Nanopatterned protein microrings from a diatom that direct silica morphogenesis
Diatoms are eukaryotic microalgae that produce species-specifically structured cell walls made of SiO₂ (silica). Formation of the intricate silica structures of diatoms is regarded as a paradigm for biomolecule-controlled self-assembly of three-dimensional, nano- to microscale-patterned inorganic ma...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 108; no. 8; pp. 3175 - 3180 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
22.02.2011
National Acad Sciences |
Series | From the Cover |
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.1012842108 |
Cover
Abstract | Diatoms are eukaryotic microalgae that produce species-specifically structured cell walls made of SiO₂ (silica). Formation of the intricate silica structures of diatoms is regarded as a paradigm for biomolecule-controlled self-assembly of three-dimensional, nano- to microscale-patterned inorganic materials. Silica formation involves long-chain polyamines and phosphoproteins (silaffins and silacidins), which are readily soluble in water, and spontaneously form dynamic supramolecular assemblies that accelerate silica deposition and influence silica morphogenesis in vitro. However, synthesis of diatom-like silica structure in vitro has not yet been accomplished, indicating that additional components are required. Here we describe the discovery and intracellular location of six novel proteins (cingulins) that are integral components of a silica-forming organic matrix (microrings) in the diatom Thalassiosira pseudonana. The cingulin-containing microrings are specifically associated with girdle bands, which constitute a substantial part of diatom biosilica. Remarkably, the microrings exhibit protein-based nanopatterns that closely resemble characteristic features of the girdle band silica nanopatterns. Upon the addition of silicic acid the microrings become rapidly mineralized in vitro generating nanopatterned silica replicas of the microring structures. A silica-forming organic matrix with characteristic nanopatterns was also discovered in the diatom Coscinodiscus wailesii, which suggests that preassembled protein-based templates might be general components of the cellular machinery for silica morphogenesis in diatoms. These data provide fundamentally new insight into the molecular mechanisms of biological silica morphogenesis, and may lead to the development of self-assembled 3D mineral forming protein scaffolds with designed nanopatterns for a host of applications in nanotechnology. |
---|---|
AbstractList | Diatoms are eukaryotic microalgae that produce species-specifically structured cell walls made of SiO(2) (silica). Formation of the intricate silica structures of diatoms is regarded as a paradigm for biomolecule-controlled self-assembly of three-dimensional, nano- to microscale-patterned inorganic materials. Silica formation involves long-chain polyamines and phosphoproteins (silaffins and silacidins), which are readily soluble in water, and spontaneously form dynamic supramolecular assemblies that accelerate silica deposition and influence silica morphogenesis in vitro. However, synthesis of diatom-like silica structure in vitro has not yet been accomplished, indicating that additional components are required. Here we describe the discovery and intracellular location of six novel proteins (cingulins) that are integral components of a silica-forming organic matrix (microrings) in the diatom Thalassiosira pseudonana. The cingulin-containing microrings are specifically associated with girdle bands, which constitute a substantial part of diatom biosilica. Remarkably, the microrings exhibit protein-based nanopatterns that closely resemble characteristic features of the girdle band silica nanopatterns. Upon the addition of silicic acid the microrings become rapidly mineralized in vitro generating nanopatterned silica replicas of the microring structures. A silica-forming organic matrix with characteristic nanopatterns was also discovered in the diatom Coscinodiscus wailesii, which suggests that preassembled protein-based templates might be general components of the cellular machinery for silica morphogenesis in diatoms. These data provide fundamentally new insight into the molecular mechanisms of biological silica morphogenesis, and may lead to the development of self-assembled 3D mineral forming protein scaffolds with designed nanopatterns for a host of applications in nanotechnology.Diatoms are eukaryotic microalgae that produce species-specifically structured cell walls made of SiO(2) (silica). Formation of the intricate silica structures of diatoms is regarded as a paradigm for biomolecule-controlled self-assembly of three-dimensional, nano- to microscale-patterned inorganic materials. Silica formation involves long-chain polyamines and phosphoproteins (silaffins and silacidins), which are readily soluble in water, and spontaneously form dynamic supramolecular assemblies that accelerate silica deposition and influence silica morphogenesis