A Hybrid Risk Assessment Model for Cardiovascular Disease Using Cox Regression Analysis and a 2-means clustering algorithm
Cardiovascular disease (CVD) refers to a state that indicates narrowed or blocked blood vessels, and it can lead to cardiac arrest, chest pain (angina) or stroke. CVD is a leading cause of silent massive heart attacks and is a major threat to life. The mere prediction of the presence or absence of C...
        Saved in:
      
    
          | Published in | Computers in biology and medicine Vol. 113; p. 103400 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          Elsevier Ltd
    
        01.10.2019
     Elsevier Limited  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0010-4825 1879-0534 1879-0534  | 
| DOI | 10.1016/j.compbiomed.2019.103400 | 
Cover
| Abstract | Cardiovascular disease (CVD) refers to a state that indicates narrowed or blocked blood vessels, and it can lead to cardiac arrest, chest pain (angina) or stroke. CVD is a leading cause of silent massive heart attacks and is a major threat to life. The mere prediction of the presence or absence of CVD alone is inefficient in current scenarios. Rather, a major need has arisen for the prediction of CVD, the acquisition of knowledge about CVD and the assessment of the likelihood that an individual will experience cardiac arrest. The objective of establishing an individual CVD risk assessment has been attained in this paper using a hybrid model. The CVD of an individual is due to various controllable and uncontrollable factors. The computation and analysis of all these factors are difficult and time consuming. Only a few attributes are identified to be the most critical. This optimization of the critical features is performed using a modified Differential Evolution (DE) algorithm. The identified critical factors are sufficient to predict the presence/absence of CVD. In this paper, these identified critical features of individuals are considered using Cox regression analysis that evaluates the prevalence rates of the critical attributes. These individual prevalence rates together predict the cumulative prevalence ratios of the respective individuals. This cumulative prevalence ratio of an individual, along with the class attribute, is processed using the 2-means clustering technique to determine the risk of a particular individual developing CVD. The evaluation of the risk assessment model is carried out in this paper by calculating the prediction accuracy of the Cox regression analysis and the Davies–Bouldin (DB) index for 2-means clustering. The Cox regression analysis results in a 91% CVD prediction accuracy using the critical attributes and is comparatively higher than that of other models. The DB index of 2-means clustering with specific initial means for clusters of individuals with CVD is 0.282 and that for clusters of individuals without CVD is 0.2836, which are comparatively lower than those of the traditional k-means clustering algorithm.
[Display omitted]
•Cardiovascular Disease (CVD) is a major threat to life and mere prediction of CVD alone is inefficient.•Prediction of CVD along with risk assessment uncovers the risk levels of individuals and is attained through a hybrid model.•Cox-regression analysis evaluates the Prevalence ratio of the critical attributes derived through modified DE algorithm.•2-means clustering technique is used to determine the risk of a particular individual developing CVD.•Performance evaluation of the hybrid model has been calculated to prove the efficiency and redundancy of the model. | 
    
|---|---|
| AbstractList | Cardiovascular disease (CVD) refers to a state that indicates narrowed or blocked blood vessels, and it can lead to cardiac arrest, chest pain (angina) or stroke. CVD is a leading cause of silent massive heart attacks and is a major threat to life. The mere prediction of the presence or absence of CVD alone is inefficient in current scenarios. Rather, a major need has arisen for the prediction of CVD, the acquisition of knowledge about CVD and the assessment of the likelihood that an individual will experience cardiac arrest. The objective of establishing an individual CVD risk assessment has been attained in this paper using a hybrid model. The CVD of an individual is due to various controllable and uncontrollable factors. The computation and analysis of all these factors are difficult and time consuming. Only a few attributes are identified to be the most critical. This optimization of the critical features is performed using a modified Differential Evolution (DE) algorithm. The identified critical factors are sufficient to predict the presence/absence of CVD. In this paper, these identified critical features of individuals are considered using Cox regression analysis that evaluates the prevalence rates of the critical attributes. These individual prevalence rates together predict the cumulative prevalence ratios of the respective individuals. This cumulative prevalence ratio of an individual, along with the class attribute, is processed using the 2-means clustering technique to determine the risk of a particular individual developing CVD. The evaluation of the risk assessment model is carried out in this paper by calculating the prediction accuracy of the Cox regression analysis and the Davies-Bouldin (DB) index for 2-means clustering. The Cox regression analysis results in a 91% CVD prediction accuracy using the critical attributes and is comparatively higher than that of other models. The DB index of 2-means clustering with specific initial means for clusters of individuals with CVD is 0.282 and that for clusters of individuals without CVD is 0.2836, which are comparatively lower than those of the traditional k-means clustering algorithm. Cardiovascular disease (CVD) refers to a state that indicates narrowed or blocked blood vessels, and it can lead to cardiac arrest, chest pain (angina) or stroke. CVD is a leading cause of silent massive heart attacks and is a major threat to life. The mere prediction of the presence or absence of CVD alone is inefficient in current scenarios. Rather, a major need has arisen for the prediction of CVD, the acquisition of knowledge about CVD and the assessment of the likelihood that an individual will experience cardiac arrest. The objective of establishing an individual CVD risk assessment has been attained in this paper using a hybrid model. The CVD of an individual is due to various controllable and uncontrollable factors. The computation and analysis of all these factors are difficult and time consuming. Only a few attributes are identified to be the most critical. This optimization of the critical features is performed using a modified Differential Evolution (DE) algorithm. The identified critical factors are sufficient to predict the presence/absence of CVD. In this paper, these identified critical features of individuals are considered using Cox regression analysis that evaluates the prevalence rates of the critical attributes. These individual prevalence rates together predict the cumulative prevalence ratios of the respective individuals. This cumulative prevalence ratio of an individual, along with the class attribute, is processed using the 2-means clustering technique to determine the risk of a particular individual developing CVD. The evaluation of the risk assessment model is carried out in this paper by calculating the prediction accuracy of the Cox regression analysis and the Davies–Bouldin (DB) index for 2-means clustering. The Cox regression analysis results in a 91% CVD prediction accuracy using the critical attributes and is comparatively higher than that of other models. The DB index of 2-means clustering with specific initial means for clusters of individuals with CVD is 0.282 and that for clusters of individuals without CVD is 0.2836, which are comparatively lower than those of the traditional k-means clustering algorithm. [Display omitted] •Cardiovascular Disease (CVD) is a major threat to life and mere prediction of CVD alone is inefficient.•Prediction of CVD along with risk assessment uncovers the risk levels of individuals and is attained through a hybrid model.•Cox-regression analysis evaluates the Prevalence ratio of the critical attributes derived through modified DE algorithm.•2-means clustering technique is used to determine the risk of a particular individual developing CVD.•Performance evaluation of the hybrid model has been calculated to prove the efficiency and redundancy of the model. Cardiovascular disease (CVD) refers to a state that indicates narrowed or blocked blood vessels, and it can lead to cardiac arrest, chest pain (angina) or stroke. CVD is a leading cause of silent massive heart attacks and is a major threat to life. The mere prediction of the presence or absence of CVD alone is inefficient in current scenarios. Rather, a major need has arisen for the prediction of CVD, the acquisition of knowledge about CVD and the assessment of the likelihood that an individual will experience cardiac arrest. The objective of establishing an individual CVD risk assessment has been attained in this paper using a hybrid model. The CVD of an individual is due to various controllable and uncontrollable factors. The computation and analysis of all these factors are difficult and time consuming. Only a few attributes are identified to be the most critical. This optimization of the critical features is performed using a modified Differential Evolution (DE) algorithm. The identified critical factors are sufficient to predict the presence/absence of CVD. In this paper, these identified critical features of individuals are considered using Cox regression analysis that evaluates the prevalence rates of the critical attributes. These individual prevalence rates together predict the cumulative prevalence ratios of the respective individuals. This cumulative prevalence ratio of an individual, along with the class attribute, is processed using the 2-means clustering technique to determine the risk of a particular individual developing CVD. The evaluation of the risk assessment model is carried out in this paper by calculating the prediction accuracy of the Cox regression analysis and the Davies-Bouldin (DB) index for 2-means clustering. The Cox regression analysis results in a 91% CVD prediction accuracy using the critical attributes and is comparatively higher than that of other models. The DB index of 2-means clustering with specific initial means for clusters of individuals with CVD is 0.282 and that for clusters of individuals without CVD is 0.2836, which are comparatively lower than those of the traditional k-means clustering algorithm.Cardiovascular disease (CVD) refers to a state that indicates narrowed or blocked blood vessels, and it can lead to cardiac arrest, chest pain (angina) or stroke. CVD is a leading cause of silent massive heart attacks and is a major threat to life. The mere prediction of the presence or absence of CVD alone is inefficient in current scenarios. Rather, a major need has arisen for the prediction of CVD, the acquisition of knowledge about CVD and the assessment of the likelihood that an individual will experience cardiac arrest. The objective of establishing an individual CVD risk assessment has been attained in this paper using a hybrid model. The CVD of an individual is due to various controllable and uncontrollable factors. The computation and analysis of all these factors are difficult and time consuming. Only a few attributes are identified to be the most critical. This optimization of the critical features is performed using a modified Differential Evolution (DE) algorithm. The identified critical factors are sufficient to predict the presence/absence of CVD. In this paper, these identified critical features of individuals are considered using Cox regression analysis that evaluates the prevalence rates of the critical attributes. These individual prevalence rates together predict the cumulative prevalence ratios of the respective individuals. This cumulative prevalence ratio of an individual, along with the class attribute, is processed using the 2-means clustering technique to determine the risk of a particular individual developing CVD. The evaluation of the risk assessment model is carried out in this paper by calculating the prediction accuracy of the Cox regression analysis and the Davies-Bouldin (DB) index for 2-means clustering. The Cox regression analysis results in a 91% CVD prediction accuracy using the critical attributes and is comparatively higher than that of other models. The DB index of 2-means clustering with specific initial means for clusters of individuals with CVD is 0.282 and that for clusters of individuals without CVD is 0.2836, which are comparatively lower than those of the traditional k-means clustering algorithm.  | 
    
