Legionella pneumophila 6S RNA optimizes intracellular multiplication

Legionella pneumophila is a Gram-negative opportunistic human pathogen that infects and multiplies in a broad range of phagocytic protozoan and mammalian phagocytes. Based on the observation that small regulatory RNAs (sRNAs) play an important role in controlling virulence-related genes in several p...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 107; no. 16; pp. 7533 - 7538
Main Authors Faucher, Sébastien P, Friedlander, Gilgi, Livny, Jonathan, Margalit, Hanah, Shuman, Howard A
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 20.04.2010
National Acad Sciences
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.0911764107

Cover

Abstract Legionella pneumophila is a Gram-negative opportunistic human pathogen that infects and multiplies in a broad range of phagocytic protozoan and mammalian phagocytes. Based on the observation that small regulatory RNAs (sRNAs) play an important role in controlling virulence-related genes in several pathogenic bacteria, we attempted to identify sRNAs expressed by L. pneumophila. We used computational prediction followed by experimental verification to identify and characterize sRNAs encoded in the L. pneumophila genome. A 50-mer probe microarray was constructed to test the expression of predicted sRNAs in bacteria grown under a variety of conditions. This strategy successfully identified 22 expressed RNAs, out of which 6 were confirmed by northern blot and RACE. One of the identified sRNAs is highly expressed in postexponential phase, and computational prediction of its secondary structure reveals a striking similarity to the structure of 6S RNA, a widely distributed prokaryotic sRNA, known to regulate the activity of σ⁷⁰-containing RNA polymerase. A 70-mer probe microarray was used to identify genes affected by L. pneumophila 6S RNA in stationary phase. The 6S RNA positively regulates expression of genes encoding type IVB secretion system effectors, stress response genes such as groES and recA, as well as many genes involved in acquisition of nutrients and genes with unknown or hypothetical functions. Deletion of 6S RNA significantly reduced L. pneumophila intracellular multiplication in both protist and mammalian host cells, but had no detectable effect on growth in rich media.
AbstractList Legionella pneumophila is a Gram-negative opportunistic human pathogen that infects and multiplies in a broad range of phagocytic protozoan and mammalian phagocytes. Based on the observation that small regulatory RNAs (sRNAs) play an important role in controlling virulence-related genes in several pathogenic bacteria, we attempted to identify sRNAs expressed by L. pneumophila. We used computational prediction followed by experimental verification to identify and characterize sRNAs encoded in the L. pneumophila genome. A 50-mer probe microarray was constructed to test the expression of predicted sRNAs in bacteria grown under a variety of conditions. This strategy successfully identified 22 expressed RNAs, out of which 6 were confirmed by northern blot and RACE. One of the identified sRNAs is highly expressed in postexponential phase, and computational prediction of its secondary structure reveals a striking similarity to the structure of 6S RNA, a widely distributed prokaryotic sRNA, known to regulate the activity of σ70-containing RNA polymerase. A 70-mer probe microarray was used to identify genes affected by L. pneumophila 6S RNA in stationary phase. The 6S RNA positively regulates expression of genes encoding type IVB secretion system effectors, stress response genes such as groES and recA, as well as many genes involved in acquisition of nutrients and genes with unknown or hypothetical functions. Deletion of 6S RNA significantly reduced L. pneumophila intracellular multiplication in both protist and mammalian host cells, but had no detectable effect on growth in rich media.
Legionella pneumophila is a Gram-negative opportunistic human pathogen that infects and multiplies in a broad range of phagocytic protozoan and mammalian phagocytes. Based on the observation that small regulatory RNAs (sRNAs) play an important role in controlling virulence-related genes in several pathogenic bacteria, we attempted to identify sRNAs expressed by L. pneumophila. We used computational prediction followed by experimental verification to identify and characterize sRNAs encoded in the L. pneumophila genome. A 50-mer probe microarray was constructed to test the expression of predicted sRNAs in bacteria grown under a variety of conditions. This strategy successfully identified 22 expressed RNAs, out of which 6 were confirmed by northern blot and RACE. One of the identified sRNAs is highly expressed in postexponential phase, and computational prediction of its secondary structure reveals a striking similarity to the structure of 6S RNA, a widely distributed prokaryotic sRNA, known to regulate the activity of σ⁷⁰-containing RNA polymerase. A 70-mer probe microarray was used to identify genes affected by L. pneumophila 6S RNA in stationary phase. The 6S RNA positively regulates expression of genes encoding type IVB secretion system effectors, stress response genes such as groES and recA, as well as many genes involved in acquisition of nutrients and genes with unknown or hypothetical functions. Deletion of 6S RNA significantly reduced L. pneumophila intracellular multiplication in both protist and mammalian host cells, but had no detectable effect on growth in rich media.
Legionella pneumophila is a Gram-negative opportunistic human pathogen that infects and multiplies in a broad range of phagocytic protozoan and mammalian phagocytes. Based on the observation that small regulatory RNAs (sRNAs) play an important role in controlling virulence-related genes in several pathogenic bacteria, we attempted to identify sRNAs expressed by L. pneumophila. We used computational prediction followed by experimental verification to identify and characterize sRNAs encoded in the L. pneumophila genome. A 50-mer probe microarray was constructed to test the expression of predicted sRNAs in bacteria grown under a variety of conditions. This strategy successfully identified 22 expressed RNAs, out of which 6 were confirmed by northern blot and RACE. One of the identified sRNAs is highly expressed in postexponential phase, and computational prediction of its secondary structure reveals a striking similarity to the structure of 6S RNA, a widely distributed prokaryotic sRNA, known to regulate the activity of ...-containing RNA polymerase. A 70-mer probe microarray was used to identify genes affected by L. pneumophila 6S RNA in stationary phase. The 6S RNA positively regulates expression of genes encoding type IVB secretion system effectors, stress response genes such as groES and recA, as well as many genes involved in acquisition of nutrients and genes with unknown or hypothetical functions. Deletion of 6S RNA significantly reduced L. pneumophila intracellular multiplication in both protist and mammalian host cells, but had no detectable effect on growth in rich media. (ProQuest: ... denotes formulae/symbols omitted.)
