Evaluation of respiratory movement during gated radiotherapy using film and electronic portal imaging

Purpose : To evaluate the effectiveness of a commercial system 1 in reducing respiration-induced treatment uncertainty by gating the radiation delivery. 1 Varian Medical Systems, Inc., Palo Alto, CA. Methods and Materials : The gating system considered here measures respiration from the position of...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of radiation oncology, biology, physics Vol. 52; no. 2; pp. 522 - 531
Main Authors Ford, E.C, Mageras, G.S, Yorke, E, Rosenzweig, K.E, Wagman, R, Ling, C.C
Format Journal Article
LanguageEnglish
Published New York, NY Elsevier Inc 01.02.2002
Elsevier
Subjects
Online AccessGet full text
ISSN0360-3016
1879-355X
DOI10.1016/S0360-3016(01)02681-5

Cover

Abstract Purpose : To evaluate the effectiveness of a commercial system 1 in reducing respiration-induced treatment uncertainty by gating the radiation delivery. 1 Varian Medical Systems, Inc., Palo Alto, CA. Methods and Materials : The gating system considered here measures respiration from the position of a reflective marker on the patient’s chest. Respiration-triggered planning CT scans were obtained for 8 patients (4 lung, 4 liver) at the intended phase of respiration (6 at end expiration and 2 at end inspiration). In addition, fluoroscopic movies were recorded simultaneously with the respiratory waveform. During the treatment sessions, gated localization films were used to measure the position of the diaphragm relative to the vertebral bodies, which was compared to the reference digitally reconstructed radiograph derived from the respiration-triggered planning CT. Variability was quantified by the standard deviation about the mean position. We also assessed the interfraction variability of soft tissue structures during gated treatment in 2 patients using an amorphous silicon electronic portal imaging device. Results : The gated localization films revealed an interfraction patient-averaged diaphragm variability of 2.8 ± 1.0 mm (error bars indicate standard deviation in the patient population). The fluoroscopic data yielded a patient-averaged intrafraction diaphragm variability of 2.6 ± 1.7 mm. With no gating, this intrafraction excursion became 6.9 ± 2.1 mm. In gated localization films, the patient-averaged mean displacement of the diaphragm from the planning position was 0.0 ± 3.9 mm. However, in 4 of the 8 patients, the mean (over localization films) displacement was >4 mm, indicating a systematic displacement in treatment position from the planned one. The position of soft tissue features observed in portal images during gated treatments over several fractions showed a mean variability between 2.6 and 5.7 mm. The intrafraction variability, however, was between 0.6 and 1.4 mm, indicating that most of the variability was due to patient setup errors rather than to respiratory motion. Conclusions : The gating system evaluated here reduces the intra- and interfraction variability of anatomy due to respiratory motion. However, systematic displacements were observed in some cases between the location of an anatomic feature at simulation and its location during treatment. Frequent monitoring is advisable with film or portal imaging.
AbstractList To evaluate the effectiveness of a commercial system(1) in reducing respiration-induced treatment uncertainty by gating the radiation delivery.PURPOSETo evaluate the effectiveness of a commercial system(1) in reducing respiration-induced treatment uncertainty by gating the radiation delivery.The gating system considered here measures respiration from the position of a reflective marker on the patient's chest. Respiration-triggered planning CT scans were obtained for 8 patients (4 lung, 4 liver) at the intended phase of respiration (6 at end expiration and 2 at end inspiration). In addition, fluoroscopic movies were recorded simultaneously with the respiratory waveform. During the treatment sessions, gated localization films were used to measure the position of the diaphragm relative to the vertebral bodies, which was compared to the reference digitally reconstructed radiograph derived from the respiration-triggered planning CT. Variability was quantified by the standard deviation about the mean position. We also assessed the interfraction variability of soft tissue structures during gated treatment in 2 patients using an amorphous silicon electronic portal imaging device.METHODS AND MATERIALSThe gating system considered here measures respiration from the position of a reflective marker on the patient's chest. Respiration-triggered planning CT scans were obtained for 8 patients (4 lung, 4 liver) at the intended phase of respiration (6 at end expiration and 2 at end inspiration). In addition, fluoroscopic movies were recorded simultaneously with the respiratory waveform. During the treatment sessions, gated localization films were used to measure the position of the diaphragm relative to the vertebral bodies, which was compared to the reference digitally reconstructed radiograph derived from the respiration-triggered planning CT. Variability was quantified by the standard deviation about the mean position. We also assessed the interfraction