Safety of transcranial focused ultrasound stimulation: A systematic review of the state of knowledge from both human and animal studies
Low-intensity transcranial focused ultrasound stimulation (TFUS) holds great promise as a highly focal technique for transcranial stimulation even for deep brain areas. Yet, knowledge about the safety of this novel technique is still limited. To systematically review safety related aspects of TFUS....
Saved in:
Published in | Brain stimulation Vol. 12; no. 6; pp. 1367 - 1380 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.11.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 1935-861X 1876-4754 1876-4754 |
DOI | 10.1016/j.brs.2019.07.024 |
Cover
Abstract | Low-intensity transcranial focused ultrasound stimulation (TFUS) holds great promise as a highly focal technique for transcranial stimulation even for deep brain areas. Yet, knowledge about the safety of this novel technique is still limited.
To systematically review safety related aspects of TFUS. The review covers the mechanisms-of-action by which TFUS may cause adverse effects and the available data on the possible occurrence of such effects in animal and human studies.
Initial screening used key term searches in PubMed and bioRxiv, and a review of the literature lists of relevant papers. We included only studies where safety assessment was performed, and this results in 33 studies, both in humans and animals.
Adverse effects of TFUS were very rare. At high stimulation intensity and/or rate, TFUS may cause haemorrhage, cell death or damage, and unintentional blood-brain barrier (BBB) opening. TFUS may also unintentionally affect long-term neural activity and behaviour. A variety of methods was used mainly in rodents to evaluate these adverse effects, including tissue staining, magnetic resonance imaging, temperature measurements and monitoring of neural activity and behaviour. In 30 studies, adverse effects were absent, even though at least one Food and Drug Administration (FDA) safety index was frequently exceeded. Two studies reported microhaemorrhages after long or relatively intense stimulation above safety limits. Another study reported BBB opening and neuronal damage in a control condition, which intentionally and substantially exceeded the safety limits.
Most studies point towards a favourable safety profile of TFUS. Further investigations are warranted to establish a solid safety framework for the therapeutic window of TFUS to reliably avoid adverse effects while ensuring neural effectiveness. The comparability across studies should be improved by a more standardized reporting of TFUS parameters.
•TFUS is an emerging non-invasive stimulation method with excellent focality•We summarize the safety-related data from the available literature.•Adverse effects were absent in 30 studies, and were reported in 3 studies.•Many studies used parameters outside safety limits for diagnostic ultrasound.•Further studies are warranted to establish the safety margin for TFUS. |
---|---|
AbstractList | Low-intensity transcranial focused ultrasound stimulation (TFUS) holds great promise as a highly focal technique for transcranial stimulation even for deep brain areas. Yet, knowledge about the safety of this novel technique is still limited.
To systematically review safety related aspects of TFUS. The review covers the mechanisms-of-action by which TFUS may cause adverse effects and the available data on the possible occurrence of such effects in animal and human studies.
Initial screening used key term searches in PubMed and bioRxiv, and a review of the literature lists of relevant papers. We included only studies where safety assessment was performed, and this results in 33 studies, both in humans and animals.
Adverse effects of TFUS were very rare. At high stimulation intensity and/or rate, TFUS may cause haemorrhage, cell death or damage, and unintentional blood-brain barrier (BBB) opening. TFUS may also unintentionally affect long-term neural activity and behaviour. A variety of methods was used mainly in rodents to evaluate these adverse effects, including tissue staining, magnetic resonance imaging, temperature measurements and monitoring of neural activity and behaviour. In 30 studies, adverse effects were absent, even though at least one Food and Drug Administration (FDA) safety index was frequently exceeded. Two studies reported microhaemorrhages after long or relatively intense stimulation above safety limits. Another study reported BBB opening and neuronal damage in a control condition, which intentionally and substantially exceeded the safety limits.
Most studies point towards a favourable safety profile of TFUS. Further investigations are warranted to establish a solid safety framework for the therapeutic window of TFUS to reliably avoid adverse effects while ensuring neural effectiveness. The comparability across studies should be improved by a more standardized reporting of TFUS parameters.
•TFUS is an emerging non-invasive stimulation method with excellent focality•We summarize the safety-related data from the available literature.•Adverse effects were absent in 30 studies, and were reported in 3 studies.•Many studies used parameters outside safety limits for diagnostic ultrasound.•Further studies are warranted to establish the safety margin for TFUS. Low-intensity transcranial focused ultrasound stimulation (TFUS) holds great promise as a highly focal technique for transcranial stimulation even for deep brain areas. Yet, knowledge about the safety of this novel technique is still limited. To systematically review safety related aspects of TFUS. The review covers the mechanisms-of-action by which TFUS may cause adverse effects and the available data on the possible occurrence of such effects in animal and human studies. Initial screening used key term searches in PubMed and bioRxiv, and a review of the literature lists of relevant papers. We included only studies where safety assessment was performed, and this results in 33 studies, both in humans and animals. Adverse effects of TFUS were very rare. At high stimulation intensity and/or rate, TFUS may cause haemorrhage, cell death or damage, and unintentional blood-brain barrier (BBB) opening. TFUS may also unintentionally affect long-term neural activity and behaviour. A variety of methods was used mainly in rodents to evaluate these adverse effects, including tissue staining, magnetic resonance imaging, temperature measurements and monitoring of neural activity and behaviour. In 30 studies, adverse effects were absent, even though at least one Food and Drug Administration (FDA) safety index was frequently exceeded. Two studies reported microhaemorrhages after long or relatively intense stimulation above safety limits. Another study reported BBB opening and neuronal damage in a control condition, which intentionally and substantially exceeded the safety limits. Most studies point towards a favourable safety profile of TFUS. Further investigations are warranted to establish a solid safety framework for the therapeutic window of TFUS to reliably avoid adverse effects while ensuring neural effectiveness. The comparability across studies should be improved by a more standardized reporting of TFUS parameters. Low-intensity transcranial focused ultrasound stimulation (TFUS) holds great promise as a highly focal technique for transcranial stimulation even for deep brain areas. Yet, knowledge about the safety of this novel technique is still limited.BACKGROUNDLow-intensity transcranial focused ultrasound stimulation (TFUS) holds great promise as a highly focal technique for transcranial stimulation even