Residual-Based Multi-Stage Deep Learning Framework for Computer-Aided Alzheimer’s Disease Detection
Alzheimer’s Disease (AD) poses a significant health risk globally, particularly among the elderly population. Recent studies underscore its prevalence, with over 50% of elderly Japanese facing a lifetime risk of dementia, primarily attributed to AD. As the most prevalent form of dementia, AD gradual...
Saved in:
| Published in | Journal of imaging Vol. 10; no. 6; p. 141 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
MDPI AG
11.06.2024
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2313-433X 2313-433X |
| DOI | 10.3390/jimaging10060141 |
Cover
| Abstract | Alzheimer’s Disease (AD) poses a significant health risk globally, particularly among the elderly population. Recent studies underscore its prevalence, with over 50% of elderly Japanese facing a lifetime risk of dementia, primarily attributed to AD. As the most prevalent form of dementia, AD gradually erodes brain cells, leading to severe neurological decline. In this scenario, it is important to develop an automatic AD-detection system, and many researchers have been working to develop an AD-detection system by taking advantage of the advancement of deep learning (DL) techniques, which have shown promising results in various domains, including medical image analysis. However, existing approaches for AD detection often suffer from limited performance due to the complexities associated with training hierarchical convolutional neural networks (CNNs). In this paper, we introduce a novel multi-stage deep neural network architecture based on residual functions to address the limitations of existing AD-detection approaches. Inspired by the success of residual networks (ResNets) in image-classification tasks, our proposed system comprises five stages, each explicitly formulated to enhance feature effectiveness while maintaining model depth. Following feature extraction, a deep learning-based feature-selection module is applied to mitigate overfitting, incorporating batch normalization, dropout and fully connected layers. Subsequently, machine learning (ML)-based classification algorithms, including Support Vector Machines (SVM), Random Forest (RF) and SoftMax, are employed for classification tasks. Comprehensive evaluations conducted on three benchmark datasets, namely ADNI1: Complete 1Yr 1.5T, MIRAID and OASIS Kaggle, demonstrate the efficacy of our proposed model. Impressively, our model achieves accuracy rates of 99.47%, 99.10% and 99.70% for ADNI1: Complete 1Yr 1.5T, MIRAID and OASIS datasets, respectively, outperforming existing systems in binary class problems. Our proposed model represents a significant advancement in the AD-analysis domain. |
|---|---|
| AbstractList | Alzheimer’s Disease (AD) poses a significant health risk globally, particularly among the elderly population. Recent studies underscore its prevalence, with over 50% of elderly Japanese facing a lifetime risk of dementia, primarily attributed to AD. As the most prevalent form of dementia, AD gradually erodes brain cells, leading to severe neurological decline. In this scenario, it is important to develop an automatic AD-detection system, and many researchers have been working to develop an AD-detection system by taking advantage of the advancement of deep learning (DL) techniques, which have shown promising results in various domains, including medical image analysis. However, existing approaches for AD detection often suffer from limited performance due to the complexities associated with training hierarchical convolutional neural networks (CNNs). In this paper, we introduce a novel multi-stage deep neural network architecture based on residual functions to address the limitations of existing AD-detection approaches. Inspired by the success of residual networks (ResNets) in image-classification tasks, our proposed system comprises five stages, each explicitly formulated to enhance feature effectiveness