Residual-Based Multi-Stage Deep Learning Framework for Computer-Aided Alzheimer’s Disease Detection

Alzheimer’s Disease (AD) poses a significant health risk globally, particularly among the elderly population. Recent studies underscore its prevalence, with over 50% of elderly Japanese facing a lifetime risk of dementia, primarily attributed to AD. As the most prevalent form of dementia, AD gradual...

Full description

Saved in:
Bibliographic Details
Published inJournal of imaging Vol. 10; no. 6; p. 141
Main Authors Hassan, Najmul, Musa Miah, Abu Saleh, Shin, Jungpil
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 11.06.2024
MDPI
Subjects
Online AccessGet full text
ISSN2313-433X
2313-433X
DOI10.3390/jimaging10060141

Cover

Abstract Alzheimer’s Disease (AD) poses a significant health risk globally, particularly among the elderly population. Recent studies underscore its prevalence, with over 50% of elderly Japanese facing a lifetime risk of dementia, primarily attributed to AD. As the most prevalent form of dementia, AD gradually erodes brain cells, leading to severe neurological decline. In this scenario, it is important to develop an automatic AD-detection system, and many researchers have been working to develop an AD-detection system by taking advantage of the advancement of deep learning (DL) techniques, which have shown promising results in various domains, including medical image analysis. However, existing approaches for AD detection often suffer from limited performance due to the complexities associated with training hierarchical convolutional neural networks (CNNs). In this paper, we introduce a novel multi-stage deep neural network architecture based on residual functions to address the limitations of existing AD-detection approaches. Inspired by the success of residual networks (ResNets) in image-classification tasks, our proposed system comprises five stages, each explicitly formulated to enhance feature effectiveness while maintaining model depth. Following feature extraction, a deep learning-based feature-selection module is applied to mitigate overfitting, incorporating batch normalization, dropout and fully connected layers. Subsequently, machine learning (ML)-based classification algorithms, including Support Vector Machines (SVM), Random Forest (RF) and SoftMax, are employed for classification tasks. Comprehensive evaluations conducted on three benchmark datasets, namely ADNI1: Complete 1Yr 1.5T, MIRAID and OASIS Kaggle, demonstrate the efficacy of our proposed model. Impressively, our model achieves accuracy rates of 99.47%, 99.10% and 99.70% for ADNI1: Complete 1Yr 1.5T, MIRAID and OASIS datasets, respectively, outperforming existing systems in binary class problems. Our proposed model represents a significant advancement in the AD-analysis domain.
AbstractList Alzheimer’s Disease (AD) poses a significant health risk globally, particularly among the elderly population. Recent studies underscore its prevalence, with over 50% of elderly Japanese facing a lifetime risk of dementia, primarily attributed to AD. As the most prevalent form of dementia, AD gradually erodes brain cells, leading to severe neurological decline. In this scenario, it is important to develop an automatic AD-detection system, and many researchers have been working to develop an AD-detection system by taking advantage of the advancement of deep learning (DL) techniques, which have shown promising results in various domains, including medical image analysis. However, existing approaches for AD detection often suffer from limited performance due to the complexities associated with training hierarchical convolutional neural networks (CNNs). In this paper, we introduce a novel multi-stage deep neural network architecture based on residual functions to address the limitations of existing AD-detection approaches. Inspired by the success of residual networks (ResNets) in image-classification tasks, our proposed system comprises five stages, each explicitly formulated to enhance feature effectiveness while maintaining model depth. Following feature extraction, a deep learning-based feature-selection module is applied to mitigate overfitting, incorporating batch normalization, dropout and fully connected layers. Subsequently, machine learning (ML)-based classification algorithms, including Support Vector Machines (SVM), Random Forest (RF) and SoftMax, are employed for classification tasks. Comprehensive evaluations conducted on three benchmark datasets, namely ADNI1: Complete 1Yr 1.5T, MIRAID and OASIS Kaggle, demonstrate the efficacy of our proposed model. Impressively, our model achieves accuracy rates of 99.47%, 99.10% and 99.70% for ADNI1: Complete 1Yr 1.5T, MIRAID and OASIS datasets, respectively, outperforming existing systems in binary class problems. Our proposed model represents a significant advancement in the AD-analysis domain.
