Evaluation of respiratory movement during gated radiotherapy using film and electronic portal imaging
Purpose : To evaluate the effectiveness of a commercial system 1 in reducing respiration-induced treatment uncertainty by gating the radiation delivery. 1 Varian Medical Systems, Inc., Palo Alto, CA. Methods and Materials : The gating system considered here measures respiration from the position of...
Saved in:
| Published in | International journal of radiation oncology, biology, physics Vol. 52; no. 2; pp. 522 - 531 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York, NY
Elsevier Inc
01.02.2002
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0360-3016 1879-355X |
| DOI | 10.1016/S0360-3016(01)02681-5 |
Cover
| Abstract | Purpose
: To evaluate the effectiveness of a commercial system
1
in reducing respiration-induced treatment uncertainty by gating the radiation delivery.
1
Varian Medical Systems, Inc., Palo Alto, CA.
Methods and Materials
: The gating system considered here measures respiration from the position of a reflective marker on the patient’s chest. Respiration-triggered planning CT scans were obtained for 8 patients (4 lung, 4 liver) at the intended phase of respiration (6 at end expiration and 2 at end inspiration). In addition, fluoroscopic movies were recorded simultaneously with the respiratory waveform. During the treatment sessions, gated localization films were used to measure the position of the diaphragm relative to the vertebral bodies, which was compared to the reference digitally reconstructed radiograph derived from the respiration-triggered planning CT. Variability was quantified by the standard deviation about the mean position. We also assessed the interfraction variability of soft tissue structures during gated treatment in 2 patients using an amorphous silicon electronic portal imaging device.
Results
: The gated localization films revealed an interfraction patient-averaged diaphragm variability of 2.8 ± 1.0 mm (error bars indicate standard deviation in the patient population). The fluoroscopic data yielded a patient-averaged intrafraction diaphragm variability of 2.6 ± 1.7 mm. With no gating, this intrafraction excursion became 6.9 ± 2.1 mm. In gated localization films, the patient-averaged mean displacement of the diaphragm from the planning position was 0.0 ± 3.9 mm. However, in 4 of the 8 patients, the mean (over localization films) displacement was >4 mm, indicating a systematic displacement in treatment position from the planned one. The position of soft tissue features observed in portal images during gated treatments over several fractions showed a mean variability between 2.6 and 5.7 mm. The intrafraction variability, however, was between 0.6 and 1.4 mm, indicating that most of the variability was due to patient setup errors rather than to respiratory motion.
Conclusions
: The gating system evaluated here reduces the intra- and interfraction variability of anatomy due to respiratory motion. However, systematic displacements were observed in some cases between the location of an anatomic feature at simulation and its location during treatment. Frequent monitoring is advisable with film or portal imaging. |
|---|---|
| AbstractList | To evaluate the effectiveness of a commercial system(1) in reducing respiration-induced treatment uncertainty by gating the radiation delivery.PURPOSETo evaluate the effectiveness of a commercial system(1) in reducing respiration-induced treatment uncertainty by gating the radiation delivery.The gating system considered here measures respiration from the position of a reflective marker on the patient's chest. Respiration-triggered planning CT scans were obtained for 8 patients (4 lung, 4 liver) at the intended phase of respiration (6 at end expiration and 2 at end inspiration). In addition, fluoroscopic movies were recorded simultaneously with the respiratory waveform. During the treatment sessions, gated localization films were used to measure the position of the diaphragm relative to the vertebral bodies, which was compared to the reference digitally reconstructed radiograph derived from the respiration-triggered planning CT. Variability was quantified by the standard deviation about the mean position. We also assessed the interfraction variability of soft tissue structures during gated treatment in 2 patients using an amorphous silicon electronic portal imaging device.METHODS AND MATERIALSThe gating system considered here measures respiration from the position of a reflective marker on the patient's chest. Respiration-triggered planning CT scans were obtained for 8 patients (4 lung, 4 liver) at the intended phase of respiration (6 at end expiration and 2 at end inspiration). In addition, fluoroscopic movies were recorded simultaneously with the respiratory waveform. During the treatment sessions, gated localization films were used to measure the position of the diaphragm relative to the vertebral bodies, which was compared to the reference digitally reconstructed radiograph derived from the respiration-triggered planning CT. Variability was quantified by the standard deviation about the mean position. We also assessed the interfraction variability of soft tissue structures during gated treatment in 2 patients using an amorphous silicon electronic portal imaging device.The gated localization films revealed an interfraction patient-averaged diaphragm variability of 2.8 +/- 1.0 mm (error bars indicate standard deviation in the patient population). The fluoroscopic data yielded a patient-averaged intrafraction diaphragm variability of 2.6 +/- 1.7 mm. With no gating, this intrafraction excursion became 6.9 +/- 2.1 mm. In gated localization films, the patient-averaged