while maintaining model depth. Following feature extraction, a deep learning-based feature-selection module is applied to mitigate overfitting, incorporating batch normalization, dropout and fully connected layers. Subsequently, machine learning (ML)-based classification algorithms, including Support Vector Machines (SVM), Random Forest (RF) and SoftMax, are employed for classification tasks. Comprehensive evaluations conducted on three benchmark datasets, namely ADNI1: Complete 1Yr 1.5T, MIRAID and OASIS Kaggle, demonstrate the efficacy of our proposed model. Impressively, our model achieves accuracy rates of 99.47%, 99.10% and 99.70% for ADNI1: Complete 1Yr 1.5T, MIRAID and OASIS datasets, respectively, outperforming existing systems in binary class problems. Our proposed model represents a significant advancement in the AD-analysis domain. Alzheimer's Disease (AD) poses a significant health risk globally, particularly among the elderly population. Recent studies underscore its prevalence, with over 50% of elderly Japanese facing a lifetime risk of dementia, primarily attributed to AD. As the most prevalent form of dementia, AD gradually erodes brain cells, leading to severe neurological decline. In this scenario, it is important to develop an automatic AD-detection system, and many researchers have been working to develop an AD-detection system by taking advantage of the advancement of deep learning (DL) techniques, which have shown promising results in various domains, including medical image analysis. However, existing approaches for AD detection often suffer from limited performance due to the complexities associated with training hierarchical convolutional neural networks (CNNs). In this paper, we introduce a novel multi-stage deep neural network architecture based on residual functions to address the limitations of existing AD-detection approaches. Inspired by the success of residual networks (ResNets) in image-classification tasks, our proposed system comprises five stages, each explicitly formulated to enhance feature effectiveness while maintaining model depth. Following feature extraction, a deep learning-based feature-selection module is applied to mitigate overfitting, incorporating batch normalization, dropout and fully connected layers. Subsequently, machine learning (ML)-based classification algorithms, including Support Vector Machines (SVM), Random Forest (RF) and SoftMax, are employed for classification tasks. Comprehensive evaluations conducted on three benchmark datasets, namely ADNI1: Complete 1Yr 1.5T, MIRAID and OASIS Kaggle, demonstrate the efficacy of our proposed model. Impressively, our model achieves accuracy rates of 99.47%, 99.10% and 99.70% for ADNI1: Complete 1Yr 1.5T, MIRAID and OASIS datasets, respectively, outperforming existing systems in binary class problems. Our proposed model represents a significant advancement in the AD-analysis domain.Alzheimer's Disease (AD) poses a significant health risk globally, particularly among the elderly population. Recent studies underscore its prevalence, with over 50% of elderly Japanese facing a lifetime risk of dementia, primarily attributed to AD. As the most prevalent form of dementia, AD gradually erodes brain cells, leading to severe neurological decline. In this scenario, it is important to develop an automatic AD-detection system, and many researchers have been working to develop an AD-detection system by taking advantage of the advancement of deep learning (DL) techniques, which have shown promising results in various domains, including medical image analysis. However, existing approaches for AD detection often suffer from limited performance due to the complexities associated with training hierarchical convolutional neural networks (CNNs). In this paper, we introduce a novel multi-stage deep neural network architecture based on residual functions to address the limitations of existing AD-detection approaches. Inspired by the success of residual networks (ResNets) in image-classification tasks, our proposed system comprises five stages, each explicitly formulated to enhance feature effectiveness while maintaining model depth. Following feature extraction, a deep learning-based feature-selection module is applied to mitigate overfitting, incorporating batch normalization, dropout and fully connected layers. Subsequently, machine learning (ML)-based classification algorithms, including Support Vector Machines (SVM), Random Forest (RF) and SoftMax, are employed for classification tasks. Comprehensive evaluations conducted on three benchmark datasets, namely ADNI1: Complete 1Yr 1.5T, MIRAID and OASIS Kaggle, demonstrate the efficacy of our proposed model. Impressively, our model achieves accuracy rates of 99.47%, 99.10% and 99.70% for ADNI1: Complete 1Yr 1.5T, MIRAID and OASIS datasets, respectively, outperforming existing systems in binary class problems. Our proposed model represents a significant advancement in the AD-analysis domain. |
| Audience | Academic |
| Author | Musa Miah, Abu Saleh Shin, Jungpil Hassan, Najmul |
| AuthorAffiliation | School of Computer Science and Engineering, The University of Aizu, Aizuwakamatsu 965-8580, Japan; musa@u-aizu.ac.jp |
| AuthorAffiliation_xml | – name: School of Computer Science and Engineering, The University of Aizu, Aizuwakamatsu 965-8580, Japan; musa@u-aizu.ac.jp |
| Author_xml | – sequence: 1 givenname: Najmul orcidid: 0009-0000-6499-1825 surname: Hassan fullname: Hassan, Najmul – sequence: 2 givenname: Abu Saleh orcidid: 0000-0002-1238-0464 surname: Musa Miah fullname: Musa Miah, Abu Saleh – sequence: 3 givenname: Jungpil orcidid: 0000-0002-7476-2468 surname: Shin fullname: Shin, Jungpil |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38921618$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kstu1DAUhi1UREvpnhWKxIZNWt8Sxys0TOlFGoTERWJnOfZJ6iGJBzsBwYrX6OvxJHg6pXRGIMuyZf__Z5-j_zHaG_wACD0l-JgxiU-WrtetG1qCcYkJJw_QAWWE5ZyxT3v39vvoKMYlxphImqZ8hPZZJSkpSXWA4B1EZyfd5a90BJu9mbrR5e9H3UJ2CrDKFqDDkF7JzoLu4ZsPn7PGh2zu-9U0QshnzibbrPtxBa6H8OvndcxOXYRES4ARzOj88AQ9bHQX4eh2PUQfz15_mF_ki7fnl_PZIjcFoWNuqOSkIFVNC04YpaJhgA2XusS2KjXjmJYWMAfDoNK2wHUtGqhsU5PCiKpmh-hyw7VeL9UqpA6F78prp24OfGiVDqMzHShTN1ZQLQzjjBvQtSkZZg2hha21YDaxXm5Yq6nuwRoYxqC7Lej2zeCuVOu_KkIo5hLzRHhxSwj-ywRxVL2LBrpOD-CnqBgWlMpCSpGkz3ekSz-FIfXqRsV4kVryV9XqVIEbGp8eNmuomgkpSyqKskqq43-o0rDQO5My1Lh0vmV4dr_SuxL_pCQJ8EZggo8xQHMnIVits6h2s5gs5Y7FuFGvs5A-47r_G38DecHlGw |
| CitedBy_id | crossref_primary_10_1007_s42979_025_03686_y crossref_primary_10_3390_jimaging10120333 crossref_primary_10_3390_jimaging11020032 |
| Cites_doi | 10.1038/s41598-024-53733-6 10.1007/978-3-030-59710-8_13 10.1109/ACCESS.2024.3372425 10.1109/ACCESS.2024.3395329 10.1007/s40120-017-0069-5 10.1016/j.bspc.2021.103455 10.1109/ACCESS.2023.3272482 10.1016/j.jalz.2019.01.010 10.1109/ACCESS.2021.3090474 10.3390/s23031694 10.1016/j.compmedimag.2020.101713 10.1109/ACCESS.2024.3399839 10.1016/j.imu.2020.100305 10.3390/s22082911 10.1007/s10278-015-9847-8 10.1038/s41598-020-74399-w 10.3390/diagnostics13040801 10.1016/j.neuroscience.2021.01.002 10.3390/app14020603 10.1016/j.cmpb.2019.105242 10.1016/j.compbiomed.2021.105032 10.1016/j.cmpb.2021.106032 10.1007/978-3-030-64849-7_54 10.1016/j.cmpb.2022.107291 10.1016/j.nicl.2018.101645 10.1016/j.compbiomed.2020.103933 10.1038/nrd2896 10.1016/j.bspc.2022.103565 10.1109/ICICS52457.2021.9464543 10.3389/fninf.2022.856295 10.1007/978-0-387-84858-7 10.1007/s00521-021-06149-6 10.1166/jmihi.2020.3001 10.1007/s00521-021-05799-w 10.1016/j.ijleo.2022.170212 10.1007/s11042-023-15738-7 10.1109/ACCESS.2023.3307702 10.1016/j.compbiomed.2015.07.006 10.3390/electronics10222860 10.1186/s40708-020-00112-2 10.1109/TIM.2021.3107056 10.1109/ACCESS.2022.3204395 10.1109/OJCS.2024.3370971 10.1007/978-3-030-68154-8 10.1016/j.jalz.2018.02.001 10.1007/s13369-021-06131-3 10.1162/jocn.2007.19.9.1498 10.1007/s00521-022-07263-9 10.1016/j.neuroimage.2011.09.015 10.1016/j.compbiomed.2021.104828 10.1007/s00500-022-06762-0 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 by the authors. 2024 |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 by the authors. 2024 |
