossref_primary_10_1002_adfm_202000849
crossref_primary_10_1029_2011GB004233
crossref_primary_10_1271_kagakutoseibutsu_61_439
crossref_primary_10_1002_psc_2577
crossref_primary_10_6064_2012_867562
crossref_primary_10_1029_2019GB006508
crossref_primary_10_1039_C4CE00934G
crossref_primary_10_1073_pnas_2302156120
crossref_primary_10_1177_0003702815626665
crossref_primary_10_1021_acsnano_7b07785
crossref_primary_10_1016_j_bbamem_2022_183921
crossref_primary_10_1002_adfm_202000442
crossref_primary_10_1002_prot_25366
crossref_primary_10_1038_s42003_019_0436_0
crossref_primary_10_1371_journal_pone_0033771
crossref_primary_10_1021_acsabm_9b00050
crossref_primary_10_1039_c3bm60063g
crossref_primary_10_1371_journal_pone_0110369
crossref_primary_10_1039_C5MT00231A
crossref_primary_10_1002_2017JG003779
crossref_primary_10_1016_j_bbamem_2022_184056
Cites_doi 10.1002/1521-3773(20020503)41:9<1543::AID-ANIE1543>3.0.CO;2-B
10.1021/ja809486b
10.1016/0968-0004(87)90072-7
10.1002/j.1460-2075.1994.tb06791.x
10.1111/j.1529-8817.1966.tb04597.x
10.1126/science.1070026
10.1002/anie.200603928
10.1016/j.jsb.2009.02.014
10.1074/jbc.M407734200
10.1111/j.1432-1033.1996.0259u.x
10.1557/mrs2010.631
10.1007/s12013-007-9003-2
10.1038/382313a0
10.1002/cbic.200700764
10.1073/pnas.260496497
10.1126/science.1101156
10.1073/pnas.0707946105
10.1126/science.286.5442.1129
10.1093/oso/9780195049770.001.0001
10.1021/cr8002328
10.1074/mcp.M500174-MCP200
10.1126/science.1076221
10.1002/anie.200905028
10.1002/anie.200704994
10.1073/pnas.0710809105
10.1016/j.jsb.2009.08.013
10.1093/oso/9780198599579.003.0093
10.1515/bchm2.1960.319.1.38
10.1007/BF00348902
10.1371/journal.pone.0007458
10.1016/j.jmb.2004.05.028
10.1146/annurev.genet.41.110306.130109
ContentType Journal Article
Copyright Copyright National Academy of Sciences Feb 22, 2011
Copyright_xml – notice: Copyright National Academy of Sciences Feb 22, 2011
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
F1W
H95
L.G
5PM
DOI 10.1073/pnas.1012842108
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList MEDLINE - Academic

MEDLINE
AGRICOLA

Virology and AIDS Abstracts
CrossRef

Aquatic Science & Fisheries Abstracts (ASFA) Professional

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 3180
ExternalDocumentID PMC3044418
2275986831
21300899
10_1073_pnas_1012842108
108_8_3175
41060901
US201301946501
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
ABXSQ
ACHIC
ADQXQ
ADXHL
AQVQM
H13
IPSME
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
AJYGW
DZ
KM
PQEST
X
XHC
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
F1W
H95
L.G
5PM
ID FETCH-LOGICAL-c512t-dbf75245735690bd6cb94b15fed6cfeaa55c7f748bbed3939cfabcb336c6443b3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:11:42 EDT 2025
Fri Sep 05 14:17:32 EDT 2025
Fri Sep 05 08:23:59 EDT 2025
Fri Sep 05 09:52:53 EDT 2025
Mon Jun 30 08:09:46 EDT 2025
Wed Feb 19 02:36:31 EST 2025
Tue Jul 01 00:47:06 EDT 2025
Thu Apr 24 23:03:53 EDT 2025
Wed Nov 11 00:30:58 EST 2020
Thu May 29 08:40:51 EDT 2025
Wed Dec 27 19:17:57 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c512t-dbf75245735690bd6cb94b15fed6cfeaa55c7f748bbed3939cfabcb336c6443b3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Edited by Chad A. Mirkin, Northwestern University, Evanston, IL, and approved January 6, 2011 (received for review August 31, 2010)
Author contributions: A.S., N.P., and N.K. designed research; A.S., N.P., and S.S. performed research; A.S., N.P., S.S., and N.K. analyzed data; and A.S. and N.K. wrote the paper.
