Safety of transcranial focused ultrasound stimulation: A systematic review of the state of knowledge from both human and animal studies

Low-intensity transcranial focused ultrasound stimulation (TFUS) holds great promise as a highly focal technique for transcranial stimulation even for deep brain areas. Yet, knowledge about the safety of this novel technique is still limited. To systematically review safety related aspects of TFUS....

Full description

Saved in:
Bibliographic Details
Published inBrain stimulation Vol. 12; no. 6; pp. 1367 - 1380
Main Authors Pasquinelli, Cristina, Hanson, Lars G., Siebner, Hartwig R., Lee, Hyunjoo J., Thielscher, Axel
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.11.2019
Subjects
Online AccessGet full text
ISSN1935-861X
1876-4754
1876-4754
DOI10.1016/j.brs.2019.07.024

Cover

Abstract Low-intensity transcranial focused ultrasound stimulation (TFUS) holds great promise as a highly focal technique for transcranial stimulation even for deep brain areas. Yet, knowledge about the safety of this novel technique is still limited. To systematically review safety related aspects of TFUS. The review covers the mechanisms-of-action by which TFUS may cause adverse effects and the available data on the possible occurrence of such effects in animal and human studies. Initial screening used key term searches in PubMed and bioRxiv, and a review of the literature lists of relevant papers. We included only studies where safety assessment was performed, and this results in 33 studies, both in humans and animals. Adverse effects of TFUS were very rare. At high stimulation intensity and/or rate, TFUS may cause haemorrhage, cell death or damage, and unintentional blood-brain barrier (BBB) opening. TFUS may also unintentionally affect long-term neural activity and behaviour. A variety of methods was used mainly in rodents to evaluate these adverse effects, including tissue staining, magnetic resonance imaging, temperature measurements and monitoring of neural activity and behaviour. In 30 studies, adverse effects were absent, even though at least one Food and Drug Administration (FDA) safety index was frequently exceeded. Two studies reported microhaemorrhages after long or relatively intense stimulation above safety limits. Another study reported BBB opening and neuronal damage in a control condition, which intentionally and substantially exceeded the safety limits. Most studies point towards a favourable safety profile of TFUS. Further investigations are warranted to establish a solid safety framework for the therapeutic window of TFUS to reliably avoid adverse effects while ensuring neural effectiveness. The comparability across studies should be improved by a more standardized reporting of TFUS parameters. •TFUS is an emerging non-invasive stimulation method with excellent focality•We summarize the safety-related data from the available literature.•Adverse effects were absent in 30 studies, and were reported in 3 studies.•Many studies used parameters outside safety limits for diagnostic ultrasound.•Further studies are warranted to establish the safety margin for TFUS.
AbstractList Low-intensity transcranial focused ultrasound stimulation (TFUS) holds great promise as a highly focal technique for transcranial stimulation even for deep brain areas. Yet, knowledge about the safety of this novel technique is still limited. To systematically review safety related aspects of TFUS. The review covers the mechanisms-of-action by which TFUS may cause adverse effects and the available data on the possible occurrence of such effects in animal and human studies. Initial screening used key term searches in PubMed and bioRxiv, and a review of the literature lists of relevant papers. We included only studies where safety assessment was performed, and this results in 33 studies, both in humans and animals. Adverse effects of TFUS were very rare. At high stimulation intensity and/or rate, TFUS may cause haemorrhage, cell death or damage, and unintentional blood-brain barrier (BBB) opening. TFUS may also unintentionally affect long-term neural activity and behaviour. A variety of methods was used mainly in rodents to evaluate these adverse effects, including tissue staining, magnetic resonance imaging, temperature measurements and monitoring of neural activity and behaviour. In 30 studies, adverse effects were absent, even though at least one Food and Drug Administration (FDA) safety index was frequently exceeded. Two studies reported microhaemorrhages after long or relatively intense stimulation above safety limits. Another study reported BBB opening and neuronal damage in a control condition, which intentionally and substantially exceeded the safety limits. Most studies point towards a favourable safety profile of TFUS. Further investigations are warranted to establish a solid safety framework for the therapeutic window of TFUS to reliably avoid adverse effects while ensuring neural effectiveness. The comparability across studies should be improved by a more standardized reporting of TFUS parameters. •TFUS is an emerging non-invasive stimulation method with excellent focality•We summarize the safety-related data from the available literature.•Adverse effects were absent in 30 studies, and were reported in 3 studies.•Many studies used parameters outside safety limits for diagnostic ultrasound.•Further studies are warranted to establish the safety margin for TFUS.
Low-intensity transcranial focused ultrasound stimulation (TFUS) holds great promise as a highly focal technique for transcranial stimulation even for deep brain areas. Yet, knowledge about the safety of this novel technique is still limited. To systematically review safety related aspects of TFUS. The review covers the mechanisms-of-action by which TFUS may cause adverse effects and the available data on the possible occurrence of such effects in animal and human studies. Initial screening used key term searches in PubMed and bioRxiv, and a review of the literature lists of relevant papers. We included only studies where safety assessment was performed, and this results in 33 studies, both in humans and animals. Adverse effects of TFUS were very rare. At high stimulation intensity and/or rate, TFUS may cause haemorrhage, cell death or damage, and unintentional blood-brain barrier (BBB) opening. TFUS may also unintentionally affect long-term neural activity and behaviour. A variety of methods was used mainly in rodents to evaluate these adverse effects, including tissue staining, magnetic resonance imaging, temperature measurements and monitoring of neural activity and behaviour. In 30 studies, adverse effects were absent, even though at least one Food and Drug Administration (FDA) safety index was frequently exceeded. Two studies reported microhaemorrhages after long or relatively intense stimulation above safety limits. Another study reported BBB opening and neuronal damage in a control condition, which intentionally and substantially exceeded the safety limits. Most studies point towards a favourable safety profile of TFUS. Further investigations are warranted to establish a solid safety framework for the therapeutic window of TFUS to reliably avoid adverse effects while ensuring neural effectiveness. The comparability across studies should be improved by a more standardized reporting of TFUS parameters.
Low-intensity transcranial focused ultrasound stimulation (TFUS) holds great promise as a highly focal technique for transcranial stimulation even for deep brain areas. Yet, knowledge about the safety of this novel technique is still limited.BACKGROUNDLow-intensity transcranial focused ultrasound stimulation (TFUS) holds great promise as a highly focal technique for transcranial stimulation even for deep brain areas. Yet, knowledge about the safety of this novel technique is still limited.To systematically review safety related aspects of TFUS. The review covers the mechanisms-of-action by which TFUS may cause adverse effects and the available data on the possible occurrence of such effects in animal and human studies.OBJECTIVETo systematically review safety related aspects of TFUS. The review covers the mechanisms-of-action by which TFUS may cause adverse effects and the available data on the possible occurrence of such effects in animal and human studies.Initial screening used key term searches in PubMed and bioRxiv, and a review of the literature lists of relevant papers. We included only studies where safety assessment was performed, and this results in 33 studies, both in humans and animals.METHODSInitial screening used key term searches in PubMed and bioRxiv, and a review of the literature lists of relevant papers. We included only studies where safety assessment was performed, and this results in 33 studies, both in humans and animals.Adverse effects of TFUS were very rare. At high stimulation intensity and/or rate, TFUS may cause haemorrhage, cell death or damage, and unintentional blood-brain barrier (BBB) opening. TFUS may also unintentionally affect long-term neural activity and behaviour. A variety of methods was used mainly in rodents to evaluate these adverse effects, including tissue staining, magnetic resonance imaging, temperature measurements and monitoring of neural activity and behaviour. In 30 studies, adverse effects were absent, even though at least one Food and Drug Administration (FDA) safety index was frequently exceeded. Two studies reported microhaemorrhages after long or relatively intense stimulation above safety limits. Another study reported BBB opening and neuronal damage in a control condition, which intentionally and substantially exceeded the safety limits.RESULTSAdverse effects of TFUS were very rare. At high stimulation intensity and/or rate, TFUS may cause haemorrhage, cell death or damage, and unintentional blood-brain barrier (BBB) opening. TFUS may also unintentionally affect long-term neural activity and behaviour. A variety of methods was used mainly in rodents to evaluate these adverse effects, including tissue staining, magnetic resonance imaging, temperature measurements and monitoring of neural activity and behaviour. In 30 studies, adverse effects were absent, even though at least one Food and Drug Administration (FDA) safety index was frequently exceeded. Two studies reported microhaemorrhages after long or relatively intense stimulation above safety limits. Another study reported BBB opening and neuronal damage in a control condition, which intentionally and substantially exceeded the safety limits.Most studies point towards a favourable safety profile of TFUS. Further investigations are warranted to establish a solid safety framework for the therapeutic window of TFUS to reliably avoid adverse effects while ensuring neural effectiveness. The comparability across studies should be improved by a more standardized reporting of TFUS parameters.CONCLUSIONMost studies point towards a favourable safety profile of TFUS. Further investigations are warranted to establish a solid safety framework for the therapeutic window of TFUS to reliably avoid adverse effects while ensuring neural effectiveness. The comparability across studies should be improved by a more standardized reporting of TFUS parameters.