for deep brain areas. Yet, knowledge about the safety of this novel technique is still limited.To systematically review safety related aspects of TFUS. The review covers the mechanisms-of-action by which TFUS may cause adverse effects and the available data on the possible occurrence of such effects in animal and human studies.OBJECTIVETo systematically review safety related aspects of TFUS. The review covers the mechanisms-of-action by which TFUS may cause adverse effects and the available data on the possible occurrence of such effects in animal and human studies.Initial screening used key term searches in PubMed and bioRxiv, and a review of the literature lists of relevant papers. We included only studies where safety assessment was performed, and this results in 33 studies, both in humans and animals.METHODSInitial screening used key term searches in PubMed and bioRxiv, and a review of the literature lists of relevant papers. We included only studies where safety assessment was performed, and this results in 33 studies, both in humans and animals.Adverse effects of TFUS were very rare. At high stimulation intensity and/or rate, TFUS may cause haemorrhage, cell death or damage, and unintentional blood-brain barrier (BBB) opening. TFUS may also unintentionally affect long-term neural activity and behaviour. A variety of methods was used mainly in rodents to evaluate these adverse effects, including tissue staining, magnetic resonance imaging, temperature measurements and monitoring of neural activity and behaviour. In 30 studies, adverse effects were absent, even though at least one Food and Drug Administration (FDA) safety index was frequently exceeded. Two studies reported microhaemorrhages after long or relatively intense stimulation above safety limits. Another study reported BBB opening and neuronal damage in a control condition, which intentionally and substantially exceeded the safety limits.RESULTSAdverse effects of TFUS were very rare. At high stimulation intensity and/or rate, TFUS may cause haemorrhage, cell death or damage, and unintentional blood-brain barrier (BBB) opening. TFUS may also unintentionally affect long-term neural activity and behaviour. A variety of methods was used mainly in rodents to evaluate these adverse effects, including tissue staining, magnetic resonance imaging, temperature measurements and monitoring of neural activity and behaviour. In 30 studies, adverse effects were absent, even though at least one Food and Drug Administration (FDA) safety index was frequently exceeded. Two studies reported microhaemorrhages after long or relatively intense stimulation above safety limits. Another study reported BBB opening and neuronal damage in a control condition, which intentionally and substantially exceeded the safety limits.Most studies point towards a favourable safety profile of TFUS. Further investigations are warranted to establish a solid safety framework for the therapeutic window of TFUS to reliably avoid adverse effects while ensuring neural effectiveness. The comparability across studies should be improved by a more standardized reporting of TFUS parameters.CONCLUSIONMost studies point towards a favourable safety profile of TFUS. Further investigations are warranted to establish a solid safety framework for the therapeutic window of TFUS to reliably avoid adverse effects while ensuring neural effectiveness. The comparability across studies should be improved by a more standardized reporting of TFUS parameters. |
Author | Pasquinelli, Cristina Lee, Hyunjoo J. Siebner, Hartwig R. Thielscher, Axel Hanson, Lars G. |
Author_xml | – sequence: 1 givenname: Cristina orcidid: 0000-0002-7561-2920 surname: Pasquinelli fullname: Pasquinelli, Cristina organization: Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark – sequence: 2 givenname: Lars G. surname: Hanson fullname: Hanson, Lars G. organization: Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark – sequence: 3 givenname: Hartwig R. surname: Siebner fullname: Siebner, Hartwig R. organization: Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark – sequence: 4 givenname: Hyunjoo J. surname: Lee fullname: Lee, Hyunjoo J. organization: School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea – sequence: 5 givenname: Axel surname: Thielscher fullname: Thielscher, Axel email: axelt@drcmr.dk organization: Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31401074$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctuFDEQRS0URB7wAWyQl2ymsd1uexpWUcRLisQCkNhZ7upqxhO3HWx3ovkCfhtPJtlkERZ-lHXPLevWKTkKMSAhrzlrOOPq3bYZUm4E433DdMOEfEZO-FqrldSdPKr3vu1Wa8V_HZPTnLeMdX2_1i_Iccsl40zLE_L3u52w7GicaEk2ZKibs55OEZaMI118fc5xCSPNxc2Lt8XF8J6e07zLBedaAk144_D2zmODVWcL7ourEG89jr-RTinOdIhlQzfLbAO11a72mWujXJbRYX5Jnk_WZ3x1f56Rn58-_rj4srr89vnrxfnlCjouyqodJLYgsFVrq1sAKca6BilRDEpozgbGphE6ib2yQycAFCgpreihH7Dn7Rl5e_C9TvHPgrmY2WVA723AuGQjhBZC8E6pKn1zL12GGUdzneqH0848hFcF-iCAFHNOOBlw5S6fmpnzhjOzH5PZmjomsx-TYdrUMVWSPyIfzJ9iPhwYrPHUvJPJ4DAAji4hFDNG9yTdP6LBu-DA-ivc_Yf9B2biwHw |
CitedBy_id | crossref_primary_10_1016_j_pnpbp_2024_111244 crossref_primary_10_3389_fphys_2022_1047324 crossref_primary_10_3389_fphy_2020_00150 crossref_primary_10_1007_s41465_023_00264_z crossref_primary_10_3389_fnins_2021_629323 crossref_primary_10_3390_brainsci12020216 crossref_primary_10_3389_fnins_2021_620863 crossref_primary_10_1109_ACCESS_2020_3007517 crossref_primary_10_1176_appi_focus_20109 crossref_primary_10_3390_brainsci14111095 crossref_primary_10_1109_TUFFC_2023_3322963 crossref_primary_10_1016_j_neuroimage_2023_120227 crossref_primary_10_1016_j_cobeha_2024_101430 crossref_primary_10_1109_TIM_2020_3021496 crossref_primary_10_1017_S0033291725000406 crossref_primary_10_1186_s12967_021_03222_5 crossref_primary_10_1021_acsami_1c16735 crossref_primary_10_7554_eLife_54497 crossref_primary_10_1016_j_brs_2020_10_007 crossref_primary_10_1109_TUFFC_2023_3274046 crossref_primary_10_1073_pnas_1914387116 crossref_primary_10_1016_j_isci_2021_103429 crossref_primary_10_1016_j_clinph_2021_12_010 crossref_primary_10_1021_acsptsci_4c00494 crossref_primary_10_1186_s13054_025_05338_2 crossref_primary_10_3390_pharmaceutics14040833 crossref_primary_10_1016_j_neuroimage_2021_118093 crossref_primary_10_1016_j_celrep_2022_111197 crossref_primary_10_1111_pcn_13663 crossref_primary_10_1016_j_brs_2024_03_004 crossref_primary_10_3389_fpsyt_2022_825802 crossref_primary_10_4103_1673_5374_290876 crossref_primary_10_1113_JP285613 crossref_primary_10_1016_j_ultrasmedbio_2021_11_006 crossref_primary_10_1088_1361_6560_ada19d crossref_primary_10_1038_s41598_022_05226_7 crossref_primary_10_1097_j_pain_0000000000003556 crossref_primary_10_1002_advs_202002026 crossref_primary_10_1016_j_neubiorev_2022_104867 crossref_primary_10_1016_j_addr_2023_115177 crossref_primary_10_1038_s41598_021_84330_6 crossref_primary_10_3389_fnhum_2024_1486770 crossref_primary_10_1016_j_neubiorev_2021_10_040 crossref_primary_10_1016_j_neuroimage_2024_120841 crossref_primary_10_3389_fnins_2022_1005810 crossref_primary_10_1016_j_physleta_2024_129756 crossref_primary_10_1002_advs_202202345 crossref_primary_10_3389_fnins_2022_886584 crossref_primary_10_1063_5_0180275 crossref_primary_10_3389_fnins_2024_1420255 crossref_primary_10_1186_s12883_020_01859_1 crossref_primary_10_1016_j_neurom_2024_07_008 crossref_primary_10_1016_j_ultras_2022_106888 crossref_primary_10_1016_j_neuron_2024_07_002 crossref_primary_10_1016_j_cmpb_2022_106777 crossref_primary_10_3389_fneur_2024_1346412 crossref_primary_10_1007_s13311_020_00899_2 crossref_primary_10_3389_fncir_2023_1120410 crossref_primary_10_3389_fnagi_2022_987732 crossref_primary_10_1088_1741_2552_ac5c8b