1Present address: Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam, Germany.
2Present address: School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138.
PMID 21300899
PQID 853704387
PQPubID 42026
PageCount 6
ParticipantIDs crossref_primary_10_1073_pnas_1012842108
proquest_miscellaneous_907157749
proquest_miscellaneous_1817830345
proquest_miscellaneous_855202076
pnas_primary_108_8_3175
jstor_primary_41060901
fao_agris_US201301946501
crossref_citationtrail_10_1073_pnas_1012842108
proquest_journals_853704387
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3044418
pubmed_primary_21300899
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-02-22
PublicationDateYYYYMMDD 2011-02-22
PublicationDate_xml – month: 02
  year: 2011
  text: 2011-02-22
  day: 22
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationSeriesTitle From the Cover
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2011
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References Frigeri LG (e_1_3_4_6_2) 2006; 5
Sumper M (e_1_3_4_21_2) 2002; 295
Belton DJ (e_1_3_4_17_2) 2008; 105
Gröger C (e_1_3_4_16_2) 2008; 50
Sapriel G (e_1_3_4_8_2) 2009; 4
Reimann BEF (e_1_3_4_9_2) 1966; 2
Robinson D (e_1_3_4_20_2) 1987; 12
Iler RK (e_1_3_4_32_2) 1979
Baumann H (e_1_3_4_33_2) 1960; 319
Tesson B (e_1_3_4_23_2) 2010; 169
Kröger N (e_1_3_4_31_2) 1999; 286
Mann S (e_1_3_4_2_2) 1996; 382
Dickerson MB (e_1_3_4_25_2) 2008; 108
Kröger N (e_1_3_4_29_2) 2002; 298
Kröger N (e_1_3_4_5_2) 2010; 35
Kröger N (e_1_3_4_3_2) 2008; 42
Hecky R (e_1_3_4_19_2) 1973; 19
Vrieling EG (e_1_3_4_22_2) 2002; 41
Sumper M (e_1_3_4_4_2) 2008; 9
Lowenstam HA (e_1_3_4_1_2) 1989
Kröger N (e_1_3_4_10_2) 1994; 13
Bendtsen JD (e_1_3_4_27_2) 2004; 340
Brunner E (e_1_3_4_14_2) 2009; 48
Mock T (e_1_3_4_7_2) 2008; 105
Parry D (e_1_3_4_24_2) 1999
Hildebrand M (e_1_3_4_15_2) 2009; 166
Wallace AF (e_1_3_4_18_2) 2009; 131
Kröger N (e_1_3_4_11_2) 1996; 239
Armbrust EV (e_1_3_4_26_2) 2004; 306
Wenzl S (e_1_3_4_12_2) 2008; 47
Poulsen N (e_1_3_4_13_2) 2004; 279
Kröger N (e_1_3_4_28_2) 2000; 97
Poulsen N (e_1_3_4_30_2) 2007; 46
References_xml – start-page: 97
  volume-title: The Chemistry of Silica
  year: 1979
  ident: e_1_3_4_32_2
– volume: 41
  start-page: 1543
  year: 2002
  ident: e_1_3_4_22_2
  article-title: Mesophases of (bio)polymer-silica particles inspire a model for silica biomineralization in diatoms
  publication-title: Angew Chem Int Ed
  doi: 10.1002/1521-3773(20020503)41:9<1543::AID-ANIE1543>3.0.CO;2-B
– volume: 131
  start-page: 5244
  year: 2009
  ident: e_1_3_4_18_2
  article-title: Kinetics of silica nucleation on carboxyl- and amine-terminated surfaces: Insights for biomineralization
  publication-title: J Am Chem Soc
  doi: 10.1021/ja809486b
– volume: 12
  start-page: 151
  year: 1987
  ident: e_1_3_4_20_2
  article-title: How do diatoms make silicon biominerals
  publication-title: Trends Biochem Sci
  doi: 10.1016/0968-0004(87)90072-7
– volume: 13
  start-page: 4676
  year: 1994
  ident: e_1_3_4_10_2
  article-title: A new calcium binding glycoprotein family constitutes a major diatom cell wall component
  publication-title: EMBO J
  doi: 10.1002/j.1460-2075.1994.tb06791.x
– volume: 2
  start-page: 74
  year: 1966
  ident: e_1_3_4_9_2
  article-title: Studies on the biochemistry and fine structure of the silica shell formation in diatoms. II. The structure of the cell wall of Navicula pelliculosa (Bréb.) Hilse
  publication-title: J Phycol
  doi: 10.1111/j.1529-8817.1966.tb04597.x
– volume: 295
  start-page: 2430
  year: 2002
  ident: e_1_3_4_21_2