Author Pasquinelli, Cristina
Lee, Hyunjoo J.
Siebner, Hartwig R.
Thielscher, Axel
Hanson, Lars G.
Author_xml – sequence: 1
  givenname: Cristina
  orcidid: 0000-0002-7561-2920
  surname: Pasquinelli
  fullname: Pasquinelli, Cristina
  organization: Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark
– sequence: 2
  givenname: Lars G.
  surname: Hanson
  fullname: Hanson, Lars G.
  organization: Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark
– sequence: 3
  givenname: Hartwig R.
  surname: Siebner
  fullname: Siebner, Hartwig R.
  organization: Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark
– sequence: 4
  givenname: Hyunjoo J.
  surname: Lee
  fullname: Lee, Hyunjoo J.
  organization: School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
– sequence: 5
  givenname: Axel
  surname: Thielscher
  fullname: Thielscher, Axel
  email: axelt@drcmr.dk
  organization: Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31401074$$D View this record in MEDLINE/PubMed
BookMark eNqFkctuFDEQRS0URB7wAWyQl2ymsd1uexpWUcRLisQCkNhZ7upqxhO3HWx3ovkCfhtPJtlkERZ-lHXPLevWKTkKMSAhrzlrOOPq3bYZUm4E433DdMOEfEZO-FqrldSdPKr3vu1Wa8V_HZPTnLeMdX2_1i_Iccsl40zLE_L3u52w7GicaEk2ZKibs55OEZaMI118fc5xCSPNxc2Lt8XF8J6e07zLBedaAk144_D2zmODVWcL7ourEG89jr-RTinOdIhlQzfLbAO11a72mWujXJbRYX5Jnk_WZ3x1f56Rn58-_rj4srr89vnrxfnlCjouyqodJLYgsFVrq1sAKca6BilRDEpozgbGphE6ib2yQycAFCgpreihH7Dn7Rl5e_C9TvHPgrmY2WVA723AuGQjhBZC8E6pKn1zL12GGUdzneqH0848hFcF-iCAFHNOOBlw5S6fmpnzhjOzH5PZmjomsx-TYdrUMVWSPyIfzJ9iPhwYrPHUvJPJ4DAAji4hFDNG9yTdP6LBu-DA-ivc_Yf9B2biwHw
CitedBy_id crossref_primary_10_1016_j_pnpbp_2024_111244
crossref_primary_10_3389_fphys_2022_1047324
crossref_primary_10_3389_fphy_2020_00150
crossref_primary_10_1007_s41465_023_00264_z
crossref_primary_10_3389_fnins_2021_629323
crossref_primary_10_3390_brainsci12020216
crossref_primary_10_3389_fnins_2021_620863
crossref_primary_10_1109_ACCESS_2020_3007517
crossref_primary_10_1176_appi_focus_20109
crossref_primary_10_3390_brainsci14111095
crossref_primary_10_1109_TUFFC_2023_3322963
crossref_primary_10_1016_j_neuroimage_2023_120227
crossref_primary_10_1016_j_cobeha_2024_101430
crossref_primary_10_1109_TIM_2020_3021496
crossref_primary_10_1017_S0033291725000406
crossref_primary_10_1186_s12967_021_03222_5
crossref_primary_10_1021_acsami_1c16735
crossref_primary_10_7554_eLife_54497
crossref_primary_10_1016_j_brs_2020_10_007
crossref_primary_10_1109_TUFFC_2023_3274046
crossref_primary_10_1073_pnas_1914387116
crossref_primary_10_1016_j_isci_2021_103429
crossref_primary_10_1016_j_clinph_2021_12_010
crossref_primary_10_1021_acsptsci_4c00494
crossref_primary_10_1186_s13054_025_05338_2
crossref_primary_10_3390_pharmaceutics14040833
crossref_primary_10_1016_j_neuroimage_2021_118093
crossref_primary_10_1016_j_celrep_2022_111197
crossref_primary_10_1111_pcn_13663
crossref_primary_10_1016_j_brs_2024_03_004
crossref_primary_10_3389_fpsyt_2022_825802
crossref_primary_10_4103_1673_5374_290876
crossref_primary_10_1113_JP285613
crossref_primary_10_1016_j_ultrasmedbio_2021_11_006
crossref_primary_10_1088_1361_6560_ada19d
crossref_primary_10_1038_s41598_022_05226_7
crossref_primary_10_1097_j_pain_0000000000003556
crossref_primary_10_1002_advs_202002026
crossref_primary_10_1016_j_neubiorev_2022_104867
crossref_primary_10_1016_j_addr_2023_115177
crossref_primary_10_1038_s41598_021_84330_6
crossref_primary_10_3389_fnhum_2024_1486770
crossref_primary_10_1016_j_neubiorev_2021_10_040
crossref_primary_10_1016_j_neuroimage_2024_120841
crossref_primary_10_3389_fnins_2022_1005810
crossref_primary_10_1016_j_physleta_2024_129756
crossref_primary_10_1002_advs_202202345
crossref_primary_10_3389_fnins_2022_886584
crossref_primary_10_1063_5_0180275
crossref_primary_10_3389_fnins_2024_1420255
crossref_primary_10_1186_s12883_020_01859_1
crossref_primary_10_1016_j_neurom_2024_07_008
crossref_primary_10_1016_j_ultras_2022_106888
crossref_primary_10_1016_j_neuron_2024_07_002
crossref_primary_10_1016_j_cmpb_2022_106777
crossref_primary_10_3389_fneur_2024_1346412
crossref_primary_10_1007_s13311_020_00899_2
crossref_primary_10_3389_fncir_2023_1120410
crossref_primary_10_3389_fnagi_2022_987732
crossref_primary_10_1088_1741_2552_ac5c8b
crossref_primary_10_3389_fneur_2021_722762
crossref_primary_10_3389_fneur_2023_1301956
crossref_primary_10_1002_adfm_201908999
crossref_primary_10_2217_bem_2020_0001
crossref_primary_10_3389_fnhum_2025_1478534
crossref_primary_10_1109_TUFFC_2020_3006781
crossref_primary_10_1055_s_0042_1755562
crossref_primary_10_1002_jum_16600
crossref_primary_10_15212_bioi_2020_0026
crossref_primary_10_1016_j_neuroimage_2023_120201
crossref_primary_10_1016_j_brs_2024_03_013
crossref_primary_10_1016_j_brs_2021_01_002
crossref_primary_10_1109_TUFFC_2020_3014183
crossref_primary_10_1016_j_lfs_2023_121769
crossref_primary_10_1002_mds_29836
crossref_primary_10_1016_j_cmpb_2024_108458
crossref_primary_10_3390_ijms25115687
crossref_primary_10_1016_j_brs_2024_06_005
crossref_primary_10_3389_fncel_2024_1360870
crossref_primary_10_3389_fphar_2022_786475
crossref_primary_10_3389_fnins_2024_1463038
crossref_primary_10_1016_j_bpsgos_2024_100342
crossref_primary_10_1038_s41378_023_00513_3
crossref_primary_10_1021_acsenergylett_3c00953
crossref_primary_10_1109_JBHI_2021_3103387
crossref_primary_10_1109_TUFFC_2022_3144335
crossref_primary_10_3389_fbioe_2022_1034194
crossref_primary_10_1016_j_plrev_2023_10_023
crossref_primary_10_3389_fnins_2022_824142
crossref_primary_10_3390_brainsci14030218
crossref_primary_10_1073_pnas_2309822120
crossref_primary_10_1016_j_neubiorev_2022_104821
crossref_primary_10_3389_fnhum_2022_872639
crossref_primary_10_1080_10717544_2022_2157068
crossref_primary_10_3389_fnhum_2024_1392199
crossref_primary_10_1016_j_heliyon_2025_e43001
crossref_primary_10_1109_TUFFC_2022_3140889
crossref_primary_10_1016_j_brs_2021_06_003
crossref_primary_10_1093_scan_nsaa102
crossref_primary_10_1177_23982128251322241
crossref_primary_10_3390_electronics10020118
crossref_primary_10_1016_j_actbio_2022_07_034
crossref_primary_10_1016_j_neurom_2021_12_012
crossref_primary_10_14336_AD_2021_0510
crossref_primary_10_1093_braincomms_fcae376
Cites_doi 10.1016/j.neuron.2018.05.009
10.1177/0192623315625859
10.1186/s12868-018-0459-3
10.1186/s40349-016-0061-z
10.7554/eLife.40541
10.1088/0031-9155/56/1/014
10.1016/j.neuroimage.2011.02.058
10.1038/sj.cdd.4400476
10.1016/j.ultrasmedbio.2017.11.008
10.1016/j.brs.2014.06.011
10.1016/j.brs.2011.03.007
10.1016/j.brs.2014.08.008
10.1016/j.nbd.2009.07.030
10.1016/j.neuron.2010.05.008
10.1016/j.brs.2009.04.002
10.1016/S1385-299X(00)00004-0
10.1038/s41598-018-26287-7
10.1016/j.clinph.2015.02.001
10.1016/j.ultrasmedbio.2012.04.023
10.7326/0003-4819-151-4-200908180-00135
10.1097/WNR.0000000000000330
10.7863/jum.2012.31.4.623
10.1016/j.brs.2018.08.013
10.1016/j.pbiomolbio.2012.01.004
10.1186/1471-2202-12-23
10.1002/ima.22262
10.1016/j.neuron.2018.04.036
10.1371/journal.pmed.1000100
10.1177/1545968318790022
10.1016/j.brs.2018.11.007
10.1016/j.cub.2013.10.029
10.1118/1.4812423
10.1161/01.STR.0000170707.86793.1a
10.1152/jappl.1948.1.2.93
10.1038/srep34026
10.1186/s12868-016-0303-6
10.1016/j.brs.2008.04.003
10.1016/j.ultrasmedbio.2008.11.014
10.1073/pnas.1320768111
10.1097/WNR.0b013e32834b2957
10.1097/01.WCB.0000044631.80210.3C
10.1146/annurev.bioeng.8.061505.095852
10.1186/s12868-018-0456-6
10.1016/j.yebeh.2015.04.008
10.1016/j.neuron.2019.01.019
10.1038/nn.3620
10.1016/j.ultrasmedbio.2018.01.010
10.1088/1741-2552/aaaee1
10.1002/jmri.21265
10.1088/1361-6560/aa5e98
10.1177/1073858409348066
10.1016/j.ejrad.2006.06.022
10.1016/j.addr.2014.01.008
10.1371/journal.pone.0086939
10.1159/000336001
10.1038/srep24738
10.1016/j.ultrasmedbio.2012.09.009
10.1016/j.ultrasmedbio.2017.08.937
10.1016/j.ultrasmedbio.2015.10.001
ContentType Journal Article
Copyright 2019 The Authors
Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2019 The Authors
– notice: Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.brs.2019.07.024
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1876-4754
EndPage 1380
ExternalDocumentID 31401074
10_1016_j_brs_2019_07_024
S1935861X19303389
Genre Research Support, Non-U.S. Gov't
Systematic Review
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
1B1
1P~
1~.