in vitro. However, synthesis of diatom-like silica structure in vitro has not yet been accomplished, indicating that additional components are required. Here we describe the discovery and intracellular location of six novel proteins (cingulins) that are integral components of a silica-forming organic matrix (microrings) in the diatom Thalassiosira pseudonana. The cingulin-containing microrings are specifically associated with girdle bands, which constitute a substantial part of diatom biosilica. Remarkably, the microrings exhibit protein-based nanopatterns that closely resemble characteristic features of the girdle band silica nanopatterns. Upon the addition of silicic acid the microrings become rapidly mineralized in vitro generating nanopatterned silica replicas of the microring structures. A silica-forming organic matrix with characteristic nanopatterns was also discovered in the diatom Coscinodiscus wailesii, which suggests that preassembled protein-based templates might be general components of the cellular machinery for silica morphogenesis in diatoms. These data provide fundamentally new insight into the molecular mechanisms of biological silica morphogenesis, and may lead to the development of self-assembled 3D mineral forming protein scaffolds with designed nanopatterns for a host of applications in nanotechnology. Diatoms are eukaryotic microalgae that produce species-specifically structured cell walls made of SiO 2 (silica). Formation of the intricate silica structures of diatoms is regarded as a paradigm for biomolecule-controlled self-assembly of three-dimensional, nano- to microscale-patterned inorganic materials. Silica formation involves long-chain polyamines and phosphoproteins (silaffins and silacidins), which are readily soluble in water, and spontaneously form dynamic supramolecular assemblies that accelerate silica deposition and influence silica morphogenesis in vitro. However, synthesis of diatom-like silica structure in vitro has not yet been accomplished, indicating that additional components are required. Here we describe the discovery and intracellular location of six novel proteins (cingulins) that are integral components of a silica-forming organic matrix (microrings) in the diatom Thalassiosira pseudonana . The cingulin-containing microrings are specifically associated with girdle bands, which constitute a substantial part of diatom biosilica. Remarkably, the microrings exhibit protein-based nanopatterns that closely resemble characteristic features of the girdle band silica nanopatterns. Upon the addition of silicic acid the microrings become rapidly mineralized in vitro generating nanopatterned silica replicas of the microring structures. A silica-forming organic matrix with characteristic nanopatterns was also discovered in the diatom Coscinodiscus wailesii , which suggests that preassembled protein-based templates might be general components of the cellular machinery for silica morphogenesis in diatoms. These data provide fundamentally new insight into the molecular mechanisms of biological silica morphogenesis, and may lead to the development of self-assembled 3D mineral forming protein scaffolds with designed nanopatterns for a host of applications in nanotechnology. Diatoms are eukaryotic microalgae that produce species-specifically structured cell walls made of SiO(2) (silica). Formation of the intricate silica structures of diatoms is regarded as a paradigm for biomolecule-controlled self-assembly of three-dimensional, nano- to microscale-patterned inorganic materials. Silica formation involves long-chain polyamines and phosphoproteins (silaffins and silacidins), which are readily soluble in water, and spontaneously form dynamic supramolecular assemblies that accelerate silica deposition and influence silica morphogenesis in vitro. However, synthesis of diatom-like silica structure in vitro has not yet been accomplished, indicating that additional components are required. Here we describe the discovery and intracellular location of six novel proteins (cingulins) that are integral components of a silica-forming organic matrix (microrings) in the diatom Thalassiosira pseudonana. The cingulin-containing microrings are specifically associated with girdle bands, which constitute a substantial part of diatom biosilica. Remarkably, the microrings exhibit protein-based nanopatterns that closely resemble characteristic features of the girdle band silica nanopatterns. Upon the addition of silicic acid the microrings become rapidly mineralized in vitro generating nanopatterned silica replicas of the microring structures. A silica-forming organic matrix with characteristic nanopatterns was also discovered in the diatom Coscinodiscus wailesii, which suggests that preassembled protein-based templates might be general components of the cellular machinery for silica morphogenesis in diatoms. These data provide fundamentally new insight into the molecular mechanisms of biological silica morphogenesis, and may lead to the development of self-assembled 3D mineral forming