crossref_primary_10_3389_fneur_2021_722762 crossref_primary_10_3389_fneur_2023_1301956 crossref_primary_10_1002_adfm_201908999 crossref_primary_10_2217_bem_2020_0001 crossref_primary_10_3389_fnhum_2025_1478534 crossref_primary_10_1109_TUFFC_2020_3006781 crossref_primary_10_1055_s_0042_1755562 crossref_primary_10_1002_jum_16600 crossref_primary_10_15212_bioi_2020_0026 crossref_primary_10_1016_j_neuroimage_2023_120201 crossref_primary_10_1016_j_brs_2024_03_013 crossref_primary_10_1016_j_brs_2021_01_002 crossref_primary_10_1109_TUFFC_2020_3014183 crossref_primary_10_1016_j_lfs_2023_121769 crossref_primary_10_1002_mds_29836 crossref_primary_10_1016_j_cmpb_2024_108458 crossref_primary_10_3390_ijms25115687 crossref_primary_10_1016_j_brs_2024_06_005 crossref_primary_10_3389_fncel_2024_1360870 crossref_primary_10_3389_fphar_2022_786475 crossref_primary_10_3389_fnins_2024_1463038 crossref_primary_10_1016_j_bpsgos_2024_100342 crossref_primary_10_1038_s41378_023_00513_3 crossref_primary_10_1021_acsenergylett_3c00953 crossref_primary_10_1109_JBHI_2021_3103387 crossref_primary_10_1109_TUFFC_2022_3144335 crossref_primary_10_3389_fbioe_2022_1034194 crossref_primary_10_1016_j_plrev_2023_10_023 crossref_primary_10_3389_fnins_2022_824142 crossref_primary_10_3390_brainsci14030218 crossref_primary_10_1073_pnas_2309822120 crossref_primary_10_1016_j_neubiorev_2022_104821 crossref_primary_10_3389_fnhum_2022_872639 crossref_primary_10_1080_10717544_2022_2157068 crossref_primary_10_3389_fnhum_2024_1392199 crossref_primary_10_1016_j_heliyon_2025_e43001 crossref_primary_10_1109_TUFFC_2022_3140889 crossref_primary_10_1016_j_brs_2021_06_003 crossref_primary_10_1093_scan_nsaa102 crossref_primary_10_1177_23982128251322241 crossref_primary_10_3390_electronics10020118 crossref_primary_10_1016_j_actbio_2022_07_034 crossref_primary_10_1016_j_neurom_2021_12_012 crossref_primary_10_14336_AD_2021_0510 crossref_primary_10_1093_braincomms_fcae376 |
Cites_doi | 10.1016/j.neuron.2018.05.009 10.1177/0192623315625859 10.1186/s12868-018-0459-3 10.1186/s40349-016-0061-z 10.7554/eLife.40541 10.1088/0031-9155/56/1/014 10.1016/j.neuroimage.2011.02.058 10.1038/sj.cdd.4400476 10.1016/j.ultrasmedbio.2017.11.008 10.1016/j.brs.2014.06.011 10.1016/j.brs.2011.03.007 10.1016/j.brs.2014.08.008 10.1016/j.nbd.2009.07.030 10.1016/j.neuron.2010.05.008 10.1016/j.brs.2009.04.002 10.1016/S1385-299X(00)00004-0 10.1038/s41598-018-26287-7 10.1016/j.clinph.2015.02.001 10.1016/j.ultrasmedbio.2012.04.023 10.7326/0003-4819-151-4-200908180-00135 10.1097/WNR.0000000000000330 10.7863/jum.2012.31.4.623 10.1016/j.brs.2018.08.013 10.1016/j.pbiomolbio.2012.01.004 10.1186/1471-2202-12-23 10.1002/ima.22262 10.1016/j.neuron.2018.04.036 10.1371/journal.pmed.1000100 10.1177/1545968318790022 10.1016/j.brs.2018.11.007 10.1016/j.cub.2013.10.029 10.1118/1.4812423 10.1161/01.STR.0000170707.86793.1a 10.1152/jappl.1948.1.2.93 10.1038/srep34026 10.1186/s12868-016-0303-6 10.1016/j.brs.2008.04.003 10.1016/j.ultrasmedbio.2008.11.014 10.1073/pnas.1320768111 10.1097/WNR.0b013e32834b2957 10.1097/01.WCB.0000044631.80210.3C 10.1146/annurev.bioeng.8.061505.095852 10.1186/s12868-018-0456-6 10.1016/j.yebeh.2015.04.008 10.1016/j.neuron.2019.01.019 10.1038/nn.3620 10.1016/j.ultrasmedbio.2018.01.010 10.1088/1741-2552/aaaee1 10.1002/jmri.21265 10.1088/1361-6560/aa5e98 10.1177/1073858409348066 10.1016/j.ejrad.2006.06.022 10.1016/j.addr.2014.01.008 10.1371/journal.pone.0086939 10.1159/000336001 10.1038/srep24738 10.1016/j.ultrasmedbio.2012.09.009 10.1016/j.ultrasmedbio.2017.08.937 10.1016/j.ultrasmedbio.2015.10.001 |
ContentType | Journal Article |
Copyright | 2019 The Authors Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2019 The Authors – notice: Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.brs.2019.07.024 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1876-4754 |
EndPage | 1380 |
ExternalDocumentID | 31401074 10_1016_j_brs_2019_07_024 S1935861X19303389 |
Genre | Research Support, Non-U.S. Gov't Systematic Review Journal Article |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 1B1 1P~ 1~. 1~5 23N 4.4 457 4G. 4H- 53G 5GY 5VS 7-5 71M 8P~ AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABIVO ABJNI ABMAC ABMZM ABTEW ABWVN ABXDB ACDAQ ACGFS ACIEU ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADVLN AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPKN AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGUBO AGWIK AGYEJ AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR BKOJK BLXMC BNPGV CS3 EBS EFJIC EFKBS EJD EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN GBLVA GROUPED_DOAJ HVGLF HZ~ IHE J1W KOM M41 MO0 MOBAO N9A O-L O9- OAUVE OK1 OP~ OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SEL SES SSH SSN SSZ T5K Z5R ~G- 0SF 6I. AACTN AAFTH AFCTW AFKWA AJOXV AMFUW NCXOZ RIG AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 ACLOT EFLBG ~HD |
ID | FETCH-LOGICAL-c512t-3b4e3c2e368a73cc42dc42b44e2b62710b00fdc54e96ab52cc6c644a29c9be913 |
IEDL.DBID | AIKHN |
ISSN | 1935-861X 1876-4754 |
IngestDate | Sun Sep 28 08:40:45 EDT 2025 Thu Apr 03 07:05:36 EDT 2025 Thu Apr 24 23:12:04 EDT 2025 Tue Jul 01 02:09:49 EDT 2025 Tue Oct 08 04:54:18 EDT 2024 Tue Aug 26 16:35:18 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Histology Transcranial focused ultrasound Safety Review TFUS |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c512t-3b4e3c2e368a73cc42dc42b44e2b62710b00fdc54e96ab52cc6c644a29c9be913 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 |
ORCID | 0000-0002-7561-2920 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1935861X19303389 |
PMID | 31401074 |
PQID | 2272221566 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2272221566 pubmed_primary_31401074 crossref_citationtrail_10_1016_j_brs_2019_07_024 crossref_primary_10_1016_j_brs_2019_07_024 elsevier_sciencedirect_doi_10_1016_j_brs_2019_07_024 elsevier_clinicalkey_doi_10_1016_j_brs_2019_07_024 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November-December 2019 2019-11-00 2019 Nov - Dec 20191101 |
PublicationDateYYYYMMDD | 2019-11-01 |
PublicationDate_xml | – month: 11 year: 2019 text: November-December 2019 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Brain stimulation |
PublicationTitleAlternate | Brain Stimul |
PublicationYear | 2019 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Fomenko, Neudorfer, Dallapiazza, Kalia, Lozano (bib11) 2018; 11 Younan, Deffieux, Larrat, Fink, Tanter, Aubry (bib50) 2013; 40 Palm, Keeser, Schiller, Fintescu, Reisinger, Padberg, Nitsche (bib58) 2008; 1 Baek, Pahk, Kim, Youn, Kim (bib19) 2018; 32 Deffieux, Younan, Wattiez, Tanter, Pouget, Aubry (bib66) 2013; 23 Fowlkes (bib4) 2008; 27 Li, Zhao, Zhou, Yan, Wang, Xu, Wang, Niu, Meng, Wu, Zhang (bib36) 2016; 6 Rossini, Burke, Chen, Cohen, Daskalakis, Di Iorio (bib59) 2015; 126 Legon, Sato, Opitz, Mueller, Barbour, Williams, Tyler (bib62) 2014; 17 Pichardo, Sin, Hynynen (bib8) 2010; 56 Cosgrove (bib23) 2006; 60 US FDA (bib6) 2008 Lee, Kim, Jung, Song, Chung, Yoo (bib51) 2015; 5 Aryal, Arvanitis, Alexander, McDannold (bib26) 2014; 72 Fisher, Gumenchuk (bib31) 2018; 15 Kim, Kim, Sim, Pasquinelli, Thielscher, Lee, Lee (bib33) 2019; 12 Lee, Lee, Park, Foley, Purcell-Estabrook, Kim, Fischer, Maeng, Yoo (bib34) 2016; 42 Daffertshofer, Gass, Ringleb, Sitzer, Sliwka, Els, Sedlaczek, Koroshetz, Hennerici (bib68) 2005; 36 Yoo, Bystritsky, Lee, Zhang, Fischer, Min, McDannold, Pascual-Leone, Jolesz (bib29) 2011; 56 Mueller, Legon, Opitz, Sato, Tyler (bib67) 2014; 7 Farzaneh, McLoughlin, Chauhan, Ter-Haar (bib60) 2012; 108 Lee, Chung, Jung, Song, Yoo (bib54) 2016; 17 Kim, Taghados, Fischer, Maeng, Park, Yoo (bib28) 2012; 38 Yoo, Yoon, Croce, Cammalleri, Margolin, Lee (bib48) 2018; 28 Elmar, Wilfurth, Landgrebe, Eichhammer, Hajak, Langguth (bib57) 2010; 3 Ferrara, Pollard, Borden (bib24) 2007; 9 Yoo, Kim, Min, Franck (bib56) 2011; 22 Min, Bystritsky, Jung, Fischer, Zhang, Maeng, Park, Chung, Jolesz, Yoo (bib2) 2011; 12 Yang, Phipps, Newton, Chaplin, Gore, Caskey, Chen (bib52) 2018; 8 Baron, Aubry, Tanter, Meairs, Fink (bib61) 2009; 35 Elmore, Dixon, Hailey, Harada, Herbert, Maronpot (bib41) 2016; 44 Folloni, Verhagen, Mars, Fouragnan, Constans, Aubry, Rushworth, Sallet (bib46) 2019; 101 Tyler (bib14) 2011; 17 Lee, Kim, Jung, Chung, Song, Lee, Yoo (bib17) 2016; 6 Daniels, Sharabi, Last, Guez, Salomon, Zivli, Castel, Volovick, Grinfeld, Rachmilevich, Amar, Liraz-Zaltsman, Sargsyan, Yael Mardor, Harnof (bib39) 2018; 44 Mehić, Xu, Caler, Coulson, Moritz, Mourad (bib40) 2014; 9 Rieke, Pauly (bib53) 2008; 27 Legon, Bansal, Ai, Mueller, Meekins, Gillick (bib55) 2018 Miller, Smith, Bailey, Czarnota, Hynynen, Makin (bib5) 2012; 31 Tufail, Matyushov, Baldwin, Tauchmann, Georges, Yoshihiro (bib27) 2010; 66 Dallapiazza, Timbie, Holmberg, Gatesman, Lopes, Price, Miller, Elias (bib21) 2018; 128 Ai, Bansal, Mueller, Legon (bib65) 2018; 19 Brohawn, Su, MacKinnon (bib13) 2014; 111 Abbott, Patabendige, Dolman, Yusof, Begley (bib25) 2010 Kim, Park, Wang, Chiu, Fischer, Yoo (bib32) 2013; 40 Chen, Swanson (bib44) 2003; 23 Pennes (bib20) 1948; 1 Hakimova, Kim, Chu, Lee, Jeong, Jeon (bib3) 2015; 49 Moher, Liberati, Tetzlaff, Altman (bib10) 2009; 151 Szabo (bib18) 2014 Lee, Croce, Margolin, Cammalleri, Yoon, Yoo (bib30) 2018; 19 Han, Kim, Kim, Shin, Youn (bib38) 2018; 44 Sassaroli, Vykhodtseva (bib12) 2016; 4 Kim, Chiu, Lee, Fischer, Yoo (bib35) 2014; 7 Sato, Shapiro, Tsao (bib15) 2018; 98 Robertson, Martin, Cox, Treeby (bib63) 2017; 62 Bystritsky, Korb, Douglas, Cohen, Melega, Mulgaonkar (bib1) 2011; 4 King, Brown, Newsome, Pauly (bib7) 2013; 39 Gulick, Li, Kleim, Towe (bib45) 2017; 43 Victorov, Prass, Dirnagl (bib43) 2000; 5 Liberati, Altman, Tetzlaff, Mulrow, Gøtzsche, Ioannidis, Clarke, Devereaux, Kleijnen, Moher (bib9) 2009; 6 Verhagen, Gallea, Folloni, Constans, Jensen, Ahnine, Roumazeilles, Santin, Ahmed, Lehericy, Klein-Flügge (bib22) 2019; 8 Pasquinelli, Montanaro, Neufeld, Lee, Thielscher (bib64) 2018 Porter, Jänicke (bib42) 1999; 6 Kim, Park, Lee, Lee, Chiu, Yoo (bib49) 2015; 26 Legon, Bansal, Tyshynsky, Ai, Mueller (bib47) 2018 Guo, Hamilton, Offutt, Gloeckner, Li, Kim, Legon, Alford, Lim (bib16) 2018; 98 Yang, Kim, Lee, Bohlke, Park, Maher, Yoo (bib37) 2012; 65 Yoo (10.1016/j.brs.2019.07.024_bib29) 2011; 56 Han (10.1016/j.brs.2019.07.024_bib38) 2018; 44 Farzaneh (10.1016/j.brs.2019.07.024_bib60) 2012; 108 Szabo (10.1016/j.brs.2019.07.024_bib18) 2014 Mehić (10.1016/j.brs.2019.07.024_bib40) 2014; 9 Pichardo (10.1016/j.brs.2019.07.024_bib8) 2010; 56 US FDA (10.1016/j.brs.2019.07.024_bib6) 2008 Moher (10.1016/j.brs.2019.07.024_bib10) 2009; 151 Kim (10.1016/j.brs.2019.07.024_bib49) 2015; 26 Bystritsky (10.1016/j.brs.2019.07.024_bib1) 2011; 4 Palm (10.1016/j.brs.2019.07.024_bib58) 2008; 1 Kim (10.1016/j.brs.2019.07.024_bib28) 2012; 38 Yoo (10.1016/j.brs.2019.07.024_bib56) 2011; 22 Elmore (10.1016/j.brs.2019.07.024_bib41) 2016; 44 Hakimova (10.1016/j.brs.2019.07.024_bib3) 2015; 49 Gulick (10.1016/j.brs.2019.07.024_bib45) 2017; 43 Folloni (10.1016/j.brs.2019.07.024_bib46) 2019; 101 Mueller (10.1016/j.brs.2019.07.024_bib67) 2014; 7 Pennes (10.1016/j.brs.2019.07.024_bib20) 1948; 1 King (10.1016/j.brs.2019.07.024_bib7) 2013; 39 Baek (10.1016/j.brs.2019.07.024_bib19) 2018; 32 Deffieux (10.1016/j.brs.2019.07.024_bib66) 2013; 23 Kim (10.1016/j.brs.2019.07.024_bib32) 2013; 40 Abbott (10.1016/j.brs.2019.07.024_bib25) 2010 Chen (10.1016/j.brs.2019.07.024_bib44) 2003; 23 Legon (10.1016/j.brs.2019.07.024_bib47) 2018 Lee (10.1016/j.brs.2019.07.024_bib51) 2015; 5 Sassaroli (10.1016/j.brs.2019.07.024_bib12) 2016; 4 Legon (10.1016/j.brs.2019.07.024_bib55) 2018 Robertson (10.1016/j.brs.2019.07.024_bib63) 2017; 62 Fowlkes (10.1016/j.brs.2019.07.024_bib4) 2008; 27 Aryal (10.1016/j.brs.2019.07.024_bib26) 2014; 72 Lee (10.1016/j.brs.2019.07.024_bib34) 2016; 42 Kim (10.1016/j.brs.2019.07.024_bib35) 2014; 7 Ai (10.1016/j.brs.2019.07.024_bib65) 2018; 19 Baron (10.1016/j.brs.2019.07.024_bib61) 2009; 35 Pasquinelli (10.1016/j.brs.2019.07.024_bib64) 2018 Legon (10.1016/j.brs.2019.07.024_bib62) 2014; 17 Lee (10.1016/j.brs.2019.07.024_bib54) 2016; 17 Miller (10.1016/j.brs.2019.07.024_bib5) 2012; 31 Yoo (10.1016/j.brs.2019.07.024_bib48) 2018; 28 Fomenko (10.1016/j.brs.2019.07.024_bib11) 2018; 11 Liberati (10.1016/j.brs.2019.07.024_bib9) 2009; 6 Verhagen (10.1016/j.brs.2019.07.024_bib22) 2019; 8 Daffertshofer (10.1016/j.brs.2019.07.024_bib68) 2005; 36 Porter (10.1016/j.brs.2019.07.024_bib42) 1999; 6 Dallapiazza (10.1016/j.brs.2019.07.024_bib21) 2018; 128 Kim (10.1016/j.brs.2019.07.024_bib33) 2019; 12 Rossini (10.1016/j.brs.2019.07.024_bib59) 2015; 126 Cosgrove (10.1016/j.brs.2019.07.024_bib23) 2006; 60 Tufail (10.1016/j.brs.2019.07.024_bib27) 2010; 66 Tyler (10.1016/j.brs.2019.07.024_bib14) 2011; 17 Younan (10.1016/j.brs.2019.07.024_bib50) 2013; 40 Guo (10.1016/j.brs.2019.07.024_bib16) 2018; 98 Sato (10.1016/j.brs.2019.07.024_bib15) 2018; 98 Min (10.1016/j.brs.2019.07.024_bib2) 2011; 12 Elmar (10.1016/j.brs.2019.07.024_bib57) 2010; 3 Lee (10.1016/j.brs.2019.07.024_bib30) 2018; 19 Daniels (10.1016/j.brs.2019.07.024_bib39) 2018; 44 Brohawn (10.1016/j.brs.2019.07.024_bib13) 2014; 111 Yang (10.1016/j.brs.2019.07.024_bib52) 2018; 8 Rieke (10.1016/j.brs.2019.07.024_bib53) 2008; 27 Yang (10.1016/j.brs.2019.07.024_bib37) 2012; 65 Fisher (10.1016/j.brs.2019.07.024_bib31) 2018; 15 Victorov (10.1016/j.brs.2019.07.024_bib43) 2000; 5 Lee (10.1016/j.brs.2019.07.024_bib17) 2016; 6 Ferrara (10.1016/j.brs.2019.07.024_bib24) 2007; 9 Li (10.1016/j.brs.2019.07.024_bib36) 2016; 6 |
References_xml | – volume: 27 start-page: 503 year: 2008 end-page: 515 ident: bib4 article-title: American Institute of Ultrasound in Medicine consensus report on potential bioeffects of diagnostic ultrasound: executive summary publication-title: J Ultrasound Med: Off J Am Ins Ultrasound Med – volume: 6 start-page: 24738 year: 2016 ident: bib36 article-title: Improved anatomical specificity of non-invasive neuro-stimulation by high frequency (5 MHz) ultrasound publication-title: Sci Rep – volume: 12 start-page: 23 year: 2011 ident: bib2 article-title: Focused ultrasound-mediated suppression of chemically-induced acute epileptic EEG activity publication-title: BMC Neurosci – volume: 6 year: 1999 ident: bib42 article-title: Emerging roles of caspase-3 in apoptosis publication-title: Cell Death Differ – volume: 4 start-page: 17 year: 2016 ident: bib12 article-title: Acoustic neuromodulation from a basic science prospective publication-title: J Ther Ultrasound – volume: 111 start-page: 3614 year: 2014 end-page: 3619 ident: bib13 article-title: Mechanosensitivity is mediated directly by the lipid membrane in TRAAK and TREK1 K+ channels publication-title: Proc Natl Acad Sci – volume: 28 start-page: 106 year: 2018 end-page: 112 ident: bib48 article-title: Focused ultrasound brain stimulation to anesthetized rats induces long-term changes in somatosensory evoked potentials publication-title: Int J Imaging Syst Technol – volume: 56 start-page: 1267 year: 2011 end-page: 1275 ident: bib29 article-title: Focused ultrasound modulates region-specific brain activity publication-title: Neuroimage – volume: 35 start-page: 1148 year: 2009 end-page: 1158 ident: bib61 article-title: Simulation of intracranial acoustic fields in clinical trials of sonothrombolysis publication-title: Ultrasound Med Biol – volume: 27 start-page: 