| DBID | AAYXX CITATION NPM 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/jimaging10060141 |
| DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic PubMed CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2313-433X |
| ExternalDocumentID | oai_doaj_org_article_cbfd72a7c3434ceabc6303f125dba73d PMC11204904 A799627568 38921618 10_3390_jimaging10060141 |
| Genre | Journal Article |
| GeographicLocations | Japan |
| GeographicLocations_xml | – name: Japan |
| GrantInformation_xml | – fundername: NIA NIH HHS grantid: P01 AG003991 – fundername: NIA NIH HHS grantid: P01 AG026276 – fundername: University of Aizu, Japan |
| GroupedDBID | 5VS 8FE 8FG AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS BCNDV BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ IAO IHR ITC KQ8 MODMG M~E OK1 P62 PGMZT PHGZM PHGZT PIMPY PQGLB PROAC RPM NPM PUEGO ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM |
| ID | FETCH-LOGICAL-c512t-c2941518b25413227f3e0c49a60d86a34026de04ec3e8ad50bb7fe8dfb15c78b3 |
| IEDL.DBID | BENPR |
| ISSN | 2313-433X |
| IngestDate | Fri Oct 03 12:52:09 EDT 2025 Tue Sep 30 17:08:44 EDT 2025 Sun Aug 24 03:52:00 EDT 2025 Sat Jul 26 00:23:56 EDT 2025 Mon Oct 20 22:52:39 EDT 2025 Mon Oct 20 16:58:36 EDT 2025 Thu Aug 28 04:41:41 EDT 2025 Thu Apr 24 23:03:48 EDT 2025 Thu Oct 16 04:32:55 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | CNN residual network Alzheimer’s disease machine learning Random Forest |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c512t-c2941518b25413227f3e0c49a60d86a34026de04ec3e8ad50bb7fe8dfb15c78b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-7476-2468 0009-0000-6499-1825 0000-0002-1238-0464 |
| OpenAccessLink | https://www.proquest.com/docview/3072345254?pq-origsite=%requestingapplication%&accountid=15518 |
| PMID | 38921618 |
| PQID | 3072345254 |
| PQPubID | 2059558 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_cbfd72a7c3434ceabc6303f125dba73d pubmedcentral_primary_oai_pubmedcentral_nih_gov_11204904 proquest_miscellaneous_3072295997 proquest_journals_3072345254 gale_infotracmisc_A799627568 gale_infotracacademiconefile_A799627568 pubmed_primary_38921618 crossref_primary_10_3390_jimaging10060141 crossref_citationtrail_10_3390_jimaging10060141 |
| PublicationCentury | 2000 |
| PublicationDate | 20240611 |
| PublicationDateYYYYMMDD | 2024-06-11 |
| PublicationDate_xml | – month: 6 year: 2024 text: 20240611 day: 11 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Journal of imaging |
| PublicationTitleAlternate | J Imaging |
| PublicationYear | 2024 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | ref_50 (ref_36) 2022; 26 Mehmood (ref_41) 2021; 460 ref_14 ref_57 Noor (ref_12) 2020; 7 ref_56 ref_54 Marcus (ref_51) 2007; 19 ref_52 Shin (ref_30) 2024; 12 Venugopalan (ref_9) 2021; 11 Mishra (ref_10) 2019; 10 Jiang (ref_19) 2020; 10 ref_17 ref_15 Chabib (ref_38) 2023; 11 Arafa (ref_26) 2024; 83 Miah (ref_33) 2024; 5 Suganthe (ref_18) 2021; 8 Miah (ref_28) 2024; 12 ref_61 ref_60 Kamal (ref_21) 2021; 70 ref_25 Tanveer (ref_13) 2020; 16 ref_24 ref_64 Zeng (ref_37) 2023; 35 ref_62 Iwatsubo (ref_3) 2021; 8 Rallabandi (ref_42) 2020; 18 Jenkinson (ref_53) 2012; 62 Amer (ref_23) 2024; 14 ref_27 Beheshti (ref_1) 2015; 64 Srivastava (ref_55) 2014; 15 Kalavathi (ref_16) 2016; 29 Antony (ref_39) 2022; Volume 2 Basaia (ref_58) 2019; 21 ref_34 (ref_44) 2022; 47 Basheera (ref_20) 2020; 81 Citron (ref_8) 2010; 9 Saleh (ref_31) 2022; 34 AbdulAzeem (ref_35) 2021; 33 Murugan (ref_22) 2021; 9 Meng (ref_32) 2022; 16 Sabbagh (ref_11) 2017; 6 ref_47 ref_46 ref_45 Fareed (ref_63) 2022; 10 ref_43 Shin (ref_29) 2024; 12 ref_40 ref_2 ref_48 Menagadevi (ref_49) 2023; 272 Mercaldo (ref_59) 2023; 11 ref_5 ref_4 ref_7 ref_6 |
