Dynamic Image Difficulty-Aware DNN Pruning

Deep Neural Networks (DNNs) have achieved impressive performance in various image recognition tasks, but their large model sizes make them challenging to deploy on resource-constrained devices. In this paper, we propose a dynamic DNN pruning approach that takes into account the difficulty of the inc...

Full description

Saved in:
Bibliographic Details
Published inMicromachines (Basel) Vol. 14; no. 5; p. 908
Main Authors Pentsos, Vasileios, Spantidi, Ourania, Anagnostopoulos, Iraklis
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 23.04.2023
MDPI
Subjects
Online AccessGet full text
ISSN2072-666X
2072-666X
DOI10.3390/mi14050908

Cover

Abstract Deep Neural Networks (DNNs) have achieved impressive performance in various image recognition tasks, but their large model sizes make them challenging to deploy on resource-constrained devices. In this paper, we propose a dynamic DNN pruning approach that takes into account the difficulty of the incoming images during inference. To evaluate the effectiveness of our method, we conducted experiments on the ImageNet dataset on several state-of-art DNNs. Our results show that the proposed approach reduces the model size and amount of DNN operations without the need to retrain or fine-tune the pruned model. Overall, our method provides a promising direction for designing efficient frameworks for lightweight DNN models that can adapt to the varying complexity of input images.
AbstractList Deep Neural Networks (DNNs) have achieved impressive performance in various image recognition tasks, but their large model sizes make them challenging to deploy on resource-constrained devices. In this paper, we propose a dynamic DNN pruning approach that takes into account the difficulty of the incoming images during inference. To evaluate the effectiveness of our method, we conducted experiments on the ImageNet dataset on several state-of-art DNNs. Our results show that the proposed approach reduces the model size and amount of DNN operations without the need to retrain or fine-tune the pruned model. Overall, our method provides a promising direction for designing efficient frameworks for lightweight DNN models that can adapt to the varying complexity of input images.
Deep Neural Networks (DNNs) have achieved impressive performance in various image recognition tasks, but their large model sizes make them challenging to deploy on resource-constrained devices. In this paper, we propose a dynamic DNN pruning approach that takes into account the difficulty of the incoming images during inference. To evaluate the effectiveness of our method, we conducted experiments on the ImageNet dataset on several state-of-art DNNs. Our results show that the proposed approach reduces the model size and amount of DNN operations without the need to retrain or fine-tune the pruned model. Overall, our method provides a promising direction for designing efficient frameworks for lightweight DNN models that can adapt to the varying complexity of input images.Deep Neural Networks (DNNs) have achieved impressive performance in various image recognition tasks, but their large model sizes make them challenging to deploy on resource-constrained devices. In this paper, we propose a dynamic DNN pruning approach that takes into account the difficulty of the incoming images during inference. To evaluate the effectiveness of our method, we conducted experiments on the ImageNet dataset on several state-of-art DNNs. Our results show that the proposed approach reduces the model size and amount of DNN operations without the need to retrain or fine-tune the pruned model. Overall, our method provides a promising direction for designing efficient frameworks for lightweight DNN models that can adapt to the varying complexity of input images.