| ArticleNumber | 103400 | 
    
| Author | Narayanan, Swathi Jamjala Vivekanandan, T.  | 
    
| Author_xml | – sequence: 1 givenname: T. surname: Vivekanandan fullname: Vivekanandan, T. email: stvanand@gmail.com, stvanand@sitams.org organization: School of Computing Science and Engineering, VIT University, Vellore, 632014, Tamil Nadu, India – sequence: 2 givenname: Swathi Jamjala surname: Narayanan fullname: Narayanan, Swathi Jamjala email: swathi.jns@gmail.com organization: School of Computing Science and Engineering, VIT University, Vellore, 632014, Tamil Nadu, India  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31491657$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNkV1rFDEUhoNU7Lb6FyTgjTezJvM9N-K6VitUhGKvQz7OrNlmkjVnprj--mbYFmGv9iokPO8TznkvyJkPHgihnC054_WH7VKHYadsGMAsc8a79FyUjL0gC942XcaqojwjC8Y4y8o2r87JBeKWMVaygr0i5wUvO15XzYL8W9HrvYrW0FuL93SFCIgD-JH-CAYc7UOkaxmNDQ8S9eRkpF8sgkSgd2j9hq7DX3oLm5hiNni68tLt0SKV3lBJ82wA6ZFqN-EIcQ5ItwnRjr-H1-RlLx3Cm6fzktx9vfq1vs5ufn77vl7dZLri-Zgp1vVt0fCmkrnWZQdNXSutlOKmVkY1bL61quEl8KqXbVty0xUqz-u-qgrDi0vy_uDdxfBnAhzFYFGDc9JDmFDkeVt3ZcXrOqHvjtBtmGIaKVEFa-qOVeVMvX2iJpUKELtoBxn34nmrCfh4AHQMiBF6oe0ox7SfMUrrBGdirlFsxf8axVyjONSYBO2R4PmPE6KfD1FIK32wEAVqC16DsRH0KEywp0g-HUm0s95q6e5hf5riESCW02g | 
    
| CitedBy_id | crossref_primary_10_1080_21681163_2022_2156927 crossref_primary_10_1016_j_matpr_2021_03_225 crossref_primary_10_1016_j_imu_2020_100300 crossref_primary_10_1088_1742_6596_1538_1_012042 crossref_primary_10_1016_j_bspc_2021_103260 crossref_primary_10_1186_s12890_021_01549_9 crossref_primary_10_3233_JIFS_213486 crossref_primary_10_3390_cancers16152740 crossref_primary_10_1016_j_bspc_2023_105644 crossref_primary_10_1186_s12931_024_02704_6 crossref_primary_10_1002_iub_2819  | 
    
| Cites_doi | 10.1111/j.2517-6161.1972.tb00899.x 10.1109/TEVC.2008.927706 10.1016/j.amjcard.2009.10.007 10.1093/eurheartj/ehs092 10.1016/j.jacc.2014.09.017 10.1016/j.patcog.2017.11.022 10.1016/j.ihj.2017.01.015 10.1161/01.CIR.97.18.1837 10.1016/j.jksuci.2011.09.002 10.2174/2213275911666180830145249 10.1016/j.ijmedinf.2016.09.005 10.1016/j.ijar.2010.12.004 10.1016/j.eswa.2008.09.013 10.1016/j.eswa.2016.10.020 10.1002/sim.4780132105 10.1016/j.ihj.2014.10.399 10.1016/j.compbiomed.2017.09.011 10.1093/bioinformatics/bti422 10.1186/1471-2288-3-21 10.1155/2019/8392348 10.1109/JBHI.2013.2244902 10.1136/hrt.2006.087932 10.1016/j.eswa.2009.09.064 10.1016/S1885-5857(08)60118-8 10.1023/A:1008202821328 10.1016/j.compbiomed.2017.10.014 10.1161/CIRCULATIONAHA.107.699579 10.1161/CIRCULATIONAHA.110.009522 10.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-3 10.1016/j.procs.2019.01.022 10.1093/eurheartj/ehv416 10.1016/j.jacc.2005.08.022 10.1016/j.eswa.2015.06.024 10.1016/j.ihj.2015.07.004  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2019 Copyright © 2019. Published by Elsevier Ltd. Copyright Elsevier Limited Oct 2019  | 
    
| Copyright_xml | – notice: 2019 – notice: Copyright © 2019. Published by Elsevier Ltd. – notice: Copyright Elsevier Limited Oct 2019  | 
    