1~5
23N
4.4
457
4G.
4H-
53G
5GY
5VS
7-5
71M
8P~
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABIVO
ABJNI
ABMAC
ABMZM
ABTEW
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGUBO
AGWIK
AGYEJ
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EFKBS
EJD
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
GROUPED_DOAJ
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OP~
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SEL
SES
SSH
SSN
SSZ
T5K
Z5R
~G-
0SF
6I.
AACTN
AAFTH
AFCTW
AFKWA
AJOXV
AMFUW
NCXOZ
RIG
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ACLOT
EFLBG
~HD
ID FETCH-LOGICAL-c512t-3b4e3c2e368a73cc42dc42b44e2b62710b00fdc54e96ab52cc6c644a29c9be913
IEDL.DBID AIKHN
ISSN 1935-861X
1876-4754
IngestDate Sun Sep 28 08:40:45 EDT 2025
Thu Apr 03 07:05:36 EDT 2025
Thu Apr 24 23:12:04 EDT 2025
Tue Jul 01 02:09:49 EDT 2025
Tue Oct 08 04:54:18 EDT 2024
Tue Aug 26 16:35:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Histology
Transcranial focused ultrasound
Safety
Review
TFUS
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c512t-3b4e3c2e368a73cc42dc42b44e2b62710b00fdc54e96ab52cc6c644a29c9be913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
ORCID 0000-0002-7561-2920
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1935861X19303389
PMID 31401074
PQID 2272221566
PQPubID 23479
PageCount 14
ParticipantIDs proquest_miscellaneous_2272221566
pubmed_primary_31401074
crossref_citationtrail_10_1016_j_brs_2019_07_024
crossref_primary_10_1016_j_brs_2019_07_024
elsevier_sciencedirect_doi_10_1016_j_brs_2019_07_024
elsevier_clinicalkey_doi_10_1016_j_brs_2019_07_024
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November-December 2019
2019-11-00
2019 Nov - Dec
20191101
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: November-December 2019
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Brain stimulation
PublicationTitleAlternate Brain Stimul
PublicationYear 2019
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Fomenko, Neudorfer, Dallapiazza, Kalia, Lozano (bib11) 2018; 11
Younan, Deffieux, Larrat, Fink, Tanter, Aubry (bib50) 2013; 40
Palm, Keeser, Schiller, Fintescu, Reisinger, Padberg, Nitsche (bib58) 2008; 1
Baek, Pahk, Kim, Youn, Kim (bib19) 2018; 32
Deffieux, Younan, Wattiez, Tanter, Pouget, Aubry (bib66) 2013; 23
Fowlkes (bib4) 2008; 27
Li, Zhao, Zhou, Yan, Wang, Xu, Wang, Niu, Meng, Wu, Zhang (bib36) 2016; 6
Rossini, Burke, Chen, Cohen, Daskalakis, Di Iorio (bib59) 2015; 126
Legon, Sato, Opitz, Mueller, Barbour, Williams, Tyler (bib62) 2014; 17
Pichardo, Sin, Hynynen (bib8) 2010; 56
Cosgrove (bib23) 2006; 60
US FDA (bib6) 2008
Lee, Kim, Jung, Song, Chung, Yoo (bib51) 2015; 5
Aryal, Arvanitis, Alexander, McDannold (bib26) 2014; 72
Fisher, Gumenchuk (bib31) 2018; 15
Kim, Kim, Sim, Pasquinelli, Thielscher, Lee, Lee (bib33) 2019; 12
Lee, Lee, Park, Foley, Purcell-Estabrook, Kim, Fischer, Maeng, Yoo (bib34) 2016; 42
Daffertshofer, Gass, Ringleb, Sitzer, Sliwka, Els, Sedlaczek, Koroshetz, Hennerici (bib68) 2005; 36
Yoo, Bystritsky, Lee, Zhang, Fischer, Min, McDannold, Pascual-Leone, Jolesz (bib29) 2011; 56
Mueller, Legon, Opitz, Sato, Tyler (bib67) 2014; 7
Farzaneh, McLoughlin, Chauhan, Ter-Haar (bib60) 2012; 108
Lee, Chung, Jung, Song, Yoo (bib54) 2016; 17
Kim, Taghados, Fischer, Maeng, Park, Yoo (bib28) 2012; 38
Yoo, Yoon, Croce, Cammalleri, Margolin, Lee (bib48) 2018; 28
Elmar, Wilfurth, Landgrebe, Eichhammer, Hajak, Langguth (bib57) 2010; 3
Ferrara, Pollard, Borden (bib24) 2007; 9
Yoo, Kim, Min, Franck (bib56) 2011; 22
Min, Bystritsky, Jung, Fischer, Zhang, Maeng, Park, Chung, Jolesz, Yoo (bib2) 2011; 12
Yang, Phipps, Newton, Chaplin, Gore, Caskey, Chen (bib52) 2018; 8
Baron, Aubry, Tanter, Meairs, Fink (bib61) 2009; 35
Elmore, Dixon, Hailey, Harada, Herbert, Maronpot (bib41) 2016; 44
Folloni, Verhagen, Mars, Fouragnan, Constans, Aubry, Rushworth, Sallet (bib46) 2019; 101
Tyler (bib14) 2011; 17
Lee, Kim, Jung, Chung, Song, Lee, Yoo (bib17) 2016; 6
Daniels, Sharabi, Last, Guez, Salomon, Zivli, Castel, Volovick, Grinfeld, Rachmilevich, Amar, Liraz-Zaltsman, Sargsyan, Yael Mardor, Harnof (bib39) 2018; 44
Mehić, Xu, Caler, Coulson, Moritz, Mourad (bib40) 2014; 9
Rieke, Pauly (bib53) 2008; 27
Legon, Bansal, Ai, Mueller, Meekins, Gillick (bib55) 2018
Miller, Smith, Bailey, Czarnota, Hynynen, Makin (bib5) 2012; 31
Tufail, Matyushov, Baldwin, Tauchmann, Georges, Yoshihiro (bib27) 2010; 66
Dallapiazza, Timbie, Holmberg, Gatesman, Lopes, Price, Miller, Elias (bib21) 2018; 128
Ai, Bansal, Mueller, Legon (bib65) 2018; 19
Brohawn, Su, MacKinnon (bib13) 2014; 111
Abbott, Patabendige, Dolman, Yusof, Begley (bib25) 2010
Kim, Park, Wang, Chiu, Fischer, Yoo (bib32) 2013; 40
Chen, Swanson (bib44) 2003; 23
Pennes (bib20) 1948; 1
Hakimova, Kim, Chu, Lee, Jeong, Jeon (bib3) 2015; 49
Moher, Liberati, Tetzlaff, Altman (bib10) 2009; 151
Szabo (bib18) 2014
Lee, Croce, Margolin, Cammalleri, Yoon, Yoo (bib30) 2018; 19
Han, Kim, Kim, Shin, Youn (bib38) 2018; 44
Sassaroli, Vykhodtseva (bib12) 2016; 4
Kim, Chiu, Lee, Fischer, Yoo (bib35) 2014; 7
Sato, Shapiro, Tsao (bib15) 2018; 98
Robertson, Martin, Cox, Treeby (bib63) 2017; 62
Bystritsky, Korb, Douglas, Cohen, Melega, Mulgaonkar (bib1) 2011; 4
King, Brown, Newsome, Pauly (bib7) 2013; 39
Gulick, Li, Kleim, Towe (bib45) 2017; 43
Victorov, Prass, Dirnagl (bib43) 2000; 5
Liberati, Altman, Tetzlaff, Mulrow, Gøtzsche, Ioannidis, Clarke, Devereaux, Kleijnen, Moher (bib9) 2009; 6
Verhagen, Gallea, Folloni, Constans, Jensen, Ahnine, Roumazeilles, Santin, Ahmed, Lehericy, Klein-Flügge (bib22) 2019; 8
Pasquinelli, Montanaro, Neufeld, Lee, Thielscher (bib64) 2018
Porter, Jänicke (bib42) 1999; 6
Kim, Park, Lee, Lee, Chiu, Yoo (bib49) 2015; 26
Legon, Bansal, Tyshynsky, Ai, Mueller (bib47) 2018
Guo, Hamilton, Offutt, Gloeckner, Li, Kim, Legon, Alford, Lim (bib16) 2018; 98
Yang, Kim, Lee, Bohlke, Park, Maher, Yoo (bib37) 2012; 65
Yoo (10.1016/j.brs.2019.07.024_bib29) 2011; 56
Han (10.1016/j.brs.2019.07.024_bib38) 2018; 44
Farzaneh (10.1016/j.brs.2019.07.024_bib60) 2012; 108
Szabo (10.1016/j.brs.2019.07.024_bib18) 2014
Mehić (10.1016/j.brs.2019.07.024_bib40) 2014; 9
Pichardo (10.1016/j.brs.2019.07.024_bib8) 2010; 56
US FDA (10.1016/j.brs.2019.07.024_bib6) 2008
Moher (10.1016/j.brs.2019.07.024_bib10) 2009; 151
Kim (10.1016/j.brs.2019.07.024_bib49) 2015; 26
Bystritsky (10.1016/j.brs.2019.07.024_bib1) 2011; 4
Palm (10.1016/j.brs.2019.07.024_bib58) 2008; 1
Kim (10.1016/j.brs.2019.07.024_bib28) 2012; 38
Yoo (10.1016/j.brs.2019.07.024_bib56) 2011; 22
Elmore (10.1016/j.brs.2019.07.024_bib41) 2016; 44
Hakimova (10.1016/j.brs.2019.07.024_bib3) 2015; 49
Gulick (10.1016/j.brs.2019.07.024_bib45) 2017; 43
Folloni (10.1016/j.brs.2019.07.024_bib46) 2019; 101
Mueller (10.1016/j.brs.2019.07.024_bib67) 2014; 7
Pennes (10.1016/j.brs.2019.07.024_bib20) 1948; 1
King (10.1016/j.brs.2019.07.024_bib7) 2013; 39
Baek (10.1016/j.brs.2019.07.024_bib19) 2018; 32
Deffieux (10.1016/j.brs.2019.07.024_bib66) 2013; 23
Kim (10.1016/j.brs.2019.07.024_bib32) 2013; 40
Abbott (10.1016/j.brs.2019.07.024_bib25) 2010
Chen (10.1016/j.brs.2019.07.024_bib44) 2003; 23
Legon (10.1016/j.brs.2019.07.024_bib47) 2018
Lee (10.1016/j.brs.2019.07.024_bib51) 2015; 5