Alzheimer's Disease (AD) poses a significant health risk globally, particularly among the elderly population. Recent studies underscore its prevalence, with over 50% of elderly Japanese facing a lifetime risk of dementia, primarily attributed to AD. As the most prevalent form of dementia, AD gradually erodes brain cells, leading to severe neurological decline. In this scenario, it is important to develop an automatic AD-detection system, and many researchers have been working to develop an AD-detection system by taking advantage of the advancement of deep learning (DL) techniques, which have shown promising results in various domains, including medical image analysis. However, existing approaches for AD detection often suffer from limited performance due to the complexities associated with training hierarchical convolutional neural networks (CNNs). In this paper, we introduce a novel multi-stage deep neural network architecture based on residual functions to address the limitations of existing AD-detection approaches. Inspired by the success of residual networks (ResNets) in image-classification tasks, our proposed system comprises five stages, each explicitly formulated to enhance feature effectiveness while maintaining model depth. Following feature extraction, a deep learning-based feature-selection module is applied to mitigate overfitting, incorporating batch normalization, dropout and fully connected layers. Subsequently, machine learning (ML)-based classification algorithms, including Support Vector Machines (SVM), Random Forest (RF) and SoftMax, are employed for classification tasks. Comprehensive evaluations conducted on three benchmark datasets, namely ADNI1: Complete 1Yr 1.5T, MIRAID and OASIS Kaggle, demonstrate the efficacy of our proposed model. Impressively, our model achieves accuracy rates of 99.47%, 99.10% and 99.70% for ADNI1: Complete 1Yr 1.5T, MIRAID and OASIS datasets, respectively, outperforming existing systems in binary class problems. Our proposed model represents a significant advancement in the AD-analysis domain.Alzheimer's Disease (AD) poses a significant health risk globally, particularly among the elderly population. Recent studies underscore its prevalence, with over 50% of elderly Japanese facing a lifetime risk of dementia, primarily attributed to AD. As the most prevalent form of dementia, AD gradually erodes brain cells, leading to severe neurological decline. In this scenario, it is important to develop an automatic AD-detection system, and many researchers have been working to develop an AD-detection system by taking advantage of the advancement of deep learning (DL) techniques, which have shown promising results in various domains, including medical image analysis. However, existing approaches for AD detection often suffer from limited performance due to the complexities associated with training hierarchical convolutional neural networks (CNNs). In this paper, we introduce a novel multi-stage deep neural network architecture based on residual functions to address the limitations of existing AD-detection approaches. Inspired by the success of residual networks (ResNets) in image-classification tasks, our proposed system comprises five stages, each explicitly formulated to enhance feature effectiveness while maintaining model depth. Following feature extraction, a deep learning-based feature-selection module is applied to mitigate overfitting, incorporating batch normalization, dropout and fully connected layers. Subsequently, machine learning (ML)-based classification algorithms, including Support Vector Machines (SVM), Random Forest (RF) and SoftMax, are employed for classification tasks. Comprehensive evaluations conducted on three benchmark datasets, namely ADNI1: Complete 1Yr 1.5T, MIRAID and OASIS Kaggle, demonstrate the efficacy of our proposed model. Impressively, our model achieves accuracy rates of 99.47%, 99.10% and 99.70% for ADNI1: Complete 1Yr 1.5T, MIRAID and OASIS datasets, respectively, outperforming existing systems in binary class problems. Our proposed model represents a significant advancement in the AD-analysis domain.