| DBID | AAYXX CITATION NPM 3V. 7RV 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ JQ2 K7- K9. KB0 LK8 M0N M0S M1P M2O M7P M7Z MBDVC NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8  | 
    
| DOI | 10.1016/j.compbiomed.2019.103400 | 
    
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep SciTech Premium Collection (Proquest) ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Computing Database Health & Medical Collection (Alumni Edition) Medical Database ProQuest Research library ProQuest Biological Science Database Biochemistry Abstracts 1 Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef PubMed Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | PubMed Research Library Prep MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine | 
    
| EISSN | 1879-0534 | 
    
| ExternalDocumentID | 31491657 10_1016_j_compbiomed_2019_103400 S001048251930277X  | 
    
| Genre | Journal Article | 
    
| GroupedDBID | --- --K --M --Z -~X .1- .55 .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 77I 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABOCM ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACLOT ACNNM ACPRK ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ARAPS ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EFLBG EJD EMOBN EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HLZ HMCUK HMK HMO HVGLF HZ~ IHE J1W K6V K7- KOM LK8 LX9 M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q38 R2- ROL RPZ RXW SAE SBC SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ SV3 T5K TAE UAP UKHRP WOW WUQ X7M XPP Z5R ZGI ~G- ~HD 3V. AACTN AAIAV ABLVK ABYKQ AFKWA AHPSJ AJBFU AJOXV AMFUW LCYCR M0N RIG AAYXX CITATION PUEGO AFCTW AGCQF AGRNS ALIPV NPM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M7Z MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 7X8  | 
    
| ID | FETCH-LOGICAL-c512t-b09f837175a2cc49e766bcbbb1d6bdb706bcb8b714e15fa8841d93b226f553d13 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0010-4825 1879-0534  | 
    
| IngestDate | Thu Oct 02 19:27:20 EDT 2025 Tue Oct 07 06:13:15 EDT 2025 Mon Jul 21 06:07:35 EDT 2025 Wed Oct 01 04:07:29 EDT 2025 Thu Apr 24 23:07:43 EDT 2025 Fri Feb 23 02:49:33 EST 2024 Tue Oct 14 19:33:08 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Cardiovascular disease Modified differential evolution Cox regression Risk assessment K-means clustering  | 
    
| Language | English | 
    
| License | Copyright © 2019. Published by Elsevier Ltd. | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c512t-b09f837175a2cc49e766bcbbb1d6bdb706bcb8b714e15fa8841d93b226f553d13 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| PMID | 31491657 | 
    
| PQID | 2307690546 | 
    
| PQPubID | 1226355 | 
    
| ParticipantIDs | proquest_miscellaneous_2286945166 proquest_journals_2307690546 pubmed_primary_31491657 crossref_citationtrail_10_1016_j_compbiomed_2019_103400 crossref_primary_10_1016_j_compbiomed_2019_103400 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2019_103400 elsevier_clinicalkey_doi_10_1016_j_compbiomed_2019_103400  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2019-10-01 | 
    