Legionella pneumophila is a Gram-negative opportunistic human pathogen that infects and multiplies in a broad range of phagocytic protozoan and mammalian phagocytes. Based on the observation that small regulatory RNAs (sRNAs) play an important role in controlling virulence-related genes in several pathogenic bacteria, we attempted to identify sRNAs expressed by L. pneumophila . We used computational prediction followed by experimental verification to identify and characterize sRNAs encoded in the L. pneumophila genome. A 50-mer probe microarray was constructed to test the expression of predicted sRNAs in bacteria grown under a variety of conditions. This strategy successfully identified 22 expressed RNAs, out of which 6 were confirmed by northern blot and RACE. One of the identified sRNAs is highly expressed in postexponential phase, and computational prediction of its secondary structure reveals a striking similarity to the structure of 6S RNA, a widely distributed prokaryotic sRNA, known to regulate the activity of σ 70 -containing RNA polymerase. A 70-mer probe microarray was used to identify genes affected by L. pneumophila 6S RNA in stationary phase. The 6S RNA positively regulates expression of genes encoding type IVB secretion system effectors, stress response genes such as groES and recA , as well as many genes involved in acquisition of nutrients and genes with unknown or hypothetical functions. Deletion of 6S RNA significantly reduced L. pneumophila intracellular multiplication in both protist and mammalian host cells, but had no detectable effect on growth in rich media.
Legionella pneumophila is a Gram-negative opportunistic human pathogen that infects and multiplies in a broad range of phagocytic protozoan and mammalian phagocytes. Based on the observation that small regulatory RNAs (sRNAs) play an important role in controlling virulence-related genes in several pathogenic bacteria, we attempted to identify sRNAs expressed by L. pneumophila. We used computational prediction followed by experimental verification to identify and characterize sRNAs encoded in the L. pneumophila genome. A 50-mer probe microarray was constructed to test the expression of predicted sRNAs in bacteria grown under a variety of conditions. This strategy successfully identified 22 expressed RNAs, out of which 6 were confirmed by northern blot and RACE. One of the identified sRNAs is highly expressed in postexponential phase, and computational prediction of its secondary structure reveals a striking similarity to the structure of 6S RNA, a widely distributed prokaryotic sRNA, known to regulate the activity of sigma(70)-containing RNA polymerase. A 70-mer probe microarray was used to identify genes affected by L. pneumophila 6S RNA in stationary phase. The 6S RNA positively regulates expression of genes encoding type IVB secretion system effectors, stress response genes such as groES and recA, as well as many genes involved in acquisition of nutrients and genes with unknown or hypothetical functions. Deletion of 6S RNA significantly reduced L. pneumophila intracellular multiplication in both protist and mammalian host cells, but had no detectable effect on growth in rich media.
Legionella pneumophila is a Gram-negative opportunistic human pathogen that infects and multiplies in a broad range of phagocytic protozoan and mammalian phagocytes. Based on the observation that small regulatory RNAs (sRNAs) play an important role in controlling virulence-related genes in several pathogenic bacteria, we attempted to identify sRNAs expressed by L. pneumophila. We used computational prediction followed by experimental verification to identify and characterize sRNAs encoded in the L. pneumophila genome. A 50-mer probe microarray was constructed to test the expression of predicted sRNAs in bacteria grown under a variety of conditions. This strategy successfully identified 22 expressed RNAs, out of which 6 were confirmed by northern blot and RACE. One of the identified sRNAs is highly expressed in postexponential phase, and computational prediction of its secondary structure reveals a striking similarity to the structure of 6S RNA, a widely distributed prokaryotic sRNA, known to regulate the activity of Ief super(70)-containing RNA polymerase. A 70-mer probe microarray was used to identify genes affected by L. pneumophila 6S RNA in stationary phase. The 6S RNA positively regulates expression of genes encoding type IVB secretion system effectors, stress response genes such as groES and recA, as well as many genes involved in acquisition of nutrients and genes with unknown or hypothetical functions. Deletion of 6S RNA significantly reduced L. pneumophila intracellular multiplication in both protist and mammalian host cells, but had no detectable effect on growth in rich media.
