A Hybrid Risk Assessment Model for Cardiovascular Disease Using Cox Regression Analysis and a 2-means clustering algorithm

Cardiovascular disease (CVD) refers to a state that indicates narrowed or blocked blood vessels, and it can lead to cardiac arrest, chest pain (angina) or stroke. CVD is a leading cause of silent massive heart attacks and is a major threat to life. The mere prediction of the presence or absence of C...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 113; p. 103400
Main Authors Vivekanandan, T., Narayanan, Swathi Jamjala
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.10.2019
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0010-4825
1879-0534
1879-0534
DOI10.1016/j.compbiomed.2019.103400

Cover

Abstract Cardiovascular disease (CVD) refers to a state that indicates narrowed or blocked blood vessels, and it can lead to cardiac arrest, chest pain (angina) or stroke. CVD is a leading cause of silent massive heart attacks and is a major threat to life. The mere prediction of the presence or absence of CVD alone is inefficient in current scenarios. Rather, a major need has arisen for the prediction of CVD, the acquisition of knowledge about CVD and the assessment of the likelihood that an individual will experience cardiac arrest. The objective of establishing an individual CVD risk assessment has been attained in this paper using a hybrid model. The CVD of an individual is due to various controllable and uncontrollable factors. The computation and analysis of all these factors are difficult and time consuming. Only a few attributes are identified to be the most critical. This optimization of the critical features is performed using a modified Differential Evolution (DE) algorithm. The identified critical factors are sufficient to predict the presence/absence of CVD. In this paper, these identified critical features of individuals are considered using Cox regression analysis that evaluates the prevalence rates of the critical attributes. These individual prevalence rates together predict the cumulative prevalence ratios of the respective individuals. This cumulative prevalence ratio of an individual, along with the class attribute, is processed using the 2-means clustering technique to determine the risk of a particular individual developing CVD. The evaluation of the risk assessment model is carried out in this paper by calculating the prediction accuracy of the Cox regression analysis and the Davies–Bouldin (DB) index for 2-means clustering. The Cox regression analysis results in a 91% CVD prediction accuracy using the critical attributes and is comparatively higher than that of other models. The DB index of 2-means clustering with specific initial means for clusters of individuals with CVD is 0.282 and that for clusters of individuals without CVD is 0.2836, which are comparatively lower than those of the traditional k-means clustering algorithm. [Display omitted] •Cardiovascular Disease (CVD) is a major threat to life and mere prediction of CVD alone is inefficient.•Prediction of CVD along with risk assessment uncovers the risk levels of individuals and is attained through a hybrid model.•Cox-regression analysis evaluates the Prevalence ratio of the critical attributes derived through modified DE algorithm.•2-means clustering technique is used to determine the risk of a particular individual developing CVD.•Performance evaluation of the hybrid model has been calculated to prove the efficiency and redundancy of the model.
AbstractList Cardiovascular disease (CVD) refers to a state that indicates narrowed or blocked blood vessels, and it can lead to cardiac arrest, chest pain (angina) or stroke. CVD is a leading cause of silent massive heart attacks and is a major threat to life. The mere prediction of the presence or absence of CVD alone is inefficient in current scenarios. Rather, a major need has arisen for the prediction of CVD, the acquisition of knowledge about CVD and the assessment of the likelihood that an individual will experience cardiac arrest. The objective of establishing an individual CVD risk assessment has been attained in this paper using a hybrid model. The CVD of an individual is due to various controllable and uncontrollable factors. The computation and analysis of all these factors are difficult and time consuming. Only a few attributes are identified to be the most critical. This optimization of the critical features is performed using a modified Differential Evolution (DE) algorithm. The identified critical factors are sufficient to predict the presence/absence of CVD. In this paper, these identified critical features of individuals are considered using Cox regression analysis that evaluates the prevalence rates of the critical attributes. These individual prevalence rates together predict the cumulative prevalence ratios of the respective individuals. This cumulative prevalence ratio of an individual, along with the class attribute, is processed using the 2-means clustering technique to determine the risk of a particular individual developing CVD. The evaluation of the risk assessment model is carried out in this paper by calculating the prediction accuracy of the Cox regression analysis and the Davies-Bouldin (DB) index for 2-means clustering. The Cox regression analysis results in a 91% CVD prediction accuracy using the critical attributes and is comparatively higher than that of other models. The DB index of 2-means clustering with specific initial means for clusters of individuals with CVD is 0.282 and that for clusters of individuals without CVD is 0.2836, which are comparatively lower than those of the traditional k-means clustering algorithm.
Cardiovascular disease (CVD) refers to a state that indicates narrowed or blocked blood vessels, and it can lead to cardiac arrest, chest pain (angina) or stroke. CVD is a leading cause of silent massive heart attacks and is a major threat to life. The mere prediction of the presence or absence of CVD alone is inefficient in current scenarios. Rather, a major need has arisen for the prediction of CVD, the acquisition of knowledge about CVD and the assessment of the likelihood that an individual will experience cardiac arrest. The objective of establishing an individual CVD risk assessment has been attained in this paper using a hybrid model. The CVD of an individual is due to various controllable and uncontrollable factors. The computation and analysis of all these factors are difficult and time consuming. Only a few attributes are identified to be the most critical. This optimization of the critical features is performed using a modified Differential Evolution (DE) algorithm. The identified critical factors are sufficient to predict the presence/absence of CVD. In this paper, these identified critical features of individuals are considered using Cox regression analysis that evaluates the prevalence rates of the critical attributes. These individual prevalence rates together predict the cumulative prevalence ratios of the respective individuals. This cumulative prevalence ratio of an individual, along with the class attribute, is processed using the 2-means clustering technique to determine the risk of a particular individual developing CVD. The evaluation of the risk assessment model is carried out in this paper by calculating the prediction accuracy of the Cox regression analysis and the Davies–Bouldin (DB) index for 2-means clustering. The Cox regression analysis results in a 91% CVD prediction accuracy using the critical attributes and is comparatively higher than that of other models. The DB index of 2-means clustering with specific initial means for clusters of individuals with CVD is 0.282 and that for clusters of individuals without CVD is 0.2836, which are comparatively lower than those of the traditional k-means clustering algorithm. [Display omitted] •Cardiovascular Disease (CVD) is a major threat to life and mere prediction of CVD alone is inefficient.•Prediction of CVD along with risk assessment uncovers the risk levels of individuals and is attained through a hybrid model.•Cox-regression analysis evaluates the Prevalence ratio of the critical attributes derived through modified DE algorithm.•2-means clustering technique is used to determine the risk of a particular individual developing CVD.•Performance evaluation of the hybrid model has been calculated to prove the efficiency and redundancy of the model.