Audience Academic
Author Musa Miah, Abu Saleh
Shin, Jungpil
Hassan, Najmul
AuthorAffiliation School of Computer Science and Engineering, The University of Aizu, Aizuwakamatsu 965-8580, Japan; musa@u-aizu.ac.jp
AuthorAffiliation_xml – name: School of Computer Science and Engineering, The University of Aizu, Aizuwakamatsu 965-8580, Japan; musa@u-aizu.ac.jp
Author_xml – sequence: 1
  givenname: Najmul
  orcidid: 0009-0000-6499-1825
  surname: Hassan
  fullname: Hassan, Najmul
– sequence: 2
  givenname: Abu Saleh
  orcidid: 0000-0002-1238-0464
  surname: Musa Miah
  fullname: Musa Miah, Abu Saleh
– sequence: 3
  givenname: Jungpil
  orcidid: 0000-0002-7476-2468
  surname: Shin
  fullname: Shin, Jungpil
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38921618$$D View this record in MEDLINE/PubMed
BookMark eNp1kstu1DAUhi1UREvpnhWKxIZNWt8Sxys0TOlFGoTERWJnOfZJ6iGJBzsBwYrX6OvxJHg6pXRGIMuyZf__Z5-j_zHaG_wACD0l-JgxiU-WrtetG1qCcYkJJw_QAWWE5ZyxT3v39vvoKMYlxphImqZ8hPZZJSkpSXWA4B1EZyfd5a90BJu9mbrR5e9H3UJ2CrDKFqDDkF7JzoLu4ZsPn7PGh2zu-9U0QshnzibbrPtxBa6H8OvndcxOXYRES4ARzOj88AQ9bHQX4eh2PUQfz15_mF_ki7fnl_PZIjcFoWNuqOSkIFVNC04YpaJhgA2XusS2KjXjmJYWMAfDoNK2wHUtGqhsU5PCiKpmh-hyw7VeL9UqpA6F78prp24OfGiVDqMzHShTN1ZQLQzjjBvQtSkZZg2hha21YDaxXm5Yq6nuwRoYxqC7Lej2zeCuVOu_KkIo5hLzRHhxSwj-ywRxVL2LBrpOD-CnqBgWlMpCSpGkz3ekSz-FIfXqRsV4kVryV9XqVIEbGp8eNmuomgkpSyqKskqq43-o0rDQO5My1Lh0vmV4dr_SuxL_pCQJ8EZggo8xQHMnIVits6h2s5gs5Y7FuFGvs5A-47r_G38DecHlGw
CitedBy_id crossref_primary_10_1007_s42979_025_03686_y
crossref_primary_10_3390_jimaging10120333
crossref_primary_10_3390_jimaging11020032
Cites_doi 10.1038/s41598-024-53733-6
10.1007/978-3-030-59710-8_13
10.1109/ACCESS.2024.3372425
10.1109/ACCESS.2024.3395329
10.1007/s40120-017-0069-5
10.1016/j.bspc.2021.103455
10.1109/ACCESS.2023.3272482
10.1016/j.jalz.2019.01.010
10.1109/ACCESS.2021.3090474
10.3390/s23031694
10.1016/j.compmedimag.2020.101713
10.1109/ACCESS.2024.3399839
10.1016/j.imu.2020.100305
10.3390/s22082911
10.1007/s10278-015-9847-8
10.1038/s41598-020-74399-w
10.3390/diagnostics13040801
10.1016/j.neuroscience.2021.01.002
10.3390/app14020603
10.1016/j.cmpb.2019.105242
10.1016/j.compbiomed.2021.105032
10.1016/j.cmpb.2021.106032
10.1007/978-3-030-64849-7_54
10.1016/j.cmpb.2022.107291
10.1016/j.nicl.2018.101645
10.1016/j.compbiomed.2020.103933
10.1038/nrd2896
10.1016/j.bspc.2022.103565
10.1109/ICICS52457.2021.9464543
10.3389/fninf.2022.856295
10.1007/978-0-387-84858-7
10.1007/s00521-021-06149-6
10.1166/jmihi.2020.3001
10.1007/s00521-021-05799-w
10.1016/j.ijleo.2022.170212
10.1007/s11042-023-15738-7
10.1109/ACCESS.2023.3307702
10.1016/j.compbiomed.2015.07.006
10.3390/electronics10222860
10.1186/s40708-020-00112-2
10.1109/TIM.2021.3107056
10.1109/ACCESS.2022.3204395
10.1109/OJCS.2024.3370971
10.1007/978-3-030-68154-8
10.1016/j.jalz.2018.02.001
10.1007/s13369-021-06131-3
10.1162/jocn.2007.19.9.1498
10.1007/s00521-022-07263-9
10.1016/j.neuroimage.2011.09.015
10.1016/j.compbiomed.2021.104828
10.1007/s00500-022-06762-0
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 by the authors. 2024
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 by the authors. 2024
DBID AAYXX
CITATION
NPM
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/jimaging10060141
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic
PubMed



CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2313-433X
ExternalDocumentID oai_doaj_org_article_cbfd72a7c3434ceabc6303f125dba73d
PMC11204904
A799627568
38921618
10_3390_jimaging10060141
Genre Journal Article
GeographicLocations Japan
GeographicLocations_xml – name: Japan
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: P01 AG003991
– fundername: NIA NIH HHS
  grantid: P01 AG026276
– fundername: University of Aizu, Japan
GroupedDBID 5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