| PublicationDateYYYYMMDD | 2019-10-01 | 
    
| PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: Oxford  | 
    
| PublicationTitle | Computers in biology and medicine | 
    
| PublicationTitleAlternate | Comput Biol Med | 
    
| PublicationYear | 2019 | 
    
| Publisher | Elsevier Ltd Elsevier Limited  | 
    
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited  | 
    
| References | bib36 Samuel (bib48) 2017; 68 Cervante, Xue, Shang, Zhang (bib52) 2013 Fuster, Kelly, Vedanthan (bib9) 2011; 123 bib35 Yang, Jiang (bib58) 2018 Apr 1; 76 Lin (bib28) 1994; 13 Mohawish (bib20) 2015 Gui, Li (bib25) 2005; 21 bib29 bib27 Vivekanandan, Narayanan, Ch Sriman Narayana Iyengar (bib11) 2018; 11 Vivekanandan, Ch Sriman Narayana Iyengar (bib5) 2017; 90 Benabdellah, Benghabrit, Bouhaddou (bib56) 2019 Jan 1; 148 Das, Turkoglu, Sengur (bib57) 2009 May 1; 36 Storn, Price (bib2) 1997 Dec 1; 11 O'Donnell, Elosua (bib39) 2008 Jan 1; 61 Hartigan, Wong (bib19) 1979; 28 Dahlof (bib46) 2010; 105 bib45 bib43 Jia, Baig, Mirza, GholamHosseini (bib63) 2019 Sahan, Polat, Kodaz, Güneş (bib51) 2005 Edition. Perk, De Backer, Gohlke, Graham, Reiner, Verschuren, Albus, Benlian, Boysen, Cifkova, Deaton, SEbrahim, Germano, Hobbs, Hoes, Karadeniz, Mezzani, Prescott, Ryden, Scherer, Syvanne, Scholte Op Reimer, Vrints, Wood, Zamorano, Zannad (bib30) 2012; 33 Cox, Oakes (bib23) 1984 Alsayat, Hoda (bib18) 2016 Barros, Hirakata (bib62) 2003 Dec; 3 Hunt (bib37) 2005; 46 UCI machine learning repository: Cleveland Heart Disease Dataset (bib16) Bohacik, Kambhampati, Davis, John (bib13) 2013; 6 Hu (bib44) 2013 Bansal, Kasliwal, Trehan (bib10) 2014; 66 Brindle, Beswick, Fahey, Ebrahim (bib40) 2006 Dec 1; 92 Garg (bib21) 2017; 69 Cox (bib22) 1972; 34 Tibshirani (bib24) 1997; 16 Kadi, Idri, Fernandez-Aleman (bib42) 2017; 97 SCORE Risk Charts (bib47) Mendes, Paredes, Rocha, Carvalho, Marques, Henriques, Morais (bib7) 2015 Storn, Price (bib8) 1995 bib59 Modelling Survival Data in Medical Research, third ed., By David Collett, 3 Performance of the QRISK cardiovascular risk prediction algorithm in an independent UK sample of patients from general practice: a validation study J Hippisley-Cox,1 CCoupland,1 Y Vinogradova,1 J Robson,2 P Brindle3. Cowie, Bax, Bruining, Cleland, Koehler, Malik, Pinto, Vander Velde, Vardas, e-health (bib41) 2016; 37 Pagel, Kirshtein (bib60) 2017 Apr 13 bib49 Storn (bib1) 1996 Long, Meesad, Unger (bib54) 2015 Nov 30; 42 Aljaaf, Al-Jumeily, Hussain, Dawson, Fergus, Al-Jumaily (bib15) 2015 Wang, Chin (bib61) 2011 Jun 1; 52 Babaoglu, Findik, Ulker (bib53) 2010 Apr 1; 37 Awang, Siraj (bib55) 2013 Aug; 5 Qin, Huang, Suganthan (bib4) 2009; 13 Nidheesh, Abdul Nazeer, Ameer (bib6) 2017; 91 Anooj (bib50) 2012; 24 Amsterdam, Wenger, Brindis, Casey, Ganiats, Holmes, Jaffe, Jneid, Kelly, Kontos, Levine (bib38) 2014; 64 World Health Organization (bib3) D’agostino, Vasan, Pencina, Wolf, Cobain, Massaro, Kannel (bib33) 2008 Feb 12; 117 Melillo, Luca, Bracale, Pecchia (bib14) 2013; 17 Wilson, D'Agostino, Levy, Belanger, Silbershatz, Kannel (bib32) 1998 May 1; 97 Santacruz-Varela, Hernandez-Torres, Fajardo-Dolci (bib31) 2010; 78 Ofori, Odia (bib12) 2016; 68 Han, Kamber (bib17) 2009 SCORE Risk Charts (10.1016/j.compbiomed.2019.103400_bib47) Wang (10.1016/j.compbiomed.2019.103400_bib61) 2011; 52 Garg (10.1016/j.compbiomed.2019.103400_bib21) 2017; 69 10.1016/j.compbiomed.2019.103400_bib34 Benabdellah (10.1016/j.compbiomed.2019.103400_bib56) 2019; 148 Gui (10.1016/j.compbiomed.2019.103400_bib25) 2005; 21 Ofori (10.1016/j.compbiomed.2019.103400_bib12) 2016; 68 Brindle (10.1016/j.compbiomed.2019.103400_bib40) 2006; 92 Samuel (10.1016/j.compbiomed.2019.103400_bib48) 2017; 68 Nidheesh (10.1016/j.compbiomed.2019.103400_bib6) 2017; 91 Amsterdam (10.1016/j.compbiomed.2019.103400_bib38) 2014; 64 Barros (10.1016/j.compbiomed.2019.103400_bib62) 2003; 3 Hunt (10.1016/j.compbiomed.2019.103400_bib37) 2005; 46 Vivekanandan (10.1016/j.compbiomed.2019.103400_bib11) 2018; 11 Anooj (10.1016/j.compbiomed.2019.103400_bib50) 2012; 24 Santacruz-Varela (10.1016/j.compbiomed.2019.103400_bib31) 2010; 78 Das (10.1016/j.compbiomed.2019.103400_bib57) 2009; 36 Mendes (10.1016/j.compbiomed.2019.103400_bib7) 2015 UCI machine learning repository: Cleveland Heart Disease Dataset (10.1016/j.compbiomed.2019.103400_bib16) Han (10.1016/j.compbiomed.2019.103400_bib17) 2009 10.1016/j.compbiomed.2019.103400_bib26 Sahan (10.1016/j.compbiomed.2019.103400_bib51) 2005 Bohacik (10.1016/j.compbiomed.2019.103400_bib13) 2013; 6 Tibshirani (10.1016/j.compbiomed.2019.103400_bib24) 1997; 16 Dahlof (10.1016/j.compbiomed.2019.103400_bib46) 2010; 105 Pagel (10.1016/j.compbiomed.2019.103400_bib60) 2017 Cervante (10.1016/j.compbiomed.2019.103400_bib52) 2013 Cox (10.1016/j.compbiomed.2019.103400_bib22) 1972; 34 Jia (10.1016/j.compbiomed.2019.103400_bib63) 2019 Qin (10.1016/j.compbiomed.2019.103400_bib4) 2009; 13 Perk (10.1016/j.compbiomed.2019.103400_bib30) 2012; 33 D’agostino (10.1016/j.compbiomed.2019.103400_bib33) 2008; 117 Aljaaf (10.1016/j.compbiomed.2019.103400_bib15) 2015 Yang (10.1016/j.compbiomed.2019.103400_bib58) 2018; 76 Vivekanandan (10.1016/j.compbiomed.2019.103400_bib5) 2017; 90 Long (10.1016/j.compbiomed.2019.103400_bib54) 2015; 42 Melillo (10.1016/j.compbiomed.2019.103400_bib14) 2013; 17 Hu (10.1016/j.compbiomed.2019.103400_bib44) 2013 Alsayat (10.1016/j.compbiomed.2019.103400_bib18) 2016 Fuster (10.1016/j.compbiomed.2019.103400_bib9) 2011; 123 World Health Organization (10.1016/j.compbiomed.2019.103400_bib3) Kadi (10.1016/j.compbiomed.2019.103400_bib42) 2017; 97 Storn (10.1016/j.compbiomed.2019.103400_bib2) 1997; 11 Wilson (10.1016/j.compbiomed.2019.103400_bib32) 1998; 97 Bansal (10.1016/j.compbiomed.2019.103400_bib10) 2014; 66 Babaoglu (10.1016/j.compbiomed.2019.103400_bib53) 2010; 37 Hartigan (10.1016/j.compbiomed.2019.103400_bib19) 1979; 28 Storn (10.1016/j.compbiomed.2019.103400_bib1) 1996 O'Donnell (10.1016/j.compbiomed.2019.103400_bib39) 2008; 61 Cowie (10.1016/j.compbiomed.2019.103400_bib41) 2016; 37 Storn (10.1016/j.compbiomed.2019.103400_bib8) 1995 Awang (10.1016/j.compbiomed.2019.103400_bib55) 2013; 5 Mohawish (10.1016/j.compbiomed.2019.103400_bib20) 2015 Lin (10.1016/j.compbiomed.2019.103400_bib28) 1994; 13 Cox (10.1016/j.compbiomed.2019.103400_bib23) 1984  | 
    