Sassaroli (10.1016/j.brs.2019.07.024_bib12) 2016; 4
Legon (10.1016/j.brs.2019.07.024_bib55) 2018
Robertson (10.1016/j.brs.2019.07.024_bib63) 2017; 62
Fowlkes (10.1016/j.brs.2019.07.024_bib4) 2008; 27
Aryal (10.1016/j.brs.2019.07.024_bib26) 2014; 72
Lee (10.1016/j.brs.2019.07.024_bib34) 2016; 42
Kim (10.1016/j.brs.2019.07.024_bib35) 2014; 7
Ai (10.1016/j.brs.2019.07.024_bib65) 2018; 19
Baron (10.1016/j.brs.2019.07.024_bib61) 2009; 35
Pasquinelli (10.1016/j.brs.2019.07.024_bib64) 2018
Legon (10.1016/j.brs.2019.07.024_bib62) 2014; 17
Lee (10.1016/j.brs.2019.07.024_bib54) 2016; 17
Miller (10.1016/j.brs.2019.07.024_bib5) 2012; 31
Yoo (10.1016/j.brs.2019.07.024_bib48) 2018; 28
Fomenko (10.1016/j.brs.2019.07.024_bib11) 2018; 11
Liberati (10.1016/j.brs.2019.07.024_bib9) 2009; 6
Verhagen (10.1016/j.brs.2019.07.024_bib22) 2019; 8
Daffertshofer (10.1016/j.brs.2019.07.024_bib68) 2005; 36
Porter (10.1016/j.brs.2019.07.024_bib42) 1999; 6
Dallapiazza (10.1016/j.brs.2019.07.024_bib21) 2018; 128
Kim (10.1016/j.brs.2019.07.024_bib33) 2019; 12
Rossini (10.1016/j.brs.2019.07.024_bib59) 2015; 126
Cosgrove (10.1016/j.brs.2019.07.024_bib23) 2006; 60
Tufail (10.1016/j.brs.2019.07.024_bib27) 2010; 66
Tyler (10.1016/j.brs.2019.07.024_bib14) 2011; 17
Younan (10.1016/j.brs.2019.07.024_bib50) 2013; 40
Guo (10.1016/j.brs.2019.07.024_bib16) 2018; 98
Sato (10.1016/j.brs.2019.07.024_bib15) 2018; 98
Min (10.1016/j.brs.2019.07.024_bib2) 2011; 12
Elmar (10.1016/j.brs.2019.07.024_bib57) 2010; 3
Lee (10.1016/j.brs.2019.07.024_bib30) 2018; 19
Daniels (10.1016/j.brs.2019.07.024_bib39) 2018; 44
Brohawn (10.1016/j.brs.2019.07.024_bib13) 2014; 111
Yang (10.1016/j.brs.2019.07.024_bib52) 2018; 8
Rieke (10.1016/j.brs.2019.07.024_bib53) 2008; 27
Yang (10.1016/j.brs.2019.07.024_bib37) 2012; 65
Fisher (10.1016/j.brs.2019.07.024_bib31) 2018; 15
Victorov (10.1016/j.brs.2019.07.024_bib43) 2000; 5
Lee (10.1016/j.brs.2019.07.024_bib17) 2016; 6
Ferrara (10.1016/j.brs.2019.07.024_bib24) 2007; 9
Li (10.1016/j.brs.2019.07.024_bib36) 2016; 6
References_xml – volume: 27
  start-page: 503
  year: 2008
  end-page: 515
  ident: bib4
  article-title: American Institute of Ultrasound in Medicine consensus report on potential bioeffects of diagnostic ultrasound: executive summary
  publication-title: J Ultrasound Med: Off J Am Ins Ultrasound Med
– volume: 6
  start-page: 24738
  year: 2016
  ident: bib36
  article-title: Improved anatomical specificity of non-invasive neuro-stimulation by high frequency (5 MHz) ultrasound
  publication-title: Sci Rep
– volume: 12
  start-page: 23
  year: 2011
  ident: bib2
  article-title: Focused ultrasound-mediated suppression of chemically-induced acute epileptic EEG activity
  publication-title: BMC Neurosci
– volume: 6
  year: 1999
  ident: bib42
  article-title: Emerging roles of caspase-3 in apoptosis
  publication-title: Cell Death Differ
– volume: 4
  start-page: 17
  year: 2016
  ident: bib12
  article-title: Acoustic neuromodulation from a basic science prospective
  publication-title: J Ther Ultrasound
– volume: 111
  start-page: 3614
  year: 2014
  end-page: 3619
  ident: bib13
  article-title: Mechanosensitivity is mediated directly by the lipid membrane in TRAAK and TREK1 K+ channels
  publication-title: Proc Natl Acad Sci
– volume: 28
  start-page: 106
  year: 2018
  end-page: 112
  ident: bib48
  article-title: Focused ultrasound brain stimulation to anesthetized rats induces long-term changes in somatosensory evoked potentials
  publication-title: Int J Imaging Syst Technol
– volume: 56
  start-page: 1267
  year: 2011
  end-page: 1275
  ident: bib29
  article-title: Focused ultrasound modulates region-specific brain activity
  publication-title: Neuroimage
– volume: 35
  start-page: 1148
  year: 2009
  end-page: 1158
  ident: bib61
  article-title: Simulation of intracranial acoustic fields in clinical trials of sonothrombolysis
  publication-title: Ultrasound Med Biol
– volume: 27
  start-page: 376
  year: 2008
  end-page: 390
  ident: bib53
  article-title: MR thermometry
  publication-title: J Magn Reson Imaging
– volume: 3
  start-page: 58
  year: 2010
  end-page: 59
  ident: bib57
  article-title: Anodal skin lesions after treatment with transcranial direct current stimulation
  publication-title: Brain Stimul: Basic Transl Clin Res Neuromodulation
– volume: 98
  start-page: 1031
  year: 2018
  end-page: 1041
  ident: bib15
  article-title: Ultrasonic neuromodulation causes widespread cortical activation via an indirect auditory mechanism
  publication-title: Neuron
– volume: 72
  start-page: 94
  year: 2014
  end-page: 109
  ident: bib26
  article-title: Ultrasound-mediated blood–brain barrier disruption for targeted drug delivery in the central nervous system
  publication-title: Adv Drug Deliv Rev
– volume: 38
  start-page: 1568
  year: 2012
  end-page: 1575
  ident: bib28
  article-title: Noninvasive transcranial stimulation of rat abducens nerve by focused ultrasound
  publication-title: Ultrasound Med Biol
– volume: 17
  start-page: 25
  year: 2011
  end-page: 36
  ident: bib14
  article-title: Noninvasive neuromodulation with ultrasound? A continuum mechanics hypothesis
  publication-title: The Neuroscientist
– volume: 56
  start-page: 219
  year: 2010
  ident: bib8
  article-title: Multi-frequency characterization of the speed of sound and attenuation coefficient for longitudinal transmission of freshly excised human skulls
  publication-title: Phys Med Biol
– volume: 128
  start-page: 875
  year: 2018
  end-page: 884
  ident: bib21
  article-title: Noninvasive neuromodulation and thalamic mapping with low-intensity focused ultrasound
  publication-title: J Neurosurg
– volume: 9
  start-page: 415
  year: 2007
  end-page: 447
  ident: bib24
  article-title: Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery
  publication-title: Annu Rev Biomed Eng
– volume: 43
  start-page: 2824
  year: 2017
  end-page: 2833
  ident: bib45
  article-title: Comparison of electrical and ultrasound neurostimulation in rat motor cortex
  publication-title: Ultrasound Med Biol
– volume: 19
  start-page: 57
  year: 2018
  ident: bib30
  article-title: Transcranial focused ultrasound stimulation of motor cortical areas in freely-moving awake rats
  publication-title: BMC Neurosci
– volume: 36
  start-page: 1441
  year: 2005
  end-page: 1446
  ident: bib68
  article-title: Transcranial lowfrequency ultrasound-mediated thrombolysis in brain ischemia. Increased risk of hemorrhage with combined ultrasound and tissue plasminogen activator. Results of a phase II clinical trial
  publication-title: Stroke
– volume: 98
  start-page: 1020
  year: 2018
  end-page: 1030
  ident: bib16
  article-title: Ultrasound produces extensive brain activation via a cochlear pathway
  publication-title: Neuron
– volume: 66
  start-page: 681
  year: 2010
  end-page: 694
  ident: bib27
  article-title: Transcranial pulsed ultrasound stimulates intact brain circuits
  publication-title: Neuron Neurotechnique
– volume: 32
  start-page: 777
  year: 2018
  end-page: 787
  ident: bib19
  article-title: Modulation of cerebellar cortical plasticity using low-intensity focused ultrasound for poststroke sensorimotor function recovery