mean displacement of the diaphragm from the planning position was 0.0 +/- 3.9 mm. However, in 4 of the 8 patients, the mean (over localization films) displacement was >4 mm, indicating a systematic displacement in treatment position from the planned one. The position of soft tissue features observed in portal images during gated treatments over several fractions showed a mean variability between 2.6 and 5.7 mm. The intrafraction variability, however, was between 0.6 and 1.4 mm, indicating that most of the variability was due to patient setup errors rather than to respiratory motion.RESULTSThe gated localization films revealed an interfraction patient-averaged diaphragm variability of 2.8 +/- 1.0 mm (error bars indicate standard deviation in the patient population). The fluoroscopic data yielded a patient-averaged intrafraction diaphragm variability of 2.6 +/- 1.7 mm. With no gating, this intrafraction excursion became 6.9 +/- 2.1 mm. In gated localization films, the patient-averaged mean displacement of the diaphragm from the planning position was 0.0 +/- 3.9 mm. However, in 4 of the 8 patients, the mean (over localization films) displacement was >4 mm, indicating a systematic displacement in treatment position from the planned one. The position of soft tissue features observed in portal images during gated treatments over several fractions showed a mean variability between 2.6 and 5.7 mm. The intrafraction variability, however, was between 0.6 and 1.4 mm, indicating that most of the variability was due to patient setup errors rather than to respiratory motion.The gating system evaluated here reduces the intra- and interfraction variability of anatomy due to respiratory motion. However, systematic displacements were observed in some cases between the location of an anatomic feature at simulation and its location during treatment. Frequent monitoring is advisable with film or portal imaging.CONCLUSIONSThe gating system evaluated here reduces the intra- and interfraction variability of anatomy due to respiratory motion. However, systematic displacements were observed in some cases between the location of an anatomic feature at simulation and its location during treatment. Frequent monitoring is advisable with film or portal imaging. Purpose : To evaluate the effectiveness of a commercial system 1 in reducing respiration-induced treatment uncertainty by gating the radiation delivery. 1 Varian Medical Systems, Inc., Palo Alto, CA. Methods and Materials : The gating system considered here measures respiration from the position of a reflective marker on the patient’s chest. Respiration-triggered planning CT scans were obtained for 8 patients (4 lung, 4 liver) at the intended phase of respiration (6 at end expiration and 2 at end inspiration). In addition, fluoroscopic movies were recorded simultaneously with the respiratory waveform. During the treatment sessions, gated localization films were used to measure the position of the diaphragm relative to the vertebral bodies, which was compared to the reference digitally reconstructed radiograph derived from the respiration-triggered planning CT. Variability was quantified by the standard deviation about the mean position. We also assessed the interfraction variability of soft tissue structures during gated treatment in 2 patients using an amorphous silicon electronic portal imaging device. Results : The gated localization films revealed an interfraction patient-averaged diaphragm variability of 2.8 ± 1.0 mm (error bars indicate standard deviation in the patient population). The fluoroscopic data yielded a patient-averaged intrafraction diaphragm variability of 2.6 ± 1.7 mm. With no gating, this intrafraction excursion became 6.9 ± 2.1 mm. In gated localization films, the patient-averaged mean displacement of the diaphragm from the planning position was 0.0 ± 3.9 mm. However, in 4 of the 8 patients, the mean (over localization films) displacement was >4 mm, indicating a systematic displacement in treatment position from the planned one. The position of soft tissue features observed in portal images during gated treatments over several fractions showed a mean variability between 2.6 and 5.7 mm. The intrafraction variability, however, was between 0.6 and 1.4 mm, indicating that most of the variability was due to patient setup errors rather than to respiratory motion. Conclusions : The gating system evaluated here reduces the intra- and interfraction variability of anatomy due to respiratory motion. However, systematic displacements were observed in some cases between the location of an anatomic feature at simulation and its location during treatment. Frequent monitoring is advisable with film or portal imaging. To evaluate the effectiveness of a commercial system(1) in reducing respiration-induced treatment uncertainty by gating the radiation delivery. The gating system considered here measures respiration from the position of a reflective marker on the patient's chest. Respiration-triggered planning CT scans were obtained for 8 patients (4 lung, 4 liver) at the intended phase of respiration (6 at end expiration and 2 at end inspiration). In addition, fluoroscopic movies were recorded simultaneously with the respiratory waveform. During the treatment sessions, gated localization films were used to measure the position of the diaphragm relative to the vertebral bodies, which was compared to the reference digitally reconstructed radiograph derived from the respiration-triggered planning CT. Variability was quantified by the standard deviation about the mean position. We also assessed the interfraction variability of soft tissue structures during gated treatment in 2 patients using an amorphous silicon