IHR
ITC
KQ8
MODMG
M~E
OK1
P62
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RPM
NPM
PUEGO
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c512t-c2941518b25413227f3e0c49a60d86a34026de04ec3e8ad50bb7fe8dfb15c78b3
IEDL.DBID BENPR
ISSN 2313-433X
IngestDate Fri Oct 03 12:52:09 EDT 2025
Tue Sep 30 17:08:44 EDT 2025
Sun Aug 24 03:52:00 EDT 2025
Sat Jul 26 00:23:56 EDT 2025
Mon Oct 20 22:52:39 EDT 2025
Mon Oct 20 16:58:36 EDT 2025
Thu Aug 28 04:41:41 EDT 2025
Thu Apr 24 23:03:48 EDT 2025
Thu Oct 16 04:32:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords CNN
residual network
Alzheimer’s disease
machine learning
Random Forest
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c512t-c2941518b25413227f3e0c49a60d86a34026de04ec3e8ad50bb7fe8dfb15c78b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7476-2468
0009-0000-6499-1825
0000-0002-1238-0464
OpenAccessLink https://www.proquest.com/docview/3072345254?pq-origsite=%requestingapplication%&accountid=15518
PMID 38921618
PQID 3072345254
PQPubID 2059558
ParticipantIDs doaj_primary_oai_doaj_org_article_cbfd72a7c3434ceabc6303f125dba73d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11204904
proquest_miscellaneous_3072295997
proquest_journals_3072345254
gale_infotracmisc_A799627568
gale_infotracacademiconefile_A799627568
pubmed_primary_38921618
crossref_primary_10_3390_jimaging10060141
crossref_citationtrail_10_3390_jimaging10060141
PublicationCentury 2000
PublicationDate 20240611
PublicationDateYYYYMMDD 2024-06-11
PublicationDate_xml – month: 6
  year: 2024
  text: 20240611
  day: 11
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Journal of imaging
PublicationTitleAlternate J Imaging
PublicationYear 2024
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_50
(ref_36) 2022; 26
Mehmood (ref_41) 2021; 460
ref_14
ref_57
Noor (ref_12) 2020; 7
ref_56
ref_54
Marcus (ref_51) 2007; 19
ref_52
Shin (ref_30) 2024; 12
Venugopalan (ref_9) 2021; 11
Mishra (ref_10) 2019; 10
Jiang (ref_19) 2020; 10
ref_17
ref_15
Chabib (ref_38) 2023; 11
Arafa (ref_26) 2024; 83
Miah (ref_33) 2024; 5
Suganthe (ref_18) 2021; 8
Miah (ref_28) 2024; 12
ref_61
ref_60
Kamal (ref_21) 2021; 70
ref_25
Tanveer (ref_13) 2020; 16
ref_24
ref_64
Zeng (ref_37) 2023; 35
ref_62
Iwatsubo (ref_3) 2021; 8
Rallabandi (ref_42) 2020; 18
Jenkinson (ref_53) 2012; 62
Amer (ref_23) 2024; 14
ref_27
Beheshti (ref_1) 2015; 64
Srivastava (ref_55) 2014; 15
Kalavathi (ref_16) 2016; 29
Antony (ref_39) 2022; Volume 2
Basaia (ref_58) 2019; 21
ref_34
(ref_44) 2022; 47
Basheera (ref_20) 2020; 81
Citron (ref_8) 2010; 9
Saleh (ref_31) 2022; 34
AbdulAzeem (ref_35) 2021; 33
Murugan (ref_22) 2021; 9
Meng (ref_32) 2022; 16
Sabbagh (ref_11) 2017; 6
ref_47
ref_46
ref_45
Fareed (ref_63) 2022; 10
ref_43
Shin (ref_29) 2024; 12
ref_40
ref_2
ref_48
Menagadevi (ref_49) 2023; 272
Mercaldo (ref_59) 2023; 11
ref_5
ref_4
ref_7
ref_6
References_xml – volume: 14
  start-page: 3463
  year: 2024
  ident: ref_23
  article-title: A novel CNN architecture for accurate early detection and classification of Alzheimer’s disease using MRI data
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-53733-6
– ident: ref_17
  doi: 10.1007/978-3-030-59710-8_13
– volume: 12
  start-page: 34553
  year: 2024
  ident: ref_28
  article-title: Sign Language Recognition Using Graph and General Deep Neural Network Based on Large Scale Dataset
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3372425
– volume: 12
  start-page: 65213
  year: 2024
  ident: ref_29
  article-title: Anomaly Detection in Weakly Supervised Videos Using Multistage Graphs and General Deep Learning Based Spatial-Temporal Feature Enhancement
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3395329
– volume: 6
  start-page: 83
  year: 2017
  ident: ref_11
  article-title: Increasing Precision of clinical diagnosis of Alzheimer’s disease using a combined algorithm incorporating clinical and novel biomarker data
  publication-title: Neurol. Ther.