  publication-title: Neurorehabilitation Neural Repair
– volume: 15
  year: 2018
  ident: bib31
  article-title: Low-intensity focused ultrasound alters the latency and spatial patterns of sensory-evoked cortical responses in vivo
  publication-title: J Neural Eng
– volume: 5
  start-page: 135
  year: 2000
  end-page: 139
  ident: bib43
  article-title: Improved selective, simple, and contrast staining of acidophilic neurons with vanadium acid fuchsin
  publication-title: Brain Res Protoc
– volume: 108
  start-page: 119
  year: 2012
  end-page: 138
  ident: bib60
  article-title: Bio-effects and safety of low-intensity, low-frequency ultrasonic exposure
  publication-title: Prog Biophys Mol Biol
– volume: 17
  year: 2014
  ident: bib62
  article-title: Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans
  publication-title: Nat Neurosci
– volume: 40
  year: 2013
  ident: bib32
  article-title: PET/CT imaging evidence of FUS-mediated (18)F-FDG uptake changes in rat brain
  publication-title: Med Phys
– volume: 22
  start-page: 783
  year: 2011
  end-page: 787
  ident: bib56
  article-title: Transcranial focused ultrasound to the thalamus alters anesthesia time in rats
  publication-title: Neuroreport
– volume: 40
  year: 2013
  ident: bib50
  article-title: Influence of the pressure field distribution in transcranial ultrasonic neurostimulation
  publication-title: Med Phys
– volume: 39
  start-page: 312
  year: 2013
  end-page: 331
  ident: bib7
  article-title: Effective parameters for ultrasound-induced in vivo neurostimulation
  publication-title: Ultrasound Med Biol
– volume: 12
  start-page: 251
  year: 2019
  end-page: 255
  ident: bib33
  article-title: Miniature ultrasound ring array transducers for transcranial ultrasound neuromodulation of freely-moving small animals
  publication-title: Brain Stimul
– volume: 23
  start-page: 2430
  year: 2013
  end-page: 2433
  ident: bib66
  article-title: Low-intensity focused ultrasound modulates monkey visuomotor behavior
  publication-title: Curr Biol
– volume: 44
  start-page: 173
  year: 2016
  end-page: 188
  ident: bib41
  article-title: Recommendations from the INHAND apoptosis/necrosis working group
  publication-title: Toxicol Pathol
– volume: 49
  start-page: 26
  year: 2015
  end-page: 32
  ident: bib3
  article-title: Ultrasound stimulation inhibits recurrent seizures and improves behavioral outcome in an experimental model of mesial temporal lobe epilepsy
  publication-title: Epilepsy Behav
– volume: 17
  start-page: 68
  year: 2016
  ident: bib54
  article-title: Simultaneous acoustic stimulation of human primary and secondary somatosensory cortices using transcranial focused ultrasound
  publication-title: BMC Neurosci
– volume: 151
  start-page: 264
  year: 2009
  end-page: 269
  ident: bib10
  article-title: Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement
  publication-title: Ann Intern Med
– start-page: 13
  year: 2010
  end-page: 25
  ident: bib25
  article-title: Structure and function of the blood–brain barrier
  publication-title: Neurobiol Dis
– volume: 65
  start-page: 153
  year: 2012
  end-page: 160
  ident: bib37
  article-title: Transcranial focused ultrasound to the thalamus is associated with reduced extracellular GABA levels in rats
  publication-title: Neuropsychobiology
– volume: 31
  start-page: 623
  year: 2012
  end-page: 634
  ident: bib5
  article-title: Overview of therapeutic ultrasound applications and safety considerations
  publication-title: J Ultrasound Med
– volume: 60
  start-page: 324
  year: 2006
  end-page: 330
  ident: bib23
  article-title: Ultrasound contrast agents: an overview
  publication-title: Eur J Radiol
– year: 2018
  ident: bib64
  article-title: Impact of the skull model on simulated TFUS beam profiles
  publication-title: Abstract from 40th international engineering in medicine and biology, honolulu, United States
– year: 2018
  ident: bib55
  article-title: Safety of transcranial focused ultrasound for human neuromodulation
– volume: 44
  start-page: 1022
  year: 2018
  end-page: 1030
  ident: bib39
  article-title: Focused ultrasound-induced suppression of auditory evoked potentials in vivo
  publication-title: Ultrasound Med Biol
– volume: 1
  start-page: 386
  year: 2008
  end-page: 387
  ident: bib58
  article-title: Skin lesions after treatment with transcranial direct current stimulation (tDCS)
  publication-title: Brain Stimul: Basic Transl Clin Res Neuromodulation
– volume: 6
  start-page: 34026
  year: 2016
  ident: bib17
  article-title: Transcranial focused ultrasound stimulation of human primary visual cortex
  publication-title: Nat Sci Rep
– volume: 62
  start-page: 2559
  year: 2017
  ident: bib63
  article-title: Sensitivity of simulated transcranial ultrasound fields to acoustic medium property maps
  publication-title: Phys Med Biol
– volume: 8
  year: 2019
  ident: bib22
  article-title: Offline impact of transcranial focused ultrasound on cortical activation in primates
  publication-title: Elife
– volume: 44
  start-page: 635
  year: 2018
  end-page: 646
  ident: bib38
  article-title: Ketamine inhibits ultrasound stimulation-induced neuromodulation by blocking cortical neuron activity
  publication-title: Ultrasound Med Biol
– volume: 6
  year: 2009
  ident: bib9
  article-title: The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration
  publication-title: PLoS Med
– volume: 1
  start-page: 93
  year: 1948
  end-page: 122
  ident: bib20
  article-title: Analysis of tissue and arterial blood temperatures in the resting human forearm
  publication-title: J Appl Physiol
– volume: 42
  start-page: 459
  year: 2016
  end-page: 470
  ident: bib34
  article-title: Image-Guided focused ultrasound-mediated regional brain stimulation in sheep
  publication-title: Ultrasound Med Biol
– volume: 4
  start-page: 125
  year: 2011
  end-page: 136
  ident: bib1
  article-title: A review of low-intensity focused ultrasound pulsation
  publication-title: Brain Stimul
– start-page: 655
  year: 2014
  ident: bib18
  article-title: Diagnostic ultrasound imaging:inside out
– volume: 26
  start-page: 211
  year: 2015
  ident: bib49
  article-title: Suppression of EEG visual-evoked potentials in rats via neuromodulatory focused ultrasound
  publication-title: Neuroreport
– volume: 9
  year: 2014
  ident: bib40
  article-title: Increased anatomical specificity of neuromodulation via modulated focused ultrasound
  publication-title: PLoS One
– volume: 8
  start-page: 7993
  year: 2018
  ident: bib52
  article-title: Neuromodulation of sensory networks in monkey brain by focused ultrasound with MRI guidance and detection
  publication-title: Sci Rep
– volume: 126
  start-page: 1071
  year: 2015
  end-page: 1107
  ident: bib59
  article-title: Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application. An updated report from an IFCN Committee
  publication-title: Clin Neurophysiol
– volume: 5
  year: 2015
  ident: bib51
  article-title: Image-guided transcranial focused ultrasound stimulates human primary somatosensory cortex
  publication-title: Sci Rep
– volume: 23
  start-page: 137
  year: 2003
  end-page: 149
  ident: bib44