Cardiovascular disease (CVD) refers to a state that indicates narrowed or blocked blood vessels, and it can lead to cardiac arrest, chest pain (angina) or stroke. CVD is a leading cause of silent massive heart attacks and is a major threat to life. The mere prediction of the presence or absence of CVD alone is inefficient in current scenarios. Rather, a major need has arisen for the prediction of CVD, the acquisition of knowledge about CVD and the assessment of the likelihood that an individual will experience cardiac arrest. The objective of establishing an individual CVD risk assessment has been attained in this paper using a hybrid model. The CVD of an individual is due to various controllable and uncontrollable factors. The computation and analysis of all these factors are difficult and time consuming. Only a few attributes are identified to be the most critical. This optimization of the critical features is performed using a modified Differential Evolution (DE) algorithm. The identified critical factors are sufficient to predict the presence/absence of CVD. In this paper, these identified critical features of individuals are considered using Cox regression analysis that evaluates the prevalence rates of the critical attributes. These individual prevalence rates together predict the cumulative prevalence ratios of the respective individuals. This cumulative prevalence ratio of an individual, along with the class attribute, is processed using the 2-means clustering technique to determine the risk of a particular individual developing CVD. The evaluation of the risk assessment model is carried out in this paper by calculating the prediction accuracy of the Cox regression analysis and the Davies-Bouldin (DB) index for 2-means clustering. The Cox regression analysis results in a 91% CVD prediction accuracy using the critical attributes and is comparatively higher than that of other models. The DB index of 2-means clustering with specific initial means for clusters of individuals with CVD is 0.282 and that for clusters of individuals without CVD is 0.2836, which are comparatively lower than those of the traditional k-means clustering algorithm.Cardiovascular disease (CVD) refers to a state that indicates narrowed or blocked blood vessels, and it can lead to cardiac arrest, chest pain (angina) or stroke. CVD is a leading cause of silent massive heart attacks and is a major threat to life. The mere prediction of the presence or absence of CVD alone is inefficient in current scenarios. Rather, a major need has arisen for the prediction of CVD, the acquisition of knowledge about CVD and the assessment of the likelihood that an individual will experience cardiac arrest. The objective of establishing an individual CVD risk assessment has been attained in this paper using a hybrid model. The CVD of an individual is due to various controllable and uncontrollable factors. The computation and analysis of all these factors are difficult and time consuming. Only a few attributes are identified to be the most critical. This optimization of the critical features is performed using a modified Differential Evolution (DE) algorithm. The identified critical factors are sufficient to predict the presence/absence of CVD. In this paper, these identified critical features of individuals are considered using Cox regression analysis that evaluates the prevalence rates of the critical attributes. These individual prevalence rates together predict the cumulative prevalence ratios of the respective individuals. This cumulative prevalence ratio of an individual, along with the class attribute, is processed using the 2-means clustering technique to determine the risk of a particular individual developing CVD. The evaluation of the risk assessment model is carried out in this paper by calculating the prediction accuracy of the Cox regression analysis and the Davies-Bouldin (DB) index for 2-means clustering. The Cox regression analysis results in a 91% CVD prediction accuracy using the critical attributes and is comparatively higher than that of other models. The DB index of 2-means clustering with specific initial means for clusters of individuals with CVD is 0.282 and that for clusters of individuals without CVD is 0.2836, which are comparatively lower than those of the traditional k-means clustering algorithm.
ArticleNumber 103400
Author Narayanan, Swathi Jamjala
Vivekanandan, T.
Author_xml – sequence: 1
  givenname: T.
  surname: Vivekanandan
  fullname: Vivekanandan, T.
  email: stvanand@gmail.com, stvanand@sitams.org
  organization: School of Computing Science and Engineering, VIT University, Vellore, 632014, Tamil Nadu, India
– sequence: 2
  givenname: Swathi Jamjala
  surname: Narayanan
  fullname: Narayanan, Swathi Jamjala
  email: swathi.jns@gmail.com
  organization: School of Computing Science and Engineering, VIT University, Vellore, 632014, Tamil Nadu, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31491657$$D View this record in MEDLINE/PubMed
BookMark eNqNkV1rFDEUhoNU7Lb6FyTgjTezJvM9N-K6VitUhGKvQz7OrNlmkjVnprj--mbYFmGv9iokPO8TznkvyJkPHgihnC054_WH7VKHYadsGMAsc8a79FyUjL0gC942XcaqojwjC8Y4y8o2r87JBeKWMVaygr0i5wUvO15XzYL8W9HrvYrW0FuL93SFCIgD-JH-CAYc7UOkaxmNDQ8S9eRkpF8sgkSgd2j9hq7DX3oLm5hiNni68tLt0SKV3lBJ82wA6ZFqN-EIcQ5ItwnRjr-H1-RlLx3Cm6fzktx9vfq1vs5ufn77vl7dZLri-Zgp1vVt0fCmkrnWZQdNXSutlOKmVkY1bL61quEl8KqXbVty0xUqz-u-qgrDi0vy_uDdxfBnAhzFYFGDc9JDmFDkeVt3ZcXrOqHvjtBtmGIaKVEFa-qOVeVMvX2iJpUKELtoBxn34nmrCfh4AHQMiBF6oe0ox7SfMUrrBGdirlFsxf8axVyjONSYBO2R4PmPE6KfD1FIK32wEAVqC16DsRH0KEywp0g-HUm0s95q6e5hf5riESCW02g
CitedBy_id crossref_primary_10_1080_21681163_2022_2156927
crossref_primary_10_1016_j_matpr_2021_03_225
crossref_primary_10_1016_j_imu_2020_100300
crossref_primary_10_1088_1742_6596_1538_1_012042
crossref_primary_10_1016_j_bspc_2021_103260
crossref_primary_10_1186_s12890_021_01549_9
crossref_primary_10_3233_JIFS_213486
crossref_primary_10_3390_cancers16152740
crossref_primary_10_1016_j_bspc_2023_105644
crossref_primary_10_1186_s12931_024_02704_6
crossref_primary_10_1002_iub_2819
Cites_doi 10.1111/j.2517-6161.1972.tb00899.x
10.1109/TEVC.2008.927706
10.1016/j.amjcard.2009.10.007
10.1093/eurheartj/ehs092
10.1016/j.jacc.2014.09.017
10.1016/j.patcog.2017.11.022
10.1016/j.ihj.2017.01.015
10.1161/01.CIR.97.18.1837
10.1016/j.jksuci.2011.09.002
10.2174/2213275911666180830145249
10.1016/j.ijmedinf.2016.09.005
10.1016/j.ijar.2010.12.004
10.1016/j.eswa.2008.09.013
10.1016/j.eswa.2016.10.020
10.1002/sim.4780132105
10.1016/j.ihj.2014.10.399
10.1016/j.compbiomed.2017.09.011
10.1093/bioinformatics/bti422
10.1186/1471-2288-3-21
10.1155/2019/8392348
10.1109/JBHI.2013.2244902
10.1136/hrt.2006.087932
10.1016/j.eswa.2009.09.064
10.1016/S1885-5857(08)60118-8
10.1023/A:1008202821328
10.1016/j.compbiomed.2017.10.014
10.1161/CIRCULATIONAHA.107.699579
10.1161/CIRCULATIONAHA.110.009522
10.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-3
10.1016/j.procs.2019.01.022
10.1093/eurheartj/ehv416
10.1016/j.jacc.2005.08.022
10.1016/j.eswa.2015.06.024
10.1016/j.ihj.2015.07.004
ContentType Journal Article
Copyright 2019
Copyright © 2019. Published by Elsevier Ltd.
Copyright Elsevier Limited Oct 2019
Copyright_xml – notice: 2019
– notice: Copyright © 2019. Published by Elsevier Ltd.
