ToF–SIMS imaging of molecular-level alteration mechanisms in Le Bonheur de vivre by Henri Matisse
Time-of-flight secondary ion mass spectrometry (ToF–SIMS) has recently been shown to be a valuable tool for cultural heritage studies, especially when used in conjunction with established analytical techniques in the field. The ability of ToF–SIMS to simultaneously image inorganic and organic specie...
Saved in:
Published in | Applied physics. A, Materials science & processing Vol. 121; no. 3; pp. 1015 - 1030 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.11.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 0947-8396 1432-0630 |
DOI | 10.1007/s00339-015-9508-2 |
Cover
Summary: | Time-of-flight secondary ion mass spectrometry (ToF–SIMS) has recently been shown to be a valuable tool for cultural heritage studies, especially when used in conjunction with established analytical techniques in the field. The ability of ToF–SIMS to simultaneously image inorganic and organic species within a paint cross section at micrometer-level spatial resolution makes it a uniquely qualified analytical technique to aid in further understanding the processes of pigment and binder alteration, as well as pigment–binder interactions. In this study, ToF–SIMS was used to detect and image both molecular and elemental species related to CdS pigment and binding medium alteration on the painting
Le Bonheur de vivre
(1905–1906, The Barnes Foundation) by Henri Matisse. Three categories of inorganic and organic components were found throughout
Le
Bonheur de vivre
and co-localized in cross-sectional samples using high spatial resolution ToF–SIMS analysis: (1) species relating to the preparation and photo-induced oxidation of CdS yellow pigments (2) varying amounts of long-chain fatty acids present in both the paint and primary ground layer and (3) specific amino acid fragments, possibly relating to the painting’s complex restoration history. ToF–SIMS’s ability to discern both organic and inorganic species via cross-sectional imaging was used to compare samples collected from
Le
Bonheur de vivre
to artificially aged reference paints in an effort to gather mechanistic information relating to alteration processes that have been previously explored using μXANES, SR-μXRF, SEM–EDX, and SR-FTIR. The relatively high sensitivity offered by ToF–SIMS imaging coupled to the high spatial resolution allowed for the positive identification of degradation products (such as cadmium oxalate) in specific paint regions that have before been unobserved. The imaging of organic materials has provided an insight into the extent of destruction of the original binding medium, as well as identifying unexpected organic materials in specific paint layers. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0947-8396 1432-0630 |
DOI: | 10.1007/s00339-015-9508-2 |