Legionella pneumophila is a Gram-negative opportunistic human pathogen that infects and multiplies in a broad range of phagocytic protozoan and mammalian phagocytes. Based on the observation that small regulatory RNAs (sRNAs) play an important role in controlling virulence-related genes in several pathogenic bacteria, we attempted to identify sRNAs expressed by L. pneumophila. We used computational prediction followed by experimental verification to identify and characterize sRNAs encoded in the L. pneumophila genome. A 50-mer probe microarray was constructed to test the expression of predicted sRNAs in bacteria grown under a variety of conditions. This strategy successfully identified 22 expressed RNAs, out of which 6 were confirmed by northern blot and RACE. One of the identified sRNAs is highly expressed in postexponential phase, and computational prediction of its secondary structure reveals a striking similarity to the structure of 6S RNA, a widely distributed prokaryotic sRNA, known to regulate the activity of sigma(70)-containing RNA polymerase. A 70-mer probe microarray was used to identify genes affected by L. pneumophila 6S RNA in stationary phase. The 6S RNA positively regulates expression of genes encoding type IVB secretion system effectors, stress response genes such as groES and recA, as well as many genes involved in acquisition of nutrients and genes with unknown or hypothetical functions. Deletion of 6S RNA significantly reduced L. pneumophila intracellular multiplication in both protist and mammalian host cells, but had no detectable effect on growth in rich media.Legionella pneumophila is a Gram-negative opportunistic human pathogen that infects and multiplies in a broad range of phagocytic protozoan and mammalian phagocytes. Based on the observation that small regulatory RNAs (sRNAs) play an important role in controlling virulence-related genes in several pathogenic bacteria, we attempted to identify sRNAs expressed by L. pneumophila. We used computational prediction followed by experimental verification to identify and characterize sRNAs encoded in the L. pneumophila genome. A 50-mer probe microarray was constructed to test the expression of predicted sRNAs in bacteria grown under a variety of conditions. This strategy successfully identified 22 expressed RNAs, out of which 6 were confirmed by northern blot and RACE. One of the identified sRNAs is highly expressed in postexponential phase, and computational prediction of its secondary structure reveals a striking similarity to the structure of 6S RNA, a widely distributed prokaryotic sRNA, known to regulate the activity of sigma(70)-containing RNA polymerase. A 70-mer probe microarray was used to identify genes affected by L. pneumophila 6S RNA in stationary phase. The 6S RNA positively regulates expression of genes encoding type IVB secretion system effectors, stress response genes such as groES and recA, as well as many genes involved in acquisition of nutrients and genes with unknown or hypothetical functions. Deletion of 6S RNA significantly reduced L. pneumophila intracellular multiplication in both protist and mammalian host cells, but had no detectable effect on growth in rich media.
Legionella pneumophila is a Gram-negative opportunistic human pathogen that infects and multiplies in a broad range of phagocytic protozoan and mammalian phagocytes. Based on the observation that small regulatory RNAs (sRNAs) play an important role in controlling virulence-related genes in several pathogenic bacteria, we attempted to identify sRNAs expressed by L. pneumophila . We used computational prediction followed by experimental verification to identify and characterize sRNAs encoded in the L. pneumophila genome. A 50-mer probe microarray was constructed to test the expression of predicted sRNAs in bacteria grown under a variety of conditions. This strategy successfully identified 22 expressed RNAs, out of which 6 were confirmed by northern blot and RACE. One of the identified sRNAs is highly expressed in postexponential phase, and computational prediction of its secondary structure reveals a striking similarity to the structure of 6S RNA, a widely distributed prokaryotic sRNA, known to regulate the activity of σ 70 -containing RNA polymerase. A 70-mer probe microarray was used to identify genes affected by L. pneumophila 6S RNA in stationary phase. The 6S RNA positively regulates expression of genes encoding type IVB secretion system effectors, stress response genes such as groES and recA , as well as many genes involved in acquisition of nutrients and genes with unknown or hypothetical functions. Deletion of 6S RNA significantly reduced L. pneumophila intracellular multiplication in both protist and mammalian host cells, but had no detectable effect on growth in rich media.
Author Margalit, Hanah
Faucher, Sébastien P
Livny, Jonathan
Friedlander, Gilgi
Shuman, Howard A
Author_xml – sequence: 1
  fullname: Faucher, Sébastien P
– sequence: 2
  fullname: Friedlander, Gilgi
– sequence: 3
  fullname: Livny, Jonathan
– sequence: 4
  fullname: Margalit, Hanah
– sequence: 5
  fullname: Shuman, Howard A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20368425$$D View this record in MEDLINE/PubMed
BookMark eNqNkstv1DAQhy1URLeFMycg6oVT2vE7viBVLS9pBRKlZ8txvFuvkji1EyT463HYpVt6ACRLfsw3v5nxzBE66EPvEHqO4RSDpGdDb9IpKIylYPnhEVrgfCsFU3CAFgBElhUj7BAdpbQBAMUreIIOCVCR3_kCXS7d2mfNtjXF0LupC8ONz2dxVXz5dF6EYfSd_-FS4fsxGpu5qTWx6KZ29EPrrRmz91P0eGXa5J7t9mN0_e7t14sP5fLz-48X58vSckzGElPV1IQ2QNSKcQtW1cZCbaBxNYhGraQDiwUHp_LC0jRKGIW5ZBZTTiw9Rm-2usNUd66xbs6p1UP0nYnfdTBe_2np_Y1eh2-aVEJKxrPA651ADLeTS6PufJqLMr0LU9KSMZHjUfgPkohKApP_JimFild4jn7ygNyEKfb5xzQBTKlSIDL08n6Nd8X9blkGzraAjSGl6FZ3CAY9D4Weh0LvhyJ78Ace1o-_Gpc_ybd_8Xu1S2U27KNIjYWWnNJMvNgSmzSGuM-VC8FpdU9hZYI26-iTvr6aawVcUVxxQn8C5HjYIA