376 year: 2008 end-page: 390 ident: bib53 article-title: MR thermometry publication-title: J Magn Reson Imaging – volume: 3 start-page: 58 year: 2010 end-page: 59 ident: bib57 article-title: Anodal skin lesions after treatment with transcranial direct current stimulation publication-title: Brain Stimul: Basic Transl Clin Res Neuromodulation – volume: 98 start-page: 1031 year: 2018 end-page: 1041 ident: bib15 article-title: Ultrasonic neuromodulation causes widespread cortical activation via an indirect auditory mechanism publication-title: Neuron – volume: 72 start-page: 94 year: 2014 end-page: 109 ident: bib26 article-title: Ultrasound-mediated blood–brain barrier disruption for targeted drug delivery in the central nervous system publication-title: Adv Drug Deliv Rev – volume: 38 start-page: 1568 year: 2012 end-page: 1575 ident: bib28 article-title: Noninvasive transcranial stimulation of rat abducens nerve by focused ultrasound publication-title: Ultrasound Med Biol – volume: 17 start-page: 25 year: 2011 end-page: 36 ident: bib14 article-title: Noninvasive neuromodulation with ultrasound? A continuum mechanics hypothesis publication-title: The Neuroscientist – volume: 56 start-page: 219 year: 2010 ident: bib8 article-title: Multi-frequency characterization of the speed of sound and attenuation coefficient for longitudinal transmission of freshly excised human skulls publication-title: Phys Med Biol – volume: 128 start-page: 875 year: 2018 end-page: 884 ident: bib21 article-title: Noninvasive neuromodulation and thalamic mapping with low-intensity focused ultrasound publication-title: J Neurosurg – volume: 9 start-page: 415 year: 2007 end-page: 447 ident: bib24 article-title: Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery publication-title: Annu Rev Biomed Eng – volume: 43 start-page: 2824 year: 2017 end-page: 2833 ident: bib45 article-title: Comparison of electrical and ultrasound neurostimulation in rat motor cortex publication-title: Ultrasound Med Biol – volume: 19 start-page: 57 year: 2018 ident: bib30 article-title: Transcranial focused ultrasound stimulation of motor cortical areas in freely-moving awake rats publication-title: BMC Neurosci – volume: 36 start-page: 1441 year: 2005 end-page: 1446 ident: bib68 article-title: Transcranial lowfrequency ultrasound-mediated thrombolysis in brain ischemia. Increased risk of hemorrhage with combined ultrasound and tissue plasminogen activator. Results of a phase II clinical trial publication-title: Stroke – volume: 98 start-page: 1020 year: 2018 end-page: 1030 ident: bib16 article-title: Ultrasound produces extensive brain activation via a cochlear pathway publication-title: Neuron – volume: 66 start-page: 681 year: 2010 end-page: 694 ident: bib27 article-title: Transcranial pulsed ultrasound stimulates intact brain circuits publication-title: Neuron Neurotechnique – volume: 32 start-page: 777 year: 2018 end-page: 787 ident: bib19 article-title: Modulation of cerebellar cortical plasticity using low-intensity focused ultrasound for poststroke sensorimotor function recovery publication-title: Neurorehabilitation Neural Repair – volume: 15 year: 2018 ident: bib31 article-title: Low-intensity focused ultrasound alters the latency and spatial patterns of sensory-evoked cortical responses in vivo publication-title: J Neural Eng – volume: 5 start-page: 135 year: 2000 end-page: 139 ident: bib43 article-title: Improved selective, simple, and contrast staining of acidophilic neurons with vanadium acid fuchsin publication-title: Brain Res Protoc – volume: 108 start-page: 119 year: 2012 end-page: 138 ident: bib60 article-title: Bio-effects and safety of low-intensity, low-frequency ultrasonic exposure publication-title: Prog Biophys Mol Biol – volume: 17 year: 2014 ident: bib62 article-title: Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans publication-title: Nat Neurosci – volume: 40 year: 2013 ident: bib32 article-title: PET/CT imaging evidence of FUS-mediated (18)F-FDG uptake changes in rat brain publication-title: Med Phys – volume: 22 start-page: 783 year: 2011 end-page: 787 ident: bib56 article-title: Transcranial focused ultrasound to the thalamus alters anesthesia time in rats publication-title: Neuroreport – volume: 40 year: 2013 ident: bib50 article-title: Influence of the pressure field distribution in transcranial ultrasonic neurostimulation publication-title: Med Phys – volume: 39 start-page: 312 year: 2013 end-page: 331 ident: bib7 article-title: Effective parameters for ultrasound-induced in vivo neurostimulation publication-title: Ultrasound Med Biol – volume: 12 start-page: 251 year: 2019 end-page: 255 ident: bib33 article-title: Miniature ultrasound ring array transducers for transcranial ultrasound neuromodulation of freely-moving small animals publication-title: Brain Stimul – volume: 23 start-page: 2430 year: 2013 end-page: 2433 ident: bib66 article-title: Low-intensity focused ultrasound modulates monkey visuomotor behavior publication-title: Curr Biol – volume: 44 start-page: 173 year: 2016 end-page: 188 ident: bib41 article-title: Recommendations from the INHAND apoptosis/necrosis working group publication-title: Toxicol Pathol – volume: 49 start-page: 26 year: 2015 end-page: 32 ident: bib3 article-title: Ultrasound stimulation inhibits recurrent seizures and improves behavioral outcome in an experimental model of mesial temporal lobe epilepsy publication-title: Epilepsy Behav – volume: 17 start-page: 68 year: 2016 ident: bib54 article-title: Simultaneous acoustic stimulation of human primary and secondary somatosensory cortices using transcranial focused ultrasound publication-title: BMC Neurosci – volume: 151 start-page: 264 year: 2009 end-page: 269 ident: bib10 article-title: Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement publication-title: Ann Intern Med – start-page: 13 year: 2010 end-page: 25 ident: bib25 article-title: Structure and function of the blood–brain barrier publication-title: Neurobiol Dis – volume: 65 start-page: 153 year: 2012 end-page: 160 ident: bib37 article-title: Transcranial focused ultrasound to the thalamus is associated with reduced extracellular GABA levels in rats publication-title: Neuropsychobiology – volume: 31 start-page: 623 year: 2012 end-page: 634 ident: bib5 article-title: Overview of therapeutic ultrasound applications and safety considerations publication-title: J Ultrasound Med – volume: 60 start-page: 324 year: 2006 end-page: 330 ident: bib23 article-title: Ultrasound contrast agents: an overview publication-title: Eur J Radiol – year: 2018 ident: bib64 article-title: Impact of the skull model on simulated TFUS beam profiles publication-title: Abstract from 40th international engineering in medicine and biology, honolulu, United States – year: 2018 ident: bib55 article-title: Safety of transcranial focused ultrasound for human neuromodulation – volume: 44 start-page: 1022 year: 2018 end-page: 1030 ident: bib39 article-title: Focused ultrasound-induced suppression of auditory evoked potentials in vivo publication-title: Ultrasound Med Biol – volume: 1 start-page: 386 year: 2008 end-page: 387 ident: bib58 article-title: Skin lesions after treatment with transcranial direct current stimulation (tDCS) publication-title: Brain Stimul: Basic Transl Clin Res Neuromodulation – volume: 6 start-page: 34026 year: 2016 ident: bib17 article-title: Transcranial focused ultrasound stimulation of human primary visual cortex publication-title: Nat Sci Rep – volume: 62 start-page: 2559 year: 2017 ident: bib63 article-title: Sensitivity of simulated transcranial ultrasound fields to acoustic medium property maps publication-title: Phys Med Biol – volume: 8 year: 2019 ident: bib22 article-title: Offline impact of transcranial focused ultrasound on cortical activation in primates publication-title: Elife – volume: 44 start-page: 635 year: 2018 end-page: 646 ident: bib38 article-title: Ketamine inhibits ultrasound stimulation-induced neuromodulation by blocking cortical neuron activity publication-title: Ultrasound Med Biol – volume: 6 year: 2009 ident: bib9 article-title: The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration publication-title: PLoS Med – volume: 1 start-page: 93 year: 1948 end-page: 122 ident: bib20 article-title: Analysis of tissue and arterial blood temperatures in the resting human forearm publication-title: J Appl Physiol – volume: 42 start-page: 459 year: 2016 end-page: 470 ident: bib34 article-title: Image-Guided focused ultrasound-mediated regional brain stimulation in sheep publication-title: Ultrasound Med Biol – volume: 4 start-page: 125 year: 2011 end-page: 136 ident: bib1 article-title: A review of low-intensity focused ultrasound pulsation publication-title: Brain Stimul – start-page: 655 year: 2014 ident: bib18 article-title: Diagnostic ultrasound imaging:inside out – volume: 26 start-page: 211 year: 2015 ident: bib49 article-title: Suppression of EEG visual-evoked potentials in rats via neuromodulatory focused ultrasound publication-title: Neuroreport – volume: 9 year: 2014 ident: bib40 article-title: Increased anatomical specificity of neuromodulation via modulated focused ultrasound publication-title: PLoS One – volume: 8 start-page: 7993 year: 2018 ident: bib52 article-title: Neuromodulation of sensory networks in monkey brain by focused ultrasound with MRI guidance and detection publication-title: Sci Rep – volume: 126 start-page: 1071 year: 2015 end-page: 1107 ident: bib59 article-title: Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application. An updated report from an IFCN Committee publication-title: Clin Neurophysiol – volume: 5 year: 2015 ident: bib51 article-title: Image-guided transcranial focused ultrasound stimulates human primary somatosensory cortex publication-title: Sci Rep – volume: 23 start-page: 137 year: 2003 end-page: 149 ident: bib44 article-title: Astrocytes and brain injury publication-title: J Cereb Blood Flow Metab – volume: 19 start-page: 56 year: 2018 ident: bib65 article-title: Effects of transcranial focused ultrasound on human primary motor cortex using 7T fMRI publication-title: BMC Neurosci – year: 2008 ident: bib6 article-title: Guidance for Industry and FDA Staff - information for manufacturers seeking marketing clearance of diagnostic ultrasound systems and transducers – volume: 11 start-page: 1209 year: 2018 end-page: 1217 ident: bib11 article-title: Low-intensity ultrasound neuromodulation: an overview of mechanisms and emerging human applications publication-title: Brain stimul – volume: 7 start-page: 900 year: 2014 end-page: 908 ident: bib67 article-title: Transcranial focused ultrasound modulates intrinsic and evoked EEG dynamics publication-title: Brain Stimul – volume: 101 start-page: 1109 year: 2019 end-page: 1116 ident: bib46 article-title: Manipulation of subcortical and deep cortical activity in the primate brain using transcranial focused ultrasound stimulation publication-title: Neuron – year: 2018 ident: bib47 article-title: Transcranial focused ultrasound neuromodulation of the human primary motor cortex – volume: 7 start-page: 748 year: 2014 end-page: 756 ident: bib35 article-title: Focused ultrasound-mediated non-invasive brain stimulation: examination of sonication parameters publication-title: Brain Stimul – volume: 27 start-page: 503 issue: 4 year: 2008 ident: 10.1016/j.brs.2019.07.024_bib4 article-title: American Institute of Ultrasound in Medicine consensus report on potential bioeffects of diagnostic ultrasound: executive summary publication-title: J Ultrasound Med: Off J Am Ins Ultrasound Med – volume: 98 start-page: 1031 issue: 5 year: 2018 ident: 10.1016/j.brs.2019.07.024_bib15 article-title: Ultrasonic neuromodulation causes widespread cortical activation via an indirect auditory mechanism publication-title: Neuron doi: 10.1016/j.neuron.2018.05.009 – volume: 44 start-page: 173 issue: 2 year: 2016 ident: 10.1016/j.brs.2019.07.024_bib41 article-title: Recommendations from the INHAND apoptosis/necrosis working group publication-title: Toxicol Pathol doi: 10.1177/0192623315625859 – volume: 19 start-page: 57 issue: 1 year: 2018 ident: 10.1016/j.brs.2019.07.024_bib30 article-title: Transcranial focused ultrasound stimulation of motor cortical areas in freely-moving awake rats publication-title: BMC Neurosci doi: 10.1186/s12868-018-0459-3 – volume: 4 start-page: 17 issue: 1 year: 2016 ident: 10.1016/j.brs.2019.07.024_bib12 article-title: Acoustic neuromodulation from a basic science prospective publication-title: J Ther Ultrasound doi: 10.1186/s40349-016-0061-z – volume: 8 year: 2019 ident: 10.1016/j.brs.2019.07.024_bib22 article-title: Offline impact of transcranial focused ultrasound on cortical activation in primates publication-title: Elife doi: 10.7554/eLife.40541 – volume: 56 start-page: 219 issue: 1 year: 2010 ident: 10.1016/j.brs.2019.07.024_bib8 article-title: Multi-frequency characterization of the speed of sound and attenuation coefficient for longitudinal transmission of freshly excised human skulls publication-title: Phys Med Biol doi: 10.1088/0031-9155/56/1/014 – volume: 56 start-page: 1267 year: 2011 ident: 10.1016/j.brs.2019.07.024_bib29 article-title: Focused ultrasound modulates region-specific brain activity publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.02.058 – volume: 6 issue: 2 year: 1999 ident: 10.1016/j.brs.2019.07.024_bib42 article-title: Emerging roles of caspase-3 in apoptosis publication-title: Cell Death Differ doi: 10.1038/sj.cdd.4400476 – volume: 44 start-page: 635 issue: 3 year: 2018 ident: 10.1016/j.brs.2019.07.024_bib38 article-title: Ketamine inhibits ultrasound stimulation-induced neuromodulation by blocking cortical neuron activity publication-title: Ultrasound Med Biol doi: 10.1016/j.ultrasmedbio.2017.11.008 – year: 2008 ident: 10.1016/j.brs.2019.07.024_bib6 – volume: 7 start-page: 748 year: 2014 ident: 10.1016/j.brs.2019.07.024_bib35 article-title: Focused ultrasound-mediated non-invasive brain stimulation: examination of sonication parameters publication-title: Brain Stimul doi: 10.1016/j.brs.2014.06.011 – year: 2018 ident: 10.1016/j.brs.2019.07.024_bib47 – volume: 4 start-page: 125 issue: 3 year: 2011 ident: 10.1016/j.brs.2019.07.024_bib1 article-title: A review of low-intensity focused ultrasound pulsation publication-title: Brain Stimul doi: 10.1016/j.brs.2011.03.007 – volume: 7 start-page: 900 year: 2014 ident: 10.1016/j.brs.2019.07.024_bib67 article-title: Transcranial focused ultrasound modulates intrinsic and evoked EEG dynamics publication-title: Brain Stimul doi: 10.1016/j.brs.2014.08.008 – start-page: 13 year: 2010 ident: 10.1016/j.brs.2019.07.024_bib25 article-title: Structure and function of the blood–brain barrier publication-title: Neurobiol Dis doi: 10.1016/j.nbd.2009.07.030 – volume: 66 start-page: 681 year: 2010 ident: 10.1016/j.brs.2019.07.024_bib27 article-title: Transcranial pulsed ultrasound stimulates intact brain circuits publication-title: Neuron Neurotechnique doi: 10.1016/j.neuron.2010.05.008 – volume: 3 start-page: 58 issue: 1 year: 2010 ident: 10.1016/j.brs.2019.07.024_bib57 article-title: Anodal skin lesions after treatment with transcranial direct current stimulation publication-title: Brain Stimul: Basic Transl Clin Res Neuromodulation doi: 10.1016/j.brs.2009.04.002 – volume: 5 start-page: 