electronic portal imaging device. The gated localization films revealed an interfraction patient-averaged diaphragm variability of 2.8 +/- 1.0 mm (error bars indicate standard deviation in the patient population). The fluoroscopic data yielded a patient-averaged intrafraction diaphragm variability of 2.6 +/- 1.7 mm. With no gating, this intrafraction excursion became 6.9 +/- 2.1 mm. In gated localization films, the patient-averaged mean displacement of the diaphragm from the planning position was 0.0 +/- 3.9 mm. However, in 4 of the 8 patients, the mean (over localization films) displacement was >4 mm, indicating a systematic displacement in treatment position from the planned one. The position of soft tissue features observed in portal images during gated treatments over several fractions showed a mean variability between 2.6 and 5.7 mm. The intrafraction variability, however, was between 0.6 and 1.4 mm, indicating that most of the variability was due to patient setup errors rather than to respiratory motion. The gating system evaluated here reduces the intra- and interfraction variability of anatomy due to respiratory motion. However, systematic displacements were observed in some cases between the location of an anatomic feature at simulation and its location during treatment. Frequent monitoring is advisable with film or portal imaging. |
| Author | Mageras, G.S Rosenzweig, K.E Ford, E.C Yorke, E Ling, C.C Wagman, R |
| Author_xml | – sequence: 1 givenname: E.C surname: Ford fullname: Ford, E.C email: forde@mskcc.org organization: Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY USA – sequence: 2 givenname: G.S surname: Mageras fullname: Mageras, G.S organization: Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY USA – sequence: 3 givenname: E surname: Yorke fullname: Yorke, E organization: Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY USA – sequence: 4 givenname: K.E surname: Rosenzweig fullname: Rosenzweig, K.E organization: Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY USA – sequence: 5 givenname: R surname: Wagman fullname: Wagman, R organization: Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY USA – sequence: 6 givenname: C.C surname: Ling fullname: Ling, C.C organization: Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY USA |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13443513$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/11872300$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkV1rFDEUhoNU7Lb6E5TcKPViNGcm2ZlBRKTUDyh4oYJ3IZOcWaOZZE0yC_vvm_3QQm_qRUggz_tyOM8ZOfHBIyFPgb0CBsvXX1mzZFVTnhcMXrJ62UElHpAFdG1fNUL8OCGLf8gpOUvpF2MMoOWPyCkUqm4YWxC82ig3q2yDp2GkEdPaRpVD3NIpbHBCn6mZo_UrulIZDY3K2JB_YlTrLZ3T7mO0bqLKG4oOdY7BW03XIWblqJ3UqiCPycNRuYRPjvc5-f7h6tvlp-r6y8fPl--vKy0AcoUNN6Yz0PERBlEz0NDzgbVaIGcI2gyc85or07SDFoMy5dS8q0fWt7XuxuacvDj0rmP4M2PKcrJJo3PKY5iTbIH30C_7Aj47gvMwoZHrWCaNW_l3MQV4fgRU0sqNUXlt0y3XcN4IaAonDpyOIaWI4y3C5E6U3IuSOwuSgdyLkqLk3tzJaZv3GnJU1t2bfndIY1nmxmKUSVv0Go2NRYE0wd7b8PZOg3a2iFPuN27_I38DRKHAkw |
| CODEN | IOBPD3 |
| CitedBy_id | crossref_primary_10_1118_1_1639993 crossref_primary_10_1120_jacmp_v14i3_4060 crossref_primary_10_1016_j_ijrobp_2008_02_024 crossref_primary_10_1111_ajco_12053 crossref_primary_10_1118_1_2794225 crossref_primary_10_1186_1748_717X_3_34 crossref_primary_10_1118_1_3312276 crossref_primary_10_1016_j_ijrobp_2009_03_074 crossref_primary_10_1016_j_semradonc_2006_04_007 crossref_primary_10_1088_0031_9155_54_2_006 crossref_primary_10_1088_0031_9155_61_24_8541 crossref_primary_10_1088_0031_9155_52_1_017 crossref_primary_10_4236_ijmpcero_2014_33018 crossref_primary_10_1088_0031_9155_57_24_8455 crossref_primary_10_1016_S0761_8417_04_72079_9 crossref_primary_10_1016_j_rpor_2018_11_003 crossref_primary_10_1016_j_canrad_2006_05_009 crossref_primary_10_1088_0031_9155_50_16_002 crossref_primary_10_1016_j_meddos_2022_02_005 crossref_primary_10_1088_1361_6560_ad2b92 crossref_primary_10_1111_j_1740_8261_2011_01816_x crossref_primary_10_1118_1_1531177 crossref_primary_10_1088_1361_6560_aa587d crossref_primary_10_1007_s11604_007_0189_4 crossref_primary_10_1120_jacmp_v14i5_4245 crossref_primary_10_1080_02841860600900050 crossref_primary_10_1016_j_rpor_2020_06_004 crossref_primary_10_1118_1_3496325 crossref_primary_10_1118_1_4705353 crossref_primary_10_1016_j_radonc_2006_10_021 crossref_primary_10_1016_S1278_3218_02_00220_2 crossref_primary_10_1007_s12194_008_0052_z crossref_primary_10_1120_jacmp_v6i2_2048 crossref_primary_10_1016_j_radonc_2009_03_019 crossref_primary_10_1007_s13566_020_00439_7 crossref_primary_10_1684_bdc_2010_1143 crossref_primary_10_1016_j_ijrobp_2007_08_049 crossref_primary_10_1016_j_ijrobp_2008_11_070 crossref_primary_10_1120_jacmp_v7i1_2162 crossref_primary_10_1118_1_3678986 crossref_primary_10_1016_j_rpor_2019_05_003 crossref_primary_10_1016_j_ijrobp_2006_10_033 crossref_primary_10_1088_0031_9155_59_15_4261 crossref_primary_10_1120_jacmp_v9i4_2766 crossref_primary_10_1088_0031_9155_61_8_3109 crossref_primary_10_1120_jacmp_v15i3_4594 crossref_primary_10_1016_j_clon_2015_08_010 crossref_primary_10_1016_j_ejmp_2011_11_005 crossref_primary_10_3182_20110828_6_IT_1002_00342 crossref_primary_10_1120_jacmp_v10i4_2982 crossref_primary_10_1016_j_meddos_2010_03_006 crossref_primary_10_1016_j_jmir_2024_101729 crossref_primary_10_1016_j_ijrobp_2007_02_006 crossref_primary_10_1016_j_ijrobp_2004_12_013 crossref_primary_10_1088_0031_9155_52_14_016 crossref_primary_10_1016_j_ijrobp_2004_06_021 crossref_primary_10_1118_1_2349696 crossref_primary_10_1088_0031_9155_61_15_5529 crossref_primary_10_1120_jacmp_v17i4_6114 crossref_primary_10_1016_j_ijrobp_2009_01_003 crossref_primary_10_1118_1_1573792 crossref_primary_10_1118_1_2358830 crossref_primary_10_1016_j_ijrobp_2009_08_033 