protein scaffolds with designed nanopatterns for a host of applications in nanotechnology. Diatoms are eukaryotic microalgae that produce species-specifically structured cell walls made of SiO₂ (silica). Formation of the intricate silica structures of diatoms is regarded as a paradigm for biomolecule-controlled self-assembly of three-dimensional, nano- to microscale-patterned inorganic materials. Silica formation involves long-chain polyamines and phosphoproteins (silaffins and silacidins), which are readily soluble in water, and spontaneously form dynamic supramolecular assemblies that accelerate silica deposition and influence silica morphogenesis in vitro. However, synthesis of diatom-like silica structure in vitro has not yet been accomplished, indicating that additional components are required. Here we describe the discovery and intracellular location of six novel proteins (cingulins) that are integral components of a silica-forming organic matrix (microrings) in the diatom Thalassiosira pseudonana. The cingulin-containing microrings are specifically associated with girdle bands, which constitute a substantial part of diatom biosilica. Remarkably, the microrings exhibit protein-based nanopatterns that closely resemble characteristic features of the girdle band silica nanopatterns. Upon the addition of silicic acid the microrings become rapidly mineralized in vitro generating nanopatterned silica replicas of the microring structures. A silica-forming organic matrix with characteristic nanopatterns was also discovered in the diatom Coscinodiscus wailesii, which suggests that preassembled protein-based templates might be general components of the cellular machinery for silica morphogenesis in diatoms. These data provide fundamentally new insight into the molecular mechanisms of biological silica morphogenesis, and may lead to the development of self-assembled 3D mineral forming protein scaffolds with designed nanopatterns for a host of applications in nanotechnology. Diatoms are eukaryotic microalgae that produce species-specifically structured cell walls made of ... (silica). Formation of the intricate silica structures of diatoms is regarded as a paradigm for biomolecule-controlled self-assembly of three-dimensional, nano- to microscale-patterned inorganic materials. Silica formation involves long-chain polyamines and phosphoproteins (silaffins and silacidins), which are readily soluble in water, and spontaneously form dynamic supramolecular assemblies that accelerate silica deposition and influence silica morphogenesis in vitro. However, synthesis of diatom-like silica structure in vitro has not yet been accomplished, indicating that additional components are required. Here we describe the discovery and intracellular location of six novel proteins (cingulins) that are integral components of a silica-forming organic matrix (microrings) in the diatom Thalassiosira pseudonana. The cingulin-containing microrings are specifically associated with girdle bands, which constitute a substantial part of diatom biosilica. Remarkably, the microrings exhibit protein-based nanopatterns that closely resemble characteristic features of the girdle band silica nanopatterns. Upon the addition of silicic acid the microrings become rapidly mineralized in vitro generating nanopatterned silica replicas of the microring structures. A silica-forming organic matrix with characteristic nanopatterns was also discovered in the diatom Coscinodiscus wailesii, which suggests that preassembled protein-based templates might be general components of the cellular machinery for silica morphogenesis in diatoms. These data provide fundamentally new insight into the molecular mechanisms of biological silica morphogenesis, and may lead to the development of self-assembled 3D mineral forming protein scaffolds with designed nanopatterns for a host of applications in nanotechnology. (ProQuest: ... denotes formulae/symbols omitted.) Diatoms are eukaryotic microalgae that produce species-specifically structured cell walls made of SiO2 (silica). Formation of the intricate silica structures of diatoms is regarded as a paradigm for biomolecule-controlled self-assembly of three-dimensional, nano- to microscale-patterned inorganic materials. Silica formation involves long-chain polyamines and phosphoproteins (silaffins and silacidins), which are readily soluble in water, and spontaneously form dynamic supramolecular assemblies that accelerate silica deposition and influence silica morphogenesis in vitro. However, synthesis of diatom-like silica structure in vitro has not yet been accomplished, indicating that additional components are required. Here we describe the discovery and intracellular location of six novel proteins (cingulins) that are integral components of a silica-forming organic matrix (microrings) in the diatom Thalassiosira pseudonana. The cingulin-containing microrings are specifically associated with girdle bands, which constitute a substantial part of diatom biosilica. Remarkably, the microrings exhibit protein-based