135 issue: 2 year: 2000 ident: 10.1016/j.brs.2019.07.024_bib43 article-title: Improved selective, simple, and contrast staining of acidophilic neurons with vanadium acid fuchsin publication-title: Brain Res Protoc doi: 10.1016/S1385-299X(00)00004-0 – volume: 40 year: 2013 ident: 10.1016/j.brs.2019.07.024_bib32 article-title: PET/CT imaging evidence of FUS-mediated (18)F-FDG uptake changes in rat brain publication-title: Med Phys – volume: 128 start-page: 875 issue: 3 year: 2018 ident: 10.1016/j.brs.2019.07.024_bib21 article-title: Noninvasive neuromodulation and thalamic mapping with low-intensity focused ultrasound publication-title: J Neurosurg – volume: 8 start-page: 7993 issue: 1 year: 2018 ident: 10.1016/j.brs.2019.07.024_bib52 article-title: Neuromodulation of sensory networks in monkey brain by focused ultrasound with MRI guidance and detection publication-title: Sci Rep doi: 10.1038/s41598-018-26287-7 – volume: 126 start-page: 1071 issue: 6 year: 2015 ident: 10.1016/j.brs.2019.07.024_bib59 article-title: Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application. An updated report from an IFCN Committee publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2015.02.001 – volume: 38 start-page: 1568 year: 2012 ident: 10.1016/j.brs.2019.07.024_bib28 article-title: Noninvasive transcranial stimulation of rat abducens nerve by focused ultrasound publication-title: Ultrasound Med Biol doi: 10.1016/j.ultrasmedbio.2012.04.023 – volume: 151 start-page: 264 issue: 4 year: 2009 ident: 10.1016/j.brs.2019.07.024_bib10 article-title: Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement publication-title: Ann Intern Med doi: 10.7326/0003-4819-151-4-200908180-00135 – volume: 26 start-page: 211 issue: 4 year: 2015 ident: 10.1016/j.brs.2019.07.024_bib49 article-title: Suppression of EEG visual-evoked potentials in rats via neuromodulatory focused ultrasound publication-title: Neuroreport doi: 10.1097/WNR.0000000000000330 – volume: 5 year: 2015 ident: 10.1016/j.brs.2019.07.024_bib51 article-title: Image-guided transcranial focused ultrasound stimulates human primary somatosensory cortex publication-title: Sci Rep – volume: 31 start-page: 623 issue: 4 year: 2012 ident: 10.1016/j.brs.2019.07.024_bib5 article-title: Overview of therapeutic ultrasound applications and safety considerations publication-title: J Ultrasound Med doi: 10.7863/jum.2012.31.4.623 – volume: 11 start-page: 1209 issue: 6 year: 2018 ident: 10.1016/j.brs.2019.07.024_bib11 article-title: Low-intensity ultrasound neuromodulation: an overview of mechanisms and emerging human applications publication-title: Brain stimul doi: 10.1016/j.brs.2018.08.013 – year: 2018 ident: 10.1016/j.brs.2019.07.024_bib55 – volume: 108 start-page: 119 issue: 3 year: 2012 ident: 10.1016/j.brs.2019.07.024_bib60 article-title: Bio-effects and safety of low-intensity, low-frequency ultrasonic exposure publication-title: Prog Biophys Mol Biol doi: 10.1016/j.pbiomolbio.2012.01.004 – volume: 12 start-page: 23 issue: 1 year: 2011 ident: 10.1016/j.brs.2019.07.024_bib2 article-title: Focused ultrasound-mediated suppression of chemically-induced acute epileptic EEG activity publication-title: BMC Neurosci doi: 10.1186/1471-2202-12-23 – volume: 28 start-page: 106 issue: 2 year: 2018 ident: 10.1016/j.brs.2019.07.024_bib48 article-title: Focused ultrasound brain stimulation to anesthetized rats induces long-term changes in somatosensory evoked potentials publication-title: Int J Imaging Syst Technol doi: 10.1002/ima.22262 – volume: 98 start-page: 1020 issue: 5 year: 2018 ident: 10.1016/j.brs.2019.07.024_bib16 article-title: Ultrasound produces extensive brain activation via a cochlear pathway publication-title: Neuron doi: 10.1016/j.neuron.2018.04.036 – volume: 6 issue: 7 year: 2009 ident: 10.1016/j.brs.2019.07.024_bib9 article-title: The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration publication-title: PLoS Med doi: 10.1371/journal.pmed.1000100 – volume: 32 start-page: 777 issue: 9 year: 2018 ident: 10.1016/j.brs.2019.07.024_bib19 article-title: Modulation of cerebellar cortical plasticity using low-intensity focused ultrasound for poststroke sensorimotor function recovery publication-title: Neurorehabilitation Neural Repair doi: 10.1177/1545968318790022 – volume: 12 start-page: 251 issue: 2 year: 2019 ident: 10.1016/j.brs.2019.07.024_bib33 article-title: Miniature ultrasound ring array transducers for transcranial ultrasound neuromodulation of freely-moving small animals publication-title: Brain Stimul doi: 10.1016/j.brs.2018.11.007 – volume: 23 start-page: 2430 year: 2013 ident: 10.1016/j.brs.2019.07.024_bib66 article-title: Low-intensity focused ultrasound modulates monkey visuomotor behavior publication-title: Curr Biol doi: 10.1016/j.cub.2013.10.029 – volume: 40 issue: 8 year: 2013 ident: 10.1016/j.brs.2019.07.024_bib50 article-title: Influence of the pressure field distribution in transcranial ultrasonic neurostimulation publication-title: Med Phys doi: 10.1118/1.4812423 – volume: 36 start-page: 1441 year: 2005 ident: 10.1016/j.brs.2019.07.024_bib68 article-title: Transcranial lowfrequency ultrasound-mediated thrombolysis in brain ischemia. Increased risk of hemorrhage with combined ultrasound and tissue plasminogen activator. Results of a phase II clinical trial publication-title: Stroke doi: 10.1161/01.STR.0000170707.86793.1a – volume: 1 start-page: 93 issue: 2 year: 1948 ident: 10.1016/j.brs.2019.07.024_bib20 article-title: Analysis of tissue and arterial blood temperatures in the resting human forearm publication-title: J Appl Physiol doi: 10.1152/jappl.1948.1.2.93 – volume: 6 start-page: 34026 year: 2016 ident: 10.1016/j.brs.2019.07.024_bib17 article-title: Transcranial focused ultrasound stimulation of human primary visual cortex publication-title: Nat Sci Rep doi: 10.1038/srep34026 – volume: 17 start-page: 68 issue: 1 year: 2016 ident: 10.1016/j.brs.2019.07.024_bib54 article-title: Simultaneous acoustic stimulation of human primary and secondary somatosensory cortices using transcranial focused ultrasound publication-title: BMC Neurosci doi: 10.1186/s12868-016-0303-6 – volume: 1 start-page: 386 issue: 4 year: 2008 ident: 10.1016/j.brs.2019.07.024_bib58 article-title: Skin lesions after treatment with transcranial direct current stimulation (tDCS) publication-title: Brain Stimul: Basic Transl Clin Res Neuromodulation doi: 10.1016/j.brs.2008.04.003 – year: 2018 ident: 10.1016/j.brs.2019.07.024_bib64 article-title: Impact of the skull model on simulated TFUS beam profiles – volume: 35 start-page: 1148 issue: 7 year: 2009 ident: 10.1016/j.brs.2019.07.024_bib61 article-title: Simulation of intracranial acoustic fields in clinical trials of sonothrombolysis publication-title: Ultrasound Med Biol doi: 10.1016/j.ultrasmedbio.2008.11.014 – volume: 111 start-page: 3614 issue: 9 year: 2014 ident: 10.1016/j.brs.2019.07.024_bib13 article-title: Mechanosensitivity is mediated directly by the lipid membrane in TRAAK and TREK1 K+ channels publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1320768111 – volume: 22 start-page: 783 issue: 15 year: 2011 ident: 10.1016/j.brs.2019.07.024_bib56 article-title: Transcranial focused ultrasound to the thalamus alters anesthesia time in rats publication-title: Neuroreport doi: 10.1097/WNR.0b013e32834b2957 – volume: 23 start-page: 137 issue: 2 year: 2003 ident: 10.1016/j.brs.2019.07.024_bib44 article-title: Astrocytes and brain injury publication-title: J Cereb Blood Flow Metab doi: 10.1097/01.WCB.0000044631.80210.3C – start-page: 655 year: 2014 ident: 10.1016/j.brs.2019.07.024_bib18 – volume: 9 start-page: 415 year: 2007 ident: 10.1016/j.brs.2019.07.024_bib24 