  article-title: Astrocytes and brain injury
  publication-title: J Cereb Blood Flow Metab
– volume: 19
  start-page: 56
  year: 2018
  ident: bib65
  article-title: Effects of transcranial focused ultrasound on human primary motor cortex using 7T fMRI
  publication-title: BMC Neurosci
– year: 2008
  ident: bib6
  article-title: Guidance for Industry and FDA Staff - information for manufacturers seeking marketing clearance of diagnostic ultrasound systems and transducers
– volume: 11
  start-page: 1209
  year: 2018
  end-page: 1217
  ident: bib11
  article-title: Low-intensity ultrasound neuromodulation: an overview of mechanisms and emerging human applications
  publication-title: Brain stimul
– volume: 7
  start-page: 900
  year: 2014
  end-page: 908
  ident: bib67
  article-title: Transcranial focused ultrasound modulates intrinsic and evoked EEG dynamics
  publication-title: Brain Stimul
– volume: 101
  start-page: 1109
  year: 2019
  end-page: 1116
  ident: bib46
  article-title: Manipulation of subcortical and deep cortical activity in the primate brain using transcranial focused ultrasound stimulation
  publication-title: Neuron
– year: 2018
  ident: bib47
  article-title: Transcranial focused ultrasound neuromodulation of the human primary motor cortex
– volume: 7
  start-page: 748
  year: 2014
  end-page: 756
  ident: bib35
  article-title: Focused ultrasound-mediated non-invasive brain stimulation: examination of sonication parameters
  publication-title: Brain Stimul
– volume: 27
  start-page: 503
  issue: 4
  year: 2008
  ident: 10.1016/j.brs.2019.07.024_bib4
  article-title: American Institute of Ultrasound in Medicine consensus report on potential bioeffects of diagnostic ultrasound: executive summary
  publication-title: J Ultrasound Med: Off J Am Ins Ultrasound Med
– volume: 98
  start-page: 1031
  issue: 5
  year: 2018
  ident: 10.1016/j.brs.2019.07.024_bib15
  article-title: Ultrasonic neuromodulation causes widespread cortical activation via an indirect auditory mechanism
  publication-title: Neuron
  doi: 10.1016/j.neuron.2018.05.009
– volume: 44
  start-page: 173
  issue: 2
  year: 2016
  ident: 10.1016/j.brs.2019.07.024_bib41
  article-title: Recommendations from the INHAND apoptosis/necrosis working group
  publication-title: Toxicol Pathol
  doi: 10.1177/0192623315625859
– volume: 19
  start-page: 57
  issue: 1
  year: 2018
  ident: 10.1016/j.brs.2019.07.024_bib30
  article-title: Transcranial focused ultrasound stimulation of motor cortical areas in freely-moving awake rats
  publication-title: BMC Neurosci
  doi: 10.1186/s12868-018-0459-3
– volume: 4
  start-page: 17
  issue: 1
  year: 2016
  ident: 10.1016/j.brs.2019.07.024_bib12
  article-title: Acoustic neuromodulation from a basic science prospective
  publication-title: J Ther Ultrasound
  doi: 10.1186/s40349-016-0061-z
– volume: 8
  year: 2019
  ident: 10.1016/j.brs.2019.07.024_bib22
  article-title: Offline impact of transcranial focused ultrasound on cortical activation in primates
  publication-title: Elife
  doi: 10.7554/eLife.40541
– volume: 56
  start-page: 219
  issue: 1
  year: 2010
  ident: 10.1016/j.brs.2019.07.024_bib8
  article-title: Multi-frequency characterization of the speed of sound and attenuation coefficient for longitudinal transmission of freshly excised human skulls
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/56/1/014
– volume: 56
  start-page: 1267
  year: 2011
  ident: 10.1016/j.brs.2019.07.024_bib29
  article-title: Focused ultrasound modulates region-specific brain activity
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.02.058
– volume: 6
  issue: 2
  year: 1999
  ident: 10.1016/j.brs.2019.07.024_bib42
  article-title: Emerging roles of caspase-3 in apoptosis
  publication-title: Cell Death Differ
  doi: 10.1038/sj.cdd.4400476
– volume: 44
  start-page: 635
  issue: 3
  year: 2018
  ident: 10.1016/j.brs.2019.07.024_bib38
  article-title: Ketamine inhibits ultrasound stimulation-induced neuromodulation by blocking cortical neuron activity
  publication-title: Ultrasound Med Biol
  doi: 10.1016/j.ultrasmedbio.2017.11.008
– year: 2008
  ident: 10.1016/j.brs.2019.07.024_bib6
– volume: 7
  start-page: 748
  year: 2014
  ident: 10.1016/j.brs.2019.07.024_bib35
  article-title: Focused ultrasound-mediated non-invasive brain stimulation: examination of sonication parameters
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2014.06.011
– year: 2018
  ident: 10.1016/j.brs.2019.07.024_bib47
– volume: 4
  start-page: 125
  issue: 3
  year: 2011
  ident: 10.1016/j.brs.2019.07.024_bib1
  article-title: A review of low-intensity focused ultrasound pulsation
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2011.03.007
– volume: 7
  start-page: 900
  year: 2014
  ident: 10.1016/j.brs.2019.07.024_bib67
  article-title: Transcranial focused ultrasound modulates intrinsic and evoked EEG dynamics
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2014.08.008
– start-page: 13
  year: 2010
  ident: 10.1016/j.brs.2019.07.024_bib25
  article-title: Structure and function of the blood–brain barrier
  publication-title: Neurobiol Dis
  doi: 10.1016/j.nbd.2009.07.030
– volume: 66
  start-page: 681
  year: 2010
  ident: 10.1016/j.brs.2019.07.024_bib27
  article-title: Transcranial pulsed ultrasound stimulates intact brain circuits
  publication-title: Neuron Neurotechnique
  doi: 10.1016/j.neuron.2010.05.008
– volume: 3
  start-page: 58
  issue: 1
  year: 2010
  ident: 10.1016/j.brs.2019.07.024_bib57
  article-title: Anodal skin lesions after treatment with transcranial direct current stimulation
  publication-title: Brain Stimul: Basic Transl Clin Res Neuromodulation
  doi: 10.1016/j.brs.2009.04.002
– volume: 5
  start-page: 135
  issue: 2
  year: 2000
  ident: 10.1016/j.brs.2019.07.024_bib43
  article-title: Improved selective, simple, and contrast staining of acidophilic neurons with vanadium acid fuchsin
  publication-title: Brain Res Protoc
  doi: 10.1016/S1385-299X(00)00004-0
– volume: 40
  year: 2013
  ident: 10.1016/j.brs.2019.07.024_bib32
  article-title: PET/CT imaging evidence of FUS-mediated (18)F-FDG uptake changes in rat brain
  publication-title: Med Phys
– volume: 128
  start-page: 875
  issue: 3
  year: 2018
  ident: 10.1016/j.brs.2019.07.024_bib21
  article-title: Noninvasive neuromodulation and thalamic mapping with low-intensity focused ultrasound
  publication-title: J Neurosurg
– volume: 8
  start-page: 7993
  issue: 1
  year: 2018
  ident: 10.1016/j.brs.2019.07.024_bib52
  article-title: Neuromodulation of sensory networks in monkey brain by focused ultrasound with MRI guidance and detection
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-26287-7
– volume: 126
  start-page: 1071
  issue: 6
  year: 2015
  ident: 10.1016/j.brs.2019.07.024_bib59
  article-title: Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application. An updated report from an IFCN Committee
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2015.02.001
– volume: 38
  start-page: 1568
  year: 2012
  ident: 10.1016/j.brs.2019.07.024_bib28
  article-title: Noninvasive transcranial stimulation of rat abducens nerve by focused ultrasound
  publication-title: Ultrasound Med Biol