variability of soft tissue structures during gated treatment in 2 patients using an amorphous silicon electronic portal imaging device.The gated localization films revealed an interfraction patient-averaged diaphragm variability of 2.8 +/- 1.0 mm (error bars indicate standard deviation in the patient population). The fluoroscopic data yielded a patient-averaged intrafraction diaphragm variability of 2.6 +/- 1.7 mm. With no gating, this intrafraction excursion became 6.9 +/- 2.1 mm. In gated localization films, the patient-averaged mean displacement of the diaphragm from the planning position was 0.0 +/- 3.9 mm. However, in 4 of the 8 patients, the mean (over localization films) displacement was >4 mm, indicating a systematic displacement in treatment position from the planned one. The position of soft tissue features observed in portal images during gated treatments over several fractions showed a mean variability between 2.6 and 5.7 mm. The intrafraction variability, however, was between 0.6 and 1.4 mm, indicating that most of the variability was due to patient setup errors rather than to respiratory motion.RESULTSThe gated localization films revealed an interfraction patient-averaged diaphragm variability of 2.8 +/- 1.0 mm (error bars indicate standard deviation in the patient population). The fluoroscopic data yielded a patient-averaged intrafraction diaphragm variability of 2.6 +/- 1.7 mm. With no gating, this intrafraction excursion became 6.9 +/- 2.1 mm. In gated localization films, the patient-averaged mean displacement of the diaphragm from the planning position was 0.0 +/- 3.9 mm. However, in 4 of the 8 patients, the mean (over localization films) displacement was >4 mm, indicating a systematic displacement in treatment position from the planned one. The position of soft tissue features observed in portal images during gated treatments over several fractions showed a mean variability between 2.6 and 5.7 mm. The intrafraction variability, however, was between 0.6 and 1.4 mm, indicating that most of the variability was due to patient setup errors rather than to respiratory motion.The gating system evaluated here reduces the intra- and interfraction variability of anatomy due to respiratory motion. However, systematic displacements were observed in some cases between the location of an anatomic feature at simulation and its location during treatment. Frequent monitoring is advisable with film or portal imaging.CONCLUSIONSThe gating system evaluated here reduces the intra- and interfraction variability of anatomy due to respiratory motion. However, systematic displacements were observed in some cases between the location of an anatomic feature at simulation and its location during treatment. Frequent monitoring is advisable with film or portal imaging.
Purpose : To evaluate the effectiveness of a commercial system 1 in reducing respiration-induced treatment uncertainty by gating the radiation delivery. 1 Varian Medical Systems, Inc., Palo Alto, CA. Methods and Materials : The gating system considered here measures respiration from the position of a reflective marker on the patient’s chest. Respiration-triggered planning CT scans were obtained for 8 patients (4 lung, 4 liver) at the intended phase of respiration (6 at end expiration and 2 at end inspiration). In addition, fluoroscopic movies were recorded simultaneously with the respiratory waveform. During the treatment sessions, gated localization films were used to measure the position of the diaphragm relative to the vertebral bodies, which was compared to the reference digitally reconstructed radiograph derived from the respiration-triggered planning CT. Variability was quantified by the standard deviation about the mean position. We also assessed the interfraction variability of soft tissue structures during gated treatment in 2 patients using an amorphous silicon electronic portal imaging device. Results : The gated localization films revealed an interfraction patient-averaged diaphragm variability of 2.8 ± 1.0 mm (error bars indicate standard deviation in the patient population). The fluoroscopic data yielded a patient-averaged intrafraction diaphragm variability of 2.6 ± 1.7 mm. With no gating, this intrafraction excursion became 6.9 ± 2.1 mm. In gated localization films, the patient-averaged mean displacement of the diaphragm from the planning position was 0.0 ± 3.9 mm. However, in 4 of the 8 patients, the mean (over localization films) displacement was >4 mm, indicating a systematic displacement in treatment position from the planned one. The position of soft tissue features observed in portal images during gated treatments over several fractions showed a mean variability between 2.6 and 5.7 mm. The intrafraction variability, however, was between 0.6 and 1.4 mm, indicating that most of the variability was due to patient setup errors rather than to respiratory motion. Conclusions : The gating system evaluated here reduces the intra- and interfraction variability of anatomy due to respiratory motion. However, systematic displacements were observed in some cases between the location of an anatomic feature at simulation and its location during treatment. Frequent monitoring is advisable with film or portal imaging.