article-title: Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery publication-title: Annu Rev Biomed Eng doi: 10.1146/annurev.bioeng.8.061505.095852 – volume: 19 start-page: 56 issue: 1 year: 2018 ident: 10.1016/j.brs.2019.07.024_bib65 article-title: Effects of transcranial focused ultrasound on human primary motor cortex using 7T fMRI publication-title: BMC Neurosci doi: 10.1186/s12868-018-0456-6 – volume: 49 start-page: 26 year: 2015 ident: 10.1016/j.brs.2019.07.024_bib3 article-title: Ultrasound stimulation inhibits recurrent seizures and improves behavioral outcome in an experimental model of mesial temporal lobe epilepsy publication-title: Epilepsy Behav doi: 10.1016/j.yebeh.2015.04.008 – volume: 101 start-page: 1109 issue: 6 year: 2019 ident: 10.1016/j.brs.2019.07.024_bib46 article-title: Manipulation of subcortical and deep cortical activity in the primate brain using transcranial focused ultrasound stimulation publication-title: Neuron doi: 10.1016/j.neuron.2019.01.019 – volume: 17 year: 2014 ident: 10.1016/j.brs.2019.07.024_bib62 article-title: Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans publication-title: Nat Neurosci doi: 10.1038/nn.3620 – volume: 44 start-page: 1022 issue: 5 year: 2018 ident: 10.1016/j.brs.2019.07.024_bib39 article-title: Focused ultrasound-induced suppression of auditory evoked potentials in vivo publication-title: Ultrasound Med Biol doi: 10.1016/j.ultrasmedbio.2018.01.010 – volume: 15 issue: 3 year: 2018 ident: 10.1016/j.brs.2019.07.024_bib31 article-title: Low-intensity focused ultrasound alters the latency and spatial patterns of sensory-evoked cortical responses in vivo publication-title: J Neural Eng doi: 10.1088/1741-2552/aaaee1 – volume: 27 start-page: 376 issue: 2 year: 2008 ident: 10.1016/j.brs.2019.07.024_bib53 article-title: MR thermometry publication-title: J Magn Reson Imaging doi: 10.1002/jmri.21265 – volume: 62 start-page: 2559 issue: 7 year: 2017 ident: 10.1016/j.brs.2019.07.024_bib63 article-title: Sensitivity of simulated transcranial ultrasound fields to acoustic medium property maps publication-title: Phys Med Biol doi: 10.1088/1361-6560/aa5e98 – volume: 17 start-page: 25 issue: 1 year: 2011 ident: 10.1016/j.brs.2019.07.024_bib14 article-title: Noninvasive neuromodulation with ultrasound? A continuum mechanics hypothesis publication-title: The Neuroscientist doi: 10.1177/1073858409348066 – volume: 60 start-page: 324 issue: 3 year: 2006 ident: 10.1016/j.brs.2019.07.024_bib23 article-title: Ultrasound contrast agents: an overview publication-title: Eur J Radiol doi: 10.1016/j.ejrad.2006.06.022 – volume: 72 start-page: 94 year: 2014 ident: 10.1016/j.brs.2019.07.024_bib26 article-title: Ultrasound-mediated blood–brain barrier disruption for targeted drug delivery in the central nervous system publication-title: Adv Drug Deliv Rev doi: 10.1016/j.addr.2014.01.008 – volume: 9 issue: 2 year: 2014 ident: 10.1016/j.brs.2019.07.024_bib40 article-title: Increased anatomical specificity of neuromodulation via modulated focused ultrasound publication-title: PLoS One doi: 10.1371/journal.pone.0086939 – volume: 65 start-page: 153 issue: 3 year: 2012 ident: 10.1016/j.brs.2019.07.024_bib37 article-title: Transcranial focused ultrasound to the thalamus is associated with reduced extracellular GABA levels in rats publication-title: Neuropsychobiology doi: 10.1159/000336001 – volume: 6 start-page: 24738 year: 2016 ident: 10.1016/j.brs.2019.07.024_bib36 article-title: Improved anatomical specificity of non-invasive neuro-stimulation by high frequency (5 MHz) ultrasound publication-title: Sci Rep doi: 10.1038/srep24738 – volume: 39 start-page: 312 year: 2013 ident: 10.1016/j.brs.2019.07.024_bib7 article-title: Effective parameters for ultrasound-induced in vivo neurostimulation publication-title: Ultrasound Med Biol doi: 10.1016/j.ultrasmedbio.2012.09.009 – volume: 43 start-page: 2824 issue: 12 year: 2017 ident: 10.1016/j.brs.2019.07.024_bib45 article-title: Comparison of electrical and ultrasound neurostimulation in rat motor cortex publication-title: Ultrasound Med Biol doi: 10.1016/j.ultrasmedbio.2017.08.937 – volume: 42 start-page: 459 issue: 2 year: 2016 ident: 10.1016/j.brs.2019.07.024_bib34 article-title: Image-Guided focused ultrasound-mediated regional brain stimulation in sheep publication-title: Ultrasound Med Biol doi: 10.1016/j.ultrasmedbio.2015.10.001 |
SSID | ssj0059987 |
Score | 2.5483887 |
SecondaryResourceType | review_article |
Snippet | Low-intensity transcranial focused ultrasound stimulation (TFUS) holds great promise as a highly focal technique for transcranial stimulation even for deep... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1367 |
SubjectTerms | Animals Brain - diagnostic imaging Brain - physiology Brain Mapping - adverse effects Brain Mapping - methods Cerebral Hemorrhage - diagnostic imaging Cerebral Hemorrhage - etiology Health Knowledge, Attitudes, Practice Histology Humans Magnetic Resonance Imaging - adverse effects Magnetic Resonance Imaging - methods Review Safety TFUS Transcranial focused ultrasound Ultrasonic Therapy - adverse effects Ultrasonic Therapy - methods |
Title | Safety of transcranial focused ultrasound stimulation: A systematic review of the state of knowledge from both human and animal studies |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1935861X19303389 https://dx.doi.org/10.1016/j.brs.2019.07.024 https://www.ncbi.nlm.nih.gov/pubmed/31401074 https://www.proquest.com/docview/2272221566 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFH_aussuCBiM8jE9JMQBKWviOEnNrZqYCohdxqTerNhxtKE1ndb0sAtX_m1-dpIiDhsShyRKlGdHed_2-yB6l7k4VTZXkZWuhoNiIQdLNY3SaV34vAFZhR5L387y-YX8ssgWO3Qy5ML4sMpe9ncyPUjr_smk_5uTm6uryXnit_DyZIFrDEdL7dKegLafjmhv9vnr_GwQyBk8iqLbXM4iDzBsboYwL3Pri3YnKpTwFPI-9XSf-RnU0OljetTbjzzrPvEJ7bjmKR3MGvjOyzt-zyGiMyyVH9Cv87J27R2vam69SrI4gdy4XtnN2lW8ucbjte-rxGD0Zd_I6yPP-E99Z-5yW8IYl45D_pG_2a7FsU9QYQOEc-j3xyWGwzxLTLTughSf0cXpp-8n86hvvBBZ6P82So10qRUuzadlkVorRYXDSOmEyQVsEvBqXdlMOpWXJhPW5hZ2VSmUVcapJH1Oo2bVuBfEiQWHS5_wGktYZsrIIjdVqSpQTozBxhQP_1vbviq5b45xrYfwsx8aKNIeRTouNFA0pg9bkJuuJMdDL4sBiXrINYV01FAYDwHJLdBfxPgvsLcDlWgwqd95KRu32uAlUcAO867ymA478tl-eupdXBhyL_9v0le07--69MjXNGpvN-4N7KTWHNHu8c_kqOeG379JEsk |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LTttAcETDob2g8mhJgTKVKg6VrNjrtZ3tLUJF4ZULIOW28q7XKhVxEHEOfEF_m5m1HcQBKvVgW37MruV5e-cB8D1xYaxsqgIrXUkOiiU5mKthEA_LjPMGZOF7LF1O0vGNPJsm0zU47nJhOKyylf2NTPfSur0yaL_m4P72dnAV8RJeGk3pGJKjpd7BuuSm1j1YH52ejyedQE7Io8iaxeUkYIBucdOHeZkHLtodKV_CU8jX1NNr5qdXQycfYaO1H3HUvOImrLlqC7ZHFfnOs0c8Qh_R6X-Vb8Pfq7x09SPOS6xZJVnaEblhObfLhStweUeXF9xXCYnRZ20jr584wuf6ztjktvgxfjv0-Ud8svoXh5yggoYQjr7fH-Y0HM0zo4kWTZDiDtyc_Lo-Hgdt44XAkv6vg9hIF1vh4nSYZ7G1UhS0GSmdMKkgm4R4tSxsIp1Kc5MIa1NLdlUulFXGqSj-BL1qXrldwMgSh0tOeA0lWWbKyCw1Ra4KopyQButD2H1vbduq5Nwc40534Wd_NKFIM4p0mGlCUR9-rEDum5Icbz0sOiTqLteUpKMmhfEWkFwBvSDGf4F966hEE5PyykteufmSHhIZ2WHsKvfhc0M-q1eP2cUlQ-7L_016CO_H15cX-uJ0cr4HH_hOkyq5D736YekOyGaqzdeWJ54ANkIUrw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Safety+of+transcranial+focused+ultrasound+stimulation%3A+A+systematic+review+of+the+state+of+knowledge+from+both+human+and+animal+studies&rft.jtitle=Brain+stimulation&rft.au=Pasquinelli%2C+Cristina&rft.au=Hanson%2C+Lars+G.&rft.au=Siebner%2C+Hartwig+R.&rft.au=Lee%2C+Hyunjoo+J.&rft.date=2019-11-01&rft.pub=Elsevier+Inc&rft.issn=1935-861X&rft.volume=12&rft.issue=6&rft.spage=1367&rft.epage=1380&rft_id=info:doi/10.1016%2Fj.brs.2019.07.024&rft.externalDocID=S1935861X19303389 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1935-861X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1935-861X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1935-861X&client=summon |