  doi: 10.1007/s40120-017-0069-5
– ident: ref_46
  doi: 10.1016/j.bspc.2021.103455
– volume: 11
  start-page: 44650
  year: 2023
  ident: ref_38
  article-title: DeepCurvMRI: Deep Convolutional Curvelet Transform-based MRI Approach for Early Detection of Alzheimer’s Disease
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3272482
– ident: ref_7
  doi: 10.1016/j.jalz.2019.01.010
– volume: 9
  start-page: 90319
  year: 2021
  ident: ref_22
  article-title: DEMNET: A deep learning model for early diagnosis of Alzheimer diseases and dementia from MR images
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3090474
– ident: ref_48
  doi: 10.3390/s23031694
– volume: 81
  start-page: 101713
  year: 2020
  ident: ref_20
  article-title: A novel CNN based Alzheimer’s disease classification using hybrid enhanced ICA segmented gray matter of MRI
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2020.101713
– volume: 12
  start-page: 68303
  year: 2024
  ident: ref_30
  article-title: Korean Sign Language Alphabet Recognition through the Integration of Handcrafted and Deep Learning-Based Two-Stream Feature Extraction Approach
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3399839
– volume: 18
  start-page: 100305
  year: 2020
  ident: ref_42
  article-title: Automatic classification of cognitively normal, mild cognitive impairment and Alzheimer’s disease using structural MRI analysis
  publication-title: Inform. Med. Unlocked
  doi: 10.1016/j.imu.2020.100305
– volume: 15
  start-page: 1929
  year: 2014
  ident: ref_55
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– ident: ref_24
  doi: 10.3390/s22082911
– volume: 29
  start-page: 365
  year: 2016
  ident: ref_16
  article-title: Methods on skull stripping of MRI head scan images—A review
  publication-title: J. Digit. Imaging
  doi: 10.1007/s10278-015-9847-8
– volume: 11
  start-page: 3254
  year: 2021
  ident: ref_9
  article-title: Multimodal deep learning models for early detection of Alzheimer’s disease stage
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-74399-w
– volume: 8
  start-page: 145
  year: 2021
  ident: ref_18
  article-title: Multiclass classification of Alzheimer’s disease using hybrid deep convolutional neural network
  publication-title: Nveo-Nat. Volatiles Essent. Oils J.
– ident: ref_40
  doi: 10.3390/diagnostics13040801
– volume: 460
  start-page: 43
  year: 2021
  ident: ref_41
  article-title: A transfer learning approach for early diagnosis of Alzheimer’s disease on MRI images
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2021.01.002
– ident: ref_4
– ident: ref_15
  doi: 10.3390/app14020603
– ident: ref_56
– ident: ref_14
  doi: 10.1016/j.cmpb.2019.105242
– ident: ref_52
– ident: ref_27
  doi: 10.1016/j.compbiomed.2021.105032
– ident: ref_43
  doi: 10.1016/j.cmpb.2021.106032
– ident: ref_62
  doi: 10.1007/978-3-030-64849-7_54
– ident: ref_47
  doi: 10.1016/j.cmpb.2022.107291
– volume: 21
  start-page: 101645
  year: 2019
  ident: ref_58
  article-title: Automated classification of Alzheimer’s disease and mild cognitive impairment using a single MRI and deep neural networks
  publication-title: NeuroImage Clin.
  doi: 10.1016/j.nicl.2018.101645
– ident: ref_2
  doi: 10.1016/j.compbiomed.2020.103933
– volume: 9
  start-page: 387
  year: 2010
  ident: ref_8
  article-title: Alzheimer’s disease: Strategies for disease modification
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd2896
– ident: ref_5
  doi: 10.1016/j.bspc.2022.103565
– volume: Volume 2
  start-page: 199
  year: 2022
  ident: ref_39
  article-title: Classification on Alzheimer’s Disease MRI Images with VGG-16 and VGG-19
  publication-title: IOT with Smart Systems: Proceedings of ICTIS 2022
– volume: 10
  start-page: 6773
  year: 2019
  ident: ref_10
  article-title: Mild cognitive impairment: A comprehensive review
  publication-title: Int. J. Biol. Med. Res.
– ident: ref_64
  doi: 10.1109/ICICS52457.2021.9464543
– volume: 16
  start-page: 856295
  year: 2022
  ident: ref_32
  article-title: Research on Voxel-Based Features Detection and Analysis of Alzheimer’s Disease Using Random Survey Support Vector Machine
  publication-title: Front. Neuroinformatics
  doi: 10.3389/fninf.2022.856295
– ident: ref_57
  doi: 10.1007/978-0-387-84858-7
– volume: 35
  start-page: 11599
  year: 2023
  ident: ref_37
  article-title: A new deep belief network-based multi-task learning for diagnosis of Alzheimer’s disease
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-021-06149-6
– volume: 10
  start-page: 1040
  year: 2020
  ident: ref_19
  article-title: Classification of Alzheimer’s disease via eight-layer convolutional neural network with batch normalization and dropout techniques
  publication-title: J. Med. Imaging Health Inf.