– notice: Copyright Elsevier Limited Oct 2019
DBID AAYXX
CITATION
NPM
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.compbiomed.2019.103400
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection (Proquest)
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Computing Database
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Research library
ProQuest Biological Science Database
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed

Research Library Prep

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
ExternalDocumentID 31491657
10_1016_j_compbiomed_2019_103400
S001048251930277X
Genre Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
77I
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
~HD
3V.
AACTN
AAIAV
ABLVK
ABYKQ
AFKWA
AHPSJ
AJBFU
AJOXV
AMFUW
LCYCR
M0N
RIG
AAYXX
CITATION
PUEGO
AFCTW
AGCQF
AGRNS
ALIPV
NPM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c512t-b09f837175a2cc49e766bcbbb1d6bdb706bcb8b714e15fa8841d93b226f553d13
IEDL.DBID .~1
ISSN 0010-4825
1879-0534
IngestDate Thu Oct 02 19:27:20 EDT 2025
Tue Oct 07 06:13:15 EDT 2025
Mon Jul 21 06:07:35 EDT 2025
Wed Oct 01 04:07:29 EDT 2025
Thu Apr 24 23:07:43 EDT 2025
Fri Feb 23 02:49:33 EST 2024
Tue Oct 14 19:33:08 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Cardiovascular disease
Modified differential evolution
Cox regression
Risk assessment
K-means clustering
Language English
License Copyright © 2019. Published by Elsevier Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c512t-b09f837175a2cc49e766bcbbb1d6bdb706bcb8b714e15fa8841d93b226f553d13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 31491657
PQID 2307690546
PQPubID 1226355
ParticipantIDs proquest_miscellaneous_2286945166
proquest_journals_2307690546
pubmed_primary_31491657
crossref_citationtrail_10_1016_j_compbiomed_2019_103400
crossref_primary_10_1016_j_compbiomed_2019_103400
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2019_103400
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2019_103400
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-01
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References bib36
Samuel (bib48) 2017; 68
Cervante, Xue, Shang, Zhang (bib52) 2013
Fuster, Kelly, Vedanthan (bib9) 2011; 123
bib35
Yang, Jiang (bib58) 2018 Apr 1; 76
Lin (bib28) 1994; 13
Mohawish (bib20) 2015
Gui, Li (bib25) 2005; 21
bib29
bib27
Vivekanandan, Narayanan, Ch Sriman Narayana Iyengar (bib11) 2018; 11
Vivekanandan, Ch Sriman Narayana Iyengar (bib5) 2017; 90
Benabdellah, Benghabrit, Bouhaddou (bib56) 2019 Jan 1; 148
Das, Turkoglu, Sengur (bib57) 2009 May 1; 36
Storn, Price (bib2) 1997 Dec 1; 11
O'Donnell, Elosua (bib39) 2008 Jan 1; 61
Hartigan, Wong (bib19) 1979; 28
Dahlof (bib46) 2010; 105
bib45
bib43
Jia, Baig, Mirza, GholamHosseini (bib63) 2019
Sahan, Polat, Kodaz, Güneş (bib51) 2005
Edition.
Perk, De Backer, Gohlke, Graham, Reiner, Verschuren, Albus, Benlian, Boysen, Cifkova, Deaton, SEbrahim, Germano, Hobbs, Hoes, Karadeniz, Mezzani, Prescott, Ryden, Scherer, Syvanne, Scholte Op Reimer, Vrints, Wood, Zamorano, Zannad (bib30) 2012; 33
Cox, Oakes (bib23) 1984
Alsayat, Hoda (bib18) 2016
Barros, Hirakata (bib62) 2003 Dec; 3
Hunt (bib37) 2005; 46
UCI machine learning repository: Cleveland Heart Disease Dataset (bib16)
Bohacik, Kambhampati, Davis, John (bib13) 2013; 6
Hu (bib44) 2013
Bansal, Kasliwal, Trehan (bib10) 2014; 66
Brindle, Beswick, Fahey, Ebrahim (bib40) 2006 Dec 1; 92
Garg (bib21) 2017; 69
Cox (bib22) 1972; 34
Tibshirani (bib24) 1997; 16
Kadi, Idri, Fernandez-Aleman (bib42) 2017; 97
SCORE Risk Charts (bib47)
Mendes, Paredes, Rocha, Carvalho, Marques, Henriques, Morais (bib7) 2015
Storn, Price (bib8) 1995
bib59
Modelling Survival Data in Medical Research, third ed., By David Collett, 3
Performance of the QRISK cardiovascular risk prediction algorithm in an independent UK sample of patients from general practice: a validation study J Hippisley-Cox,1 CCoupland,1 Y Vinogradova,1 J Robson,2 P Brindle3.
Cowie, Bax, Bruining, Cleland, Koehler, Malik, Pinto, Vander Velde, Vardas, e-health (bib41) 2016; 37
Pagel, Kirshtein (bib60) 2017 Apr 13
bib49
Storn (bib1) 1996
Long, Meesad, Unger (bib54) 2015 Nov 30; 42
Aljaaf, Al-Jumeily, Hussain, Dawson, Fergus, Al-Jumaily (bib15) 2015
Wang, Chin (bib61) 2011 Jun 1; 52
Babaoglu, Findik, Ulker (bib53) 2010 Apr 1; 37
Awang, Siraj (bib55) 2013 Aug; 5
Qin, Huang, Suganthan (bib4) 2009; 13
Nidheesh, Abdul Nazeer, Ameer (bib6) 2017; 91
Anooj (bib50) 2012; 24
Amsterdam, Wenger, Brindis, Casey, Ganiats, Holmes, Jaffe, Jneid, Kelly, Kontos, Levine (bib38) 2014; 64
World Health Organization (bib3)
D’agostino, Vasan, Pencina, Wolf, Cobain, Massaro, Kannel (bib33) 2008 Feb 12; 117
Melillo, Luca, Bracale, Pecchia (bib14) 2013; 17
Wilson, D'Agostino, Levy, Belanger, Silbershatz, Kannel (bib32) 1998 May 1; 97
Santacruz-Varela, Hernandez-Torres, Fajardo-Dolci (bib31) 2010; 78
Ofori, Odia (bib12) 2016; 68
Han, Kamber (bib17) 2009
SCORE Risk Charts (10.1016/j.compbiomed.2019.103400_bib47)
Wang (10.1016/j.compbiomed.2019.103400_bib61) 2011; 52
Garg (10.1016/j.compbiomed.2019.103400_bib21) 2017; 69
10.1016/j.compbiomed.2019.103400_bib34
Benabdellah (10.1016/j.compbiomed.2019.103400_bib56) 2019; 148
Gui (10.1016/j.compbiomed.2019.103400_bib25) 2005; 21
Ofori (10.1016/j.compbiomed.2019.103400_bib12) 2016; 68
Brindle (10.1016/j.compbiomed.2019.103400_bib40) 2006; 92
Samuel (10.1016/j.compbiomed.2019.103400_bib48) 2017; 68
Nidheesh (10.1016/j.compbiomed.2019.103400_bib6) 2017; 91
Amsterdam (10.1016/j.compbiomed.2019.103400_bib38) 2014; 64
Barros (10.1016/j.compbiomed.2019.103400_bib62) 2003; 3
Hunt (10.1016/j.compbiomed.2019.103400_bib37) 2005; 46
Vivekanandan (10.1016/j.compbiomed.2019.103400_bib11) 2018; 11
Anooj (10.1016/j.compbiomed.2019.103400_bib50) 2012; 24
Santacruz-Varela (10.1016/j.compbiomed.2019.103400_bib31) 2010; 78
Das (10.1016/j.compbiomed.2019.103400_bib57) 2009; 36
Mendes (10.1016/j.compbiomed.2019.103400_bib7) 2015
UCI machine learning repository: Cleveland Heart Disease Dataset (10.1016/j.compbiomed.2019.103400_bib16)
Han (10.1016/j.compbiomed.2019.103400_bib17) 2009