| References_xml | – volume: 14 start-page: 3463 year: 2024 ident: ref_23 article-title: A novel CNN architecture for accurate early detection and classification of Alzheimer’s disease using MRI data publication-title: Sci. Rep. doi: 10.1038/s41598-024-53733-6 – ident: ref_17 doi: 10.1007/978-3-030-59710-8_13 – volume: 12 start-page: 34553 year: 2024 ident: ref_28 article-title: Sign Language Recognition Using Graph and General Deep Neural Network Based on Large Scale Dataset publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3372425 – volume: 12 start-page: 65213 year: 2024 ident: ref_29 article-title: Anomaly Detection in Weakly Supervised Videos Using Multistage Graphs and General Deep Learning Based Spatial-Temporal Feature Enhancement publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3395329 – volume: 6 start-page: 83 year: 2017 ident: ref_11 article-title: Increasing Precision of clinical diagnosis of Alzheimer’s disease using a combined algorithm incorporating clinical and novel biomarker data publication-title: Neurol. Ther. doi: 10.1007/s40120-017-0069-5 – ident: ref_46 doi: 10.1016/j.bspc.2021.103455 – volume: 11 start-page: 44650 year: 2023 ident: ref_38 article-title: DeepCurvMRI: Deep Convolutional Curvelet Transform-based MRI Approach for Early Detection of Alzheimer’s Disease publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3272482 – ident: ref_7 doi: 10.1016/j.jalz.2019.01.010 – volume: 9 start-page: 90319 year: 2021 ident: ref_22 article-title: DEMNET: A deep learning model for early diagnosis of Alzheimer diseases and dementia from MR images publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3090474 – ident: ref_48 doi: 10.3390/s23031694 – volume: 81 start-page: 101713 year: 2020 ident: ref_20 article-title: A novel CNN based Alzheimer’s disease classification using hybrid enhanced ICA segmented gray matter of MRI publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2020.101713 – volume: 12 start-page: 68303 year: 2024 ident: ref_30 article-title: Korean Sign Language Alphabet Recognition through the Integration of Handcrafted and Deep Learning-Based Two-Stream Feature Extraction Approach publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3399839 – volume: 18 start-page: 100305 year: 2020 ident: ref_42 article-title: Automatic classification of cognitively normal, mild cognitive impairment and Alzheimer’s disease using structural MRI analysis publication-title: Inform. Med. Unlocked doi: 10.1016/j.imu.2020.100305 – volume: 15 start-page: 1929 year: 2014 ident: ref_55 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – ident: ref_24 doi: 10.3390/s22082911 – volume: 29 start-page: 365 year: 2016 ident: ref_16 article-title: Methods on skull stripping of MRI head scan images—A review publication-title: J. Digit. Imaging doi: 10.1007/s10278-015-9847-8 – volume: 11 start-page: 3254 year: 2021 ident: ref_9 article-title: Multimodal deep learning models for early detection of Alzheimer’s disease stage publication-title: Sci. Rep. doi: 10.1038/s41598-020-74399-w – volume: 8 start-page: 145 year: 2021 ident: ref_18 article-title: Multiclass classification of Alzheimer’s disease using hybrid deep convolutional neural network publication-title: Nveo-Nat. Volatiles Essent. Oils J. – ident: ref_40 doi: 10.3390/diagnostics13040801 – volume: 460 start-page: 43 year: 2021 ident: ref_41 article-title: A transfer learning approach for early diagnosis of Alzheimer’s disease on MRI images publication-title: Neuroscience doi: 10.1016/j.neuroscience.2021.01.002 – ident: ref_4 – ident: ref_15 doi: 10.3390/app14020603 – ident: ref_56 – ident: ref_14 doi: 10.1016/j.cmpb.2019.105242 – ident: ref_52 – ident: ref_27 doi: 10.1016/j.compbiomed.2021.105032 – ident: ref_43 doi: 10.1016/j.cmpb.2021.106032 – ident: ref_62 doi: 10.1007/978-3-030-64849-7_54 – ident: ref_47 doi: 10.1016/j.cmpb.2022.107291 – volume: 21 start-page: 101645 year: 2019 ident: ref_58 article-title: Automated classification of Alzheimer’s disease and mild cognitive impairment using a single MRI and deep neural networks publication-title: NeuroImage Clin. doi: 