Audience Academic
Author Anagnostopoulos, Iraklis
Spantidi, Ourania
Pentsos, Vasileios
AuthorAffiliation School of Electrical, Computer and Biomedical Engineering, Southern Illinois University, Carbondale, IL 62901, USA
AuthorAffiliation_xml – name: School of Electrical, Computer and Biomedical Engineering, Southern Illinois University, Carbondale, IL 62901, USA
Author_xml – sequence: 1
  givenname: Vasileios
  surname: Pentsos
  fullname: Pentsos, Vasileios
– sequence: 2
  givenname: Ourania
  surname: Spantidi
  fullname: Spantidi, Ourania
– sequence: 3
  givenname: Iraklis
  orcidid: 0000-0003-0985-3045
  surname: Anagnostopoulos
  fullname: Anagnostopoulos, Iraklis
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37241531$$D View this record in MEDLINE/PubMed
BookMark eNp9kl1rFDEUhgep2Fp74w-QBW-kMjVfk9lcydL6sVCqFwrehTP5GLPMJGtmxrL_3rNOrW0RE0jCyXue5LzJ0-IgpuiK4jklZ5wr8qYPVJCKKLJ8VBwxUrNSSvnt4M76sDgZhg3BVtcKhyfFIa-ZoBWnR8XpxS5CH8xi3UPrFhfB-2CmbtyVq2vIGLi6WnzOUwyxfVY89tAN7uRmPi6-vn_35fxjefnpw_p8dVmairKxrJW0ilDFfG0oI6TxTDXccCuIbEwNQtGGCNtYBWCoYLISRvIlc2AsMK_4cbGeuTbBRm9z6CHvdIKgfwdSbjXkMZjOaWUtmEZ56gQipVGVlNZR0jDGiF0ukfV6Zk1xC7tr6LpbICV6b6D-ayCq387q7dT0zhoXxwzdvSvc34nhu27TT2QxJjjfE17dEHL6MblhRPxgXNdBdGkaNFuiI1QIVqP05QPpJk05orOookpgq_ZmnM2qFrDeEH3Cgw126_DV8Cv4gPFVjQUoJqTAhBd3a7i9_J8nRwGZBSanYcjOaxNGGEPalxS6f_ty-iDlPyb-ApT3yOc
CitedBy_id crossref_primary_10_1016_j_imavis_2024_105037
Cites_doi 10.1109/CVPR.2016.90
10.1109/JSSC.2016.2616357
10.1109/CVPR.2015.7298594
10.1109/CVPR.2009.5206848
10.1109/TCAD.2020.3012753
10.1109/CVPR.2016.237
10.1145/3065386
10.1109/TCAD.2022.3197522
10.1109/QoMEX.2013.6603194
10.1109/TIP.2012.2214050
10.1109/TETC.2022.3178730
10.1109/ISQED54688.2022.9806282
10.1109/CVPR52729.2023.01544
10.1007/978-3-030-01234-2_48
10.1109/CVPR42600.2020.00225
10.1109/ICCAD51958.2021.9643491
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
NPM
7SP
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
HCIFZ
L6V
L7M
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/mi14050908
DatabaseName CrossRef
PubMed
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
SciTech Premium Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList PubMed
Publicly Available Content Database

CrossRef


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2072-666X
ExternalDocumentID oai_doaj_org_article_9ddacb9f1e404d6c9566de10b2220d88
10.3390/mi14050908
PMC10224338
A750992464
37241531
10_3390_mi14050908
Genre Journal Article
GrantInformation_xml – fundername: National Science Foundation
  grantid: 1361847
– fundername: Consortium for Embedded Systems at SIUC
GroupedDBID 53G
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABJCF
ADBBV
ADMLS
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
HYE
IAO
ITC
KQ8
L6V
M7S
MM.