10.1016/j.compbiomed.2019.103400_bib26
Sahan (10.1016/j.compbiomed.2019.103400_bib51) 2005
Bohacik (10.1016/j.compbiomed.2019.103400_bib13) 2013; 6
Tibshirani (10.1016/j.compbiomed.2019.103400_bib24) 1997; 16
Dahlof (10.1016/j.compbiomed.2019.103400_bib46) 2010; 105
Pagel (10.1016/j.compbiomed.2019.103400_bib60) 2017
Cervante (10.1016/j.compbiomed.2019.103400_bib52) 2013
Cox (10.1016/j.compbiomed.2019.103400_bib22) 1972; 34
Jia (10.1016/j.compbiomed.2019.103400_bib63) 2019
Qin (10.1016/j.compbiomed.2019.103400_bib4) 2009; 13
Perk (10.1016/j.compbiomed.2019.103400_bib30) 2012; 33
D’agostino (10.1016/j.compbiomed.2019.103400_bib33) 2008; 117
Aljaaf (10.1016/j.compbiomed.2019.103400_bib15) 2015
Yang (10.1016/j.compbiomed.2019.103400_bib58) 2018; 76
Vivekanandan (10.1016/j.compbiomed.2019.103400_bib5) 2017; 90
Long (10.1016/j.compbiomed.2019.103400_bib54) 2015; 42
Melillo (10.1016/j.compbiomed.2019.103400_bib14) 2013; 17
Hu (10.1016/j.compbiomed.2019.103400_bib44) 2013
Alsayat (10.1016/j.compbiomed.2019.103400_bib18) 2016
Fuster (10.1016/j.compbiomed.2019.103400_bib9) 2011; 123
World Health Organization (10.1016/j.compbiomed.2019.103400_bib3)
Kadi (10.1016/j.compbiomed.2019.103400_bib42) 2017; 97
Storn (10.1016/j.compbiomed.2019.103400_bib2) 1997; 11
Wilson (10.1016/j.compbiomed.2019.103400_bib32) 1998; 97
Bansal (10.1016/j.compbiomed.2019.103400_bib10) 2014; 66
Babaoglu (10.1016/j.compbiomed.2019.103400_bib53) 2010; 37
Hartigan (10.1016/j.compbiomed.2019.103400_bib19) 1979; 28
Storn (10.1016/j.compbiomed.2019.103400_bib1) 1996
O'Donnell (10.1016/j.compbiomed.2019.103400_bib39) 2008; 61
Cowie (10.1016/j.compbiomed.2019.103400_bib41) 2016; 37
Storn (10.1016/j.compbiomed.2019.103400_bib8) 1995
Awang (10.1016/j.compbiomed.2019.103400_bib55) 2013; 5
Mohawish (10.1016/j.compbiomed.2019.103400_bib20) 2015
Lin (10.1016/j.compbiomed.2019.103400_bib28) 1994; 13
Cox (10.1016/j.compbiomed.2019.103400_bib23) 1984
References_xml – volume: 21
  start-page: 3001
  year: 2005
  end-page: 3008
  ident: bib25
  article-title: Penalized Cox regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data
  publication-title: Bioinformatics
– reference: Edition.
– year: 1995
  ident: bib8
  article-title: Differential Evolution - a Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Space
– volume: 68
  start-page: 391
  year: 2016
  end-page: 398
  ident: bib12
  article-title: Risk assessment in the prevention of cardiovascular disease in low-resource settings
  publication-title: Indian Heart J.
– volume: 68
  start-page: 163
  year: 2017
  end-page: 172
  ident: bib48
  article-title: An integrated decision support system based on ANN and Fuzzy_AHP for heart failure risk prediction
  publication-title: Expert Syst. Appl.
– volume: 46
  start-page: e1
  year: 2005
  end-page: e82
  ident: bib37
  article-title: ACC/AHA 2005 guideline update for the diagnosis and management of chronic heart failure in the adult: a report of the American college of cardiology/American heart association task force on practice guidelines (writing committee to update the 2001 guidelines for the evaluation and management of heart failure)
  publication-title: J. Am. Coll. Cardiol.
– start-page: 101
  year: 2015
  end-page: 106
  ident: bib15
  article-title: Predicting the likelihood of heart failure with a multi level risk assessment using decision tree
  publication-title: IEEE Third International Conference on Technological Advances in Electrical, Electronics and Computer Engineering
– volume: 69
  start-page: 458
  year: 2017
  end-page: 463
  ident: bib21
  article-title: Comparison of different cardiovascular risk score calculators for cardiovascular risk prediction and guideline recommended statin uses
  publication-title: Indian Heart J.
– ident: bib16
– year: 2013
  ident: bib44
  article-title: Survival analysis of cardiovascular diseases
  publication-title: All Theses and Dissertations (ETDs)
– volume: 24
  start-page: 27
  year: 2012
  end-page: 40
  ident: bib50
  article-title: Clinical decision support system: risk level prediction of heart disease using weighted fuzzy rules
  publication-title: Journal of King Saud University-Computer and Information Sciences
– volume: 17
  year: 2013
  ident: bib14
  article-title: Classification tree for risk assessment in patients suffering from congestive heart failure via long-term heart rate variability
  publication-title: IEEE Journal of Biomedical and Health Informatics
– ident: bib47
  article-title: The European cardiovascular disease risk assessment model
– start-page: 670
  year: 2015
  end-page: 673
  ident: bib7
  article-title: Short-term cardiovascular disease risk assessment: comparison of two combination approaches
  publication-title: 6th European Conference of the International Federation for Medical and Biological Engineering
– ident: bib35
  article-title: WHO/IHR Risk prediction chart
– start-page: 383
  year: 2009
  end-page: 403
  ident: bib17
  article-title: Data Mining Concepts and Techniques
– volume: 33
  start-page: 1635
  year: 2012
  end-page: 1701
  ident: bib30
  article-title: European guidelines on cardiovascular disease prevention in clinical practice (version 2012)
  publication-title: Eur. Heart J.
– volume: 123
  start-page: 1671
  year: 2011
  end-page: 1678
  ident: bib9
  article-title: Promoting global cardiovascular health: moving forward
  publication-title: Circulation
– year: 2019
  ident: bib63
  article-title: A cox-based risk prediction model for early detection of cardiovascular disease: identification of key risk factors for the development of a 10- year CVD risk prediction
  publication-title: Advances in preventive medicine
– volume: 11
  start-page: 341
  year: 1997 Dec 1
  end-page: 359
  ident: bib2
  article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Glob. Optim.
– volume: 91
  start-page: 213
  year: 2017
  end-page: 221
  ident: bib6
  article-title: An enhanced deterministic K-Means clustering algorithm for cancer subtype prediction from gene expression data
  publication-title: Comput. Biol. Med.