To evaluate the effectiveness of a commercial system(1) in reducing respiration-induced treatment uncertainty by gating the radiation delivery. The gating system considered here measures respiration from the position of a reflective marker on the patient's chest. Respiration-triggered planning CT scans were obtained for 8 patients (4 lung, 4 liver) at the intended phase of respiration (6 at end expiration and 2 at end inspiration). In addition, fluoroscopic movies were recorded simultaneously with the respiratory waveform. During the treatment sessions, gated localization films were used to measure the position of the diaphragm relative to the vertebral bodies, which was compared to the reference digitally reconstructed radiograph derived from the respiration-triggered planning CT. Variability was quantified by the standard deviation about the mean position. We also assessed the interfraction variability of soft tissue structures during gated treatment in 2 patients using an amorphous silicon electronic portal imaging device. The gated localization films revealed an interfraction patient-averaged diaphragm variability of 2.8 +/- 1.0 mm (error bars indicate standard deviation in the patient population). The fluoroscopic data yielded a patient-averaged intrafraction diaphragm variability of 2.6 +/- 1.7 mm. With no gating, this intrafraction excursion became 6.9 +/- 2.1 mm. In gated localization films, the patient-averaged mean displacement of the diaphragm from the planning position was 0.0 +/- 3.9 mm. However, in 4 of the 8 patients, the mean (over localization films) displacement was >4 mm, indicating a systematic displacement in treatment position from the planned one. The position of soft tissue features observed in portal images during gated treatments over several fractions showed a mean variability between 2.6 and 5.7 mm. The intrafraction variability, however, was between 0.6 and 1.4 mm, indicating that most of the variability was due to patient setup errors rather than to respiratory motion. The gating system evaluated here reduces the intra- and interfraction variability of anatomy due to respiratory motion. However, systematic displacements were observed in some cases between the location of an anatomic feature at simulation and its location during treatment. Frequent monitoring is advisable with film or portal imaging.
Author Mageras, G.S
Rosenzweig, K.E
Ford, E.C
Yorke, E
Ling, C.C
Wagman, R
Author_xml – sequence: 1
  givenname: E.C
  surname: Ford
  fullname: Ford, E.C
  email: forde@mskcc.org
  organization: Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY USA
– sequence: 2
  givenname: G.S
  surname: Mageras
  fullname: Mageras, G.S
  organization: Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY USA
– sequence: 3
  givenname: E
  surname: Yorke
  fullname: Yorke, E
  organization: Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY USA
– sequence: 4
  givenname: K.E
  surname: Rosenzweig
  fullname: Rosenzweig, K.E
  organization: Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY USA
– sequence: 5
  givenname: R
  surname: Wagman
  fullname: Wagman, R
  organization: Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY USA
– sequence: 6
  givenname: C.C
  surname: Ling
  fullname: Ling, C.C
  organization: Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13443513$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/11872300$$D View this record in MEDLINE/PubMed