CitedBy_id crossref_primary_10_1128_microbiolspec_RWR_0014_2017
crossref_primary_10_4161_rna_28827
crossref_primary_10_3389_fcimb_2014_00151
crossref_primary_10_1038_ismej_2013_192
crossref_primary_10_3389_fimmu_2016_00431
crossref_primary_10_4161_rna_20105
crossref_primary_10_1093_nar_gkt517
crossref_primary_10_1186_s12864_015_1869_6
crossref_primary_10_1128_AEM_02975_20
crossref_primary_10_1371_journal_pone_0100147
crossref_primary_10_3389_fmicb_2022_848536
crossref_primary_10_2217_fmb_2017_0055
crossref_primary_10_1016_j_ddmec_2010_09_001
crossref_primary_10_1111_mmi_12484
crossref_primary_10_1371_journal_pone_0017570
crossref_primary_10_1094_MPMI_07_12_0186_CR
crossref_primary_10_1101_gr_138420_112
crossref_primary_10_1186_1471_2164_14_849
crossref_primary_10_1111_mmi_14427
crossref_primary_10_1128_IAI_00598_12
crossref_primary_10_1093_nar_gkr1003
crossref_primary_10_2217_fmb_12_13
crossref_primary_10_3389_fcimb_2014_00162
crossref_primary_10_1128_microbiolspec_VMBF_0028_2015
crossref_primary_10_1139_cjm_2014_0519
crossref_primary_10_1016_j_molcel_2011_08_022
crossref_primary_10_1093_bfgp_elt012
crossref_primary_10_1038_s41396_020_00774_0
crossref_primary_10_1139_cjm_2022_0119
crossref_primary_10_1016_j_bpj_2014_01_025
crossref_primary_10_1371_journal_ppat_1004175
crossref_primary_10_1093_femsre_fuv022
crossref_primary_10_3390_microorganisms8030384
crossref_primary_10_4161_rna_29894
crossref_primary_10_1016_j_biochi_2014_12_019
crossref_primary_10_1128_microbiolspec_RWR_0002_2017
crossref_primary_10_1016_j_crphar_2022_100136
crossref_primary_10_1016_j_ijmm_2014_05_004
crossref_primary_10_1080_15476286_2017_1342933
crossref_primary_10_1111_mmi_14644
crossref_primary_10_1016_j_mib_2017_11_010
crossref_primary_10_1099_mic_0_067983_0
crossref_primary_10_3390_ijms23073653
crossref_primary_10_1007_s00253_014_5806_4
crossref_primary_10_1038_nrmicro2457
crossref_primary_10_1371_journal_pone_0074495
crossref_primary_10_1099_mic_0_058958_0
crossref_primary_10_1128_mmbr_00097_23
crossref_primary_10_1146_annurev_micro_092611_150135
crossref_primary_10_1186_s12864_015_2293_7
crossref_primary_10_1134_S0006297915110048
crossref_primary_10_1128_JB_00690_16
crossref_primary_10_1007_s12275_020_0283_1
crossref_primary_10_1093_nar_gku793
crossref_primary_10_1371_journal_pone_0015321
crossref_primary_10_1093_nar_gkae081
crossref_primary_10_1128_microbiolspec_RWR_0019_2018
crossref_primary_10_1016_j_mib_2020_01_001
crossref_primary_10_1111_mmi_13265
crossref_primary_10_1080_15476286_2020_1795408
crossref_primary_10_1016_j_chom_2010_06_008
Cites_doi 10.1093/nar/gnf103
10.1093/bioinformatics/btn560
10.1111/j.1462-5822.2009.01351.x
10.1073/pnas.95.4.1669
10.1111/j.1365-2958.2008.06117.x
10.1016/S0092-8674(00)80312-8
10.1128/JB.00141-08
10.1016/S0960-9822(01)00270-6
10.1002/elps.1150190413
10.1093/nar/gkg622
10.1046/j.1365-2958.1998.01021.x
10.1111/j.1462-5822.2008.01145.x
10.1093/nar/29.22.4724
10.1128/JB.01578-08
10.1056/NEJM197712012972201
10.1093/nar/gkl453
10.1016/S0092-8674(00)80873-9
10.1093/nar/gki399
10.1016/S1286-4579(01)01496-4
10.1128/JB.187.4.1527-1532.2005
10.1016/j.cell.2009.01.043
10.1111/j.1365-2958.2007.05894.x
10.1093/nar/gkm085
10.1111/j.1365-2958.2008.06392.x
10.1111/j.1365-2958.2009.06705.x
10.1261/rna.7286705
10.1128/JB.186.15.4978-4985.2004
10.1006/jmbi.2000.3836
10.1371/journal.ppat.1000508
10.1016/j.mib.2007.03.004
10.1128/JB.00079-06
10.1038/nsmb917
ContentType Journal Article
Copyright Copyright National Academy of Sciences Apr 20, 2010
Copyright_xml – notice: Copyright National Academy of Sciences Apr 20, 2010
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
F1W
H95
H97
L.G
5PM
DOI 10.1073/pnas.0911764107
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
DatabaseTitleList
AGRICOLA

Virology and AIDS Abstracts


MEDLINE
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 7538
ExternalDocumentID PMC2867745
2017513161
20368425
10_1073_pnas_0911764107
107_16_7533
25665387
US201301831852
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: AI064481
– fundername: NIAID NIH HHS
  grantid: R01 AI064481
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACKIV
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFHIN
AFOSN
AFQQW
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FBQ
FRP
GX1
H13
HGD
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
W8F
WH7
WHG
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
ZCG
~02
~KM
ADXHL
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
AJYGW
AS
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XHC
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
F1W
H95
H97
L.G
5PM
ID FETCH-LOGICAL-c512t-139db23d029f45c0c9bac0ba0deb06d9f7e0c1650e90e917ad96a91574c1352c3
ISSN 0027-8424
1091-6490
IngestDate Tue Sep 30 16:52:18 EDT 2025
Tue Oct 07 09:29:29 EDT 2025
Thu Oct 02 07:50:54 EDT 2025
Thu Sep 04 16:52:52 EDT 2025
Mon Jun 30 08:31:12 EDT 2025
Wed Feb 19 01:46:33 EST 2025
Wed Oct 01 01:21:32 EDT 2025
Thu Apr 24 23:11:04 EDT 2025
Wed Nov 11 00:30:45 EST 2020
Thu May 29 08:41:01 EDT 2025
Thu Apr 03 09:46:30 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c512t-139db23d029f45c0c9bac0ba0deb06d9f7e0c1650e90e917ad96a91574c1352c3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Author contributions: S.P.F., H.M., and H.A.S. designed research; S.P.F. and G.F. performed research; S.P.F., G.F., J.L., and H.M. contributed new reagents/analytic tools; S.P.F. and H.A.S. analyzed data; and S.P.F., H.M., and H.A.S. wrote the paper.