nanopatterns that closely resemble characteristic features of the girdle band silica nanopatterns. Upon the addition of silicic acid the microrings become rapidly mineralized in vitro generating nanopatterned silica replicas of the microring structures. A silica-forming organic matrix with characteristic nanopatterns was also discovered in the diatom Coscinodiscus wailesii, which suggests that preassembled protein-based templates might be general components of the cellular machinery for silica morphogenesis in diatoms. These data provide fundamentally new insight into the molecular mechanisms of biological silica morphogenesis, and may lead to the development of self-assembled 3D mineral forming protein scaffolds with designed nanopatterns for a host of applications in nanotechnology. Diatoms are eukaryot microalgae that produce species-specifically structured cell walls made of SiO₂ (silica). Formation of the intricate silica structures of diatoms is regarded as a paradigm for biomolecule-controlled self-assembly of three-dimensional, nano-to microscale-patterned inorganic materials. Silica formation involves long-chain polyamines and phosphoproteins (silaffins and silacidins), which are readily soluble in water, and spontaneously form dynamic supramolecular assemblies that accelerate silica deposition and influence silica morphogenesis in vitro. However, synthesis of diatom-like silica structure in vitro has not yet been accomplished, indicating that additional components are required. Here we describe the discovery and intracellular location of six novel proteins (cingulins) that are integral components of a silica-forming organic matrix (microrings) in the diatom Thalassiosira pseudonana. The cingulin-containing microrings are specifically associated with girdle bands, which constitute a substantial part of diatom biosilica. Remarkably, the microrings exhibit protein-based nanopatterns that closely resemble characteristic features of the girdle band silica nanopatterns. Upon the addition of silicic acid the microrings become rapidly mineralized in vitro generating nanopatterned silica replicas of the microring structures. A silica-forming organic matrix with characteristic nanopatterns was also discovered in the diatom Coscinodiscus wailesii, which suggests that preassembled protein-based templates might be general components of the cellular machinery for silica morphogenesis in diatoms. These data provide fundamentally new insight into the molecular mechanisms of biological silica morphogenesis, and may lead to the development of self-assembled 3D mineral forming protein scaffolds with designed nanopatterns for a host of applications in nanotechnology. |
Author | Scheffel, André Poulsen, Nicole Kröger, Nils Shian, Samuel |
Author_xml | – sequence: 1 fullname: Scheffel, André – sequence: 2 fullname: Poulsen, Nicole – sequence: 3 fullname: Shian, Samuel – sequence: 4 fullname: Kröger, Nils |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21300899$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks9vFCEUx4mpsdvq2ZM66UUvYx8DDHAxMY2_ksYetGfCMMwumxkYgTXxvy-TbbfaQz3xTb6f94X3eCfoyAdvEXqJ4T0GTs5nr1NRuBG0wSCeoBUGieuWSjhCK4CG18Whx-gkpS0ASCbgGTpuMAEQUq7Q1Xftw6xzttHbvppjyNb5anImhuj8OlVDDFOlq97pXETe6Fx0tCZXyY3O6GoKcd6EtfU2ufQcPR30mOyL2_MUXX_-9PPia3159eXbxcfL2jDc5LrvBs4ayjhhrYSub00naYfZYIscrNaMGT5wKrrO9kQSaQbdmY6Q1rSUko6cog_73HnXTbY31ueoRzVHN-n4RwXt1L-Odxu1Dr8VAUopFiXg7W1ADL92NmU1uWTsOGpvwy4pCRwzzqn8LykYa6AB3hby3aMkFpgLAoSygp49QLdhF30ZWckjHCgRvECv_27y0N3d9xXgfA-U30op2uGAYFDLgqhlQdT9gpQK9qDCuKyzC8uU3PhI3d1TFuP-FqGEIpgvDb3aA9uUQzwQFEMLEnDx3-z9QQel19Eldf2jKQZgSVtWxA17-d1o |
CitedBy_id | crossref_primary_10_1128_AEM_06698_11 crossref_primary_10_1073_pnas_1205816109 crossref_primary_10_1111_nph_19646 crossref_primary_10_1074_jbc_M113_469379 crossref_primary_10_1016_j_margen_2017_07_001 crossref_primary_10_3390_plants10112395 crossref_primary_10_1021_bm2001457 crossref_primary_10_1016_j_nanoso_2024_101395 crossref_primary_10_1038_ncomms11926 crossref_primary_10_1111_j_1440_1835_2012_00652_x crossref_primary_10_3389_fmars_2018_00125 crossref_primary_10_1002_2015JG002970 crossref_primary_10_1038_s41598_017_04921_0 crossref_primary_10_1039_C4TB01838A crossref_primary_10_1007_s43939_020_00003_7 crossref_primary_10_1016_j_ejop_2013_06_002 crossref_primary_10_1146_annurev_marine_032122_104001 crossref_primary_10_1016_j_carres_2012_11_001 crossref_primary_10_1021_acsomega_7b01769 crossref_primary_10_1039_D0ME00131G crossref_primary_10_2216_15_105_1 crossref_primary_10_1186_s12915_017_0391_5 crossref_primary_10_1021_ja411822s crossref_primary_10_1039_c2sc20687k crossref_primary_10_1021_acs_langmuir_0c00336 crossref_primary_10_1002_ange_201507327 crossref_primary_10_1021_acsabm_8b00520 crossref_primary_10_1038_s41598_018_21810_2 crossref_primary_10_1186_1471_2164_13_499 crossref_primary_10_1038_srep06117 crossref_primary_10_1016_j_pep_2014_12_012 crossref_primary_10_1039_c1jm12490k crossref_primary_10_1371_journal_pone_0061675 crossref_primary_10_1002_nadc_201182146 crossref_primary_10_1039_C4NR02662D