crossref_primary_10_1016_j_radonc_2009_09_012 crossref_primary_10_1016_j_semradonc_2005_01_007 crossref_primary_10_1186_1748_717X_6_78 crossref_primary_10_1002_mp_13291 crossref_primary_10_1016_j_zemedi_2008_10_010 crossref_primary_10_1186_1748_717X_2_32 crossref_primary_10_1097_SPC_0b013e32834de6d8 crossref_primary_10_1111_j_1440_1673_2006_01660_x crossref_primary_10_1016_j_ijrobp_2004_05_063 crossref_primary_10_1002_acm2_12755 crossref_primary_10_1002_mp_12239 crossref_primary_10_1118_1_3438081 crossref_primary_10_6009_jjrt_62_742 crossref_primary_10_6009_jjrt_62_1666 crossref_primary_10_1016_j_ijrobp_2007_03_040 crossref_primary_10_6009_jjrt_2018_JSRT_74_11_1286 crossref_primary_10_1016_j_ejmp_2019_05_012 crossref_primary_10_1016_j_radonc_2006_02_015 crossref_primary_10_1016_j_ijrobp_2006_12_046 crossref_primary_10_1088_0031_9155_57_2_357 crossref_primary_10_1186_1475_925X_13_144 crossref_primary_10_1016_j_canrad_2007_06_002 crossref_primary_10_1016_j_ijrobp_2004_07_681 crossref_primary_10_1016_j_ijrobp_2004_08_007 crossref_primary_10_1118_1_3556588 crossref_primary_10_1016_j_ijrobp_2007_11_027 crossref_primary_10_1016_j_meddos_2006_10_002 crossref_primary_10_1088_0031_9155_50_23_002 crossref_primary_10_1088_0031_9155_54_23_009 crossref_primary_10_1016_j_clon_2008_06_005 crossref_primary_10_1118_1_1626121 crossref_primary_10_14316_pmp_2016_27_3_117 crossref_primary_10_1016_S0360_3016_02_03941_X crossref_primary_10_1007_BF03179341 crossref_primary_10_1007_s11517_019_02096_6 crossref_primary_10_1080_02841860600902817 crossref_primary_10_1118_1_4919446 crossref_primary_10_1120_jacmp_v13i2_3715 crossref_primary_10_1016_S1120_1797_06_80047_5 crossref_primary_10_1016_j_ijrobp_2004_03_037 crossref_primary_10_1088_0031_9155_53_4_001 crossref_primary_10_1118_1_1539039 crossref_primary_10_1118_1_1592017 crossref_primary_10_1016_j_radonc_2019_04_036 crossref_primary_10_1007_s11604_015_0418_1 crossref_primary_10_3109_10929088_2014_891657 crossref_primary_10_1016_j_meddos_2005_12_002 crossref_primary_10_1016_j_ijrobp_2009_09_049 crossref_primary_10_1080_02841860802258778 crossref_primary_10_1118_1_2222075 crossref_primary_10_1177_153303460300200503 crossref_primary_10_1259_bjr_24917728 crossref_primary_10_1371_journal_pone_0156357 crossref_primary_10_1016_j_ijrobp_2005_05_020 crossref_primary_10_1007_s40134_024_00427_6 crossref_primary_10_1016_j_meddos_2005_12_005 crossref_primary_10_1016_j_meddos_2005_12_004 crossref_primary_10_1186_1756_6649_8_5 crossref_primary_10_6009_jjrt_62_1682 crossref_primary_10_1118_1_1861522 crossref_primary_10_1016_S0360_3016_03_00710_7 crossref_primary_10_1186_s13014_016_0720_9 crossref_primary_10_1016_j_ejmp_2020_06_026 crossref_primary_10_1088_0031_9155_58_13_4659 crossref_primary_10_1002_mp_14438 crossref_primary_10_1186_1471_2407_8_351 crossref_primary_10_1016_j_ijrobp_2008_03_047 crossref_primary_10_1002_mp_13507 crossref_primary_10_1016_j_radonc_2006_08_003 crossref_primary_10_1016_j_ijrobp_2005_01_032 crossref_primary_10_3390_cancers17030531 crossref_primary_10_1016_j_ijrobp_2010_07_1982 crossref_primary_10_1118_1_3250856 crossref_primary_10_1088_0031_9155_52_20_010 crossref_primary_10_1088_0031_9155_58_5_1447 crossref_primary_10_5392_JKCA_2014_14_09_362 crossref_primary_10_1016_j_canrad_2009_01_006 crossref_primary_10_1118_1_2804576 crossref_primary_10_1118_1_2335485 crossref_primary_10_1016_j_ijrobp_2007_04_051 crossref_primary_10_1088_0031_9155_53_12_R01 crossref_primary_10_1120_jacmp_v7i2_2190 crossref_primary_10_1118_1_1517614 crossref_primary_10_1016_j_lungcan_2012_01_007 crossref_primary_10_1016_S1877_1203_10_70060_4 crossref_primary_10_1088_0031_9155_57_21_7053 crossref_primary_10_1016_j_ijrobp_2003_09_077 crossref_primary_10_1118_1_2731029 crossref_primary_10_1016_j_ejmp_2017_02_004 crossref_primary_10_1177_153303460600500503 crossref_primary_10_1051_radiopro_2012030 crossref_primary_10_1016_j_ijrobp_2009_05_024 crossref_primary_10_1007_s10269_007_0639_8 crossref_primary_10_1016_j_ijrobp_2010_10_028 crossref_primary_10_1118_1_3129161 crossref_primary_10_1155_2013_519602 crossref_primary_10_1016_S1359_6349_07_70052_6 crossref_primary_10_1016_j_ijrobp_2009_05_026 crossref_primary_10_1088_0031_9155_59_8_1935 crossref_primary_10_1016_j_ijrobp_2004_05_007 crossref_primary_10_1016_j_ejmp_2017_09_128 crossref_primary_10_1118_1_1558675 crossref_primary_10_1016_S1470_2045_03_01191_4 crossref_primary_10_1088_0031_9155_54_7_013 crossref_primary_10_1016_j_ijrobp_2006_02_035 crossref_primary_10_1177_153303460800700205 crossref_primary_10_1088_0031_9155_61_6_2372 crossref_primary_10_1016_j_ijrobp_2006_11_055 crossref_primary_10_1002_mp_13377 crossref_primary_10_1016_j_meddos_2008_08_002 crossref_primary_10_1016_j_ejmp_2017_11_001 crossref_primary_10_1016_j_radonc_2005_01_008 crossref_primary_10_3938_jkps_62_657 crossref_primary_10_1016_j_radonc_2007_11_017 crossref_primary_10_1088_0031_9155_48_5_303 crossref_primary_10_1118_1_1739671 crossref_primary_10_1007_s13246_014_0310_9 crossref_primary_10_1371_journal_pone_0112824 crossref_primary_10_1088_0031_9155_51_20_015 |
| Cites_doi | 10.1016/S0360-3016(00)00524-1 10.1118/1.598837 10.1120/1.1409235 10.1016/S0360-3016(01)01649-2 10.1016/S0360-3016(99)00413-7 10.1016/0360-3016(95)02395-X 10.1259/0007-1285-67-803-1096 10.1148/radiology.190.3.8115638 10.1016/S0169-5002(97)00086-X 10.1088/0031-9155/41/1/007 10.1118/1.598723 10.1016/S0360-3016(99)00056-5 10.1016/0360-3016(90)90076-V 10.1016/S0360-3016(00)00748-3 10.1088/0031-9155/45/9/402 10.1016/0167-8140(93)90098-S 10.1016/S0360-3016(00)00518-6 10.1016/S0360-3016(99)90480-7 10.1118/1.598758 10.1016/S0360-3016(01)02653-0 10.1016/S0360-3016(00)00747-1 10.1016/S0360-3016(97)00009-6 10.1016/S0167-8140(98)00046-2 10.1016/S0360-3016(00)01354-7 10.1016/S0360-3016(99)00154-6 10.1016/S0360-3016(00)80122-4 |