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
PUEGO
RPM
TR2
TUS
NPM
7SP
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c512t-796d90192f7c1200bf29b3c3d406bc7a491b04dbd9aac142654c6382eacda2f93
IEDL.DBID DOA
ISSN 2072-666X
IngestDate Wed Aug 27 00:51:38 EDT 2025
Wed Aug 20 00:05:19 EDT 2025
Tue Sep 30 17:13:20 EDT 2025
Thu Sep 04 18:44:58 EDT 2025
Fri Jul 25 10:45:55 EDT 2025
Tue Jul 01 05:45:21 EDT 2025
Wed Feb 19 02:23:57 EST 2025
Wed Oct 01 04:20:24 EDT 2025
Thu Apr 24 23:05:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords pruning
image difficulty
Deep Neural Networks
embedded systems
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c512t-796d90192f7c1200bf29b3c3d406bc7a491b04dbd9aac142654c6382eacda2f93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
ORCID 0000-0003-0985-3045
OpenAccessLink https://doaj.org/article/9ddacb9f1e404d6c9566de10b2220d88
PMID 37241531
PQID 2819444459
PQPubID 2032359
ParticipantIDs doaj_primary_oai_doaj_org_article_9ddacb9f1e404d6c9566de10b2220d88
unpaywall_primary_10_3390_mi14050908
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10224338
proquest_miscellaneous_2820014427
proquest_journals_2819444459
gale_infotracacademiconefile_A750992464
pubmed_primary_37241531
crossref_citationtrail_10_3390_mi14050908
crossref_primary_10_3390_mi14050908
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-23
PublicationDateYYYYMMDD 2023-04-23
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-23
  day: 23
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Micromachines (Basel)
PublicationTitleAlternate Micromachines (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_13
ref_12
ref_10
ref_19
Chen (ref_26) 2016; 52
ref_17
Spantidi (ref_11) 2022; 11
ref_15
Amrouch (ref_3) 2020; 39
Mittal (ref_14) 2012; 21
Li (ref_16) 2016; 25
ref_25
ref_24
ref_22
ref_21
ref_20
ref_1
Spantidi (ref_18) 2022; 41
ref_2
Krizhevsky (ref_23) 2017; 60
ref_27
ref_9
ref_8
ref_5
ref_4
ref_7
ref_6
References_xml – ident: ref_7
– ident: ref_5
– ident: ref_21
  doi: 10.1109/CVPR.2016.90
– volume: 52
  start-page: 127
  year: 2016
  ident: ref_26
  article-title: Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural networks
  publication-title: IEEE J. Solid-State Circuits
  doi: 10.1109/JSSC.2016.2616357
– ident: ref_24
  doi: 10.1109/CVPR.2015.7298594
– ident: ref_19
  doi: 10.1109/CVPR.2009.5206848
– volume: 39
  start-page: 3842
  year: 2020
  ident: ref_3
  article-title: NPU Thermal Management
  publication-title: IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.
  doi: 10.1109/TCAD.2020.3012753
– ident: ref_12
  doi: 10.1109/CVPR.2016.237
– ident: ref_6
– volume: 60
  start-page: 84
  year: 2017
  ident: ref_23
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Commun. Acm
  doi: 10.1145/3065386
– ident: ref_8
– volume: 41
  start-page: 3838
  year: 2022
  ident: ref_18
  article-title: Energy-Efficient DNN Inference on Approximate Accelerators through Formal Property Exploration
  publication-title: IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.
  doi: 10.1109/TCAD.2022.3197522
– ident: ref_25
– ident: ref_27
– ident: ref_15
  doi: 10.1109/QoMEX.2013.6603194
– ident: ref_10
– volume: 25
  start-page: 3775
  year: 2016
  ident: ref_16
  article-title: Sparse representation-based image quality index with adaptive sub-dictionaries
  publication-title: IEEE Trans. Image Process.
– volume: 21
  start-page: 4695
  year: 2012
  ident: ref_14
  article-title: No-reference image quality assessment in the spatial domain
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2012.2214050
– volume: 11
  start-page: 112
  year: 2022
  ident: ref_11
  article-title: Targeting DNN Inference via Efficient Utilization of Heterogeneous Precision DNN Accelerators
  publication-title: IEEE Trans. Emerg. Top. Comput.