  doi: 10.1016/j.ultrasmedbio.2012.04.023
– volume: 151
  start-page: 264
  issue: 4
  year: 2009
  ident: 10.1016/j.brs.2019.07.024_bib10
  article-title: Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement
  publication-title: Ann Intern Med
  doi: 10.7326/0003-4819-151-4-200908180-00135
– volume: 26
  start-page: 211
  issue: 4
  year: 2015
  ident: 10.1016/j.brs.2019.07.024_bib49
  article-title: Suppression of EEG visual-evoked potentials in rats via neuromodulatory focused ultrasound
  publication-title: Neuroreport
  doi: 10.1097/WNR.0000000000000330
– volume: 5
  year: 2015
  ident: 10.1016/j.brs.2019.07.024_bib51
  article-title: Image-guided transcranial focused ultrasound stimulates human primary somatosensory cortex
  publication-title: Sci Rep
– volume: 31
  start-page: 623
  issue: 4
  year: 2012
  ident: 10.1016/j.brs.2019.07.024_bib5
  article-title: Overview of therapeutic ultrasound applications and safety considerations
  publication-title: J Ultrasound Med
  doi: 10.7863/jum.2012.31.4.623
– volume: 11
  start-page: 1209
  issue: 6
  year: 2018
  ident: 10.1016/j.brs.2019.07.024_bib11
  article-title: Low-intensity ultrasound neuromodulation: an overview of mechanisms and emerging human applications
  publication-title: Brain stimul
  doi: 10.1016/j.brs.2018.08.013
– year: 2018
  ident: 10.1016/j.brs.2019.07.024_bib55
– volume: 108
  start-page: 119
  issue: 3
  year: 2012
  ident: 10.1016/j.brs.2019.07.024_bib60
  article-title: Bio-effects and safety of low-intensity, low-frequency ultrasonic exposure
  publication-title: Prog Biophys Mol Biol
  doi: 10.1016/j.pbiomolbio.2012.01.004
– volume: 12
  start-page: 23
  issue: 1
  year: 2011
  ident: 10.1016/j.brs.2019.07.024_bib2
  article-title: Focused ultrasound-mediated suppression of chemically-induced acute epileptic EEG activity
  publication-title: BMC Neurosci
  doi: 10.1186/1471-2202-12-23
– volume: 28
  start-page: 106
  issue: 2
  year: 2018
  ident: 10.1016/j.brs.2019.07.024_bib48
  article-title: Focused ultrasound brain stimulation to anesthetized rats induces long-term changes in somatosensory evoked potentials
  publication-title: Int J Imaging Syst Technol
  doi: 10.1002/ima.22262
– volume: 98
  start-page: 1020
  issue: 5
  year: 2018
  ident: 10.1016/j.brs.2019.07.024_bib16
  article-title: Ultrasound produces extensive brain activation via a cochlear pathway
  publication-title: Neuron
  doi: 10.1016/j.neuron.2018.04.036
– volume: 6
  issue: 7
  year: 2009
  ident: 10.1016/j.brs.2019.07.024_bib9
  article-title: The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.1000100
– volume: 32
  start-page: 777
  issue: 9
  year: 2018
  ident: 10.1016/j.brs.2019.07.024_bib19
  article-title: Modulation of cerebellar cortical plasticity using low-intensity focused ultrasound for poststroke sensorimotor function recovery
  publication-title: Neurorehabilitation Neural Repair
  doi: 10.1177/1545968318790022
– volume: 12
  start-page: 251
  issue: 2
  year: 2019
  ident: 10.1016/j.brs.2019.07.024_bib33
  article-title: Miniature ultrasound ring array transducers for transcranial ultrasound neuromodulation of freely-moving small animals
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2018.11.007
– volume: 23
  start-page: 2430
  year: 2013
  ident: 10.1016/j.brs.2019.07.024_bib66
  article-title: Low-intensity focused ultrasound modulates monkey visuomotor behavior
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2013.10.029
– volume: 40
  issue: 8
  year: 2013
  ident: 10.1016/j.brs.2019.07.024_bib50
  article-title: Influence of the pressure field distribution in transcranial ultrasonic neurostimulation
  publication-title: Med Phys
  doi: 10.1118/1.4812423
– volume: 36
  start-page: 1441
  year: 2005
  ident: 10.1016/j.brs.2019.07.024_bib68
  article-title: Transcranial lowfrequency ultrasound-mediated thrombolysis in brain ischemia. Increased risk of hemorrhage with combined ultrasound and tissue plasminogen activator. Results of a phase II clinical trial
  publication-title: Stroke
  doi: 10.1161/01.STR.0000170707.86793.1a
– volume: 1
  start-page: 93
  issue: 2
  year: 1948
  ident: 10.1016/j.brs.2019.07.024_bib20
  article-title: Analysis of tissue and arterial blood temperatures in the resting human forearm
  publication-title: J Appl Physiol
  doi: 10.1152/jappl.1948.1.2.93
– volume: 6
  start-page: 34026
  year: 2016
  ident: 10.1016/j.brs.2019.07.024_bib17
  article-title: Transcranial focused ultrasound stimulation of human primary visual cortex
  publication-title: Nat Sci Rep
  doi: 10.1038/srep34026
– volume: 17
  start-page: 68
  issue: 1
  year: 2016
  ident: 10.1016/j.brs.2019.07.024_bib54
  article-title: Simultaneous acoustic stimulation of human primary and secondary somatosensory cortices using transcranial focused ultrasound
  publication-title: BMC Neurosci
  doi: 10.1186/s12868-016-0303-6
– volume: 1
  start-page: 386
  issue: 4
  year: 2008
  ident: 10.1016/j.brs.2019.07.024_bib58
  article-title: Skin lesions after treatment with transcranial direct current stimulation (tDCS)
  publication-title: Brain Stimul: Basic Transl Clin Res Neuromodulation
  doi: 10.1016/j.brs.2008.04.003
– year: 2018
  ident: 10.1016/j.brs.2019.07.024_bib64
  article-title: Impact of the skull model on simulated TFUS beam profiles
– volume: 35
  start-page: 1148
  issue: 7
  year: 2009
  ident: 10.1016/j.brs.2019.07.024_bib61
  article-title: Simulation of intracranial acoustic fields in clinical trials of sonothrombolysis
  publication-title: Ultrasound Med Biol
  doi: 10.1016/j.ultrasmedbio.2008.11.014
– volume: 111
  start-page: 3614
  issue: 9
  year: 2014
  ident: 10.1016/j.brs.2019.07.024_bib13
  article-title: Mechanosensitivity is mediated directly by the lipid membrane in TRAAK and TREK1 K+ channels
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1320768111
– volume: 22
  start-page: 783
  issue: 15
  year: 2011
  ident: 10.1016/j.brs.2019.07.024_bib56
  article-title: Transcranial focused ultrasound to the thalamus alters anesthesia time in rats
  publication-title: Neuroreport
  doi: 10.1097/WNR.0b013e32834b2957
– volume: 23
  start-page: 137
  issue: 2
  year: 2003
  ident: 10.1016/j.brs.2019.07.024_bib44
  article-title: Astrocytes and brain injury
  publication-title: J Cereb Blood Flow Metab
  doi: 10.1097/01.WCB.0000044631.80210.3C
– start-page: 655
  year: 2014
  ident: 10.1016/j.brs.2019.07.024_bib18
– volume: 9
  start-page: 415
  year: 2007
  ident: 10.1016/j.brs.2019.07.024_bib24
  article-title: Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery
  publication-title: Annu Rev Biomed Eng
  doi: 10.1146/annurev.bioeng.8.061505.095852
– volume: 19
  start-page: 56
  issue: 1
  year: 2018
  ident: 10.1016/j.brs.2019.07.024_bib65
  article-title: Effects of transcranial focused ultrasound on human primary motor cortex using 7T fMRI
  publication-title: BMC Neurosci
  doi: 10.1186/s12868-018-0456-6
– volume: 49
  start-page: 26
  year: 2015
  ident: 10.1016/j.brs.2019.07.024_bib3
  article-title: Ultrasound stimulation inhibits recurrent seizures and improves behavioral outcome in an experimental model of mesial temporal lobe epilepsy