| ContentType | Journal Article |
| Copyright | 2002 Elsevier Science Inc. 2002 INIST-CNRS |
| Copyright_xml | – notice: 2002 Elsevier Science Inc. – notice: 2002 INIST-CNRS |
| DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/S0360-3016(01)02681-5 |
| DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Physics |
| EISSN | 1879-355X |
| EndPage | 531 |
| ExternalDocumentID | 11872300 13443513 10_1016_S0360_3016_01_02681_5 S0360301601026815 |
| Genre | Journal Article |
| GroupedDBID | --- --K .1- .55 .FO .GJ 0R~ 1B1 1P~ 1RT 1~5 29J 4.4 457 4G. 53G 5RE 5VS 7-5 AAEDT AAEDW AALRI AAQFI AAQQT AAQXK AAWTL AAXUO AAYWO ABEFU ABJNI ABLJU ABNEU ABOCM ABUDA ABWVN ACGFS ACIUM ACRPL ACVFH ADBBV ADCNI ADMUD ADNMO ADVLN AENEX AEUPX AEVXI AFFNX AFJKZ AFPUW AFRHN AFTJW AGQPQ AGRDE AHHHB AIGII AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BELOY DU5 EBS EFKBS EJD F5P FDB FEDTE FGOYB FIRID G-2 GBLVA HED HMK HMO HVGLF HX~ HZ~ IHE J1W KOM LX3 M41 MO0 NQ- O9- OC~ OO- R2- RNS ROL RPZ SAE SDG SEL SES SEW SSZ UDS UV1 X7M XH2 XPP Z5R ZGI ~S- AAIAV ADPAM AFCTW AGZHU AHPSJ ALXNB EFJIC RIG ZA5 AAYXX CITATION AGCQF IQODW CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c511t-e34dd8d184f1b5201c194b07c5e40e1cdb44424ad37bc5bad5ba2482f0972c8f3 |
| ISSN | 0360-3016 |
| IngestDate | Sat Sep 27 22:25:38 EDT 2025 Wed Feb 19 02:34:36 EST 2025 Mon Jul 21 09:13:39 EDT 2025 Thu Apr 24 23:04:41 EDT 2025 Wed Oct 01 04:34:49 EDT 2025 Fri Feb 23 02:20:24 EST 2024 Tue Oct 14 19:31:13 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Respiratory motion Electronic portal imaging device Fluoroscopic images Gating Performance evaluation Human Treatment Radiotherapy Respiration Measurement technique |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c511t-e34dd8d184f1b5201c194b07c5e40e1cdb44424ad37bc5bad5ba2482f0972c8f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 11872300 |
| PQID | 71491969 |
| PQPubID | 23479 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_71491969 pubmed_primary_11872300 pascalfrancis_primary_13443513 crossref_primary_10_1016_S0360_3016_01_02681_5 crossref_citationtrail_10_1016_S0360_3016_01_02681_5 elsevier_sciencedirect_doi_10_1016_S0360_3016_01_02681_5 elsevier_clinicalkey_doi_10_1016_S0360_3016_01_02681_5 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2002-02-01 |
| PublicationDateYYYYMMDD | 2002-02-01 |
| PublicationDate_xml | – month: 02 year: 2002 text: 2002-02-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | New York, NY |
| PublicationPlace_xml | – name: New York, NY – name: United States |
| PublicationTitle | International journal of radiation oncology, biology, physics |
| PublicationTitleAlternate | Int J Radiat Oncol Biol Phys |
| PublicationYear | 2002 |
| Publisher | Elsevier Inc Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier |
| References | Balter, Dawson, Kazanjian (BIB29) 2001; 51 Ritchie, Hsieh, Gard (BIB10) 1994; 190 Kiffer, Berlangieri, Scott (BIB24) 1998; 19 Ekberg, Holmberg, Wittgren (BIB25) 1998; 48 Kubo, Hill (BIB3) 1996; 41 Davies, Hill, Holmes (BIB2) 1994; 67 Herfarth, Debus, Lohr (BIB7) 2000; 46 Ten Haken, Balter, Marsh (BIB4) 1997; 38 Craig, Battista, Moiseenko (BIB27) 2001; 49 Kini, Keall, Vedam (BIB15) 2000; 48 Mah, Hanley, Rosenzweig (BIB22) 2000; 48 Dawson, Brock, Kazanijan (BIB23) 2001; 51 Kubo, Shapiro, Seppi (BIB20) 1999; 26 Hanley, Debois, Mah (BIB5) 1999; 45 Minohara, Kanai, Endo (BIB9) 2000; 47 van Herk, Remeijer, Rasch (BIB26) 2000; 47 Ramsey, Cordrey, Oliver (BIB14) 1999; 26 Mageras, Yorke, Rosenzweig (BIB16) 2001; 2 Bel, Vos, Rodrigus (BIB28) 1996; 35 Paoli, Rosenzweig, Yorke (BIB17) 1999; 45 Kubo, Len, Minohara (BIB13) 2000; 27 el-Gayed, Bel, Vijlbrief (BIB21) 1993; 26 Mah, Hanley, Rosenzweig (BIB30) 1998; 25 Wong, Sharpe, Jaffray (BIB6) 1999; 44 Ross, Hussey, Pennington (BIB1) 1990; 18 Shirato, Shimizu, Kunieda (BIB12) 2000; 48 Keatley, Mageras (BIB18) 2000 Seiler, Blattmann, Kirsch (BIB11) 2000; 45 Mageras, Kutcher (BIB19) 1998 Okumura, Tsuji, Hayakawa (BIB8) 1994 Ramsey (10.1016/S0360-3016(01)02681-5_BIB14) 1999; 26 el-Gayed (10.1016/S0360-3016(01)02681-5_BIB21) 1993; 26 Paoli (10.1016/S0360-3016(01)02681-5_BIB17) 1999; 45 Bel (10.1016/S0360-3016(01)02681-5_BIB28) 1996; 35 Craig (10.1016/S0360-3016(01)02681-5_BIB27) 2001; 49 Kubo (10.1016/S0360-3016(01)02681-5_BIB3) 1996; 41 Shirato (10.1016/S0360-3016(01)02681-5_BIB12) 2000; 48 Dawson (10.1016/S0360-3016(01)02681-5_BIB23) 2001; 51 Minohara (10.1016/S0360-3016(01)02681-5_BIB9) 2000; 47 Seiler (10.1016/S0360-3016(01)02681-5_BIB11) 2000; 45 Kubo (10.1016/S0360-3016(01)02681-5_BIB13) 2000; 27 Ritchie (10.1016/S0360-3016(01)02681-5_BIB10) 1994; 190 Keatley (10.1016/S0360-3016(01)02681-5_BIB18) 2000 Okumura (10.1016/S0360-3016(01)02681-5_BIB8) 1994 Ross (10.1016/S0360-3016(01)02681-5_BIB1) 1990; 18 Kubo (10.1016/S0360-3016(01)02681-5_BIB20) 1999; 26 Herfarth (10.1016/S0360-3016(01)02681-5_BIB7) 2000; 46 Mageras (10.1016/S0360-3016(01)02681-5_BIB16) 2001; 2 Kini (10.1016/S0360-3016(01)02681-5_BIB15) 2000; 48 Davies (10.1016/S0360-3016(01)02681-5_BIB2) 1994; 67 Balter (10.1016/S0360-3016(01)02681-5_BIB29) 2001; 51 Wong (10.1016/S0360-3016(01)02681-5_BIB6) 1999; 44 van Herk (10.1016/S0360-3016(01)02681-5_BIB26) 2000; 47 Mageras (10.1016/S0360-3016(01)02681-5_BIB19) 1998 Mah (10.1016/S0360-3016(01)02681-5_BIB30) 1998; 25 Ekberg (10.1016/S0360-3016(01)02681-5_BIB25) 1998; 48 Ten Haken (10.1016/S0360-3016(01)02681-5_BIB4) 1997; 38 Kiffer (10.1016/S0360-3016(01)02681-5_BIB24) 1998; 19 Mah (10.1016/S0360-3016(01)02681-5_BIB22) 2000; 48 Hanley (10.1016/S0360-3016(01)02681-5_BIB5) 1999; 45 |