crossref_primary_10_1016_j_jcis_2020_10_114 crossref_primary_10_1002_anie_202404105 crossref_primary_10_1021_acs_langmuir_6b03311 crossref_primary_10_1242_bio_035519 crossref_primary_10_1016_j_ccr_2016_06_003 crossref_primary_10_1016_j_jbiosc_2024_01_012 crossref_primary_10_1002_lpor_201700224 crossref_primary_10_1007_s10534_016_9987_4 crossref_primary_10_1111_jpy_13437 crossref_primary_10_1002_anie_201507327 crossref_primary_10_1002_wnan_1284 crossref_primary_10_3389_fmars_2023_1291294 crossref_primary_10_1002_anie_201105114 crossref_primary_10_1039_c0cc05648k crossref_primary_10_1002_jbio_201200198 crossref_primary_10_1038_s41467_023_36112_z crossref_primary_10_1016_j_bmc_2013_04_006 crossref_primary_10_1016_j_margen_2013_12_005 crossref_primary_10_1021_acssynbio_5b00191 crossref_primary_10_1186_s12915_017_0400_8 crossref_primary_10_1007_s11120_014_0048_y crossref_primary_10_1016_j_jsb_2018_07_005 crossref_primary_10_1038_s41598_017_13613_8 crossref_primary_10_1111_jpy_12214 crossref_primary_10_1007_s12268_013_0261_9 crossref_primary_10_1021_acs_jpcb_5b06455 crossref_primary_10_1371_journal_pone_0159128 crossref_primary_10_1038_s43705_022_00136_1 crossref_primary_10_1007_s10853_015_8875_6 crossref_primary_10_1002_ange_201105114 crossref_primary_10_1039_C9OB02438G crossref_primary_10_1038_s41467_024_52211_x crossref_primary_10_1016_j_febslet_2011_07_038 crossref_primary_10_1016_j_algal_2021_102554 crossref_primary_10_1002_ciuz_201300621 crossref_primary_10_1007_s10126_020_09976_1 crossref_primary_10_1074_jbc_M115_706440 crossref_primary_10_1007_s43939_021_00011_1 crossref_primary_10_1039_c1ob05406f crossref_primary_10_1039_C4CC05820H crossref_primary_10_1007_s43939_021_00005_z crossref_primary_10_1002_asia_201100563 crossref_primary_10_1007_s10811_022_02715_0 crossref_primary_10_1002_aisy_202300467 crossref_primary_10_1021_acs_iecr_6b01839 crossref_primary_10_1186_s42833_020_00016_9 crossref_primary_10_1002_ange_202404105 crossref_primary_10_1016_j_jcis_2017_07_115 crossref_primary_10_1021_ar300321e crossref_primary_10_1038_s41467_021_24944_6 crossref_primary_10_1038_s42003_023_05002_x crossref_primary_10_1016_j_jsb_2020_107665 crossref_primary_10_1039_D2OB00390B crossref_primary_10_1101_cshperspect_a023929 crossref_primary_10_1007_s10126_020_09967_2 crossref_primary_10_1038_srep36824 crossref_primary_10_3389_fpls_2022_1006072 crossref_primary_10_1111_tpj_15765 crossref_primary_10_1021_cm201988g crossref_primary_10_1016_j_margen_2014_01_006 crossref_primary_10_1021_acs_langmuir_4c01576 crossref_primary_10_1111_tpj_14309 crossref_primary_10_1186_s13068_023_02389_x crossref_primary_10_1128_JB_00447_15 crossref_primary_10_5802_crgeos_107 crossref_primary_10_1088_2040_8986_aaff39 crossref_primary_10_1016_j_semcdb_2015_06_007 crossref_primary_10_1021_pr400803w crossref_primary_10_3390_md13085297 crossref_primary_10_1186_s13007_016_0148_0 crossref_primary_10_1021_acs_chemrev_1c00669 crossref_primary_10_1038_s41564_023_01498_5 crossref_primary_10_1016_j_orggeochem_2012_02_010 crossref_primary_10_1093_jxb_eraa258 crossref_primary_10_1007_s10811_017_1177_4 crossref_primary_10_1016_j_envpol_2023_121005 crossref_primary_10_1016_j_gene_2014_11_055 crossref_primary_10_3389_fmars_2018_00022 crossref_primary_10_1007_s00249_013_0889_x crossref_primary_10_1093_bbb_zbab069 crossref_primary_10_1186_s42833_020_00017_8 crossref_primary_10_1021_acs_langmuir_6b02575 crossref_primary_10_1098_rsif_2013_0067 crossref_primary_10_1039_C4BM00310A crossref_primary_10_1111_jpy_13362 crossref_primary_10_3390_nano4030792 crossref_primary_10_1029_2010GC003437 crossref_primary_10_1039_C4AN01982B crossref_primary_10_1002_smll_201500169 crossref_primary_10_1002_adfm_202000849 crossref_primary_10_1029_2011GB004233 crossref_primary_10_1271_kagakutoseibutsu_61_439 crossref_primary_10_1002_psc_2577 crossref_primary_10_6064_2012_867562 crossref_primary_10_1029_2019GB006508 crossref_primary_10_1039_C4CE00934G crossref_primary_10_1073_pnas_2302156120 crossref_primary_10_1177_0003702815626665 crossref_primary_10_1021_acsnano_7b07785 crossref_primary_10_1016_j_bbamem_2022_183921 crossref_primary_10_1002_adfm_202000442 crossref_primary_10_1002_prot_25366 crossref_primary_10_1038_s42003_019_0436_0 crossref_primary_10_1371_journal_pone_0033771 crossref_primary_10_1021_acsabm_9b00050 crossref_primary_10_1039_c3bm60063g crossref_primary_10_1371_journal_pone_0110369 crossref_primary_10_1039_C5MT00231A crossref_primary_10_1002_2017JG003779 crossref_primary_10_1016_j_bbamem_2022_184056 |
Cites_doi | 10.1002/1521-3773(20020503)41:9<1543::AID-ANIE1543>3.0.CO;2-B 10.1021/ja809486b 10.1016/0968-0004(87)90072-7 10.1002/j.1460-2075.1994.tb06791.x 10.1111/j.1529-8817.1966.tb04597.x 10.1126/science.1070026 10.1002/anie.200603928 10.1016/j.jsb.2009.02.014 10.1074/jbc.M407734200 10.1111/j.1432-1033.1996.0259u.x 10.1557/mrs2010.631 10.1007/s12013-007-9003-2 10.1038/382313a0 10.1002/cbic.200700764 10.1073/pnas.260496497 10.1126/science.1101156 10.1073/pnas.0707946105 10.1126/science.286.5442.1129 10.1093/oso/9780195049770.001.0001 10.1021/cr8002328 10.1074/mcp.M500174-MCP200 10.1126/science.1076221 10.1002/anie.200905028 10.1002/anie.200704994 10.1073/pnas.0710809105 10.1016/j.jsb.2009.08.013 10.1093/oso/9780198599579.003.0093 10.1515/bchm2.1960.319.1.38 10.1007/BF00348902 10.1371/journal.pone.0007458 10.1016/j.jmb.2004.05.028 10.1146/annurev.genet.41.110306.130109 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Feb 22, 2011 |