10.1016/j.nicl.2018.101645 – ident: ref_2 doi: 10.1016/j.compbiomed.2020.103933 – volume: 9 start-page: 387 year: 2010 ident: ref_8 article-title: Alzheimer’s disease: Strategies for disease modification publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd2896 – ident: ref_5 doi: 10.1016/j.bspc.2022.103565 – volume: Volume 2 start-page: 199 year: 2022 ident: ref_39 article-title: Classification on Alzheimer’s Disease MRI Images with VGG-16 and VGG-19 publication-title: IOT with Smart Systems: Proceedings of ICTIS 2022 – volume: 10 start-page: 6773 year: 2019 ident: ref_10 article-title: Mild cognitive impairment: A comprehensive review publication-title: Int. J. Biol. Med. Res. – ident: ref_64 doi: 10.1109/ICICS52457.2021.9464543 – volume: 16 start-page: 856295 year: 2022 ident: ref_32 article-title: Research on Voxel-Based Features Detection and Analysis of Alzheimer’s Disease Using Random Survey Support Vector Machine publication-title: Front. Neuroinformatics doi: 10.3389/fninf.2022.856295 – ident: ref_57 doi: 10.1007/978-0-387-84858-7 – volume: 35 start-page: 11599 year: 2023 ident: ref_37 article-title: A new deep belief network-based multi-task learning for diagnosis of Alzheimer’s disease publication-title: Neural Comput. Appl. doi: 10.1007/s00521-021-06149-6 – volume: 10 start-page: 1040 year: 2020 ident: ref_19 article-title: Classification of Alzheimer’s disease via eight-layer convolutional neural network with batch normalization and dropout techniques publication-title: J. Med. Imaging Health Inf. doi: 10.1166/jmihi.2020.3001 – volume: 33 start-page: 10415 year: 2021 ident: ref_35 article-title: A CNN based framework for classification of Alzheimer’s disease publication-title: Neural Comput. Appl. doi: 10.1007/s00521-021-05799-w – volume: 272 start-page: 170212 year: 2023 ident: ref_49 article-title: Automated prediction system for Alzheimer detection based on deep residual autoencoder and Support Vector Machine publication-title: Optik doi: 10.1016/j.ijleo.2022.170212 – volume: 83 start-page: 3767 year: 2024 ident: ref_26 article-title: A deep learning framework for early diagnosis of Alzheimer’s disease on MRI images publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-023-15738-7 – volume: 11 start-page: 91969 year: 2023 ident: ref_59 article-title: TriAD: A deep ensemble network for Alzheimer classification and localisation publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3307702 – volume: 64 start-page: 208 year: 2015 ident: ref_1 article-title: Probability distribution function-based classification of structural MRI for the detection of Alzheimer’s disease publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2015.07.006 – ident: ref_61 doi: 10.3390/electronics10222860 – volume: 7 start-page: 1 year: 2020 ident: ref_12 article-title: Application of deep learning in detecting neurological disorders from magnetic resonance images: A survey on the detection of Alzheimer’s disease, Parkinson’s disease and schizophrenia publication-title: Brain Inform. doi: 10.1186/s40708-020-00112-2 – volume: 70 start-page: 2513107 year: 2021 ident: ref_21 article-title: Alzheimer’s patient analysis using image and gene expression data and explainable-AI to present associated genes publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2021.3107056 – volume: 10 start-page: 96930 year: 2022 ident: ref_63 article-title: ADD-Net: An Effective Deep Learning Model for Early Detection of Alzheimer Disease in MRI Scans publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3204395 – ident: ref_25 – ident: ref_50 – volume: 5 start-page: 144 year: 2024 ident: ref_33 article-title: Hand Gesture Recognition for Multi-Culture Sign Language Using Graph and General Deep Learning Network publication-title: IEEE Open J. Comput. Soc. doi: 10.1109/OJCS.2024.3370971 – ident: ref_34 doi: 10.1007/978-3-030-68154-8 – volume: 8 start-page: 462 year: 2021 ident: ref_3 article-title: Alzheimer’s disease research in Japan: A short