  doi: 10.1166/jmihi.2020.3001
– volume: 33
  start-page: 10415
  year: 2021
  ident: ref_35
  article-title: A CNN based framework for classification of Alzheimer’s disease
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-021-05799-w
– volume: 272
  start-page: 170212
  year: 2023
  ident: ref_49
  article-title: Automated prediction system for Alzheimer detection based on deep residual autoencoder and Support Vector Machine
  publication-title: Optik
  doi: 10.1016/j.ijleo.2022.170212
– volume: 83
  start-page: 3767
  year: 2024
  ident: ref_26
  article-title: A deep learning framework for early diagnosis of Alzheimer’s disease on MRI images
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-023-15738-7
– volume: 11
  start-page: 91969
  year: 2023
  ident: ref_59
  article-title: TriAD: A deep ensemble network for Alzheimer classification and localisation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3307702
– volume: 64
  start-page: 208
  year: 2015
  ident: ref_1
  article-title: Probability distribution function-based classification of structural MRI for the detection of Alzheimer’s disease
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2015.07.006
– ident: ref_61
  doi: 10.3390/electronics10222860
– volume: 7
  start-page: 1
  year: 2020
  ident: ref_12
  article-title: Application of deep learning in detecting neurological disorders from magnetic resonance images: A survey on the detection of Alzheimer’s disease, Parkinson’s disease and schizophrenia
  publication-title: Brain Inform.
  doi: 10.1186/s40708-020-00112-2
– volume: 70
  start-page: 2513107
  year: 2021
  ident: ref_21
  article-title: Alzheimer’s patient analysis using image and gene expression data and explainable-AI to present associated genes
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2021.3107056
– volume: 10
  start-page: 96930
  year: 2022
  ident: ref_63
  article-title: ADD-Net: An Effective Deep Learning Model for Early Detection of Alzheimer Disease in MRI Scans
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3204395
– ident: ref_25
– ident: ref_50
– volume: 5
  start-page: 144
  year: 2024
  ident: ref_33
  article-title: Hand Gesture Recognition for Multi-Culture Sign Language Using Graph and General Deep Learning Network
  publication-title: IEEE Open J. Comput. Soc.
  doi: 10.1109/OJCS.2024.3370971
– ident: ref_34
  doi: 10.1007/978-3-030-68154-8
– volume: 8
  start-page: 462
  year: 2021
  ident: ref_3
  article-title: Alzheimer’s disease research in Japan: A short history, current status and future perspectives toward prevention
  publication-title: J. Prev. Alzheimer’s Dis.
– ident: ref_54
– ident: ref_6
  doi: 10.1016/j.jalz.2018.02.001
– volume: 47
  start-page: 2201
  year: 2022
  ident: ref_44
  article-title: Detecting the stages of Alzheimer’s disease with pre-trained deep learning architectures
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-021-06131-3
– volume: 19
  start-page: 1498
  year: 2007
  ident: ref_51
  article-title: Open Access Series of Imaging Studies (OASIS): Cross-sectional MRI data in young, middle aged, nondemented, and demented older adults
  publication-title: J. Cogn. Neurosci.
  doi: 10.1162/jocn.2007.19.9.1498
– volume: 34
  start-page: 14487
  year: 2022
  ident: ref_31
  article-title: Two-stage deep learning model for Alzheimer’s disease detection and prediction of the mild cognitive impairment time
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-022-07263-9
– volume: 62
  start-page: 782
  year: 2012
  ident: ref_53
  article-title: Fsl
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.09.015
– volume: 16
  start-page: 1
  year: 2020
  ident: ref_13
  article-title: Machine learning techniques for the diagnosis of Alzheimer’s disease: A review
  publication-title: Acm Trans. Multimed. Comput. Commun. Appl. (TOMM)
– ident: ref_45
  doi: 10.1016/j.compbiomed.2021.104828
– ident: ref_60
– volume: 26
  start-page: 7751
  year: 2022
  ident: ref_36
  article-title: Diagnosis and classification of Alzheimer’s disease by using a convolution neural network algorithm
  publication-title: Soft Comput.
  doi: 10.1007/s00500-022-06762-0
SSID ssj0001920199
Score 2.3253555
Snippet Alzheimer’s Disease (AD) poses a significant health risk globally, particularly among the elderly population. Recent studies underscore its prevalence, with...