Edited by Susan Gottesman, National Cancer Institute, Bethesda, MD, and approved March 10, 2010 (received for review October 12, 2009)
PMID 20368425
PQID 201339906
PQPubID 42026
PageCount 6
ParticipantIDs proquest_miscellaneous_744615730
fao_agris_US201301831852
proquest_miscellaneous_742687047
pnas_primary_107_16_7533
crossref_citationtrail_10_1073_pnas_0911764107
proquest_miscellaneous_733085815
crossref_primary_10_1073_pnas_0911764107
proquest_journals_201339906
jstor_primary_25665387
pubmed_primary_20368425
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2867745
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-04-20
PublicationDateYYYYMMDD 2010-04-20
PublicationDate_xml – month: 04
  year: 2010
  text: 2010-04-20
  day: 20
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2010
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References Pichon C (e_1_3_4_27_2) 2008; 24
Ermolaeva MD (e_1_3_4_30_2) 2000; 301
Trotochaud AE (e_1_3_4_14_2) 2006; 188
Wassarman KM (e_1_3_4_25_2) 2000; 101
McNealy TL (e_1_3_4_16_2) 2005; 187
Altuvia S (e_1_3_4_20_2) 1997; 90
Nielsen HB (e_1_3_4_31_2) 2003; 31
Song T (e_1_3_4_22_2) 2008; 70
Trotochaud AE (e_1_3_4_15_2) 2004; 186
Rudd KE (e_1_3_4_19_2) 1998; 19
Segal G (e_1_3_4_3_2) 1998; 95
Livny J (e_1_3_4_17_2) 2006; 34
Fraser DW (e_1_3_4_1_2) 1977; 297
Hovel-Miner G (e_1_3_4_6_2) 2009; 191
Rasis M (e_1_3_4_11_2) 2009; 72
LeBlanc JJ (e_1_3_4_21_2) 2008; 190
Talaat AM (e_1_3_4_33_2) 2002; 30
Wassarman KM (e_1_3_4_12_2) 2007; 65
Cavanagh AT (e_1_3_4_13_2) 2008; 67
Shin S (e_1_3_4_2_2) 2008; 10
Trotochaud AE (e_1_3_4_24_2) 2005; 12
Macke TJ (e_1_3_4_29_2) 2001; 29
Burstein D (e_1_3_4_4_2) 2009; 5
Sahr T (e_1_3_4_10_2) 2009
Franco IS (e_1_3_4_5_2) 2009; 11
Beuzón CR (e_1_3_4_26_2) 2001; 3
Argaman L (e_1_3_4_18_2) 2001; 11
Gildehaus N (e_1_3_4_28_2) 2007; 35
Toledo-Arana A (e_1_3_4_7_2) 2007; 10
Wernersson R (e_1_3_4_32_2) 2005; 33
Waters LS (e_1_3_4_8_2) 2009; 136
Romeo T (e_1_3_4_9_2) 1998; 29
Barrick JE (e_1_3_4_23_2) 2005; 11
9781871 - Mol Microbiol. 1998 Sep;29(6):1321-30
19400772 - Mol Microbiol. 2009 May;72(3):741-62
18681937 - Mol Microbiol. 2008 Oct;70(1):100-11
19400807 - Mol Microbiol. 2009 May;72(4):995-1010
9588799 - Electrophoresis. 1998 Apr;19(4):536-44
19563462 - Cell Microbiol. 2009 Oct;11(10):1435-43
11713323 - Nucleic Acids Res. 2001 Nov 15;29(22):4724-35
16870723 - Nucleic Acids Res. 2006;34(12):3484-93
12824351 - Nucleic Acids Res. 2003 Jul 1;31(13):3491-6
15793584 - Nat Struct Mol Biol. 2005 Apr;12(4):313-9
18208528 - Mol Microbiol. 2008 Mar;67(6):1242-56
12384606 - Nucleic Acids Res. 2002 Oct 15;30(20):e104
10926490 - J Mol Biol. 2000 Aug 4;301(1):27-33
15811922 - RNA. 2005 May;11(5):774-84
335244 - N Engl J Med. 1977 Dec 1;297(22):1189-97
9230301 - Cell. 1997 Jul 11;90(1):43-53
15687220 - J Bacteriol. 2005 Feb;187(4):1527-32
16707685 - J Bacteriol. 2006 Jun;188(11):3936-43
9465074 - Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1669-74
17383223 - Curr Opin Microbiol. 2007 Apr;10(2):182-8
15262935 - J Bacteriol. 2004 Aug;186(15):4978-85
10892648 - Cell. 2000 Jun 9;101(6):613-23
17332013 - Nucleic Acids Res. 2007;35(6):1885-96
19218380 - J Bacteriol. 2009 Apr;191(8):2461-73
15980547 - Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W611-5
11448770 - Curr Biol. 2001 Jun 26;11(12):941-50
18363881 - Cell Microbiol. 2008 Jun;10(6):1209-20
19593377 - PLoS Pathog. 2009 Jul;5(7):e1000508
18359810 - J Bacteriol. 2008 May;190(10):3444-55
11755424 - Microbes Infect. 2001 Nov-Dec;3(14-15):1345-52
19239884 - Cell. 2009 Feb 20;136(4):615-28
18974076 - Bioinformatics. 2008 Dec 15;24(24):2807-13
17714443 - Mol Microbiol. 2007 Sep;65(6):1425-31
References_xml – volume: 30
  start-page: e104
  year: 2002
  ident: e_1_3_4_33_2
  article-title: Genomic DNA standards for gene expression profiling in Mycobacterium tuberculosis
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gnf103
– volume: 24
  start-page: 2807
  year: 2008
  ident: e_1_3_4_27_2
  article-title: Small RNA gene identification and mRNA target predictions in bacteria
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn560
– volume: 11
  start-page: 1435
  year: 2009
  ident: e_1_3_4_5_2
  article-title: The perplexing functions and surprising origins of Legionella pneumophila type IV secretion effectors
  publication-title: Cell Microbiol
  doi: 10.1111/j.1462-5822.2009.01351.x
– volume: 95
  start-page: 1669
  year: 1998
  ident: e_1_3_4_3_2
  article-title: Host cell killing and bacterial conjugation require overlapping sets of genes within a 22-kb region of the Legionella pneumophila genome
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.95.4.1669