– volume: 97
  start-page: 1837
  year: 1998 May 1
  end-page: 1847
  ident: bib32
  article-title: Prediction of coronary heart disease using risk factor categories
  publication-title: Circulation
– volume: 66
  start-page: 580
  year: 2014
  end-page: 586
  ident: bib10
  article-title: Comparative accuracy of different risk scores in assessing cardiovascular risk in Indians: a study in patients with first myocardial infarction
  publication-title: Indian Heart J.
– year: 2017 Apr 13
  ident: bib60
  article-title: Machine Dreaming and Consciousness
– volume: 52
  start-page: 541
  year: 2011 Jun 1
  end-page: 553
  ident: bib61
  article-title: Fuzzy analytic hierarchy process: a logarithmic fuzzy preference programming methodology
  publication-title: Int. J. Approx. Reason.
– year: 2015
  ident: bib20
  article-title: Predicting Coronary Heart Disease risk using health risk assessment data
  publication-title: 17th IEEE International Conference on E-Health Networking
– volume: 34
  start-page: 187
  year: 1972
  end-page: 202
  ident: bib22
  article-title: Regression models and life‐tables
  publication-title: J. R. Stat. Soc. Ser. B
– volume: 3
  start-page: 21
  year: 2003 Dec
  ident: bib62
  article-title: Alternatives for logistic regression in cross-sectional studies: an empirical comparison of models that directly estimate the prevalence ratio
  publication-title: BMC Med. Res. Methodol.
– ident: bib3
  article-title: Key facts about cardiovascular diseases (CVDs)
– reference: Modelling Survival Data in Medical Research, third ed., By David Collett, 3
– volume: 76
  start-page: 391
  year: 2018 Apr 1
  end-page: 403
  ident: bib58
  article-title: Bi-weighted ensemble via HMM-based approaches for temporal data clustering
  publication-title: Pattern Recognit.
– volume: 13
  start-page: 398
  year: 2009
  end-page: 417
  ident: bib4
  article-title: Differential evolution algorithm with strategy adaptation for global numerical optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 28
  start-page: 100
  year: 1979
  end-page: 108
  ident: bib19
  article-title: Algorithm AS 136: a k-means clustering algorithm
  publication-title: Journal of the Royal Statistical Society. Series C (Applied Statistics)
– reference: Performance of the QRISK cardiovascular risk prediction algorithm in an independent UK sample of patients from general practice: a validation study J Hippisley-Cox,1 CCoupland,1 Y Vinogradova,1 J Robson,2 P Brindle3.
– volume: 148
  start-page: 291
  year: 2019 Jan 1
  end-page: 302
  ident: bib56
  article-title: A survey of clustering algorithms for an industrial context
  publication-title: Procedia computer science
– volume: 37
  start-page: 63
  year: 2016
  end-page: 66
  ident: bib41
  article-title: A position statement of the european society of cardiology
  publication-title: Eur. Heart J.
– start-page: 2428
  year: 2013
  end-page: 2435
  ident: bib52
  article-title: Binary particle swarm optimisation and rough set theory for dimension reduction in classification
  publication-title: IEEE Congress on Evolutionary Computation
– volume: 78
  start-page: 515
  year: 2010
  end-page: 526
  ident: bib31
  article-title: Risk assessment towards patient safety in health care facilities
  publication-title: Cirugia y cirujanos
– ident: bib43
  article-title: Cardiovascular risk charts and risk calculator
– year: 1984
  ident: bib23
  article-title: Analysis of survival data, boca raton
  publication-title: FL: Chapman & Hall/CRC
– volume: 37
  start-page: 3177
  year: 2010 Apr 1
  end-page: 3183
  ident: bib53
  article-title: A comparison of feature selection models utilizing binary particle swarm optimization and genetic algorithm in determining coronary artery disease using support vector machine
  publication-title: Expert Syst. Appl.
– volume: 16
  start-page: 385
  year: 1997
  end-page: 395
  ident: bib24
  article-title: The Lasso method for variable selection in the Cox model
  publication-title: Stat. Med.
– volume: 92
  start-page: 1752
  year: 2006 Dec 1
  end-page: 1759
  ident: bib40
  article-title: Accuracy and impact of risk assessment in the primary prevention of cardiovascular disease: a systematic review
  publication-title: Heart
– volume: 36
  start-page: 7675
  year: 2009 May 1
  end-page: 7680
  ident: bib57
  article-title: Effective diagnosis of heart disease through neural networks ensembles
  publication-title: Expert Syst. Appl.
– ident: bib27
  article-title: Cox proportional hazards regression
– volume: 13
  start-page: 2233
  year: 1994
  end-page: 2247
  ident: bib28
  article-title: Cox regression analysis of multivariate failure time data: the marginal approach
  publication-title: Stat. Med.
– start-page: 456
  year: 2005
  end-page: 468
  ident: bib51
  article-title: The medical applications of attribute weighted artificial immune system (AWAIS): diagnosis of heart and diabetes diseases
  publication-title: International Conference on Artificial Immune Systems
– volume: 6
  year: 2013
  ident: bib13
  article-title: Alternating decision tree applied to risk assessment of heart failure patients
  publication-title: Journal of Information Technologies
– volume: 64
  start-page: e139
  year: 2014
  end-page: 228
  ident: bib38
  article-title: AHA/ACC guideline for the management of patients with non–ST-elevation acute coronary syndromes: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines
  publication-title: J. Am. Coll. Cardiol.
– ident: bib45
  article-title: Cox regression analysis
– volume: 11
  start-page: 169
  year: 2018
  end-page: 178
  ident: bib11
  article-title: Analysis of parallel SVM based classification technique on healthcare using big data management in cloud storage
  publication-title: Recent Pat. Comput. Sci.
– ident: bib29
  article-title: Cox regression analysis
– volume: 117
  start-page: 743
  year: 2008 Feb 12
  end-page: 753
  ident: bib33
  article-title: General cardiovascular risk profile for use in primary care: the Framingham Heart Study
  publication-title: Circulation
– volume: 97
  start-page: 12
  year: 2017
  end-page: 32
  ident: bib42
  article-title: Knowledge discovery in cardiology: a systematic literature review
  publication-title: Int. J. Med. Inf.
– volume: 90
  start-page: 125
  year: 2017
  end-page: 136
  ident: bib5
  article-title: Optimal feature selection using a modified differential evolution algorithm and its effectiveness for prediction of heart disease
  publication-title: Comput. Biol. Med.
– volume: 105
  start-page: 3A
  year: 2010
  end-page: 9A
  ident: bib46
  article-title: Cardiovascular disease risk factors: epidemiology and risk assessment
  publication-title: Am. J. Cardiol.
– ident: bib36
  article-title: Joint British societies recommendations on the prevention of cardiovascular disease (JBS3)
– ident: bib49
  article-title: Cox regression
– volume: 5
  start-page: 159
  year: 2013 Aug
  end-page: 166
  ident: bib55
  article-title: Utilization of an artificial neural network in the prediction of heart disease
  publication-title: International Journal of Bio-science and Bio-technology
– ident: bib59
  article-title: WHO/ISH cardiovascular risk prediction charts
– year: 2016
  ident: bib18
  article-title: Efficient genetic K-means clustering for health care knowledge discovery
  publication-title: IEEE 14th International Conference on Software Engineering Research, Management and Applications (SERA)
– volume: 42
  start-page: 8221
  year: 2015 Nov 30
  end-page: 8231
  ident: bib54
  article-title: A highly accurate firefly based algorithm for heart disease prediction
  publication-title: Expert Syst. Appl.