  article-title: A phase separation model for the nanopatterning of diatom biosilica
  publication-title: Science
  doi: 10.1126/science.1070026
– volume: 46
  start-page: 1843
  year: 2007
  ident: e_1_3_4_30_2
  article-title: Silica immobilization of an enzyme through genetic engineering of the diatom Thalassiosira pseudonana
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.200603928
– volume: 166
  start-page: 316
  year: 2009
  ident: e_1_3_4_15_2
  article-title: 3D imaging of diatoms with ion-abrasion scanning electron microscopy
  publication-title: J Struct Biol
  doi: 10.1016/j.jsb.2009.02.014
– volume: 279
  start-page: 42993
  year: 2004
  ident: e_1_3_4_13_2
  article-title: Silica morphogenesis by alternative processing of silaffins in the diatom Thalassiosira pseudonana
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M407734200
– volume: 239
  start-page: 259
  year: 1996
  ident: e_1_3_4_11_2
  article-title: Frustulins: Domain conservation in a protein family associated with diatom cell walls
  publication-title: Eur J Biochem
  doi: 10.1111/j.1432-1033.1996.0259u.x
– volume: 35
  start-page: 122
  year: 2010
  ident: e_1_3_4_5_2
  article-title: From diatom biomolecules to bioinspired syntheses of silica- and titania-based materials
  publication-title: MRS Bulletin
  doi: 10.1557/mrs2010.631
– volume: 50
  start-page: 23
  year: 2008
  ident: e_1_3_4_16_2
  article-title: Biomolecular self-assembly and its relevance in silica biomineralization
  publication-title: Cell Biochem Biophys
  doi: 10.1007/s12013-007-9003-2
– volume: 382
  start-page: 313
  year: 1996
  ident: e_1_3_4_2_2
  article-title: Synthesis of inorganic materials with complex form
  publication-title: Nature
  doi: 10.1038/382313a0
– volume: 9
  start-page: 1187
  year: 2008
  ident: e_1_3_4_4_2
  article-title: Silica biomineralization in diatoms: the model organism Thalassiosira pseudonana
  publication-title: ChemBioChem
  doi: 10.1002/cbic.200700764
– volume: 97
  start-page: 14133
  year: 2000
  ident: e_1_3_4_28_2
  article-title: Species specific polyamines from diatoms control silica morphology
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.260496497
– volume: 306
  start-page: 79
  year: 2004
  ident: e_1_3_4_26_2
  article-title: The genome of the diatom Thalassiosira pseudonana: Ecology, evolution, and metabolism
  publication-title: Science
  doi: 10.1126/science.1101156
– volume: 105
  start-page: 1579
  year: 2008
  ident: e_1_3_4_7_2
  article-title: Whole-genome expression profiling of the marine diatom Thalassiosira pseudonana identifies genes involved in silicon bioprocesses
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0707946105
– volume: 286
  start-page: 1129
  year: 1999
  ident: e_1_3_4_31_2
  article-title: Polycationic peptides from diatoms biosilica that direct silica nanosphere formation
  publication-title: Science
  doi: 10.1126/science.286.5442.1129
– start-page: 54
  volume-title: On Biomineralization
  year: 1989
  ident: e_1_3_4_1_2
  doi: 10.1093/oso/9780195049770.001.0001
– volume: 108
  start-page: 4935
  year: 2008
  ident: e_1_3_4_25_2
  article-title: Protein- and peptide-directed syntheses of inorganic materials
  publication-title: Chem Rev
  doi: 10.1021/cr8002328
– volume: 5
  start-page: 182
  year: 2006
  ident: e_1_3_4_6_2
  article-title: Identification of proteins from a cell wall fraction of the diatom Thalassiosira pseudonana
  publication-title: Mol Cell Proteomics
  doi: 10.1074/mcp.M500174-MCP200
– volume: 298
  start-page: 584