| References_xml | – volume: 21 start-page: 3001 year: 2005 end-page: 3008 ident: bib25 article-title: Penalized Cox regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data publication-title: Bioinformatics – reference: Edition. – year: 1995 ident: bib8 article-title: Differential Evolution - a Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Space – volume: 68 start-page: 391 year: 2016 end-page: 398 ident: bib12 article-title: Risk assessment in the prevention of cardiovascular disease in low-resource settings publication-title: Indian Heart J. – volume: 68 start-page: 163 year: 2017 end-page: 172 ident: bib48 article-title: An integrated decision support system based on ANN and Fuzzy_AHP for heart failure risk prediction publication-title: Expert Syst. Appl. – volume: 46 start-page: e1 year: 2005 end-page: e82 ident: bib37 article-title: ACC/AHA 2005 guideline update for the diagnosis and management of chronic heart failure in the adult: a report of the American college of cardiology/American heart association task force on practice guidelines (writing committee to update the 2001 guidelines for the evaluation and management of heart failure) publication-title: J. Am. Coll. Cardiol. – start-page: 101 year: 2015 end-page: 106 ident: bib15 article-title: Predicting the likelihood of heart failure with a multi level risk assessment using decision tree publication-title: IEEE Third International Conference on Technological Advances in Electrical, Electronics and Computer Engineering – volume: 69 start-page: 458 year: 2017 end-page: 463 ident: bib21 article-title: Comparison of different cardiovascular risk score calculators for cardiovascular risk prediction and guideline recommended statin uses publication-title: Indian Heart J. – ident: bib16 – year: 2013 ident: bib44 article-title: Survival analysis of cardiovascular diseases publication-title: All Theses and Dissertations (ETDs) – volume: 24 start-page: 27 year: 2012 end-page: 40 ident: bib50 article-title: Clinical decision support system: risk level prediction of heart disease using weighted fuzzy rules publication-title: Journal of King Saud University-Computer and Information Sciences – volume: 17 year: 2013 ident: bib14 article-title: Classification tree for risk assessment in patients suffering from congestive heart failure via long-term heart rate variability publication-title: IEEE Journal of Biomedical and Health Informatics – ident: bib47 article-title: The European cardiovascular disease risk assessment model – start-page: 670 year: 2015 end-page: 673 ident: bib7 article-title: Short-term cardiovascular disease risk assessment: comparison of two combination approaches publication-title: 6th European Conference of the International Federation for Medical and Biological Engineering – ident: bib35 article-title: WHO/IHR Risk prediction chart – start-page: 383 year: 2009 end-page: 403 ident: bib17 article-title: Data Mining Concepts and Techniques – volume: 33 start-page: 1635 year: 2012 end-page: 1701 ident: bib30 article-title: European guidelines on cardiovascular disease prevention in clinical practice (version 2012) publication-title: Eur. Heart J. – volume: 123 start-page: 1671 year: 2011 end-page: 1678 ident: bib9 article-title: Promoting global cardiovascular health: moving forward publication-title: Circulation – year: 2019 ident: bib63 article-title: A cox-based risk prediction model for early detection of cardiovascular disease: identification of key risk factors for the development of a 10- year CVD risk prediction publication-title: Advances in preventive medicine – volume: 11 start-page: 341 year: 1997 Dec 1 end-page: 359 ident: bib2 article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Glob. Optim. – volume: 91 start-page: 213 year: 2017 end-page: 221 ident: bib6 article-title: An enhanced deterministic K-Means clustering algorithm for cancer subtype prediction from gene expression data publication-title: Comput. Biol. Med. – volume: 97 start-page: 1837 year: 1998 May 1 end-page: 1847 ident: bib32 article-title: Prediction of coronary heart disease using risk factor categories publication-title: Circulation – volume: 66 start-page: 580 year: 2014 end-page: 586 ident: bib10 article-title: Comparative accuracy of different risk scores in assessing cardiovascular risk in Indians: a study in patients with first myocardial infarction publication-title: Indian Heart J. – year: 2017 Apr 13 ident: bib60 article-title: Machine Dreaming and Consciousness – volume: 52 start-page: 541 year: 2011 Jun 1 end-page: 553 ident: bib61 article-title: Fuzzy analytic hierarchy process: a logarithmic fuzzy preference programming methodology publication-title: Int. J. Approx. Reason. – year: 2015 ident: bib20 article-title: Predicting Coronary Heart Disease risk using health risk assessment data publication-title: 17th IEEE International Conference on E-Health Networking – volume: 34 start-page: 187 year: 1972 end-page: 202 ident: bib22 article-title: Regression models and life‐tables publication-title: J. R. Stat. Soc. Ser. B – volume: 3 start-page: 21 year: 2003 Dec ident: bib62 article-title: Alternatives for logistic regression in cross-sectional studies: an empirical comparison of models that directly estimate the prevalence ratio publication-title: BMC Med. Res. Methodol. – ident: bib3 article-title: Key facts about cardiovascular diseases (CVDs) – reference: Modelling Survival Data in Medical Research, third ed., By David Collett, 3 – volume: 76 start-page: 391 year: 2018 Apr 1 end-page: 403 ident: bib58 article-title: Bi-weighted ensemble via HMM-based approaches for temporal data clustering publication-title: Pattern Recognit. – volume: 13 start-page: 398 year: 2009 end-page: 417 ident: bib4 article-title: Differential evolution algorithm with strategy adaptation for global numerical optimization publication-title: IEEE Trans. Evol. Comput. – volume: 28 start-page: 100 year: 1979 end-page: 108 ident: bib19 article-title: Algorithm AS 136: a k-means clustering algorithm publication-title: Journal of the Royal Statistical Society. Series C (Applied Statistics) – reference: Performance of the QRISK cardiovascular risk prediction algorithm in an independent UK sample of patients from general practice: a validation study J Hippisley-Cox,1 CCoupland,1 Y Vinogradova,1 J Robson,2 P Brindle3. – volume: 148 start-page: 291 year: 2019 Jan 1 end-page: 302 ident: bib56 article-title: A survey of clustering algorithms for an industrial context publication-title: Procedia computer science – volume: 37 start-page: 63 year: 2016 end-page: 66 ident: bib41 article-title: A position statement of the european society of cardiology publication-title: Eur. Heart J. – start-page: 2428 year: 2013 end-page: 2435 ident: bib52 article-title: Binary particle swarm optimisation and rough set theory for dimension reduction in classification publication-title: IEEE Congress on Evolutionary Computation – volume: 78 start-page: 515 year: 2010 end-page: 526 ident: bib31 article-title: Risk assessment towards patient safety in health care facilities publication-title: Cirugia y cirujanos – ident: bib43 article-title: Cardiovascular risk charts and risk calculator – year: 1984 ident: bib23 article-title: Analysis of survival data, boca raton publication-title: FL: Chapman & Hall/CRC – volume: 37 start-page: 3177 year: 2010 Apr 1 end-page: 3183 ident: bib53 article-title: A comparison of feature selection models utilizing binary particle swarm optimization and genetic algorithm in determining coronary artery disease using support vector machine publication-title: Expert Syst. Appl. – volume: 16 start-page: 385 year: 1997 end-page: 395 ident: bib24 article-title: The Lasso method for variable selection in the Cox model publication-title: Stat. Med. – volume: 92 start-page: 1752 