– start-page: 519
  year: 1996
  end-page: 523
  ident: bib1
  article-title: On the Usage of Differential Evolution for Function Optimization
– volume: 61
  start-page: 299
  year: 2008 Jan 1
  end-page: 310
  ident: bib39
  article-title: Cardiovascular risk factors. Insights from framingham heart study
  publication-title: Revista Espanola de Cardiologia (English Edition)
– volume: 34
  start-page: 187
  issue: 2
  year: 1972
  ident: 10.1016/j.compbiomed.2019.103400_bib22
  article-title: Regression models and life‐tables
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.1111/j.2517-6161.1972.tb00899.x
– start-page: 670
  year: 2015
  ident: 10.1016/j.compbiomed.2019.103400_bib7
  article-title: Short-term cardiovascular disease risk assessment: comparison of two combination approaches
– start-page: 383
  year: 2009
  ident: 10.1016/j.compbiomed.2019.103400_bib17
– ident: 10.1016/j.compbiomed.2019.103400_bib34
– volume: 13
  start-page: 398
  issue: 2
  year: 2009
  ident: 10.1016/j.compbiomed.2019.103400_bib4
  article-title: Differential evolution algorithm with strategy adaptation for global numerical optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2008.927706
– volume: 105
  start-page: 3A
  issue: 1
  year: 2010
  ident: 10.1016/j.compbiomed.2019.103400_bib46
  article-title: Cardiovascular disease risk factors: epidemiology and risk assessment
  publication-title: Am. J. Cardiol.
  doi: 10.1016/j.amjcard.2009.10.007
– ident: 10.1016/j.compbiomed.2019.103400_bib3
– volume: 33
  start-page: 1635
  year: 2012
  ident: 10.1016/j.compbiomed.2019.103400_bib30
  article-title: European guidelines on cardiovascular disease prevention in clinical practice (version 2012)
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehs092
– volume: 64
  start-page: e139
  issue: 24
  year: 2014
  ident: 10.1016/j.compbiomed.2019.103400_bib38
  article-title: AHA/ACC guideline for the management of patients with non–ST-elevation acute coronary syndromes: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2014.09.017
– volume: 76
  start-page: 391
  year: 2018
  ident: 10.1016/j.compbiomed.2019.103400_bib58
  article-title: Bi-weighted ensemble via HMM-based approaches for temporal data clustering
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.11.022
– year: 2016
  ident: 10.1016/j.compbiomed.2019.103400_bib18
  article-title: Efficient genetic K-means clustering for health care knowledge discovery
– volume: 69
  start-page: 458
  issue: 4
  year: 2017
  ident: 10.1016/j.compbiomed.2019.103400_bib21
  article-title: Comparison of different cardiovascular risk score calculators for cardiovascular risk prediction and guideline recommended statin uses
  publication-title: Indian Heart J.
  doi: 10.1016/j.ihj.2017.01.015
– volume: 97
  start-page: 1837
  issue: 18
  year: 1998
  ident: 10.1016/j.compbiomed.2019.103400_bib32
  article-title: Prediction of coronary heart disease using risk factor categories
  publication-title: Circulation
  doi: 10.1161/01.CIR.97.18.1837
– volume: 6
  issue: 2
  year: 2013
  ident: 10.1016/j.compbiomed.2019.103400_bib13
  article-title: Alternating decision tree applied to risk assessment of heart failure patients
  publication-title: Journal of Information Technologies
– start-page: 2428
  year: 2013
  ident: 10.1016/j.compbiomed.2019.103400_bib52
  article-title: Binary particle swarm optimisation and rough set theory for dimension reduction in classification
– ident: 10.1016/j.compbiomed.2019.103400_bib16
– volume: 28
  start-page: 100
  issue: 1
  year: 1979
  ident: 10.1016/j.compbiomed.2019.103400_bib19
  article-title: Algorithm AS 136: a k-means clustering algorithm
  publication-title: Journal of the Royal Statistical Society. Series C (Applied Statistics)
– year: 1984
  ident: 10.1016/j.compbiomed.2019.103400_bib23
  article-title: Analysis of survival data, boca raton
  publication-title: FL: Chapman & Hall/CRC
– volume: 24
  start-page: 27
  issue: 1
  year: 2012
  ident: 10.1016/j.compbiomed.2019.103400_bib50
  article-title: Clinical decision support system: risk level prediction of heart disease using weighted fuzzy rules
  publication-title: Journal of King Saud University-Computer and Information Sciences
  doi: 10.1016/j.jksuci.2011.09.002
– start-page: 519
  year: 1996
  ident: 10.1016/j.compbiomed.2019.103400_bib1
– volume: 11
  start-page: 169
  issue: 3
  year: 2018
  ident: 10.1016/j.compbiomed.2019.103400_bib11
  article-title: Analysis of parallel SVM based classification technique on healthcare using big data management in cloud storage
  publication-title: Recent Pat. Comput. Sci.
  doi: 10.2174/2213275911666180830145249
– volume: 97
  start-page: 12
  year: 2017
  ident: 10.1016/j.compbiomed.2019.103400_bib42
  article-title: Knowledge discovery in cardiology: a systematic literature review
  publication-title: Int. J. Med. Inf.
  doi: 10.1016/j.ijmedinf.2016.09.005
– year: 2015
  ident: 10.1016/j.compbiomed.2019.103400_bib20
  article-title: Predicting Coronary Heart Disease risk using health risk assessment data
– ident: 10.1016/j.compbiomed.2019.103400_bib26
– volume: 52
  start-page: 541
  issue: 4
  year: 2011
  ident: 10.1016/j.compbiomed.2019.103400_bib61
  article-title: Fuzzy analytic hierarchy process: a logarithmic fuzzy preference programming methodology
  publication-title: Int. J. Approx. Reason.
  doi: 10.1016/j.ijar.2010.12.004
– year: 1995
  ident: 10.1016/j.compbiomed.2019.103400_bib8
– volume: 36
  start-page: 7675
  issue: 4
  year: 2009
  ident: 10.1016/j.compbiomed.2019.103400_bib57
  article-title: Effective diagnosis of heart disease through neural networks ensembles
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2008.09.013
– volume: 68
  start-page: 163
  year: 2017
  ident: 10.1016/j.compbiomed.2019.103400_bib48
  article-title: An integrated decision support system based on ANN and Fuzzy_AHP for heart failure risk prediction
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.10.020
– volume: 5
  start-page: 159
  issue: 4
  year: 2013
  ident: 10.1016/j.compbiomed.2019.103400_bib55
  article-title: Utilization of an artificial neural network in the prediction of heart disease
  publication-title: International Journal of Bio-science and Bio-technology
– volume: 13
  start-page: 2233
  issue: 21
  year: 1994
  ident: 10.1016/j.compbiomed.2019.103400_bib28
  article-title: Cox regression analysis of multivariate failure time data: the marginal approach
  publication-title: Stat. Med.