history, current status and future perspectives toward prevention publication-title: J. Prev. Alzheimer’s Dis. – ident: ref_54 – ident: ref_6 doi: 10.1016/j.jalz.2018.02.001 – volume: 47 start-page: 2201 year: 2022 ident: ref_44 article-title: Detecting the stages of Alzheimer’s disease with pre-trained deep learning architectures publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-021-06131-3 – volume: 19 start-page: 1498 year: 2007 ident: ref_51 article-title: Open Access Series of Imaging Studies (OASIS): Cross-sectional MRI data in young, middle aged, nondemented, and demented older adults publication-title: J. Cogn. Neurosci. doi: 10.1162/jocn.2007.19.9.1498 – volume: 34 start-page: 14487 year: 2022 ident: ref_31 article-title: Two-stage deep learning model for Alzheimer’s disease detection and prediction of the mild cognitive impairment time publication-title: Neural Comput. Appl. doi: 10.1007/s00521-022-07263-9 – volume: 62 start-page: 782 year: 2012 ident: ref_53 article-title: Fsl publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.09.015 – volume: 16 start-page: 1 year: 2020 ident: ref_13 article-title: Machine learning techniques for the diagnosis of Alzheimer’s disease: A review publication-title: Acm Trans. Multimed. Comput. Commun. Appl. (TOMM) – ident: ref_45 doi: 10.1016/j.compbiomed.2021.104828 – ident: ref_60 – volume: 26 start-page: 7751 year: 2022 ident: ref_36 article-title: Diagnosis and classification of Alzheimer’s disease by using a convolution neural network algorithm publication-title: Soft Comput. doi: 10.1007/s00500-022-06762-0 |
| SSID | ssj0001920199 |
| Score | 2.3253555 |
| Snippet | Alzheimer’s Disease (AD) poses a significant health risk globally, particularly among the elderly population. Recent studies underscore its prevalence, with... Alzheimer's Disease (AD) poses a significant health risk globally, particularly among the elderly population. Recent studies underscore its prevalence, with... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 141 |
| SubjectTerms | Accuracy Algorithms Alzheimer's disease Artificial intelligence Artificial neural networks Classification CNN Cognition & reasoning Cognitive ability Comparative analysis Computer-aided medical diagnosis Datasets Deep learning Dementia Diagnosis Efficiency Feature extraction Image analysis Image classification Machine learning Medical imaging Methods Neural networks Older people Random Forest Researchers residual network Support vector machines |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAvEkpyEhIiIO1Tuwk9nFLWVVIcEBU6s3yY9Ju1aZVd3vpqX-Dv8cvYWxnVwlIcOGQS2xHsWc8D83MN4S8s65y4GrP0EVumYxgQ7pzgdXCA_JP20kdq5G_fG0Oj-Tn4_p41Oor5oRleOB8cDPvutBWtvVCCunBOt-g1O1QLwdnWxGi9OVKj5yps2y34KNzXFKgXz87W16ktj9lQiCR5UQPJbj-P4XySCtNMyZHKmjxiDwcbEc6z__8mNyD_gl5MEIUfErgG6xSeRXbR_UUaKqvZWhRngA9ALiiA57qCV1ssrIomq1009yBzZcBl83Pb09heQHXP-9-rOhBDuLgB9Ypcat_Ro4Wn75_PGRDJwXmUaGvma80KupSOXQHy0QCAdxLbRseVGMFOpFNAC7BC1A21Ny5tgMVOlfWvlVOPCc7_WUPLwltOudD43nNrZK1rKxUHPWscLxDftBNQWabczV-gBmP3S7ODbobkRLmd0oU5MN2xVWG2PjL3P1Iqu28CI6dXiDLmIFlzL9YpiDvI6FNvML4a94OlQi4wQiGZeat1gkWXxVkbzITr56fDm9YxQxXf2VQaFYiRotlQd5uh-PKmM7Ww-VNnlPpWuu2IC8yZ223hBZkFbsYFERNeG6y5-lIvzxNwOBoO8dArtz9H6f0ityv0ICLaXFluUd21tc38BoNsLV7k-7aL4ZwMtw priority: 102 providerName: Directory of Open Access Journals |
| Title | Residual-Based Multi-Stage Deep Learning Framework for Computer-Aided Alzheimer’s Disease Detection |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/38921618 https://www.proquest.com/docview/3072345254 https://www.proquest.com/docview/3072295997 https://pubmed.ncbi.nlm.nih.gov/PMC11204904 https://doaj.org/article/cbfd72a7c3434ceabc6303f125dba73d |