– volume: 67
  start-page: 1242
  year: 2008
  ident: e_1_3_4_13_2
  article-title: Promoter specificity for 6S RNA regulation of transcription is determined by core promoter sequences and competition for region 4.2 of σ70
  publication-title: Mol Microbiol
  doi: 10.1111/j.1365-2958.2008.06117.x
– volume: 90
  start-page: 43
  year: 1997
  ident: e_1_3_4_20_2
  article-title: A small, stable RNA induced by oxidative stress: Role as a pleiotropic regulator and antimutator
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80312-8
– volume: 190
  start-page: 3444
  year: 2008
  ident: e_1_3_4_21_2
  article-title: An ortholog of OxyR in Legionella pneumophila is expressed postexponentially and negatively regulates the alkyl hydroperoxide reductase (ahpC2D) operon
  publication-title: J Bacteriol
  doi: 10.1128/JB.00141-08
– volume: 11
  start-page: 941
  year: 2001
  ident: e_1_3_4_18_2
  article-title: Novel small RNA-encoding genes in the intergenic regions of Escherichia coli
  publication-title: Curr Biol
  doi: 10.1016/S0960-9822(01)00270-6
– volume: 19
  start-page: 536
  year: 1998
  ident: e_1_3_4_19_2
  article-title: Low molecular weight proteins: A challenge for post-genomic research
  publication-title: Electrophoresis
  doi: 10.1002/elps.1150190413
– volume: 31
  start-page: 3491
  year: 2003
  ident: e_1_3_4_31_2
  article-title: Design of oligonucleotides for microarrays and perspectives for design of multi-transcriptome arrays
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkg622
– volume: 29
  start-page: 1321
  year: 1998
  ident: e_1_3_4_9_2
  article-title: Global regulation by the small RNA-binding protein CsrA and the non-coding RNA molecule CsrB
  publication-title: Mol Microbiol
  doi: 10.1046/j.1365-2958.1998.01021.x
– volume: 10
  start-page: 1209
  year: 2008
  ident: e_1_3_4_2_2
  article-title: Host cell processes that influence the intracellular survival of Legionella pneumophila
  publication-title: Cell Microbiol
  doi: 10.1111/j.1462-5822.2008.01145.x
– volume: 29
  start-page: 4724
  year: 2001
  ident: e_1_3_4_29_2
  article-title: RNAMotif, an RNA secondary structure definition and search algorithm
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/29.22.4724
– volume: 191
  start-page: 2461
  year: 2009
  ident: e_1_3_4_6_2
  article-title: σS controls multiple pathways associated with intracellular multiplication of Legionella pneumophila
  publication-title: J Bacteriol
  doi: 10.1128/JB.01578-08
– volume: 297
  start-page: 1189
  year: 1977
  ident: e_1_3_4_1_2
  article-title: Legionnaires’ disease: Description of an epidemic of pneumonia
  publication-title: N Engl J Med
  doi: 10.1056/NEJM197712012972201
– volume: 34
  start-page: 3484
  year: 2006
  ident: e_1_3_4_17_2
  article-title: Identification of 17 Pseudomonas aeruginosa sRNAs and prediction of sRNA-encoding genes in 10 diverse pathogens using the bioinformatic tool sRNAPredict2
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkl453
– volume: 101
  start-page: 613
  year: 2000
  ident: e_1_3_4_25_2
  article-title: 6S RNA regulates E. coli RNA polymerase activity
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80873-9
– volume: 33
  start-page: W611
  year: 2005
  ident: e_1_3_4_32_2
  article-title: OligoWiz 2.0—Integrating sequence feature annotation into the design of microarray probes
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gki399
– volume: 3
  start-page: 1345
  year: 2001
  ident: e_1_3_4_26_2
  article-title: Use of mixed infections with Salmonella strains to study virulence genes and their interactions in vivo
  publication-title: Microbes Infect
  doi: 10.1016/S1286-4579(01)01496-4
– volume: 187
  start-page: 1527
  year: 2005
  ident: e_1_3_4_16_2
  article-title: The Hfq homolog in Legionella pneumophila demonstrates regulation by LetA and RpoS and interacts with the global regulator CsrA
  publication-title: J Bacteriol
  doi: 10.1128/JB.187.4.1527-1532.2005
– volume: 136
  start-page: 615
  year: 2009
  ident: e_1_3_4_8_2
  article-title: Regulatory RNAs in bacteria
  publication-title: Cell
  doi: 10.1016/j.cell.2009.01.043
– volume: 65
  start-page: 1425
  year: 2007
  ident: e_1_3_4_12_2
  article-title: 6S RNA: A regulator of transcription
  publication-title: Mol Microbiol
  doi: 10.1111/j.1365-2958.2007.05894.x
– volume: 35
  start-page: 1885
  year: 2007
  ident: e_1_3_4_28_2
  article-title: Studies on the function of the riboregulator 6S RNA from E. coli: RNA polymerase binding, inhibition of in vitro transcription and synthesis of RNA-directed de novo transcripts