Alzheimer's Disease (AD) poses a significant health risk globally, particularly among the elderly population. Recent studies underscore its prevalence, with...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 141
SubjectTerms Accuracy
Algorithms
Alzheimer's disease
Artificial intelligence
Artificial neural networks
Classification
CNN
Cognition & reasoning
Cognitive ability
Comparative analysis
Computer-aided medical diagnosis
Datasets
Deep learning
Dementia
Diagnosis
Efficiency
Feature extraction
Image analysis
Image classification
Machine learning
Medical imaging
Methods
Neural networks
Older people
Random Forest
Researchers
residual network
Support vector machines
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAvEkpyEhIiIO1Tuwk9nFLWVVIcEBU6s3yY9Ju1aZVd3vpqX-Dv8cvYWxnVwlIcOGQS2xHsWc8D83MN4S8s65y4GrP0EVumYxgQ7pzgdXCA_JP20kdq5G_fG0Oj-Tn4_p41Oor5oRleOB8cDPvutBWtvVCCunBOt-g1O1QLwdnWxGi9OVKj5yps2y34KNzXFKgXz87W16ktj9lQiCR5UQPJbj-P4XySCtNMyZHKmjxiDwcbEc6z__8mNyD_gl5MEIUfErgG6xSeRXbR_UUaKqvZWhRngA9ALiiA57qCV1ssrIomq1009yBzZcBl83Pb09heQHXP-9-rOhBDuLgB9Ypcat_Ro4Wn75_PGRDJwXmUaGvma80KupSOXQHy0QCAdxLbRseVGMFOpFNAC7BC1A21Ny5tgMVOlfWvlVOPCc7_WUPLwltOudD43nNrZK1rKxUHPWscLxDftBNQWabczV-gBmP3S7ODbobkRLmd0oU5MN2xVWG2PjL3P1Iqu28CI6dXiDLmIFlzL9YpiDvI6FNvML4a94OlQi4wQiGZeat1gkWXxVkbzITr56fDm9YxQxXf2VQaFYiRotlQd5uh-PKmM7Ww-VNnlPpWuu2IC8yZ223hBZkFbsYFERNeG6y5-lIvzxNwOBoO8dArtz9H6f0ityv0ICLaXFluUd21tc38BoNsLV7k-7aL4ZwMtw
  priority: 102
  providerName: Directory of Open Access Journals
Title Residual-Based Multi-Stage Deep Learning Framework for Computer-Aided Alzheimer’s Disease Detection
URI https://www.ncbi.nlm.nih.gov/pubmed/38921618
https://www.proquest.com/docview/3072345254
https://www.proquest.com/docview/3072295997
https://pubmed.ncbi.nlm.nih.gov/PMC11204904
https://doaj.org/article/cbfd72a7c3434ceabc6303f125dba73d
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2313-433X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001920199
  issn: 2313-433X
  databaseCode: KQ8
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2313-433X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001920199
  issn: 2313-433X
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2313-433X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001920199
  issn: 2313-433X
  databaseCode: ADMLS
  dateStart: 20170301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2313-433X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001920199
  issn: 2313-433X
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2313-433X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001920199
  issn: 2313-433X
  databaseCode: RPM
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2313-433X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001920199
  issn: 2313-433X
  databaseCode: BENPR
  dateStart: 20151201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2313-433X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001920199
  issn: 2313-433X
  databaseCode: 8FG