| References_xml | – volume: 45 start-page: N103 year: 2000 end-page: N110 ident: BIB11 article-title: A novel tracking technique for the continuous precise measurement of tumor positions in conformal radiotherapy publication-title: Phys Med Biol – volume: 18 start-page: 671 year: 1990 end-page: 677 ident: BIB1 article-title: Analysis of movement of intrathoracic neoplasms using ultrafast computed tomography publication-title: Int J Radiat Oncol Biol Phys – volume: 2 start-page: 191 year: 2001 end-page: 200 ident: BIB16 article-title: Fluoroscopic evaluation of diaphragmatic motion reduction with a respiratory gated radiotherapy system publication-title: J Appl Clin Med Phys – start-page: 132 year: 2000 end-page: 143 ident: BIB18 article-title: Computer automated quantification of respiratory motion in a fluoroscopic movie publication-title: The use of computers in radiation therapy – volume: 47 start-page: 1121 year: 2000 end-page: 1135 ident: BIB26 article-title: The probability of correct target dosage publication-title: Int J Radiat Oncol Biol Phys – volume: 38 start-page: 613 year: 1997 end-page: 617 ident: BIB4 article-title: Potential benefits of eliminating planning target volume expansions for patient breathing in the treatment of liver tumors publication-title: Int J Radiat Oncol Biol Phys – volume: 35 start-page: 321 year: 1996 end-page: 332 ident: BIB28 article-title: High-precision prostate cancer irradiation by clinical application of an offline patient setup verification procedure, using portal imaging publication-title: Int J Radiat Oncol Biol Phys – volume: 45 start-page: 603 year: 1999 end-page: 611 ident: BIB5 article-title: Deep inspiration breath-hold technique for lung tumors publication-title: Int J Radiat Oncol Biol Phys – volume: 46 start-page: 329 year: 2000 end-page: 335 ident: BIB7 article-title: Extracranial stereotactic radiation therapy publication-title: Int J Radiat Oncol Biol Phys – year: 1994 ident: BIB8 article-title: Respiration-gated irradiation system for proton radiotherapy publication-title: Proceedings of the 11th International Conference on the Use of Computers in Radiation Therapy – volume: 51 start-page: 1410 year: 2001 end-page: 1421 ident: BIB23 article-title: The reproducibility of organ position using active breathing control (ABC) during liver radiotherapy publication-title: Int J Radiat Oncol Biol Phys – volume: 41 start-page: 83 year: 1996 end-page: 91 ident: BIB3 article-title: Respiration gated radiotherapy treatment publication-title: Phys Med Biol – volume: 190 start-page: 847 year: 1994 end-page: 852 ident: BIB10 article-title: Predictive respiratory gating publication-title: Radiology – volume: 67 start-page: 1096 year: 1994 end-page: 1102 ident: BIB2 article-title: Ultrasound quantitation of respiratory organ motion in the upper abdomen publication-title: Br J Radiol – volume: 26 start-page: 162 year: 1993 end-page: 171 ident: BIB21 article-title: Time trend of patient setup deviations during pelvic irradiation using electronic portal imaging publication-title: Radiother Oncol – volume: 25 start-page: A80 year: 1998 ident: BIB30 article-title: Movement of anatomic landmarks and its effect on patient position determination in thoracic conformal radiation treatment publication-title: Med Phys – volume: 48 start-page: 164 year: 2000 ident: BIB15 article-title: Preliminary results from a study of a respiratory motion tracking system publication-title: Int J Radiat Oncol Biol Phys – volume: 45 start-page: 386 year: 1999 end-page: 387 ident: BIB17 article-title: Comparison of different respiratory levels in the treatment of lung cancer publication-title: Int J Radiat Oncol Biol Phys – volume: 49 start-page: 241 year: 2001 end-page: 250 ident: BIB27 article-title: Considerations for the implementation of target volume protocols in radiation therapy publication-title: Int J Radiat Oncol Biol Phys – volume: 26 start-page: 2410 year: 1999 end-page: 2414 ident: BIB20 article-title: Potential and role of a prototype amorphous silicon array electronic portal imaging device in breathing synchronized radiotherapy publication-title: Med Phys – volume: 27 start-page: 346 year: 2000 end-page: 353 ident: BIB13 article-title: Breathing-synchronized radiotherapy program at the University of California Davis Cancer Center publication-title: Med Phys – volume: 26 start-page: 2086 year: 1999 end-page: 2091 ident: BIB14 article-title: A comparison of beam characteristics for gated and nongated clinical x-ray beams publication-title: Med Phys – volume: 48 start-page: 1175 year: 2000 end-page: 1185 ident: BIB22 article-title: Technical aspects of the deep inspiration breath-hold technique in the treatment of thoracic cancer publication-title: Int J Radiat Oncol Biol Phys – volume: 48 start-page: 1187 year: 2000 end-page: 1195 ident: BIB12 article-title: Physical aspects of a real-time tumor-tracking system for gated radiotherapy publication-title: Int J Radiat Oncol Biol Phys – volume: 19 start-page: 167 year: 1998 end-page: 177 ident: BIB24 article-title: The contribution of F18-fluoro-2-deoxy-glucose positron emission tomographic imaging to radiotherapy planning in lung cancer publication-title: Lung Cancer – start-page: 393 year: 1998 end-page: 414 ident: BIB19 article-title: The role of EPIDs in conformal therapy publication-title: Imaging in radiation therapy. American Physicists in Medicine, 1998 Summer School Proceedings, University of Wisconsin – volume: 48 start-page: 71 year: 1998 end-page: 77 ident: BIB25 article-title: What margins should be added to the clinical target volume in radiotherapy treatment planning for lung cancer? publication-title: Radiat Oncol – volume: 47 start-page: 1097 year: 2000 end-page: 1103 ident: BIB9 article-title: Respiratory