year: 2006 Dec 1 end-page: 1759 ident: bib40 article-title: Accuracy and impact of risk assessment in the primary prevention of cardiovascular disease: a systematic review publication-title: Heart – volume: 36 start-page: 7675 year: 2009 May 1 end-page: 7680 ident: bib57 article-title: Effective diagnosis of heart disease through neural networks ensembles publication-title: Expert Syst. Appl. – ident: bib27 article-title: Cox proportional hazards regression – volume: 13 start-page: 2233 year: 1994 end-page: 2247 ident: bib28 article-title: Cox regression analysis of multivariate failure time data: the marginal approach publication-title: Stat. Med. – start-page: 456 year: 2005 end-page: 468 ident: bib51 article-title: The medical applications of attribute weighted artificial immune system (AWAIS): diagnosis of heart and diabetes diseases publication-title: International Conference on Artificial Immune Systems – volume: 6 year: 2013 ident: bib13 article-title: Alternating decision tree applied to risk assessment of heart failure patients publication-title: Journal of Information Technologies – volume: 64 start-page: e139 year: 2014 end-page: 228 ident: bib38 article-title: AHA/ACC guideline for the management of patients with non–ST-elevation acute coronary syndromes: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines publication-title: J. Am. Coll. Cardiol. – ident: bib45 article-title: Cox regression analysis – volume: 11 start-page: 169 year: 2018 end-page: 178 ident: bib11 article-title: Analysis of parallel SVM based classification technique on healthcare using big data management in cloud storage publication-title: Recent Pat. Comput. Sci. – ident: bib29 article-title: Cox regression analysis – volume: 117 start-page: 743 year: 2008 Feb 12 end-page: 753 ident: bib33 article-title: General cardiovascular risk profile for use in primary care: the Framingham Heart Study publication-title: Circulation – volume: 97 start-page: 12 year: 2017 end-page: 32 ident: bib42 article-title: Knowledge discovery in cardiology: a systematic literature review publication-title: Int. J. Med. Inf. – volume: 90 start-page: 125 year: 2017 end-page: 136 ident: bib5 article-title: Optimal feature selection using a modified differential evolution algorithm and its effectiveness for prediction of heart disease publication-title: Comput. Biol. Med. – volume: 105 start-page: 3A year: 2010 end-page: 9A ident: bib46 article-title: Cardiovascular disease risk factors: epidemiology and risk assessment publication-title: Am. J. Cardiol. – ident: bib36 article-title: Joint British societies recommendations on the prevention of cardiovascular disease (JBS3) – ident: bib49 article-title: Cox regression – volume: 5 start-page: 159 year: 2013 Aug end-page: 166 ident: bib55 article-title: Utilization of an artificial neural network in the prediction of heart disease publication-title: International Journal of Bio-science and Bio-technology – ident: bib59 article-title: WHO/ISH cardiovascular risk prediction charts – year: 2016 ident: bib18 article-title: Efficient genetic K-means clustering for health care knowledge discovery publication-title: IEEE 14th International Conference on Software Engineering Research, Management and Applications (SERA) – volume: 42 start-page: 8221 year: 2015 Nov 30 end-page: 8231 ident: bib54 article-title: A highly accurate firefly based algorithm for heart disease prediction publication-title: Expert Syst. Appl. – start-page: 519 year: 1996 end-page: 523 ident: bib1 article-title: On the Usage of Differential Evolution for Function Optimization – volume: 61 start-page: 299 year: 2008 Jan 1 end-page: 310 ident: bib39 article-title: Cardiovascular risk factors. Insights from framingham heart study publication-title: Revista Espanola de Cardiologia (English Edition) – volume: 34 start-page: 187 issue: 2 year: 1972 ident: 10.1016/j.compbiomed.2019.103400_bib22 article-title: Regression models and life‐tables publication-title: J. R. Stat. Soc. Ser. B doi: 10.1111/j.2517-6161.1972.tb00899.x – start-page: 670 year: 2015 ident: 10.1016/j.compbiomed.2019.103400_bib7 article-title: Short-term cardiovascular disease risk assessment: comparison of two combination approaches – start-page: 383 year: 2009 ident: 10.1016/j.compbiomed.2019.103400_bib17 – ident: 10.1016/j.compbiomed.2019.103400_bib34 – volume: 13 start-page: 398 issue: 2 year: 2009 ident: 10.1016/j.compbiomed.2019.103400_bib4 article-title: Differential evolution algorithm with strategy adaptation for global numerical optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2008.927706 – volume: 105 start-page: 3A issue: 1 year: 2010 ident: 10.1016/j.compbiomed.2019.103400_bib46 article-title: Cardiovascular disease risk factors: epidemiology and risk assessment publication-title: Am. J. Cardiol. doi: 10.1016/j.amjcard.2009.10.007 – ident: 10.1016/j.compbiomed.2019.103400_bib3 – volume: 33 start-page: 1635 year: 2012 ident: 10.1016/j.compbiomed.2019.103400_bib30 article-title: European guidelines on cardiovascular disease prevention in clinical practice (version 2012) publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehs092 – volume: 64 start-page: e139 issue: 24 year: 2014 ident: 10.1016/j.compbiomed.2019.103400_bib38 article-title: AHA/ACC guideline for the management of patients with non–ST-elevation acute coronary syndromes: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2014.09.017 – volume: 76 start-page: 391 year: 2018 ident: 10.1016/j.compbiomed.2019.103400_bib58 article-title: Bi-weighted ensemble via HMM-based approaches for temporal data clustering publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.11.022 – year: 2016 ident: 10.1016/j.compbiomed.2019.103400_bib18 article-title: Efficient genetic K-means clustering for health care knowledge discovery – volume: 69 start-page: 458 issue: 4 year: 2017 ident: 10.1016/j.compbiomed.2019.103400_bib21 article-title: Comparison of different cardiovascular risk score calculators for cardiovascular risk prediction and guideline recommended statin uses publication-title: Indian Heart J. doi: 10.1016/j.ihj.2017.01.015 – volume: 97 start-page: 1837 issue: 18 year: 1998 ident: 10.1016/j.compbiomed.2019.103400_bib32 article-title: Prediction of coronary heart disease using risk factor categories publication-title: Circulation doi: 10.1161/01.CIR.97.18.1837 – volume: 6 issue: 2 year: 2013 ident: 10.1016/j.compbiomed.2019.103400_bib13 article-title: Alternating decision tree applied to risk assessment of heart failure patients publication-title: Journal of Information Technologies – start-page: 2428 year: 2013 ident: 10.1016/j.compbiomed.2019.103400_bib52 article-title: Binary particle swarm optimisation and rough set theory for dimension reduction in classification – ident: 10.1016/j.compbiomed.2019.103400_bib16 – volume: 28 start-page: 100 issue: 1 year: 1979 ident: 10.1016/j.compbiomed.2019.103400_bib19 article-title: Algorithm AS 136: a k-means clustering algorithm publication-title: Journal of the Royal Statistical Society. Series C (Applied Statistics) – year: 1984 ident: 10.1016/j.compbiomed.2019.103400_bib23 article-title: Analysis of survival data, boca raton publication-title: FL: Chapman & Hall/CRC – volume: 24 start-page: 27 issue: 1 year: 2012 ident: 10.1016/j.compbiomed.2019.103400_bib50 article-title: Clinical decision support system: risk level prediction of heart disease using weighted fuzzy rules publication-title: Journal of King Saud University-Computer and Information Sciences doi: 10.1016/j.jksuci.2011.09.002 – start-page: 519 year: 1996 ident: 10.1016/j.compbiomed.2019.103400_bib1 – volume: 11 start-page: 169 issue: 3 year: 2018 ident: 10.1016/j.compbiomed.2019.103400_bib11 article-title: Analysis of parallel SVM based classification technique on healthcare using big data