  dateStart: 20151201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtswDCba9LIdhv3XWxt4wIBhByG2JdvSoSiStVkxYMFQrEBvhv6cZmidLEkvO-01-np7klGyncYb0KslGZZJ6aNE8iPAe6kSZVWqCR6Rc8Ic2ZAolSEp1Rb1Jy-ZcNnIXyfZ2QX7cple7sCkzYVxYZXtnug3ajPX7o58gLqYUOeEY8eLn8RVjXLe1baEhmxKK5gjTzG2C3uJY8bqwd7odPLt_P7WRSDgCVH7Kyme9wc_Zje-HFDsmUlY3MEnT-P__2a9hVbdSMotaBo_hSeNTRkOayV4Bju2eg6Pt5gGX4A9tyufdkVGCFsm9Hm3BC3NqQ1PrF2EDc_qNBy30VohmrNhW_SBDGcGhw2vf13Z2Y1d_vl9twpPaucOvmDtA7qql3AxPv3-6Yw0FRaIRqBfE50IBPCYK_ytsRcNtZFmQmaR4ZmkeLjMjI2Y1dRyadJIqby03JQqTnXOFX0FvWpe2X0Is1Jpk-kojSRnKUsk4xHiL1VRiXoisgAG7X8tdEM_7qpgXBd4DHGSKP6VRAAfNyMWNfXGA31HTlSbfo402z-YL6dFswYLrUqTJzLXlFGmrVQ6QwAv0cQzSubUBPDBCbpwSxs_TcsmQwEn6EiyimEuhKfL5wEcdHriktTd5lZVimZLWBX3ChzAu02zG-nC3Co7v637JCIVIg_gda1ZmymhZZm46gYB8I7OdebcbalmV54wHG1q5-Blbx7-rrfwKEGTzQXCxfEB9NbLW3uIJtda9WGXjz_3m9XU9xcXfwEy7zE6
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9gAcEG8MBYwEQhxWsb3rxx4qlJBGKW0jVLVSb2ZfToNaJzSpEJz4G_wZfgy_hNm1ncYg9dar96Fdz-zM7M7MNwCvhYykkbEieEVOCbNgQ7yQmsRUGeSftGDcZiPvj5LhEft4HB-vwe8mF8aGVTYy0QlqPVX2jbyDvBhR64Rj72dfia0aZb2rTQkNUZdW0FsOYqxO7Ng137_hFW6-tdNHer-JosH24YchqasMEIXKbkFUxFGJhZnEqUO3PGoCxbhIAp0lguIFK9EmYEZRkwkdB1Kmhcl0IcNYpZmkOO8N2GCUcbz8bfS2R58OLl95OCpYziv_KKU86HyZnLnyQ6FDQmFhSx-6sgH_K4cV7diO3FxRhYO7cKe2Yf1uxXT3YM2U9-H2CrLhAzAHZu7SvEgP1aT2XZ4vQct2bPy-MTO_xnUd-4MmOsxH89lvikyQ7kTjsO7pjxMzOTPnf37-mvv9ypmEEyxcAFn5EI6u5V8_gvVyWpon4CeFVDpRQRyIjMUsEiwLUN9TGRTIlzzxoNP811zVcOe26sZpjtceS4n8X0p48G45YlZBfVzRt2dJtexnQbrdh-n5OK_PfK5kodNIpIoicygjpErQYCjQpNRSpFR78NYSOreiBJemRJ0RgRu0oFx5N-XcwfNnHmy2eqIIUO3mhlXyWgTN88sD48GrZbMdacPqSjO9qPpEPOY89eBxxVnLLaElG9lqCh5kLZ5r7bndUk5OHEA52vDWocyeXr2ul3BzeLi_l-_tjHafwa0IzUUbhBeGm7C-OL8wz9HcW8gX9Zny4fN1H-O_YHVr-Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIiE4IN64FDASCHGwYnvXjz0glBJCS6FCiEq9Ld6H01StE5JUCE78Df4KP4dfwszaTmOQeuvV-9CuZ2ZndmfmG4CnhYqVVYkO8IqcBZzAhkSpTJAwbZF_spILykb-sJdu7_N3B8nBGvxuc2EorLI9E91BbSaa3sh7yIsxIycc75VNWMTHwfDV9GtAFaTI09qW06hZZNd-_4bXt_nLnQHS-lkcD998fr0dNBUGAo2KbhHoWKACi3KF00ZuacyGmosiDU2eFgwvV6mxIbea2bwwSahUVtrclCpKdJYrhvNegssZobhTlvrw7dn7jkDVKkTtGWVMhL2j8YkrPBQ5DBQedTShKxjwv1pY0YvdmM0VJTi8Adcb69Xv1-x2E9ZsdQuurWAa3gb7yc5dglewhQrS-C7DN0CbdmT9gbVTv0F0HfnDNi7MR8PZb8tLBP2xwWH94x-HdnxiZ39-_pr7g9qNhBMsXOhYdQf2L-RP34X1alLZ--CnpdIm1WESFjlPeFzwPERNz1RYIkeK1INe-1-lboDOqd7GscQLD1FC_ksJD14sR0xrkI9z-m4RqZb9CJ7bfZjMRrKRdqlVabK4yDTjjGtbKJ2iqVCiMWlUkTHjwXMitKRDBJemiyYXAjdIcFyynwnhgPlzDzY7PVH4dbe5ZRXZHD5zeSYqHjxZNtNICqir7OS07hOLRIjMg3s1Zy23hDZsTHUUPMg7PNfZc7elGh86aHK03smVzDfOX9djuILCK9_v7O0-gKsx2okUfRdFm7C-mJ3ah2jnLdQjJ1A-fLloCf4LfGBpkw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Residual-Based+Multi-Stage+Deep+Learning+Framework+for+Computer-Aided+Alzheimer%E2%80%99s+Disease+Detection&rft.jtitle=Journal+of+imaging&rft.au=Hassan%2C+Najmul&rft.au=Abu+Saleh+Musa+Miah&rft.au=Shin%2C+Jungpil&rft.date=2024-06-11&rft.pub=MDPI+AG&rft.eissn=2313-433X&rft.volume=10&rft.issue=6&rft.spage=141&rft_id=info:doi/10.3390%2Fjimaging10060141&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2313-433X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2313-433X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2313-433X&client=summon