gated irradiation system for heavy-ion radiotherapy publication-title: Int J Radiat Oncol Biol Phys – volume: 44 start-page: 911 year: 1999 end-page: 919 ident: BIB6 article-title: The use of active breathing control (ABC) to reduce margin for breathing motion publication-title: Int J Radiat Oncol Biol Phys – volume: 51 start-page: 267 year: 2001 end-page: 270 ident: BIB29 article-title: Determination of ventilatory liver movement via radiographic evaluation of diaphragm position publication-title: Int J Radiat Oncol Biol Phys – start-page: 132 year: 2000 ident: 10.1016/S0360-3016(01)02681-5_BIB18 article-title: Computer automated quantification of respiratory motion in a fluoroscopic movie – volume: 47 start-page: 1097 year: 2000 ident: 10.1016/S0360-3016(01)02681-5_BIB9 article-title: Respiratory gated irradiation system for heavy-ion radiotherapy publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/S0360-3016(00)00524-1 – volume: 27 start-page: 346 year: 2000 ident: 10.1016/S0360-3016(01)02681-5_BIB13 article-title: Breathing-synchronized radiotherapy program at the University of California Davis Cancer Center publication-title: Med Phys doi: 10.1118/1.598837 – volume: 2 start-page: 191 year: 2001 ident: 10.1016/S0360-3016(01)02681-5_BIB16 article-title: Fluoroscopic evaluation of diaphragmatic motion reduction with a respiratory gated radiotherapy system publication-title: J Appl Clin Med Phys doi: 10.1120/1.1409235 – volume: 51 start-page: 267 year: 2001 ident: 10.1016/S0360-3016(01)02681-5_BIB29 article-title: Determination of ventilatory liver movement via radiographic evaluation of diaphragm position publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/S0360-3016(01)01649-2 – volume: 46 start-page: 329 year: 2000 ident: 10.1016/S0360-3016(01)02681-5_BIB7 article-title: Extracranial stereotactic radiation therapy publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/S0360-3016(99)00413-7 – volume: 35 start-page: 321 year: 1996 ident: 10.1016/S0360-3016(01)02681-5_BIB28 article-title: High-precision prostate cancer irradiation by clinical application of an offline patient setup verification procedure, using portal imaging publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/0360-3016(95)02395-X – volume: 67 start-page: 1096 year: 1994 ident: 10.1016/S0360-3016(01)02681-5_BIB2 article-title: Ultrasound quantitation of respiratory organ motion in the upper abdomen publication-title: Br J Radiol doi: 10.1259/0007-1285-67-803-1096 – volume: 190 start-page: 847 year: 1994 ident: 10.1016/S0360-3016(01)02681-5_BIB10 article-title: Predictive respiratory gating publication-title: Radiology doi: 10.1148/radiology.190.3.8115638 – volume: 19 start-page: 167 year: 1998 ident: 10.1016/S0360-3016(01)02681-5_BIB24 article-title: The contribution of F18-fluoro-2-deoxy-glucose positron emission tomographic imaging to radiotherapy planning in lung cancer publication-title: Lung Cancer doi: 10.1016/S0169-5002(97)00086-X – volume: 41 start-page: 83 year: 1996 ident: 10.1016/S0360-3016(01)02681-5_BIB3 article-title: Respiration gated radiotherapy treatment publication-title: Phys Med Biol doi: 10.1088/0031-9155/41/1/007 – volume: 26 start-page: 2086 year: 1999 ident: 10.1016/S0360-3016(01)02681-5_BIB14 article-title: A comparison of beam characteristics for gated and nongated clinical x-ray beams publication-title: Med Phys doi: 10.1118/1.598723 – year: 1994 ident: 10.1016/S0360-3016(01)02681-5_BIB8 article-title: Respiration-gated irradiation system for proton radiotherapy publication-title: Proceedings of the 11th International Conference on the Use of Computers in Radiation Therapy – volume: 25 start-page: A80 year: 1998 ident: 10.1016/S0360-3016(01)02681-5_BIB30 article-title: Movement of anatomic landmarks and its effect on patient position determination in thoracic conformal radiation treatment publication-title: Med Phys – volume: 44 start-page: 911 year: 1999 ident: 10.1016/S0360-3016(01)02681-5_BIB6 article-title: The use of active breathing control (ABC) to reduce margin for breathing motion publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/S0360-3016(99)00056-5 – volume: 18 start-page: 671 year: 1990 ident: 10.1016/S0360-3016(01)02681-5_BIB1 article-title: Analysis of movement of intrathoracic neoplasms using ultrafast computed tomography publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/0360-3016(90)90076-V – volume: 48 start-page: 1187 year: 2000 ident: 10.1016/S0360-3016(01)02681-5_BIB12 article-title: Physical aspects of a real-time tumor-tracking system for gated radiotherapy publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/S0360-3016(00)00748-3 – volume: 45 start-page: N103 year: 2000 ident: 10.1016/S0360-3016(01)02681-5_BIB11 article-title: A novel tracking technique for the continuous precise measurement of tumor positions in conformal radiotherapy publication-title: Phys Med Biol doi: 10.1088/0031-9155/45/9/402 – volume: 26 start-page: 162 year: 1993 ident: 10.1016/S0360-3016(01)02681-5_BIB21 article-title: Time trend of patient setup deviations during pelvic irradiation using electronic portal imaging publication-title: Radiother Oncol doi: 10.1016/0167-8140(93)90098-S – volume: 47 start-page: 1121 year: 2000 ident: 10.1016/S0360-3016(01)02681-5_BIB26 article-title: The probability of correct target dosage publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/S0360-3016(00)00518-6 – volume: 45 start-page: 386 year: 1999 ident: 10.1016/S0360-3016(01)02681-5_BIB17 article-title: Comparison of different respiratory levels in the treatment of lung cancer publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/S0360-3016(99)90480-7 – volume: 26 start-page: 2410 year: 1999 ident: 