  doi: 10.1002/sim.4780132105
– volume: 66
  start-page: 580
  issue: 6
  year: 2014
  ident: 10.1016/j.compbiomed.2019.103400_bib10
  article-title: Comparative accuracy of different risk scores in assessing cardiovascular risk in Indians: a study in patients with first myocardial infarction
  publication-title: Indian Heart J.
  doi: 10.1016/j.ihj.2014.10.399
– volume: 90
  start-page: 125
  year: 2017
  ident: 10.1016/j.compbiomed.2019.103400_bib5
  article-title: Optimal feature selection using a modified differential evolution algorithm and its effectiveness for prediction of heart disease
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.09.011
– volume: 78
  start-page: 515
  issue: 6
  year: 2010
  ident: 10.1016/j.compbiomed.2019.103400_bib31
  article-title: Risk assessment towards patient safety in health care facilities
  publication-title: Cirugia y cirujanos
– start-page: 101
  year: 2015
  ident: 10.1016/j.compbiomed.2019.103400_bib15
  article-title: Predicting the likelihood of heart failure with a multi level risk assessment using decision tree
– volume: 21
  start-page: 3001
  year: 2005
  ident: 10.1016/j.compbiomed.2019.103400_bib25
  article-title: Penalized Cox regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti422
– volume: 3
  start-page: 21
  issue: 1
  year: 2003
  ident: 10.1016/j.compbiomed.2019.103400_bib62
  article-title: Alternatives for logistic regression in cross-sectional studies: an empirical comparison of models that directly estimate the prevalence ratio
  publication-title: BMC Med. Res. Methodol.
  doi: 10.1186/1471-2288-3-21
– year: 2013
  ident: 10.1016/j.compbiomed.2019.103400_bib44
  article-title: Survival analysis of cardiovascular diseases
  publication-title: All Theses and Dissertations (ETDs)
– year: 2019
  ident: 10.1016/j.compbiomed.2019.103400_bib63
  article-title: A cox-based risk prediction model for early detection of cardiovascular disease: identification of key risk factors for the development of a 10- year CVD risk prediction
  publication-title: Advances in preventive medicine
  doi: 10.1155/2019/8392348
– volume: 17
  issue: 3
  year: 2013
  ident: 10.1016/j.compbiomed.2019.103400_bib14
  article-title: Classification tree for risk assessment in patients suffering from congestive heart failure via long-term heart rate variability
  publication-title: IEEE Journal of Biomedical and Health Informatics
  doi: 10.1109/JBHI.2013.2244902
– ident: 10.1016/j.compbiomed.2019.103400_bib47
– volume: 92
  start-page: 1752
  issue: 12
  year: 2006
  ident: 10.1016/j.compbiomed.2019.103400_bib40
  article-title: Accuracy and impact of risk assessment in the primary prevention of cardiovascular disease: a systematic review
  publication-title: Heart
  doi: 10.1136/hrt.2006.087932
– volume: 37
  start-page: 3177
  issue: 4
  year: 2010
  ident: 10.1016/j.compbiomed.2019.103400_bib53
  article-title: A comparison of feature selection models utilizing binary particle swarm optimization and genetic algorithm in determining coronary artery disease using support vector machine
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.09.064
– year: 2017
  ident: 10.1016/j.compbiomed.2019.103400_bib60
– volume: 61
  start-page: 299
  issue: 3
  year: 2008
  ident: 10.1016/j.compbiomed.2019.103400_bib39
  article-title: Cardiovascular risk factors. Insights from framingham heart study
  publication-title: Revista Espanola de Cardiologia (English Edition)
  doi: 10.1016/S1885-5857(08)60118-8
– start-page: 456
  year: 2005
  ident: 10.1016/j.compbiomed.2019.103400_bib51
  article-title: The medical applications of attribute weighted artificial immune system (AWAIS): diagnosis of heart and diabetes diseases
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  ident: 10.1016/j.compbiomed.2019.103400_bib2
  article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1008202821328
– volume: 91
  start-page: 213
  year: 2017
  ident: 10.1016/j.compbiomed.2019.103400_bib6
  article-title: An enhanced deterministic K-Means clustering algorithm for cancer subtype prediction from gene expression data
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.10.014
– volume: 117
  start-page: 743
  issue: 6
  year: 2008
  ident: 10.1016/j.compbiomed.2019.103400_bib33
  article-title: General cardiovascular risk profile for use in primary care: the Framingham Heart Study
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.107.699579
– volume: 123
  start-page: 1671
  issue: 15
  year: 2011
  ident: 10.1016/j.compbiomed.2019.103400_bib9
  article-title: Promoting global cardiovascular health: moving forward
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.110.009522
– volume: 16
  start-page: 385
  year: 1997
  ident: 10.1016/j.compbiomed.2019.103400_bib24
  article-title: The Lasso method for variable selection in the Cox model
  publication-title: Stat. Med.
  doi: 10.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-3
– volume: 148
  start-page: 291
  year: 2019
  ident: 10.1016/j.compbiomed.2019.103400_bib56
  article-title: A survey of clustering algorithms for an industrial context
  publication-title: Procedia computer science
  doi: 10.1016/j.procs.2019.01.022
– volume: 37
  start-page: 63
  issue: 1
  year: 2016
  ident: 10.1016/j.compbiomed.2019.103400_bib41
  article-title: A position statement of the european society of cardiology
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehv416
– volume: 46
  start-page: e1
  issue: 6
  year: 2005
  ident: 10.1016/j.compbiomed.2019.103400_bib37
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2005.08.022
– volume: 42
  start-page: 8221
  issue: 21
  year: 2015
  ident: 10.1016/j.compbiomed.2019.103400_bib54
  article-title: A highly accurate firefly based algorithm for heart disease prediction
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.06.024
– volume: 68
  start-page: 391
  issue: 3
  year: 2016
  ident: 10.1016/j.compbiomed.2019.103400_bib12
  article-title: Risk assessment in the prevention of cardiovascular disease in low-resource settings
  publication-title: Indian Heart J.