Copyright_xml | – notice: Copyright National Academy of Sciences Feb 22, 2011 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 F1W H95 L.G 5PM |
DOI | 10.1073/pnas.1012842108 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA Virology and AIDS Abstracts CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 3180 |
ExternalDocumentID | PMC3044418 2275986831 21300899 10_1073_pnas_1012842108 108_8_3175 41060901 US201301946501 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM ABXSQ ACHIC ADQXQ ADXHL AQVQM H13 IPSME - 02 0R 1AW 55 AAPBV ABFLS ADACO AJYGW DZ KM PQEST X XHC AAYXX CITATION CGR CUY CVF ECM EIF NPM VXZ YIF YIN 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 F1W H95 L.G 5PM |
ID | FETCH-LOGICAL-c512t-dbf75245735690bd6cb94b15fed6cfeaa55c7f748bbed3939cfabcb336c6443b3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:11:42 EDT 2025 Fri Sep 05 14:17:32 EDT 2025 Fri Sep 05 08:23:59 EDT 2025 Fri Sep 05 09:52:53 EDT 2025 Mon Jun 30 08:09:46 EDT 2025 Wed Feb 19 02:36:31 EST 2025 Tue Jul 01 00:47:06 EDT 2025 Thu Apr 24 23:03:53 EDT 2025 Wed Nov 11 00:30:58 EST 2020 Thu May 29 08:40:51 EDT 2025 Wed Dec 27 19:17:57 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c512t-dbf75245735690bd6cb94b15fed6cfeaa55c7f748bbed3939cfabcb336c6443b3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Edited by Chad A. Mirkin, Northwestern University, Evanston, IL, and approved January 6, 2011 (received for review August 31, 2010) Author contributions: A.S., N.P., and N.K. designed research; A.S., N.P., and S.S. performed research; A.S., N.P., S.S., and N.K. analyzed data; and A.S. and N.K. wrote the paper. 1Present address: Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam, Germany. 2Present address: School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138. |
PMID | 21300899 |
PQID | 853704387 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | crossref_primary_10_1073_pnas_1012842108 proquest_miscellaneous_907157749 proquest_miscellaneous_1817830345 proquest_miscellaneous_855202076 pnas_primary_108_8_3175 jstor_primary_41060901 fao_agris_US201301946501 crossref_citationtrail_10_1073_pnas_1012842108 proquest_journals_853704387 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3044418 pubmed_primary_21300899 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-02-22 |
PublicationDateYYYYMMDD | 2011-02-22 |
PublicationDate_xml | – month: 02 year: 2011 text: 2011-02-22 day: 22 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationSeriesTitle | From the Cover |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2011 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | Frigeri LG (e_1_3_4_6_2) 2006; 5 Sumper M (e_1_3_4_21_2) 2002; 295 Belton DJ (e_1_3_4_17_2) 2008; 105 Gröger C (e_1_3_4_16_2) 2008; 50 Sapriel G (e_1_3_4_8_2) 2009; 4 Reimann BEF (e_1_3_4_9_2) 1966; 2 Robinson D (e_1_3_4_20_2) 1987; 12 Iler RK (e_1_3_4_32_2) 1979 Baumann H (e_1_3_4_33_2) 1960; 319 Tesson B (e_1_3_4_23_2) 2010; 169 Kröger N (e_1_3_4_31_2) 1999; 286 Mann S (e_1_3_4_2_2) 1996; 382 Dickerson MB (e_1_3_4_25_2) 2008; 108 Kröger N (e_1_3_4_29_2) 2002; 298 Kröger N (e_1_3_4_5_2) 2010; 35 Kröger N (e_1_3_4_3_2) 2008; 42 Hecky R (e_1_3_4_19_2) 1973; 19 Vrieling EG (e_1_3_4_22_2) 2002; 41 Sumper M (e_1_3_4_4_2) 2008; 9 Lowenstam HA (e_1_3_4_1_2) 1989 Kröger N (e_1_3_4_10_2) 1994; 13 Bendtsen JD (e_1_3_4_27_2) 2004; 340 Brunner E (e_1_3_4_14_2) 2009; 48 Mock T (e_1_3_4_7_2) 2008; 105 Parry D (e_1_3_4_24_2) 1999 Hildebrand M (e_1_3_4_15_2) 2009; 166 Wallace AF (e_1_3_4_18_2) 2009; 131 Kröger N (e_1_3_4_11_2) 1996; 239 Armbrust EV (e_1_3_4_26_2) 2004; 306 Wenzl S (e_1_3_4_12_2) 2008; 47 Poulsen N (e_1_3_4_13_2) 2004; 279 Kröger N (e_1_3_4_28_2) 2000; 97 Poulsen N (e_1_3_4_30_2) 2007; 46 |
References_xml | – start-page: 97 volume-title: The Chemistry of Silica year: 1979 ident: e_1_3_4_32_2 – volume: 41 start-page: 1543 year: 2002 ident: e_1_3_4_22_2 article-title: Mesophases of (bio)polymer-silica particles inspire a model for silica biomineralization in diatoms publication-title: Angew Chem Int Ed doi: 10.1002/1521-3773(20020503)41:9<1543::AID-ANIE1543>3.0.CO;2-B – volume: 131 start-page: 5244 year: 2009 ident: e_1_3_4_18_2 article-title: Kinetics of silica nucleation on carboxyl- and amine-terminated surfaces: Insights for biomineralization publication-title: J Am Chem Soc doi: 10.1021/ja809486b – volume: 12 start-page: 151 year: 1987 ident: e_1_3_4_20_2 article-title: How do diatoms make silicon biominerals publication-title: Trends Biochem Sci doi: 10.1016/0968-0004(87)90072-7 – volume: 13 start-page: 4676 year: 1994 ident: e_1_3_4_10_2 article-title: A new calcium binding glycoprotein family constitutes a major diatom cell wall