  year: 2002
  ident: e_1_3_4_29_2
  article-title: Self-assembly of highly phosphorylated silaffins and their function in biosilica morphogenesis
  publication-title: Science
  doi: 10.1126/science.1076221
– volume: 48
  start-page: 9724
  year: 2009
  ident: e_1_3_4_14_2
  article-title: Chitin-based organic networks: An integral part of cell wall biosilica in the diatom Thalassiosira pseudonana
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.200905028
– volume: 47
  start-page: 1729
  year: 2008
  ident: e_1_3_4_12_2
  article-title: Silacidins: highly acidic phosphopeptides from diatom shells assist in silica precipitation in vitro
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.200704994
– volume: 105
  start-page: 5963
  year: 2008
  ident: e_1_3_4_17_2
  article-title: From biosilicification to tailored materials: Optimizing hydrophobic domains and resistance to protonation of polyamines
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0710809105
– volume: 169
  start-page: 62
  year: 2010
  ident: e_1_3_4_23_2
  article-title: Dynamics of silica cell wall morphogenesis in the diatom Cyclotella cryptica: Substructure formation and the role of microfilaments
  publication-title: J Struct Biol
  doi: 10.1016/j.jsb.2009.08.013
– start-page: 285
  volume-title: Guidebook to the Cytoskeletal and Motor Proteins
  year: 1999
  ident: e_1_3_4_24_2
  doi: 10.1093/oso/9780198599579.003.0093
– volume: 319
  start-page: 38
  year: 1960
  ident: e_1_3_4_33_2
  article-title: Bestimmung der Kieselsäure in biologischem Material
  publication-title: Hoppe Seyler’s Z Physiol Chem
  doi: 10.1515/bchm2.1960.319.1.38
– volume: 19
  start-page: 323
  year: 1973
  ident: e_1_3_4_19_2
  article-title: The amino acid and sugar composition of diatom cell walls
  publication-title: Mar Biol
  doi: 10.1007/BF00348902
– volume: 4
  start-page: e7458
  year: 2009
  ident: e_1_3_4_8_2
  article-title: Genome-wide transcriptome analyses of silicon metabolism in Phaeodactylum tricornutum reveal the multilevel regulation of silicic acid transporters
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0007458
– volume: 340
  start-page: 783
  year: 2004
  ident: e_1_3_4_27_2
  article-title: Improved prediction of signal peptides: SignalP 3
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2004.05.028
– volume: 42
  start-page: 83
  year: 2008
  ident: e_1_3_4_3_2
  article-title: Diatoms—From cell wall bogenesis to nanotechnology
  publication-title: Annu Rev Genet
  doi: 10.1146/annurev.genet.41.110306.130109
SSID ssj0009580
Score 2.4301467
Snippet Diatoms are eukaryotic microalgae that produce species-specifically structured cell walls made of SiO₂ (silica). Formation of the intricate silica structures...
Diatoms are eukaryot microalgae that produce species-specifically structured cell walls made of SiO₂ (silica). Formation of the intricate silica structures of...
Diatoms are eukaryotic microalgae that produce species-specifically structured cell walls made of SiO 2 (silica). Formation of the intricate silica structures...
Diatoms are eukaryotic microalgae that produce species-specifically structured cell walls made of SiO 2 (silica). Formation of the intricate silica structures...
Diatoms are eukaryotic microalgae that produce species-specifically structured cell walls made of SiO(2) (silica). Formation of the intricate silica structures...
Diatoms are eukaryotic microalgae that produce species-specifically structured cell walls made of ... (silica). Formation of the intricate silica structures of...