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkm085
– year: 2009
  ident: e_1_3_4_10_2
  article-title: Two small ncRNAs jointly govern virulence and transmission in Legionella pneumophila
  publication-title: Mol Microbiol
– volume: 70
  start-page: 100
  year: 2008
  ident: e_1_3_4_22_2
  article-title: A new Vibrio cholerae sRNA modulates colonization and affects release of outer membrane vesicles
  publication-title: Mol Microbiol
  doi: 10.1111/j.1365-2958.2008.06392.x
– volume: 72
  start-page: 995
  year: 2009
  ident: e_1_3_4_11_2
  article-title: The LetA-RsmYZ-CsrA regulatory cascade, together with RpoS and PmrA, post-transcriptionally regulates stationary phase activation of Legionella pneumophila Icm/Dot effectors
  publication-title: Mol Microbiol
  doi: 10.1111/j.1365-2958.2009.06705.x
– volume: 11
  start-page: 774
  year: 2005
  ident: e_1_3_4_23_2
  article-title: 6S RNA is a widespread regulator of eubacterial RNA polymerase that resembles an open promoter
  publication-title: RNA
  doi: 10.1261/rna.7286705
– volume: 186
  start-page: 4978
  year: 2004
  ident: e_1_3_4_15_2
  article-title: 6S RNA function enhances long-term cell survival
  publication-title: J Bacteriol
  doi: 10.1128/JB.186.15.4978-4985.2004
– volume: 301
  start-page: 27
  year: 2000
  ident: e_1_3_4_30_2
  article-title: Prediction of transcription terminators in bacterial genomes
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.2000.3836
– volume: 5
  start-page: e1000508
  year: 2009
  ident: e_1_3_4_4_2
  article-title: Genome-scale identification of Legionella pneumophila effectors using a machine learning approach
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1000508
– volume: 10
  start-page: 182
  year: 2007
  ident: e_1_3_4_7_2
  article-title: Small noncoding RNAs controlling pathogenesis
  publication-title: Curr Opin Microbiol
  doi: 10.1016/j.mib.2007.03.004
– volume: 188
  start-page: 3936
  year: 2006
  ident: e_1_3_4_14_2
  article-title: 6S RNA regulation of pspF transcription leads to altered cell survival at high pH
  publication-title: J Bacteriol
  doi: 10.1128/JB.00079-06
– volume: 12
  start-page: 313
  year: 2005
  ident: e_1_3_4_24_2
  article-title: A highly conserved 6S RNA structure is required for regulation of transcription
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb917
– reference: 12824351 - Nucleic Acids Res. 2003 Jul 1;31(13):3491-6
– reference: 10892648 - Cell. 2000 Jun 9;101(6):613-23
– reference: 10926490 - J Mol Biol. 2000 Aug 4;301(1):27-33
– reference: 16707685 - J Bacteriol. 2006 Jun;188(11):3936-43
– reference: 15262935 - J Bacteriol. 2004 Aug;186(15):4978-85
– reference: 18974076 - Bioinformatics. 2008 Dec 15;24(24):2807-13
– reference: 15980547 - Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W611-5
– reference: 18681937 - Mol Microbiol. 2008 Oct;70(1):100-11
– reference: 9781871 - Mol Microbiol. 1998 Sep;29(6):1321-30
– reference: 9588799 - Electrophoresis. 1998 Apr;19(4):536-44
– reference: 15811922 - RNA. 2005 May;11(5):774-84
– reference: 18208528 - Mol Microbiol. 2008 Mar;67(6):1242-56
– reference: 17714443 - Mol Microbiol. 2007 Sep;65(6):1425-31
– reference: 335244 - N Engl J Med. 1977 Dec 1;297(22):1189-97
– reference: 11713323 - Nucleic Acids Res. 2001 Nov 15;29(22):4724-35
– reference: 18363881 - Cell Microbiol. 2008 Jun;10(6):1209-20
– reference: 19218380 - J Bacteriol. 2009 Apr;191(8):2461-73
– reference: 17332013 - Nucleic Acids Res. 2007;35(6):1885-96
– reference: 19400772 - Mol Microbiol. 2009 May;72(3):741-62
– reference: 9465074 - Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1669-74
– reference: 9230301 - Cell. 1997 Jul 11;90(1):43-53
– reference: 19239884 - Cell. 2009 Feb 20;136(4):615-28
– reference: 19593377 - PLoS Pathog. 2009 Jul;5(7):e1000508
– reference: 19563462 - Cell Microbiol. 2009 Oct;11(10):1435-43
– reference: 15687220 - J Bacteriol. 2005 Feb;187(4):1527-32
– reference: 19400807 - Mol Microbiol. 2009 May;72(4):995-1010
– reference: 11755424 - Microbes Infect. 2001 Nov-Dec;3(14-15):1345-52
– reference: 16870723 - Nucleic Acids Res. 2006;34(12):3484-93
– reference: 15793584 - Nat Struct Mol Biol. 2005 Apr;12(4):313-9
– reference: 18359810 - J Bacteriol. 2008 May;190(10):3444-55
– reference: 11448770 - Curr Biol. 2001 Jun 26;11(12):941-50
– reference: 12384606 - Nucleic Acids Res. 2002 Oct 15;30(20):e104
– reference: 17383223 - Curr Opin Microbiol. 2007 Apr;10(2):182-8
SSID ssj0009580
Score 2.292043
Snippet Legionella pneumophila is a Gram-negative opportunistic human pathogen that infects and multiplies in a broad range of phagocytic protozoan and mammalian...