component publication-title: EMBO J doi: 10.1002/j.1460-2075.1994.tb06791.x – volume: 2 start-page: 74 year: 1966 ident: e_1_3_4_9_2 article-title: Studies on the biochemistry and fine structure of the silica shell formation in diatoms. II. The structure of the cell wall of Navicula pelliculosa (Bréb.) Hilse publication-title: J Phycol doi: 10.1111/j.1529-8817.1966.tb04597.x – volume: 295 start-page: 2430 year: 2002 ident: e_1_3_4_21_2 article-title: A phase separation model for the nanopatterning of diatom biosilica publication-title: Science doi: 10.1126/science.1070026 – volume: 46 start-page: 1843 year: 2007 ident: e_1_3_4_30_2 article-title: Silica immobilization of an enzyme through genetic engineering of the diatom Thalassiosira pseudonana publication-title: Angew Chem Int Ed doi: 10.1002/anie.200603928 – volume: 166 start-page: 316 year: 2009 ident: e_1_3_4_15_2 article-title: 3D imaging of diatoms with ion-abrasion scanning electron microscopy publication-title: J Struct Biol doi: 10.1016/j.jsb.2009.02.014 – volume: 279 start-page: 42993 year: 2004 ident: e_1_3_4_13_2 article-title: Silica morphogenesis by alternative processing of silaffins in the diatom Thalassiosira pseudonana publication-title: J Biol Chem doi: 10.1074/jbc.M407734200 – volume: 239 start-page: 259 year: 1996 ident: e_1_3_4_11_2 article-title: Frustulins: Domain conservation in a protein family associated with diatom cell walls publication-title: Eur J Biochem doi: 10.1111/j.1432-1033.1996.0259u.x – volume: 35 start-page: 122 year: 2010 ident: e_1_3_4_5_2 article-title: From diatom biomolecules to bioinspired syntheses of silica- and titania-based materials publication-title: MRS Bulletin doi: 10.1557/mrs2010.631 – volume: 50 start-page: 23 year: 2008 ident: e_1_3_4_16_2 article-title: Biomolecular self-assembly and its relevance in silica biomineralization publication-title: Cell Biochem Biophys doi: 10.1007/s12013-007-9003-2 – volume: 382 start-page: 313 year: 1996 ident: e_1_3_4_2_2 article-title: Synthesis of inorganic materials with complex form publication-title: Nature doi: 10.1038/382313a0 – volume: 9 start-page: 1187 year: 2008 ident: e_1_3_4_4_2 article-title: Silica biomineralization in diatoms: the model organism Thalassiosira pseudonana publication-title: ChemBioChem doi: 10.1002/cbic.200700764 – volume: 97 start-page: 14133 year: 2000 ident: e_1_3_4_28_2 article-title: Species specific polyamines from diatoms control silica morphology publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.260496497 – volume: 306 start-page: 79 year: 2004 ident: e_1_3_4_26_2 article-title: The genome of the diatom Thalassiosira pseudonana: Ecology, evolution, and metabolism publication-title: Science doi: 10.1126/science.1101156 – volume: 105 start-page: 1579 year: 2008 ident: e_1_3_4_7_2 article-title: Whole-genome expression profiling of the marine diatom Thalassiosira pseudonana identifies genes involved in silicon bioprocesses publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0707946105 – volume: 286 start-page: 1129 year: 1999 ident: e_1_3_4_31_2 article-title: Polycationic peptides from diatoms biosilica that direct silica nanosphere formation publication-title: Science doi: 10.1126/science.286.5442.1129 – start-page: 54 volume-title: On Biomineralization year: 1989 ident: e_1_3_4_1_2 doi: 10.1093/oso/9780195049770.001.0001 – volume: 108 start-page: 4935 year: 2008 ident: e_1_3_4_25_2 article-title: Protein- and peptide-directed syntheses of inorganic materials publication-title: Chem Rev doi: 10.1021/cr8002328 – volume: 5 start-page: 182 year: 2006 ident: e_1_3_4_6_2 article-title: Identification of proteins from a cell wall fraction of the diatom Thalassiosira pseudonana publication-title: Mol Cell Proteomics doi: 10.1074/mcp.M500174-MCP200 – volume: 298 start-page: 584 year: 2002 ident: e_1_3_4_29_2 article-title: Self-assembly of highly phosphorylated silaffins and their function in biosilica morphogenesis publication-title: Science doi: 10.1126/science.1076221 – volume: 48 start-page: 9724 year: 2009 ident: e_1_3_4_14_2 article-title: Chitin-based organic networks: An integral part of cell wall biosilica in the diatom Thalassiosira pseudonana publication-title: Angew Chem Int Ed doi: 10.1002/anie.200905028 – volume: 47 start-page: 1729 year: 2008 ident: e_1_3_4_12_2 article-title: Silacidins: highly acidic phosphopeptides from diatom shells assist in silica precipitation in vitro publication-title: Angew Chem Int Ed doi: 10.1002/anie.200704994 – volume: 105 start-page: 5963 year: 2008 ident: e_1_3_4_17_2 article-title: From biosilicification to tailored materials: Optimizing hydrophobic domains and resistance to protonation of polyamines publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0710809105 – volume: 169 start-page: 62 year: 2010 ident: e_1_3_4_23_2 article-title: Dynamics of silica cell wall morphogenesis in the diatom Cyclotella cryptica: Substructure formation and the role of microfilaments publication-title: J Struct Biol doi: 10.1016/j.jsb.2009.08.013 – start-page: 285 volume-title: Guidebook to the Cytoskeletal and Motor Proteins year: 1999 ident: e_1_3_4_24_2 doi: 10.1093/oso/9780198599579.003.0093 – volume: 319 start-page: 38 year: 1960 ident: e_1_3_4_33_2 article-title: Bestimmung der Kieselsäure in biologischem Material publication-title: Hoppe Seyler’s Z Physiol Chem doi: 10.1515/bchm2.1960.319.1.38 – volume: 19 start-page: 323 year: 1973 ident: e_1_3_4_19_2 article-title: The amino acid and sugar composition of diatom cell walls publication-title: Mar Biol doi: 10.1007/BF00348902 – volume: 4 start-page: e7458 year: 2009 ident: e_1_3_4_8_2 article-title: Genome-wide transcriptome analyses of silicon metabolism in Phaeodactylum tricornutum reveal the multilevel regulation of silicic acid transporters publication-title: PLoS One doi: 10.1371/journal.pone.0007458 – volume: 340 start-page: 783 year: 2004 ident: e_1_3_4_27_2 article-title: Improved prediction of signal peptides: SignalP 3 publication-title: J Mol Biol doi: 10.1016/j.jmb.2004.05.028 – volume: 42 start-page: 83 year: 2008 ident: e_1_3_4_3_2 article-title: Diatoms—From cell wall bogenesis to nanotechnology publication-title: Annu Rev Genet doi: 10.1146/annurev.genet.41.110306.130109 |
SSID | ssj0009580 |
Score | 2.4301467 |
Snippet | Diatoms are eukaryotic microalgae that produce species-specifically structured cell walls made of SiO₂ (silica). Formation of the intricate silica structures... Diatoms are eukaryot microalgae that produce species-specifically structured cell walls made of SiO₂ (silica). Formation of the intricate silica structures of... Diatoms are eukaryotic microalgae that produce species-specifically structured cell walls made of SiO 2 (silica). Formation of the intricate silica structures... Diatoms are eukaryotic microalgae that produce species-specifically structured cell walls made of SiO 2 (silica). Formation of the intricate silica structures... Diatoms are eukaryotic microalgae that produce species-specifically structured cell walls made of SiO(2) (silica). Formation of the intricate silica structures... Diatoms are eukaryotic microalgae that produce species-specifically structured cell walls made of ... (silica). Formation of the intricate silica structures of... Diatoms are eukaryotic microalgae that produce species-specifically structured cell walls made of SiO2 (silica). Formation of the intricate silica structures... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3175 |
SubjectTerms | Algae Amino acids Bacillariophyceae Biological Sciences Biomineralogy Cell Wall - chemistry Cell Wall - ultrastructure Cell walls Coscinodiscus Coscinodiscus wailesii Diatoms Diatoms - ultrastructure Extracellular Matrix - chemistry Fluorescence Genomes Girdles microalgae Molecular Sequence Data Morphogenesis Morphology Nanoparticles Nanotechnology Nanotechnology - methods Peptides Phosphoproteins Physical Sciences Polyamines Proteins Proteins - chemistry scaffolding proteins Silica silicic acid Silicon Dioxide Thalassiosira Thalassiosira pseudonana |
Title | Nanopatterned protein microrings from a diatom that direct silica morphogenesis |
URI | https://www.jstor.org/stable/41060901 http://www.pnas.org/content/108/8/3175.abstract https://www.ncbi.nlm.nih.gov/pubmed/21300899 https://www.proquest.com/docview/853704387 https://www.proquest.com/docview/1817830345 https://www.proquest.com/docview/855202076 https://www.proquest.com/docview/907157749 https://pubmed.ncbi.nlm.nih.gov/PMC3044418 |
Volume | 108 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbKeOEFMWCsDJCReBiKMpo4jpPHgUATiDKpq7S3yE6cLlKbTEv6wv_E_8id83tqEfASRYnjWr6v5-_Od2dC3oWJ9FicKBu4AW4zMmbLmYxt5mrk98JXKWYjf5_7F0vv6zW_nkx-DaKWtpU6i3_uzCv5H6nCM5ArZsn-g2S7TuEB3IN84QoShutfyRhUI9i8mI8DytIyJRey3NpgjN2dOY7TJI9IdLBWJotEVla9hlllht46a1PAPBcrVHhZOSSql93CVrZhBPPWb3jeZ6E0qqG0bOty3p9pvAAopGkTAJAnzXZ8p4aL7bpx_Bggdtha3GSNP1ZutrqL_fhmvv_or2p4zbP1yFmB3lfXdnvT9k8DHWppF1ZOr86tPtO1YgZeY_tefbRop7lnwQCiwUAPIysarOmguGY71wtQcHjIcS5LdGPAUu22fY6LcC8XLm7xOqEHjBaM7YeuAKrWOoe6Gs9BnfHUDL-tJCXYh3u_MCJBD1JZtNGwWGIXmu4yd-5H7Q5o0NUT8rixX-h5DcZDMtH5U3LYzi49bcqYv39GfozQSRt00h6dFNFJJa3RSRGdtEYnrdFJR-h8TpZfPl99urCb4zvsGFhkZScqFdz1uGDcD2cq8WMVesrhqYbbVEvJeSxS4QVK6YSFLIxTqWLFmB8DSWeKHZGDvMj1MaFaa5YEsZBgTgCBcmTo-twLE821r5njTMlZO59R3NS2xyNW1pGJsRAswlmNegFMyWn3wW1d1mV_02MQUCRXsOhGYxxMyZGRWteF58z8WYgvXphe-q6DKIgQlFNy0ko2ajRJGQFlFrgjL6bkbfcW1Dzu3clcF1sYT-CIAOimBz3QPW0Czl2w_oS_v0kIFgUHiy_EERo0dWN0cWM7COGNGOGsa4CF6Mdv8uzGFKRnWHTSCV7un6kT8qhXB6_IQXW31a-BzVfqjfkP_QYoyvJv |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanopatterned+protein+microrings+from+a+diatom+that+direct+silica+morphogenesis&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Scheffel%2C+Andr%C3%A9&rft.au=Poulsen%2C+Nicole&rft.au=Shian%2C+Samuel&rft.au=Kr%C3%B6ger%2C+Nils&rft.date=2011-02-22&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=108&rft.issue=8&rft.spage=3175&rft.epage=3180&rft_id=info:doi/10.1073%2Fpnas.1012842108&rft.externalDocID=US201301946501 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F108%2F8.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F108%2F8.cover.gif |