  doi: 10.1109/TETC.2022.3178730
– ident: ref_13
– ident: ref_2
  doi: 10.1109/ISQED54688.2022.9806282
– ident: ref_17
  doi: 10.1109/CVPR52729.2023.01544
– ident: ref_22
– ident: ref_9
  doi: 10.1007/978-3-030-01234-2_48
– ident: ref_20
– ident: ref_4
  doi: 10.1109/CVPR42600.2020.00225
– ident: ref_1
  doi: 10.1109/ICCAD51958.2021.9643491
SSID ssj0000779007
Score 2.2846959
Snippet Deep Neural Networks (DNNs) have achieved impressive performance in various image recognition tasks, but their large model sizes make them challenging to...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 908
SubjectTerms Accuracy
Artificial neural networks
Classification
Datasets
Deep Neural Networks
Embedded systems
Energy consumption
Human subjects
image difficulty
Neural networks
Pruning
Sparsity
Support vector machines
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9MwFH-CcQAOiM8R2FAQkxBI0eLYdeITKhtlIFFxYNJulr-yTerS0rWa9t_zXuJmLaDlaFuR_fy-bf8ewJ73pnTSE8w-45lwRZVVRsrMlxiLeSVRW9JD4R9jeXQsvp8MTmLC7TJeq1zpxFZR-6mjHPk-HfgI_Abq0-x3RlWj6HQ1ltC4C_dYgZxEL8VHX_scS05gennZoZJyjO73L84xoEAbSdUk1-xQC9f_r1Jes0p_35i8v2xm5vrKTCZr5mj0GB5FPzIddhv_BO6E5ik8XEMXfAYfD7tq8-m3C1Qa6SFlZwho4zobXpk5NozH6c_5khIjz-F49OXXwVEWSyNkDi30IisV0pe8s7p0DBnd1oWy3HGP9tm60gjFbC689coYx9AKD4RD-hSoZr0pasVfwFYzbcJLSLkMqOICMyYMRG0rU4dglKkVOiqMO5PAhxWhtIu44VS-YqIxfiCi6huiJvCuHzvr0DL-O-oz0bsfQQjXbcN0fqqjwGiFXOSsqlkQuBDpMI6TPrDcokOT-wp_8p52S5Mc4nScic8JcFGEaKWH5AphcClFAjurDdVRQC_1DTsl8LbvRtGi8xLThOmSxtCFMyGKMoHtbv_7OfOSXB_OEqg2OGNjUZs9zflZC9_dgvhxjivY65noFmq9un36r-FBgX4XHXAVfAe2FvNl2EU_aWHftMLwB7IBEOg
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdQ9wA8jG8WGCiISQikLHHsOPETKoxpIFHtgUrlyXJsByq6tOoapvHXc5e4oR0IIfqYXKtc7-t3tvM7Qg6s1bkRFmn2KYu4SYuo0EJENodezEoB2RJfFP44Eidj_mGSTfyC27k_Vgmt-LRN0mmSpxHg60lMeZzFMiniha1ef_crSVRAdWOFQLLPHYEbTAOyMx6dDj_jRLn1dztOUga9fXw2hXYCKiTOktyoQi1Z_-8peaMmXT0veb2pF_ryQs9mG8Xo-BZRazW6MyjfDptVeWh-XGF4_H89b5Ndj1PDYedYd8g1V98lNzfYC--RV0fdNPvw_RkkpfAIV3-QyOMyGl7oJVwYjcLTZYMLL_fJ-Pjdp7cnkR-9EBlAAKsol2A_RH9VbigEUlmlsmSGWaj_pck1l7RMuC2t1NpQqPIZNxDJKaRxq9NKsgdkUM9rt0dCJhykUEe1dhmvykJXzmmpKwlAiDKjA_JybQplPC85jseYKehP0Gzql9kC8ryXXXRsHH-UeoMW7SWQQbu9MF9-UT4glQQvNaWsqOOgiDDQJwrraFICYEpsAT_yAv1BYZzD4xjtX1cApZAxSw0RakHzKnhA9tcuo3wCOFe4P8nhk8mAPOtvQ-jifoyu3bxBGTzQxnmaB-Rh52H9M7McoRWjASm2fG9Lqe079fRrSw_ekgQyBhoc9G76l3_r0b-JPSY3UsB3uJGWsn0yWC0b9wTw2Kp86oPuJwzaLm4
  priority: 102
  providerName: Unpaywall
Title Dynamic Image Difficulty-Aware DNN Pruning
URI https://www.ncbi.nlm.nih.gov/pubmed/37241531
https://www.proquest.com/docview/2819444459