Legionella pneumophila is a Gram-negative opportunistic human pathogen that infects and multiplies in a broad range of phagocytic protozoan and mammalian...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7533
SubjectTerms Algorithms
Bacteria
Bacterial Proteins - genetics
Biological Sciences
Cell growth
DNA-directed RNA polymerase
Gene Deletion
Gene expression
Gene expression regulation
Gene Expression Regulation, Bacterial
Genes
Genes, Bacterial
Genomes
Gram-negative bacteria
humans
Legionella
Legionella pneumophila
Legionella pneumophila - genetics
Leukocytes
Mammals
microarray technology
Models, Biological
Models, Genetic
Mutation
Northern blotting
Nucleic Acid Hybridization
nutrients
Oligonucleotide Array Sequence Analysis
Open reading frames
Oxidative stress
pathogens
phagocytes
prediction
Predictions
protists
Protozoa
Ribonucleic acid
RNA
RNA, Bacterial - genetics
RNA, Untranslated
secretion
stress response
Transcription, Genetic
Virulence
Virulence Factors - genetics
Title Legionella pneumophila 6S RNA optimizes intracellular multiplication
URI https://www.jstor.org/stable/25665387
http://www.pnas.org/content/107/16/7533.abstract
https://www.ncbi.nlm.nih.gov/pubmed/20368425
https://www.proquest.com/docview/201339906
https://www.proquest.com/docview/733085815
https://www.proquest.com/docview/742687047
https://www.proquest.com/docview/744615730
https://pubmed.ncbi.nlm.nih.gov/PMC2867745
Volume 107
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 20250502
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: HH5
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: KQ8
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: KQ8
  dateStart: 19150115
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: DIK
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 20250502
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: RPM
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe68cILYsBYNkB5QGioSkli12keK1hVoapMtJX6ZjlOukXq0rK2SOwf4N_mznG-pjI-pCqKEudq5S735Z_vCHkLFtlNKKUOi2PmsJB7TuT7nqMkVyAirowijbYY8-GMfZ53563WzxpqabeNOupu776S_-EqXAO-4i7Zf-BsSRQuwDnwF47AYTj-FY9HCaKJEb_UXmfJ7ma1vk7hnE_aX8f99gq0wU16pxFX21uJKXqNOTUYQpOsq3unl6U12xTYgXGRLOxXW0-MPti0nfbluGpkPJC7QgIm-fo7mEis2lrtIRtAYB4v9YYanZBPl1dpCQlKv2c_6gn9KlmOEMJUW4uhzEwC22QqcJGdOb5bU67gmzic5e1BO8mea4VGzhvhFqJXV7AQXdG9mh9UFbYrzuSmAyS9gLOCSqPG9viLGMxGIzG9mE_frb852H4Ml-lNL5YD8sgH86B7gMy9WvXmXl7Wwky2qBEV0A_3_rHh3hws5KrAuWLxXBi6L5C5j8etOTjTp-SJiUzsfi5mR6SVZM_IUcFr-9wUKH__nHyq5M6uyZ3NJzbInV3Knd2QO7spdy_IbHAx_Th0TDcOR4FTuHUgVIgjn8auHy5YV7kKhEi5kXTjJHJ5HC6CxFUeOPxJCD8vkHHIZeh1A6Y88PIVPSaHGczthNhhIumC4i4zXzGwGjJwGY9CiZhjoNOzSKd4iUKZUvXYMWUpNGQioAJfpajeukXOywfWeZWW3w89Aa4IeQU2VMwmPq7cg1nDGgIWOdasKklAOMDBIcBnNJWKdCA8LlAWLXJW8FMYzbARSBQcf5dbxC7vgtrGFy6zZLXbiIBSCHZ6XveBIeA8gzVlwUNDGEQkYKQt8jIXoWru4JriErtFgoZwlQOwrnzzTpZe6_ryPta4ZN3TP0_-jDyuPvRX5HB7u0teg5O-jd7oD-gX91flww
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Legionella+pneumophila+6S+RNA+optimizes+intracellular+multiplication&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Faucher%2C+S%C3%A9bastien+P&rft.au=Friedlander%2C+Gilgi&rft.au=Livny%2C+Jonathan&rft.au=Margalit%2C+Hanah&rft.date=2010-04-20&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=107&rft.issue=16&rft.spage=7533&rft_id=info:doi/10.1073%2Fpnas.0911764107&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F107%2F16.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F107%2F16.cover.gif