10.1016/S0360-3016(01)02681-5_BIB20 article-title: Potential and role of a prototype amorphous silicon array electronic portal imaging device in breathing synchronized radiotherapy publication-title: Med Phys doi: 10.1118/1.598758 – volume: 51 start-page: 1410 year: 2001 ident: 10.1016/S0360-3016(01)02681-5_BIB23 article-title: The reproducibility of organ position using active breathing control (ABC) during liver radiotherapy publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/S0360-3016(01)02653-0 – volume: 48 start-page: 1175 year: 2000 ident: 10.1016/S0360-3016(01)02681-5_BIB22 article-title: Technical aspects of the deep inspiration breath-hold technique in the treatment of thoracic cancer publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/S0360-3016(00)00747-1 – volume: 38 start-page: 613 year: 1997 ident: 10.1016/S0360-3016(01)02681-5_BIB4 article-title: Potential benefits of eliminating planning target volume expansions for patient breathing in the treatment of liver tumors publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/S0360-3016(97)00009-6 – volume: 48 start-page: 71 year: 1998 ident: 10.1016/S0360-3016(01)02681-5_BIB25 article-title: What margins should be added to the clinical target volume in radiotherapy treatment planning for lung cancer? publication-title: Radiat Oncol doi: 10.1016/S0167-8140(98)00046-2 – volume: 49 start-page: 241 year: 2001 ident: 10.1016/S0360-3016(01)02681-5_BIB27 article-title: Considerations for the implementation of target volume protocols in radiation therapy publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/S0360-3016(00)01354-7 – volume: 45 start-page: 603 year: 1999 ident: 10.1016/S0360-3016(01)02681-5_BIB5 article-title: Deep inspiration breath-hold technique for lung tumors publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/S0360-3016(99)00154-6 – volume: 48 start-page: 164 year: 2000 ident: 10.1016/S0360-3016(01)02681-5_BIB15 article-title: Preliminary results from a study of a respiratory motion tracking system publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/S0360-3016(00)80122-4 – start-page: 393 year: 1998 ident: 10.1016/S0360-3016(01)02681-5_BIB19 article-title: The role of EPIDs in conformal therapy |
| SSID | ssj0001174 |
| Score | 2.1746016 |
| Snippet | Purpose
: To evaluate the effectiveness of a commercial system
1
in reducing respiration-induced treatment uncertainty by gating the radiation delivery.
1... To evaluate the effectiveness of a commercial system(1) in reducing respiration-induced treatment uncertainty by gating the radiation delivery. The gating... To evaluate the effectiveness of a commercial system(1) in reducing respiration-induced treatment uncertainty by gating the radiation delivery.PURPOSETo... |
| SourceID | proquest pubmed pascalfrancis crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 522 |
| SubjectTerms | Algorithms Biological and medical sciences Diaphragm - diagnostic imaging Electronic portal imaging device Fluoroscopic images Gating Humans Liver Neoplasms - diagnostic imaging Liver Neoplasms - etiology Lung - diagnostic imaging Lung Neoplasms - diagnostic imaging Lung Neoplasms - radiotherapy Medical sciences Miscellaneous Movement Physical Phenomena Physics Radiography Radiotherapy, Computer-Assisted - instrumentation Radiotherapy, Computer-Assisted - methods Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects) Reproducibility of Results Respiration Respiratory motion Technology, Radiologic - instrumentation Technology, Radiologic - methods |
| Title | Evaluation of respiratory movement during gated radiotherapy using film and electronic portal imaging |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0360301601026815 https://dx.doi.org/10.1016/S0360-3016(01)02681-5 https://www.ncbi.nlm.nih.gov/pubmed/11872300 https://www.proquest.com/docview/71491969 |
| Volume | 52 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-355X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001174 issn: 0360-3016 databaseCode: AKRWK dateStart: 19761001 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZZCmMwxu7LLp0e9rAR7Fm2ZMuPZWQrK9nD2rK8GUuWINA6JXUo7d_aH9yRJVsOW2nXh5hgLMv4fDrn0_G5IPSh0rwExScColkWUJ6LQJSJDvJUCKAbsENoO8_Nf6T7x_T7gi1Go9-DqKVNI0J59c-8krtIFc6BXE2W7H9Itr8pnID_IF84goTheCsZz_pS3YbzrQdfzU9XbR3wpktDNM6yarouq6XLuLqcblovgV6e2CYZg344lpJPl6dtB6Mhfd32Hw6qTpg7uwepZZ8AI3wujPWg-GQTF1I_C3sv7dxU07DpZd_CQ6-NXPhQnzFhekHWVxdqaZVUONtyXMRdrHPnTesyarYCPsGggl2IiCuPbZUyz_IAeNFiqLVZPEBnPFDBzOY5O2vOrI35y1BYn8VhPx3QedOyIIctKScB89axj1lsrzWXmip8cBG7h3ZiMCXRGO3sHfz8ddATAOKKf3f39oljn_2EHyPyyU12HSV6eFaew0LVtsPK9VuglgodPUaP3B4G71lAPkEjVT9F9-cuSuMZUh6XeKXxAJe4wyW2uMQtLvEQl7jFJTa4xIBL7HGJLS6xw-VzdPx1dvRlP3DtPAIJrL4JVEKrileEU00EA-IpSU5FlEmmaKSIrASlNKZllWRCMlFW8Ispj7WpMCW5Tl6gcb2q1SuEmUhFqkhe5llJEw76pmIqkbyUCdOEpxNEuzdaSFfr3rRcOSl8UCMIojCCKCJStIIo2ASF_bAzW-zlpgFpJ66iy2QG21sAym4ayPuBjupaCnubobtbuPBPmlDY-5Bkgt53QCnAVpgPgGWtVpvzIiM0N-WwJuilxY8fC2ssTqLo9d2f6w164Ff5WzRu1hv1Dgh7I3bdAvkDCCfldQ |
| linkProvider | Library Specific Holdings |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+respiratory+movement+during+gated+radiotherapy+using+film+and+electronic+portal+imaging&rft.jtitle=International+journal+of+radiation+oncology%2C+biology%2C+physics&rft.au=Ford%2C+E.C&rft.au=Mageras%2C+G.S&rft.au=Yorke%2C+E&rft.au=Rosenzweig%2C+K.E&rft.date=2002-02-01&rft.pub=Elsevier+Inc&rft.issn=0360-3016&rft.eissn=1879-355X&rft.volume=52&rft.issue=2&rft.spage=522&rft.epage=531&rft_id=info:doi/10.1016%2FS0360-3016%2801%2902681-5&rft.externalDocID=S0360301601026815 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3016&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3016&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3016&client=summon |