management in cloud storage publication-title: Recent Pat. Comput. Sci. doi: 10.2174/2213275911666180830145249 – volume: 97 start-page: 12 year: 2017 ident: 10.1016/j.compbiomed.2019.103400_bib42 article-title: Knowledge discovery in cardiology: a systematic literature review publication-title: Int. J. Med. Inf. doi: 10.1016/j.ijmedinf.2016.09.005 – year: 2015 ident: 10.1016/j.compbiomed.2019.103400_bib20 article-title: Predicting Coronary Heart Disease risk using health risk assessment data – ident: 10.1016/j.compbiomed.2019.103400_bib26 – volume: 52 start-page: 541 issue: 4 year: 2011 ident: 10.1016/j.compbiomed.2019.103400_bib61 article-title: Fuzzy analytic hierarchy process: a logarithmic fuzzy preference programming methodology publication-title: Int. J. Approx. Reason. doi: 10.1016/j.ijar.2010.12.004 – year: 1995 ident: 10.1016/j.compbiomed.2019.103400_bib8 – volume: 36 start-page: 7675 issue: 4 year: 2009 ident: 10.1016/j.compbiomed.2019.103400_bib57 article-title: Effective diagnosis of heart disease through neural networks ensembles publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2008.09.013 – volume: 68 start-page: 163 year: 2017 ident: 10.1016/j.compbiomed.2019.103400_bib48 article-title: An integrated decision support system based on ANN and Fuzzy_AHP for heart failure risk prediction publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.10.020 – volume: 5 start-page: 159 issue: 4 year: 2013 ident: 10.1016/j.compbiomed.2019.103400_bib55 article-title: Utilization of an artificial neural network in the prediction of heart disease publication-title: International Journal of Bio-science and Bio-technology – volume: 13 start-page: 2233 issue: 21 year: 1994 ident: 10.1016/j.compbiomed.2019.103400_bib28 article-title: Cox regression analysis of multivariate failure time data: the marginal approach publication-title: Stat. Med. doi: 10.1002/sim.4780132105 – volume: 66 start-page: 580 issue: 6 year: 2014 ident: 10.1016/j.compbiomed.2019.103400_bib10 article-title: Comparative accuracy of different risk scores in assessing cardiovascular risk in Indians: a study in patients with first myocardial infarction publication-title: Indian Heart J. doi: 10.1016/j.ihj.2014.10.399 – volume: 90 start-page: 125 year: 2017 ident: 10.1016/j.compbiomed.2019.103400_bib5 article-title: Optimal feature selection using a modified differential evolution algorithm and its effectiveness for prediction of heart disease publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2017.09.011 – volume: 78 start-page: 515 issue: 6 year: 2010 ident: 10.1016/j.compbiomed.2019.103400_bib31 article-title: Risk assessment towards patient safety in health care facilities publication-title: Cirugia y cirujanos – start-page: 101 year: 2015 ident: 10.1016/j.compbiomed.2019.103400_bib15 article-title: Predicting the likelihood of heart failure with a multi level risk assessment using decision tree – volume: 21 start-page: 3001 year: 2005 ident: 10.1016/j.compbiomed.2019.103400_bib25 article-title: Penalized Cox regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti422 – volume: 3 start-page: 21 issue: 1 year: 2003 ident: 10.1016/j.compbiomed.2019.103400_bib62 article-title: Alternatives for logistic regression in cross-sectional studies: an empirical comparison of models that directly estimate the prevalence ratio publication-title: BMC Med. Res. Methodol. doi: 10.1186/1471-2288-3-21 – year: 2013 ident: 10.1016/j.compbiomed.2019.103400_bib44 article-title: Survival analysis of cardiovascular diseases publication-title: All Theses and Dissertations (ETDs) – year: 2019 ident: 10.1016/j.compbiomed.2019.103400_bib63 article-title: A cox-based risk prediction model for early detection of cardiovascular disease: identification of key risk factors for the development of a 10- year CVD risk prediction publication-title: Advances in preventive medicine doi: 10.1155/2019/8392348 – volume: 17 issue: 3 year: 2013 ident: 10.1016/j.compbiomed.2019.103400_bib14 article-title: Classification tree for risk assessment in patients suffering from congestive heart failure via long-term heart rate variability publication-title: IEEE Journal of Biomedical and Health Informatics doi: 10.1109/JBHI.2013.2244902 – ident: 10.1016/j.compbiomed.2019.103400_bib47 – volume: 92 start-page: 1752 issue: 12 year: 2006 ident: 10.1016/j.compbiomed.2019.103400_bib40 article-title: Accuracy and impact of risk assessment in the primary prevention of cardiovascular disease: a systematic review publication-title: Heart doi: 10.1136/hrt.2006.087932 – volume: 37 start-page: 3177 issue: 4 year: 2010 ident: 10.1016/j.compbiomed.2019.103400_bib53 article-title: A comparison of feature selection models utilizing binary particle swarm optimization and genetic algorithm in determining coronary artery disease using support vector machine publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2009.09.064 – year: 2017 ident: 10.1016/j.compbiomed.2019.103400_bib60 – volume: 61 start-page: 299 issue: 3 year: 2008 ident: 10.1016/j.compbiomed.2019.103400_bib39 article-title: Cardiovascular risk factors. Insights from framingham heart study publication-title: Revista Espanola de Cardiologia (English Edition) doi: 10.1016/S1885-5857(08)60118-8 – start-page: 456 year: 2005 ident: 10.1016/j.compbiomed.2019.103400_bib51 article-title: The medical applications of attribute weighted artificial immune system (AWAIS): diagnosis of heart and diabetes diseases – volume: 11 start-page: 341 issue: 4 year: 1997 ident: 10.1016/j.compbiomed.2019.103400_bib2 article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Glob. Optim. doi: 10.1023/A:1008202821328 – volume: 91 start-page: 213 year: 2017 ident: 10.1016/j.compbiomed.2019.103400_bib6 article-title: An enhanced deterministic K-Means clustering algorithm for cancer subtype prediction from gene expression data publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2017.10.014 – volume: 117 start-page: 743 issue: 6 year: 2008 ident: 10.1016/j.compbiomed.2019.103400_bib33 article-title: General cardiovascular risk profile for use in primary care: the Framingham Heart Study publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.107.699579 – volume: 123 start-page: 1671 issue: 15 year: 2011 ident: 10.1016/j.compbiomed.2019.103400_bib9 article-title: Promoting global cardiovascular health: moving forward publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.110.009522 – volume: 16 start-page: 385 year: 1997 ident: 10.1016/j.compbiomed.2019.103400_bib24 article-title: The Lasso method for variable selection in the Cox model publication-title: Stat. Med. doi: 10.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-3 – volume: 148 start-page: 291 year: 2019 ident: 10.1016/j.compbiomed.2019.103400_bib56 article-title: A survey of clustering algorithms for an industrial context publication-title: Procedia computer science doi: 10.1016/j.procs.2019.01.022 – volume: 37 start-page: 63 issue: 1 year: 2016 ident: 10.1016/j.compbiomed.2019.103400_bib41 article-title: A position statement of the european society of cardiology publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehv416 – volume: 46 start-page: e1 issue: 6 year: 2005 ident: 10.1016/j.compbiomed.2019.103400_bib37 publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2005.08.022 – volume: 42 start-page: 8221 issue: 21 year: 2015 ident: 10.1016/j.compbiomed.2019.103400_bib54 article-title: A highly accurate firefly based algorithm for heart disease prediction publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.06.024 – volume: 68 start-page: 391 issue: 3 year: 2016 ident: 10.1016/j.compbiomed.2019.103400_bib12 article-title: Risk assessment in the prevention of cardiovascular disease in low-resource settings publication-title: Indian Heart J. doi: 10.1016/j.ihj.2015.07.004  | 
    