https://www.proquest.com/docview/2820014427
https://pubmed.ncbi.nlm.nih.gov/PMC10224338
https://www.mdpi.com/2072-666X/14/5/908/pdf?version=1682238603
https://doaj.org/article/9ddacb9f1e404d6c9566de10b2220d88
UnpaywallVersion publishedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2072-666X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000779007
  issn: 2072-666X
  databaseCode: KQ8
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 2072-666X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000779007
  issn: 2072-666X
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2072-666X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000779007
  issn: 2072-666X
  databaseCode: ADMLS
  dateStart: 20110901
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-666X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000779007
  issn: 2072-666X
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2072-666X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000779007
  issn: 2072-666X
  databaseCode: RPM
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2072-666X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000779007
  issn: 2072-666X
  databaseCode: BENPR
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2072-666X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000779007
  issn: 2072-666X
  databaseCode: 8FG
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9RAFD5ofdA-iNc22i4RC6IQupOZnWQet5e1CoZFXKhPw9xCC9u0bHcp_feek6Qxq6Iv5i3JEGa-M-eWmfkOwJ73JnPSE80-44lwaZ7kRsrEZ5iLeSXRWtJB4S-FPJmJz6ej016pL9oT1tADN8DtK_yas6pkQQyFlw7jeekDG1p0bEOf18d80Y31kqnaBhON3jBr-Eg55vX7F-eYSqB3pDqSPQ9UE_X_bo57_ujXvZIPV9WVub0x83nPEU2ewOM2gozHTc-fwr1QPYPNHq_gc_hw1NSZjz9doLmIj-i_DFFs3CbjG7PAB0URTxcr-iXyAmaT42-HJ0lbFCFx6JuXSaYQWYrLyswxnOK2TJXljnv0zNZlRihmESjrlTGOof8dCYc6lqKB9SYtFX8JG9VlFbYh5jKgcQvMmDASpc1NGYJRplQYojDuTATv74DSrmUMp8IVc42ZA4Gqf4Iawduu7VXDk_HHVgeEd9eCuK3rByhx3Upc_0viEbwjaWnSQOyOM-1BAhwUcVnpMQVBmFZKEcHOnUB1q5rXmlYOBV4jFcGb7jUqFa2UmCpcrqgNbTUTIs0i2Grk3_WZZxT0cBZBvjYz1ga1_qY6P6uJu2v6Ps5xBHvdJPoLWq_-B1qv4VGKcRktgKV8BzaWi1XYxThqaQdwP598HMCDg-Ni-nVQKxDezYrp-PsPf1weAQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD6axsPgAXEnMCCIIQRStCR2k_gBoUIpLdsqHjZpb8a3wKQuLV2rqn-K38g5ua0FtLfl0bYi-_jcbX8HYM9alZrEEsx-xAJu4izIVJIENsVYzIoEtSU9FD4aJYMT_vW0c7oFv5u3MHStstGJpaK2E0M58n068OH4dcSH6a-AqkbR6WpTQqNiiwO3WmLIdvF-2MP9fR3H_c_HnwZBXVUgMGjc5kEqcGrk2OSpiZBHdB4LzQyzaNq0SRUXkQ651VYoZSI0YB1ukElj1FBWxTmBL6HKv8EZY4TVn_W_tDmdkMD7wrRCQWVMhPvnZxjAoE2m6pVrdq8sD_CvEVizgn_f0NxZFFO1WqrxeM389e_A7dpv9bsVo92FLVfcg1traIb34V2vqm7vD89RSfk9ygYRsMcq6C7VDBtGI__bbEGJmAdwci1EewjbxaRwj8FniUOV6iKlXIfnOlO5c0qoXKBjFDGjPHjbEEqaGqecymWMJcYrRFR5SVQPXrVjpxU6x39HfSR6tyMIUbtsmMx-yFpApUCuNVrkkeO4kMRg3JhYF4UaHajQZviTN7RbkuQep2NU_XwBF0UIWrJLrhcGswn3YLfZUFkrhAt5yb4evGy7UZTpfEYVbrKgMXTBjfM49eBRtf_tnFlKrhaLPMg2OGNjUZs9xdnPEi68BA1kDFew1zLRFdR6cvX0X8DO4PjoUB4ORwdP4WaMPh8drsVsF7bns4V7hj7aXD8vBcOH79ctiX8AN-pNwA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9NnQTsAfFNYEAQQwikqEnsJvHDhDq6amVQVYhJewuO7YxKbVq6VlX_Rf4q7lInawHtbXm0rcg-36ft-x3AgdYyVpEmmP2AeVyFiZfIKPJ0jLGYFhFqS0oU_tqPTs745_PW-Q78rnJh6FllpRNLRa0nis7Im3Thw_FriWZun0UMOt2P018eVZCim9aqnIa0ZRb0YQk3ZpM8Ts1qieHc5WGvg3v_Ngy7x98_nXi24oCn0PDNvVjgtMnpyWMVIP9keSgypphGs5epWHIRZD7XmRZSqgCNW4srZOAQtZeWYU7ATGgOdmPKF23A7tFxf_CtPvHxCdrPj9cYqYwJvzkeYniDFptqW25YxbJ4wL8mYsNG_v1-8_aimMrVUo5GG8axew_uWq_Wba_Z8D7smOIB7G1gHT6ED51VIcdD5fbGqMLcDp0VEezHymsv5Qwb-n13MFvQMc0jOLsRsj2GRjEpzFNwWWRQ4ZpAStPieZbI3BgpZC7QbQqYkg68rwiVKotiTsU0RilGM0TU9IqoDrypx07X2B3_HXVE9K5HEN522TCZXaRWfFOBPK0ykQeG40IihVFlpE3gZ-he-TrBn7yj3UpJK-B0lLTJDbgowtdK2-SYYagbcQf2qw1Nrbq4TK-Y24HXdTcKOt3eyMJMFjSGnr9xHsYOPFnvfz1nFpMjxgIHki3O2FrUdk8x_FmCiZeQgozhCg5qJrqGWs-un_4ruIVSmX7p9U-fw50QHUK6eQvZPjTms4V5gQ7cPHtpJcOFHzctjH8ADPtYmg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdQ9wA8jG8WGCiISQikLHHsOPETKoxpIFHtgUrlyXJsByq6tOoapvHXc5e4oR0IIfqYXKtc7-t3tvM7Qg6s1bkRFmn2KYu4SYuo0EJENodezEoB2RJfFP44Eidj_mGSTfyC27k_Vgmt-LRN0mmSpxHg60lMeZzFMiniha1ef_crSVRAdWOFQLLPHYEbTAOyMx6dDj_jRLn1dztOUga9fXw2hXYCKiTOktyoQi1Z_-8peaMmXT0veb2pF_ryQs9mG8Xo-BZRazW6MyjfDptVeWh-XGF4_H89b5Ndj1PDYedYd8g1V98lNzfYC--RV0fdNPvw_RkkpfAIV3-QyOMyGl7oJVwYjcLTZYMLL_fJ-Pjdp7cnkR-9EBlAAKsol2A_RH9VbigEUlmlsmSGWaj_pck1l7RMuC2t1NpQqPIZNxDJKaRxq9NKsgdkUM9rt0dCJhykUEe1dhmvykJXzmmpKwlAiDKjA_JybQplPC85jseYKehP0Gzql9kC8ryXXXRsHH-UeoMW7SWQQbu9MF9-UT4glQQvNaWsqOOgiDDQJwrraFICYEpsAT_yAv1BYZzD4xjtX1cApZAxSw0RakHzKnhA9tcuo3wCOFe4P8nhk8mAPOtvQ-jifoyu3bxBGTzQxnmaB-Rh52H9M7McoRWjASm2fG9Lqe079fRrSw_ekgQyBhoc9G76l3_r0b-JPSY3UsB3uJGWsn0yWC0b9wTw2Kp86oPuJwzaLm4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Image+Difficulty-Aware+DNN+Pruning&rft.jtitle=Micromachines+%28Basel%29&rft.au=Pentsos%2C+Vasileios&rft.au=Spantidi%2C+Ourania&rft.au=Anagnostopoulos%2C+Iraklis&rft.date=2023-04-23&rft.issn=2072-666X&rft.eissn=2072-666X&rft.volume=14&rft.issue=5&rft_id=info:doi/10.3390%2Fmi14050908&rft_id=info%3Apmid%2F37241531&rft.externalDocID=37241531
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-666X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-666X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-666X&client=summon