  publication-title: Epilepsy Behav
  doi: 10.1016/j.yebeh.2015.04.008
– volume: 101
  start-page: 1109
  issue: 6
  year: 2019
  ident: 10.1016/j.brs.2019.07.024_bib46
  article-title: Manipulation of subcortical and deep cortical activity in the primate brain using transcranial focused ultrasound stimulation
  publication-title: Neuron
  doi: 10.1016/j.neuron.2019.01.019
– volume: 17
  year: 2014
  ident: 10.1016/j.brs.2019.07.024_bib62
  article-title: Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans
  publication-title: Nat Neurosci
  doi: 10.1038/nn.3620
– volume: 44
  start-page: 1022
  issue: 5
  year: 2018
  ident: 10.1016/j.brs.2019.07.024_bib39
  article-title: Focused ultrasound-induced suppression of auditory evoked potentials in vivo
  publication-title: Ultrasound Med Biol
  doi: 10.1016/j.ultrasmedbio.2018.01.010
– volume: 15
  issue: 3
  year: 2018
  ident: 10.1016/j.brs.2019.07.024_bib31
  article-title: Low-intensity focused ultrasound alters the latency and spatial patterns of sensory-evoked cortical responses in vivo
  publication-title: J Neural Eng
  doi: 10.1088/1741-2552/aaaee1
– volume: 27
  start-page: 376
  issue: 2
  year: 2008
  ident: 10.1016/j.brs.2019.07.024_bib53
  article-title: MR thermometry
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.21265
– volume: 62
  start-page: 2559
  issue: 7
  year: 2017
  ident: 10.1016/j.brs.2019.07.024_bib63
  article-title: Sensitivity of simulated transcranial ultrasound fields to acoustic medium property maps
  publication-title: Phys Med Biol
  doi: 10.1088/1361-6560/aa5e98
– volume: 17
  start-page: 25
  issue: 1
  year: 2011
  ident: 10.1016/j.brs.2019.07.024_bib14
  article-title: Noninvasive neuromodulation with ultrasound? A continuum mechanics hypothesis
  publication-title: The Neuroscientist
  doi: 10.1177/1073858409348066
– volume: 60
  start-page: 324
  issue: 3
  year: 2006
  ident: 10.1016/j.brs.2019.07.024_bib23
  article-title: Ultrasound contrast agents: an overview
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2006.06.022
– volume: 72
  start-page: 94
  year: 2014
  ident: 10.1016/j.brs.2019.07.024_bib26
  article-title: Ultrasound-mediated blood–brain barrier disruption for targeted drug delivery in the central nervous system
  publication-title: Adv Drug Deliv Rev
  doi: 10.1016/j.addr.2014.01.008
– volume: 9
  issue: 2
  year: 2014
  ident: 10.1016/j.brs.2019.07.024_bib40
  article-title: Increased anatomical specificity of neuromodulation via modulated focused ultrasound
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0086939
– volume: 65
  start-page: 153
  issue: 3
  year: 2012
  ident: 10.1016/j.brs.2019.07.024_bib37
  article-title: Transcranial focused ultrasound to the thalamus is associated with reduced extracellular GABA levels in rats
  publication-title: Neuropsychobiology
  doi: 10.1159/000336001
– volume: 6
  start-page: 24738
  year: 2016
  ident: 10.1016/j.brs.2019.07.024_bib36
  article-title: Improved anatomical specificity of non-invasive neuro-stimulation by high frequency (5 MHz) ultrasound
  publication-title: Sci Rep
  doi: 10.1038/srep24738
– volume: 39
  start-page: 312
  year: 2013
  ident: 10.1016/j.brs.2019.07.024_bib7
  article-title: Effective parameters for ultrasound-induced in vivo neurostimulation
  publication-title: Ultrasound Med Biol
  doi: 10.1016/j.ultrasmedbio.2012.09.009
– volume: 43
  start-page: 2824
  issue: 12
  year: 2017
  ident: 10.1016/j.brs.2019.07.024_bib45
  article-title: Comparison of electrical and ultrasound neurostimulation in rat motor cortex
  publication-title: Ultrasound Med Biol
  doi: 10.1016/j.ultrasmedbio.2017.08.937
– volume: 42
  start-page: 459
  issue: 2
  year: 2016
  ident: 10.1016/j.brs.2019.07.024_bib34
  article-title: Image-Guided focused ultrasound-mediated regional brain stimulation in sheep
  publication-title: Ultrasound Med Biol
  doi: 10.1016/j.ultrasmedbio.2015.10.001
SSID ssj0059987
Score 2.5483887
SecondaryResourceType review_article
Snippet Low-intensity transcranial focused ultrasound stimulation (TFUS) holds great promise as a highly focal technique for transcranial stimulation even for deep...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1367
SubjectTerms Animals
Brain - diagnostic imaging
Brain - physiology
Brain Mapping - adverse effects
Brain Mapping - methods
Cerebral Hemorrhage - diagnostic imaging
Cerebral Hemorrhage - etiology
Health Knowledge, Attitudes, Practice
Histology
Humans
Magnetic Resonance Imaging - adverse effects
Magnetic Resonance Imaging - methods
Review
Safety
TFUS
Transcranial focused ultrasound
Ultrasonic Therapy - adverse effects
Ultrasonic Therapy - methods
Title Safety of transcranial focused ultrasound stimulation: A systematic review of the state of knowledge from both human and animal studies
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1935861X19303389
https://dx.doi.org/10.1016/j.brs.2019.07.024
https://www.ncbi.nlm.nih.gov/pubmed/31401074
https://www.proquest.com/docview/2272221566
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFH_aussuCBiM8jE9JMQBKWviOEnNrZqYCohdxqTerNhxtKE1ndb0sAtX_m1-dpIiDhsShyRKlGdHed_2-yB6l7k4VTZXkZWuhoNiIQdLNY3SaV34vAFZhR5L387y-YX8ssgWO3Qy5ML4sMpe9ncyPUjr_smk_5uTm6uryXnit_DyZIFrDEdL7dKegLafjmhv9vnr_GwQyBk8iqLbXM4iDzBsboYwL3Pri3YnKpTwFPI-9XSf-RnU0OljetTbjzzrPvEJ7bjmKR3MGvjOyzt-zyGiMyyVH9Cv87J27R2vam69SrI4gdy4XtnN2lW8ucbjte-rxGD0Zd_I6yPP-E99Z-5yW8IYl45D_pG_2a7FsU9QYQOEc-j3xyWGwzxLTLTughSf0cXpp-8n86hvvBBZ6P82So10qRUuzadlkVorRYXDSOmEyQVsEvBqXdlMOpWXJhPW5hZ2VSmUVcapJH1Oo2bVuBfEiQWHS5_wGktYZsrIIjdVqSpQTozBxhQP_1vbviq5b45xrYfwsx8aKNIeRTouNFA0pg9bkJuuJMdDL4sBiXrINYV01FAYDwHJLdBfxPgvsLcDlWgwqd95KRu32uAlUcAO867ymA478tl-eupdXBhyL_9v0le07--69MjXNGpvN-4N7KTWHNHu8c_kqOeG379JEsk
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LTttAcETDob2g8mhJgTKVKg6VrNjrtZ3tLUJF4ZULIOW28q7XKhVxEHEOfEF_m5m1HcQBKvVgW37MruV5e-cB8D1xYaxsqgIrXUkOiiU5mKthEA_LjPMGZOF7LF1O0vGNPJsm0zU47nJhOKyylf2NTPfSur0yaL_m4P72dnAV8RJeGk3pGJKjpd7BuuSm1j1YH52ejyedQE7Io8iaxeUkYIBucdOHeZkHLtodKV_CU8jX1NNr5qdXQycfYaO1H3HUvOImrLlqC7ZHFfnOs0c8Qh_R6X-Vb8Pfq7x09SPOS6xZJVnaEblhObfLhStweUeXF9xXCYnRZ20jr584wuf6ztjktvgxfjv0-Ud8svoXh5yggoYQjr7fH-Y0HM0zo4kWTZDiDtyc_Lo-Hgdt44XAkv6vg9hIF1vh4nSYZ7G1UhS0GSmdMKkgm4R4tSxsIp1Kc5MIa1NLdlUulFXGqSj-BL1qXrldwMgSh0tOeA0lWWbKyCw1Ra4KopyQButD2H1vbduq5Nwc40534Wd_NKFIM4p0mGlCUR9-rEDum5Icbz0sOiTqLteUpKMmhfEWkFwBvSDGf4F966hEE5PyykteufmSHhIZ2WHsKvfhc0M-q1eP2cUlQ-7L_016CO_H15cX-uJ0cr4HH_hOkyq5D736YekOyGaqzdeWJ54ANkIUrw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Safety+of+transcranial+focused+ultrasound+stimulation%3A+A+systematic+review+of+the+state+of+knowledge+from+both+human+and+animal+studies&rft.jtitle=Brain+stimulation&rft.au=Pasquinelli%2C+Cristina&rft.au=Hanson%2C+Lars+G.&rft.au=Siebner%2C+Hartwig+R.&rft.au=Lee%2C+Hyunjoo+J.&rft.date=2019-11-01&rft.pub=Elsevier+Inc&rft.issn=1935-861X&rft.volume=12&rft.issue=6&rft.spage=1367&rft.epage=1380&rft_id=info:doi/10.1016%2Fj.brs.2019.07.024&rft.externalDocID=S1935861X19303389
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1935-861X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1935-861X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1935-861X&client=summon