| SSID | ssj0004030 | 
    
| Score | 2.2808745 | 
    
| Snippet | Cardiovascular disease (CVD) refers to a state that indicates narrowed or blocked blood vessels, and it can lead to cardiac arrest, chest pain (angina) or... | 
    
| SourceID | proquest pubmed crossref elsevier  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 103400 | 
    
| SubjectTerms | Accuracy Algorithms Angina Blood vessels Cardiovascular disease Cardiovascular diseases Clinical decision making Cluster analysis Clustering Confidence intervals Cox regression Decision making Disease Evaluation Evolutionary algorithms Evolutionary computation Fuzzy sets Heart Heart diseases K-means clustering Modified differential evolution Optimization Performance evaluation Regression analysis Risk assessment Survival analysis Vector quantization  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dixMxEA9nD8SXw2-rp0TwNbgfSbZBRGq9owhXpHhwbyFfe6f2tndeC-pf70yTbBFU-rhsZtlNZmd-k_xmhpBXbatK44Vnvmg546IyzILfZU1hTS2NlabFDf2TmZye8o9n4myPzHIuDNIqs03cGGq_dLhH_hoJyxDJCS7fXV0z7BqFp6u5hYZJrRX8202JsVtkv8LKWAOy__5o9mm-zZQs6piUAtaHQ3CUuD2R8YUk7pj0jpQvhfnoHDPf_u6w_gVIN47p-C45SIiSjqMK3CN7obtPbp-kM_MH5NeYTn9iXhadf7n5Rsd9KU6KfdAWFFArnfzBSqUf4qkN3fAJ6GT5g87DeSTMdjSXMaGm89TQil0GcHfULdZYcwEFzOIcZm51cfmQnB4ffZ5MWeq4wBw4_hWzhWohYgVIYSrnuAqNlNZZa0svrbdNgVcj25Q8lKI1oxEvvaotQLhWiNqX9SMy6JZdeEIoOEfRWO689wDS2kqB7SiUrwOHgXXlhqTJ06pdKkeOXTEWOvPOvurtgmhcEB0XZEjKXvIqluTYQUblldM55RSMpAa_sYPsm142wZIIN3aUPsyKopN5uNFbZR6Sl_1t-LHxtMZ0YbmGMdVIKmyjDGMeRwXrP7eGuLaUonn6_4c_I3fwTSL38JAMVt_X4TlgqJV9kX6M325-G_c priority: 102 providerName: ProQuest  | 
    
| Title | A Hybrid Risk Assessment Model for Cardiovascular Disease Using Cox Regression Analysis and a 2-means clustering algorithm | 
    
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S001048251930277X https://dx.doi.org/10.1016/j.compbiomed.2019.103400 https://www.ncbi.nlm.nih.gov/pubmed/31491657 https://www.proquest.com/docview/2307690546 https://www.proquest.com/docview/2286945166  | 
    
| Volume | 113 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AKRWK dateStart: 19700101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection (Proquest) customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 7X7 dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: BENPR dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1879-0534 dateEnd: 20250902 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 8FG dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBelhbKXsa7rlq0rKuzVrT9kyWJPWdYs62gYoYW8CcmSu2ypU9oE1j7sb9-dJbsUOgjsRca2DmR93J2s3--OkA9VJRNtcxvZuGIRy1MdGbC7kYiNzrg2XFf4Q_9szEcX7HSaTzfIoOXCIKwy6H6v0xttHZ4ch948vp7NkOMLW4mGeYlnb2KKDHYmMIvB0Z8HmAeLM09DAX2DtQOax2O8ELbtae4I8pLIQGfIdXvaRP3LBW1M0fAFeR58SNr3zdwhG65-SbbPwin5Lrnv09EdMrHoZHb7i_a74JsUM5_NKfipdPAIh0o_-3Ma2iAI6GDxm07cpYfI1rQNXEJ1bammaXTlwMDRcr7CKAsooOeXi5vZ8sfVK3IxPDkfjKKQYyEqwdQvIxPLCvao4ETotCyZdIJzUxpjEsuNNSLGu8KIhLkkr3RRsMTKzIDTVuV5ZpNsj2zWi9q9IRTMYS4MK6214JZVqQRtEUubOQYVs7TsEdF2qypDAHLMgzFXLdLsp3oYEIUDovyA9EjSSV77IBxryMh25FRLMgW1qMBSrCH7sZN9NBnXlN5vJ4oKCuFWId6eS_CPeY8cdq9hKeP5jK7dYgV10oJLTJwMdV77CdZ9bgY72YTn4u1_Ne0deYZ3Hoy4TzaXNyv3HpyqpTloVg2UYiqgLIZfDshW_-u30Riun07G3yd_AWbJJag | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGJgEvaNxGYYCR4DEiie2kFpqm0m3q2FqhapP2ZuzYGZcuHbTVLj9uv41zaicVEqC-7DGKT5Tk2Odif985hLwtS5loK2xk45JHXKQ6MuB3ozw2mmXaZLrEDf3-IOsd808n4mSF3NRcGIRV1jZxbqjtuMA98vcIWIZMTvBs-_xnhF2j8HS1bqGhQ2sFuzUvMRaIHQfu6gJSuMnW_g7o-12a7u0edXtR6DIQFeDsppGJZQlZGrhRnRYFly7PMlMYYxKbGWvyGK_aJk-4S0Sp222eWMkMhC2lEMwmDJ57h6xxxiUkf2sfdwefhwtmZsw8CQasHYdkLGCJPMIMQeOeZI8QM4n8d45Mu787yH8FwHNHuLdOHoQIlnb8lHtIVlz1iNzthzP6x-S6Q3tXyAOjw2-TH7TTlP6k2HdtRCFKpt0_ULB0x58S0Tl-gXbHl3ToTj1At6J12RSqK0s1TaMzB-6VFqMZ1nhAAT06BU1Nv549Ice38u-fktVqXLlnhIIzFrnhhbUWgsIylWCrYmmZ4zCQpUWL5PVvVUUof45dOEaqxrl9VwuFKFSI8gppkaSRPPclQJaQkbXmVE1xBaOswE8tIfuhkQ1hkA9vlpTerCeKCuZoohaLp0XeNLfBkODpkK7ceAZj0nYmsW0zjNnwE6z5XAZ5dJKJ_Pn_H_6a3Osd9Q_V4f7g4AW5j2_lcY-bZHX6a-ZeQvw2Na_CIqHky22vy9-kUVll | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGkCZeEN-UDTASPEZL4q9aaEJVS9UxNqGJSX0zduyMjy4da6sx_jT-Ou7qJBUSoL7sMYrPSnz2ffh-d0fIy7LUmfXCJz4tecJFbhMHejdRqbNMWidtiRf6h0dydMLfjcV4g_xqcmEQVtnIxKWg9tMC78h3EbAMnpzgcresYREfBsM3598T7CCFkdamnUbcIgfh6hLct9ne_gB4_SrPh28_9kdJ3WEgKUDRzROX6hI8NFChNi8KroOS0hXOucxL551K8anrVMZDJkrb7fLMa-bAZCmFYD5jMO8NclMxphFOqMZqlZOZspj-AnKOgxtWo4gitgzh4jG9HsFlGjPfOebY_V01_sv0XarA4R1yu7ZdaS9utrtkI1T3yNZhHZ2_T3726OgKM8Do8ZfZN9pri35S7Lg2oWAf0_4f-Fc6iPEhukQu0P70Bz0OpxGaW9GmYAq1laeW5slZAMVKi8kCqzsggZ2cAl_mn88ekJNrWfmHZLOaVuExoaCGhXK88N6DOVjmGqRUqj0LHAayvOgQ1SyrKerC59h_Y2IahNtXs2KIQYaYyJAOyVrK81j8Yw0a3XDONMmtII4NaKg1aF-3tLUBFA2bNal3mo1iakE0M6tj0yEv2tcgQjAuZKswXcCYvCs1NmyGMY_iBmt_l4EHnUmhnvx_8udkC06jeb9_dLBNbuFHRcDjDtmcXyzCUzDc5u7Z8oRQ8um6j-RvMlhW_w | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hybrid+Risk+Assessment+Model+for+Cardiovascular+Disease+Using+Cox+Regression+Analysis+and+a+2-means+clustering+algorithm&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Vivekanandan%2C+T.&rft.au=Narayanan%2C+Swathi+Jamjala&rft.date=2019-10-01&rft.issn=0010-4825&rft.volume=113&rft.spage=103400&rft_id=info:doi/10.1016%2Fj.compbiomed.2019.103400&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compbiomed_2019_103400 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4825&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4825&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4825&client=summon |