| Volume | 10 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2313-433X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001920199 issn: 2313-433X databaseCode: KQ8 dateStart: 20150101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2313-433X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001920199 issn: 2313-433X databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2313-433X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001920199 issn: 2313-433X databaseCode: ADMLS dateStart: 20170301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2313-433X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001920199 issn: 2313-433X databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2313-433X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001920199 issn: 2313-433X databaseCode: RPM dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2313-433X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001920199 issn: 2313-433X databaseCode: BENPR dateStart: 20151201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2313-433X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001920199 issn: 2313-433X databaseCode: 8FG dateStart: 20151201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtswDCba9LIdhv3XWxt4wIBhByG2JdvSoSiStVkxYMFQrEBvhv6cZmidLEkvO-01-np7klGyncYb0KslGZZJ6aNE8iPAe6kSZVWqCR6Rc8Ic2ZAolSEp1Rb1Jy-ZcNnIXyfZ2QX7cple7sCkzYVxYZXtnug3ajPX7o58gLqYUOeEY8eLn8RVjXLe1baEhmxKK5gjTzG2C3uJY8bqwd7odPLt_P7WRSDgCVH7Kyme9wc_Zje-HFDsmUlY3MEnT-P__2a9hVbdSMotaBo_hSeNTRkOayV4Bju2eg6Pt5gGX4A9tyufdkVGCFsm9Hm3BC3NqQ1PrF2EDc_qNBy30VohmrNhW_SBDGcGhw2vf13Z2Y1d_vl9twpPaucOvmDtA7qql3AxPv3-6Yw0FRaIRqBfE50IBPCYK_ytsRcNtZFmQmaR4ZmkeLjMjI2Y1dRyadJIqby03JQqTnXOFX0FvWpe2X0Is1Jpk-kojSRnKUsk4xHiL1VRiXoisgAG7X8tdEM_7qpgXBd4DHGSKP6VRAAfNyMWNfXGA31HTlSbfo402z-YL6dFswYLrUqTJzLXlFGmrVQ6QwAv0cQzSubUBPDBCbpwSxs_TcsmQwEn6EiyimEuhKfL5wEcdHriktTd5lZVimZLWBX3ChzAu02zG-nC3Co7v637JCIVIg_gda1ZmymhZZm46gYB8I7OdebcbalmV54wHG1q5-Blbx7-rrfwKEGTzQXCxfEB9NbLW3uIJtda9WGXjz_3m9XU9xcXfwEy7zE6 |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9gAcEG8MBYwEQhxWsb3rxx4qlJBGKW0jVLVSb2ZfToNaJzSpEJz4G_wZfgy_hNm1ncYg9dar96Fdz-zM7M7MNwCvhYykkbEieEVOCbNgQ7yQmsRUGeSftGDcZiPvj5LhEft4HB-vwe8mF8aGVTYy0QlqPVX2jbyDvBhR64Rj72dfia0aZb2rTQkNUZdW0FsOYqxO7Ng137_hFW6-tdNHer-JosH24YchqasMEIXKbkFUxFGJhZnEqUO3PGoCxbhIAp0lguIFK9EmYEZRkwkdB1Kmhcl0IcNYpZmkOO8N2GCUcbz8bfS2R58OLl95OCpYziv_KKU86HyZnLnyQ6FDQmFhSx-6sgH_K4cV7diO3FxRhYO7cKe2Yf1uxXT3YM2U9-H2CrLhAzAHZu7SvEgP1aT2XZ4vQct2bPy-MTO_xnUd-4MmOsxH89lvikyQ7kTjsO7pjxMzOTPnf37-mvv9ypmEEyxcAFn5EI6u5V8_gvVyWpon4CeFVDpRQRyIjMUsEiwLUN9TGRTIlzzxoNP811zVcOe26sZpjtceS4n8X0p48G45YlZBfVzRt2dJtexnQbrdh-n5OK_PfK5kodNIpIoicygjpErQYCjQpNRSpFR78NYSOreiBJemRJ0RgRu0oFx5N-XcwfNnHmy2eqIIUO3mhlXyWgTN88sD48GrZbMdacPqSjO9qPpEPOY89eBxxVnLLaElG9lqCh5kLZ5r7bndUk5OHEA52vDWocyeXr2ul3BzeLi_l-_tjHafwa0IzUUbhBeGm7C-OL8wz9HcW8gX9Zny4fN1H-O_YHVr-Q |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIiE4IN64FDASCHGwYnvXjz0glBJCS6FCiEq9Ld6H01StE5JUCE78Df4KP4dfwszaTmOQeuvV-9CuZ2ZndmfmG4CnhYqVVYkO8IqcBZzAhkSpTJAwbZF_spILykb-sJdu7_N3B8nBGvxuc2EorLI9E91BbSaa3sh7yIsxIycc75VNWMTHwfDV9GtAFaTI09qW06hZZNd-_4bXt_nLnQHS-lkcD998fr0dNBUGAo2KbhHoWKACi3KF00ZuacyGmosiDU2eFgwvV6mxIbea2bwwSahUVtrclCpKdJYrhvNegssZobhTlvrw7dn7jkDVKkTtGWVMhL2j8YkrPBQ5DBQedTShKxjwv1pY0YvdmM0VJTi8Adcb69Xv1-x2E9ZsdQuurWAa3gb7yc5dglewhQrS-C7DN0CbdmT9gbVTv0F0HfnDNi7MR8PZb8tLBP2xwWH94x-HdnxiZ39-_pr7g9qNhBMsXOhYdQf2L-RP34X1alLZ--CnpdIm1WESFjlPeFzwPERNz1RYIkeK1INe-1-lboDOqd7GscQLD1FC_ksJD14sR0xrkI9z-m4RqZb9CJ7bfZjMRrKRdqlVabK4yDTjjGtbKJ2iqVCiMWlUkTHjwXMitKRDBJemiyYXAjdIcFyynwnhgPlzDzY7PVH4dbe5ZRXZHD5zeSYqHjxZNtNICqir7OS07hOLRIjMg3s1Zy23hDZsTHUUPMg7PNfZc7elGh86aHK03smVzDfOX9djuILCK9_v7O0-gKsx2okUfRdFm7C-mJ3ah2jnLdQjJ1A-fLloCf4LfGBpkw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Residual-Based+Multi-Stage+Deep+Learning+Framework+for+Computer-Aided+Alzheimer%E2%80%99s+Disease+Detection&rft.jtitle=Journal+of+imaging&rft.au=Hassan%2C+Najmul&rft.au=Abu+Saleh+Musa+Miah&rft.au=Shin%2C+Jungpil&rft.date=2024-06-11&rft.pub=MDPI+AG&rft.eissn=2313-433X&rft.volume=10&rft.issue=6&rft.spage=141&rft_id=info:doi/10.3390%2Fjimaging10060141&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2313-433X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2313-433X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2313-433X&client=summon |