Diatoms are eukaryotic microalgae that produce species-specifically structured cell walls made of SiO2 (silica). Formation of the intricate silica structures...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3175
SubjectTerms Algae
Amino acids
Bacillariophyceae
Biological Sciences
Biomineralogy
Cell Wall - chemistry
Cell Wall - ultrastructure
Cell walls
Coscinodiscus
Coscinodiscus wailesii
Diatoms
Diatoms - ultrastructure
Extracellular Matrix - chemistry
Fluorescence
Genomes
Girdles
microalgae
Molecular Sequence Data
Morphogenesis
Morphology
Nanoparticles
Nanotechnology
Nanotechnology - methods
Peptides
Phosphoproteins
Physical Sciences
Polyamines
Proteins
Proteins - chemistry
scaffolding proteins
Silica
silicic acid
Silicon Dioxide
Thalassiosira
Thalassiosira pseudonana
Title Nanopatterned protein microrings from a diatom that direct silica morphogenesis
URI https://www.jstor.org/stable/41060901
http://www.pnas.org/content/108/8/3175.abstract
https://www.ncbi.nlm.nih.gov/pubmed/21300899
https://www.proquest.com/docview/853704387
https://www.proquest.com/docview/1817830345
https://www.proquest.com/docview/855202076
https://www.proquest.com/docview/907157749
https://pubmed.ncbi.nlm.nih.gov/PMC3044418
Volume 108
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbKeOEFMWCsDJCReBiKMpo4jpPHgUATiDKpq7S3yE6cLlKbTEv6wv_E_8id83tqEfASRYnjWr6v5-_Od2dC3oWJ9FicKBu4AW4zMmbLmYxt5mrk98JXKWYjf5_7F0vv6zW_nkx-DaKWtpU6i3_uzCv5H6nCM5ArZsn-g2S7TuEB3IN84QoShutfyRhUI9i8mI8DytIyJRey3NpgjN2dOY7TJI9IdLBWJotEVla9hlllht46a1PAPBcrVHhZOSSql93CVrZhBPPWb3jeZ6E0qqG0bOty3p9pvAAopGkTAJAnzXZ8p4aL7bpx_Bggdtha3GSNP1ZutrqL_fhmvv_or2p4zbP1yFmB3lfXdnvT9k8DHWppF1ZOr86tPtO1YgZeY_tefbRop7lnwQCiwUAPIysarOmguGY71wtQcHjIcS5LdGPAUu22fY6LcC8XLm7xOqEHjBaM7YeuAKrWOoe6Gs9BnfHUDL-tJCXYh3u_MCJBD1JZtNGwWGIXmu4yd-5H7Q5o0NUT8rixX-h5DcZDMtH5U3LYzi49bcqYv39GfozQSRt00h6dFNFJJa3RSRGdtEYnrdFJR-h8TpZfPl99urCb4zvsGFhkZScqFdz1uGDcD2cq8WMVesrhqYbbVEvJeSxS4QVK6YSFLIxTqWLFmB8DSWeKHZGDvMj1MaFaa5YEsZBgTgCBcmTo-twLE821r5njTMlZO59R3NS2xyNW1pGJsRAswlmNegFMyWn3wW1d1mV_02MQUCRXsOhGYxxMyZGRWteF58z8WYgvXphe-q6DKIgQlFNy0ko2ajRJGQFlFrgjL6bkbfcW1Dzu3clcF1sYT-CIAOimBz3QPW0Czl2w_oS_v0kIFgUHiy_EERo0dWN0cWM7COGNGOGsa4CF6Mdv8uzGFKRnWHTSCV7un6kT8qhXB6_IQXW31a-BzVfqjfkP_QYoyvJv
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanopatterned+protein+microrings+from+a+diatom+that+direct+silica+morphogenesis&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Scheffel%2C+Andr%C3%A9&rft.au=Poulsen%2C+Nicole&rft.au=Shian%2C+Samuel&rft.au=Kr%C3%B6ger%2C+Nils&rft.date=2011-02-22&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=108&rft.issue=8&rft.spage=3175&rft.epage=3180&rft_id=info:doi/10.1073%2Fpnas.1012842108&rft.externalDocID=US201301946501
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F108%2F8.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F108%2F8.cover.gif