  doi: 10.1016/j.ihj.2015.07.004
SSID ssj0004030
Score 2.2808745
Snippet Cardiovascular disease (CVD) refers to a state that indicates narrowed or blocked blood vessels, and it can lead to cardiac arrest, chest pain (angina) or...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 103400
SubjectTerms Accuracy
Algorithms
Angina
Blood vessels
Cardiovascular disease
Cardiovascular diseases
Clinical decision making
Cluster analysis
Clustering
Confidence intervals
Cox regression
Decision making
Disease
Evaluation
Evolutionary algorithms
Evolutionary computation
Fuzzy sets
Heart
Heart diseases
K-means clustering
Modified differential evolution
Optimization
Performance evaluation
Regression analysis
Risk assessment
Survival analysis
Vector quantization
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dixMxEA9nD8SXw2-rp0TwNbgfSbZBRGq9owhXpHhwbyFfe6f2tndeC-pf70yTbBFU-rhsZtlNZmd-k_xmhpBXbatK44Vnvmg546IyzILfZU1hTS2NlabFDf2TmZye8o9n4myPzHIuDNIqs03cGGq_dLhH_hoJyxDJCS7fXV0z7BqFp6u5hYZJrRX8202JsVtkv8LKWAOy__5o9mm-zZQs6piUAtaHQ3CUuD2R8YUk7pj0jpQvhfnoHDPf_u6w_gVIN47p-C45SIiSjqMK3CN7obtPbp-kM_MH5NeYTn9iXhadf7n5Rsd9KU6KfdAWFFArnfzBSqUf4qkN3fAJ6GT5g87DeSTMdjSXMaGm89TQil0GcHfULdZYcwEFzOIcZm51cfmQnB4ffZ5MWeq4wBw4_hWzhWohYgVIYSrnuAqNlNZZa0svrbdNgVcj25Q8lKI1oxEvvaotQLhWiNqX9SMy6JZdeEIoOEfRWO689wDS2kqB7SiUrwOHgXXlhqTJ06pdKkeOXTEWOvPOvurtgmhcEB0XZEjKXvIqluTYQUblldM55RSMpAa_sYPsm142wZIIN3aUPsyKopN5uNFbZR6Sl_1t-LHxtMZ0YbmGMdVIKmyjDGMeRwXrP7eGuLaUonn6_4c_I3fwTSL38JAMVt_X4TlgqJV9kX6M325-G_c
  priority: 102
  providerName: ProQuest
Title A Hybrid Risk Assessment Model for Cardiovascular Disease Using Cox Regression Analysis and a 2-means clustering algorithm
URI https://www.clinicalkey.com/#!/content/1-s2.0-S001048251930277X
https://dx.doi.org/10.1016/j.compbiomed.2019.103400
https://www.ncbi.nlm.nih.gov/pubmed/31491657
https://www.proquest.com/docview/2307690546
https://www.proquest.com/docview/2286945166
Volume 113
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AKRWK
  dateStart: 19700101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (Proquest)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 7X7
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20250902
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 8FG
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBelhbKXsa7rlq0rKuzVrT9kyWJPWdYs62gYoYW8CcmSu2ypU9oE1j7sb9-dJbsUOgjsRca2DmR93J2s3--OkA9VJRNtcxvZuGIRy1MdGbC7kYiNzrg2XFf4Q_9szEcX7HSaTzfIoOXCIKwy6H6v0xttHZ4ch948vp7NkOMLW4mGeYlnb2KKDHYmMIvB0Z8HmAeLM09DAX2DtQOax2O8ELbtae4I8pLIQGfIdXvaRP3LBW1M0fAFeR58SNr3zdwhG65-SbbPwin5Lrnv09EdMrHoZHb7i_a74JsUM5_NKfipdPAIh0o_-3Ma2iAI6GDxm07cpYfI1rQNXEJ1bammaXTlwMDRcr7CKAsooOeXi5vZ8sfVK3IxPDkfjKKQYyEqwdQvIxPLCvao4ETotCyZdIJzUxpjEsuNNSLGu8KIhLkkr3RRsMTKzIDTVuV5ZpNsj2zWi9q9IRTMYS4MK6214JZVqQRtEUubOQYVs7TsEdF2qypDAHLMgzFXLdLsp3oYEIUDovyA9EjSSV77IBxryMh25FRLMgW1qMBSrCH7sZN9NBnXlN5vJ4oKCuFWId6eS_CPeY8cdq9hKeP5jK7dYgV10oJLTJwMdV77CdZ9bgY72YTn4u1_Ne0deYZ3Hoy4TzaXNyv3HpyqpTloVg2UYiqgLIZfDshW_-u30Riun07G3yd_AWbJJag
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGJgEvaNxGYYCR4DEiie2kFpqm0m3q2FqhapP2ZuzYGZcuHbTVLj9uv41zaicVEqC-7DGKT5Tk2Odif985hLwtS5loK2xk45JHXKQ6MuB3ozw2mmXaZLrEDf3-IOsd808n4mSF3NRcGIRV1jZxbqjtuMA98vcIWIZMTvBs-_xnhF2j8HS1bqGhQ2sFuzUvMRaIHQfu6gJSuMnW_g7o-12a7u0edXtR6DIQFeDsppGJZQlZGrhRnRYFly7PMlMYYxKbGWvyGK_aJk-4S0Sp222eWMkMhC2lEMwmDJ57h6xxxiUkf2sfdwefhwtmZsw8CQasHYdkLGCJPMIMQeOeZI8QM4n8d45Mu787yH8FwHNHuLdOHoQIlnb8lHtIVlz1iNzthzP6x-S6Q3tXyAOjw2-TH7TTlP6k2HdtRCFKpt0_ULB0x58S0Tl-gXbHl3ToTj1At6J12RSqK0s1TaMzB-6VFqMZ1nhAAT06BU1Nv549Ice38u-fktVqXLlnhIIzFrnhhbUWgsIylWCrYmmZ4zCQpUWL5PVvVUUof45dOEaqxrl9VwuFKFSI8gppkaSRPPclQJaQkbXmVE1xBaOswE8tIfuhkQ1hkA9vlpTerCeKCuZoohaLp0XeNLfBkODpkK7ceAZj0nYmsW0zjNnwE6z5XAZ5dJKJ_Pn_H_6a3Osd9Q_V4f7g4AW5j2_lcY-bZHX6a-ZeQvw2Na_CIqHky22vy9-kUVll
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGkCZeEN-UDTASPEZL4q9aaEJVS9UxNqGJSX0zduyMjy4da6sx_jT-Ou7qJBUSoL7sMYrPSnz2ffh-d0fIy7LUmfXCJz4tecJFbhMHejdRqbNMWidtiRf6h0dydMLfjcV4g_xqcmEQVtnIxKWg9tMC78h3EbAMnpzgcresYREfBsM3598T7CCFkdamnUbcIgfh6hLct9ne_gB4_SrPh28_9kdJ3WEgKUDRzROX6hI8NFChNi8KroOS0hXOucxL551K8anrVMZDJkrb7fLMa-bAZCmFYD5jMO8NclMxphFOqMZqlZOZspj-AnKOgxtWo4gitgzh4jG9HsFlGjPfOebY_V01_sv0XarA4R1yu7ZdaS9utrtkI1T3yNZhHZ2_T3726OgKM8Do8ZfZN9pri35S7Lg2oWAf0_4f-Fc6iPEhukQu0P70Bz0OpxGaW9GmYAq1laeW5slZAMVKi8kCqzsggZ2cAl_mn88ekJNrWfmHZLOaVuExoaCGhXK88N6DOVjmGqRUqj0LHAayvOgQ1SyrKerC59h_Y2IahNtXs2KIQYaYyJAOyVrK81j8Yw0a3XDONMmtII4NaKg1aF-3tLUBFA2bNal3mo1iakE0M6tj0yEv2tcgQjAuZKswXcCYvCs1NmyGMY_iBmt_l4EHnUmhnvx_8udkC06jeb9_dLBNbuFHRcDjDtmcXyzCUzDc5u7Z8oRQ8um6j-RvMlhW_w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hybrid+Risk+Assessment+Model+for+Cardiovascular+Disease+Using+Cox+Regression+Analysis+and+a+2-means+clustering+algorithm&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Vivekanandan%2C+T.&rft.au=Narayanan%2C+Swathi+Jamjala&rft.date=2019-10-01&rft.issn=0010-4825&rft.volume=113&rft.spage=103400&rft_id=info:doi/10.1016%2Fj.compbiomed.2019.103400&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compbiomed_2019_103400
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4825&client=summon