BookMark eNqNkV1rFDEUhoNU7Lb6E5TcKPViNGcm2ZlBRKTUDyh4oYJ3IZOcWaOZZE0yC_vvm_3QQm_qRUggz_tyOM8ZOfHBIyFPgb0CBsvXX1mzZFVTnhcMXrJ62UElHpAFdG1fNUL8OCGLf8gpOUvpF2MMoOWPyCkUqm4YWxC82ig3q2yDp2GkEdPaRpVD3NIpbHBCn6mZo_UrulIZDY3K2JB_YlTrLZ3T7mO0bqLKG4oOdY7BW03XIWblqJ3UqiCPycNRuYRPjvc5-f7h6tvlp-r6y8fPl--vKy0AcoUNN6Yz0PERBlEz0NDzgbVaIGcI2gyc85or07SDFoMy5dS8q0fWt7XuxuacvDj0rmP4M2PKcrJJo3PKY5iTbIH30C_7Aj47gvMwoZHrWCaNW_l3MQV4fgRU0sqNUXlt0y3XcN4IaAonDpyOIaWI4y3C5E6U3IuSOwuSgdyLkqLk3tzJaZv3GnJU1t2bfndIY1nmxmKUSVv0Go2NRYE0wd7b8PZOg3a2iFPuN27_I38DRKHAkw
CODEN IOBPD3
CitedBy_id crossref_primary_10_1118_1_1639993
crossref_primary_10_1120_jacmp_v14i3_4060
crossref_primary_10_1016_j_ijrobp_2008_02_024
crossref_primary_10_1111_ajco_12053
crossref_primary_10_1118_1_2794225
crossref_primary_10_1186_1748_717X_3_34
crossref_primary_10_1118_1_3312276
crossref_primary_10_1016_j_ijrobp_2009_03_074
crossref_primary_10_1016_j_semradonc_2006_04_007
crossref_primary_10_1088_0031_9155_54_2_006
crossref_primary_10_1088_0031_9155_61_24_8541
crossref_primary_10_1088_0031_9155_52_1_017
crossref_primary_10_4236_ijmpcero_2014_33018
crossref_primary_10_1088_0031_9155_57_24_8455
crossref_primary_10_1016_S0761_8417_04_72079_9
crossref_primary_10_1016_j_rpor_2018_11_003
crossref_primary_10_1016_j_canrad_2006_05_009
crossref_primary_10_1088_0031_9155_50_16_002
crossref_primary_10_1016_j_meddos_2022_02_005
crossref_primary_10_1088_1361_6560_ad2b92
crossref_primary_10_1111_j_1740_8261_2011_01816_x
crossref_primary_10_1118_1_1531177
crossref_primary_10_1088_1361_6560_aa587d
crossref_primary_10_1007_s11604_007_0189_4
crossref_primary_10_1120_jacmp_v14i5_4245
crossref_primary_10_1080_02841860600900050
crossref_primary_10_1016_j_rpor_2020_06_004
crossref_primary_10_1118_1_3496325
crossref_primary_10_1118_1_4705353
crossref_primary_10_1016_j_radonc_2006_10_021
crossref_primary_10_1016_S1278_3218_02_00220_2
crossref_primary_10_1007_s12194_008_0052_z
crossref_primary_10_1120_jacmp_v6i2_2048
crossref_primary_10_1016_j_radonc_2009_03_019
crossref_primary_10_1007_s13566_020_00439_7
crossref_primary_10_1684_bdc_2010_1143
crossref_primary_10_1016_j_ijrobp_2007_08_049
crossref_primary_10_1016_j_ijrobp_2008_11_070
crossref_primary_10_1120_jacmp_v7i1_2162
crossref_primary_10_1118_1_3678986
crossref_primary_10_1016_j_rpor_2019_05_003
crossref_primary_10_1016_j_ijrobp_2006_10_033
crossref_primary_10_1088_0031_9155_59_15_4261
crossref_primary_10_1120_jacmp_v9i4_2766
crossref_primary_10_1088_0031_9155_61_8_3109
crossref_primary_10_1120_jacmp_v15i3_4594
crossref_primary_10_1016_j_clon_2015_08_010
crossref_primary_10_1016_j_ejmp_2011_11_005
crossref_primary_10_3182_20110828_6_IT_1002_00342
crossref_primary_10_1120_jacmp_v10i4_2982
crossref_primary_10_1016_j_meddos_2010_03_006
crossref_primary_10_1016_j_jmir_2024_101729
crossref_primary_10_1016_j_ijrobp_2007_02_006
crossref_primary_10_1016_j_ijrobp_2004_12_013
crossref_primary_10_1088_0031_9155_52_14_016
crossref_primary_10_1016_j_ijrobp_2004_06_021
crossref_primary_10_1118_1_2349696
crossref_primary_10_1088_0031_9155_61_15_5529
crossref_primary_10_1120_jacmp_v17i4_6114
crossref_primary_10_1016_j_ijrobp_2009_01_003
crossref_primary_10_1118_1_1573792
crossref_primary_10_1118_1_2358830
crossref_primary_10_1016_j_ijrobp_2009_08_033
crossref_primary_10_1016_j_radonc_2009_09_012
crossref_primary_10_1016_j_semradonc_2005_01_007
crossref_primary_10_1186_1748_717X_6_78
crossref_primary_10_1002_mp_13291
crossref_primary_10_1016_j_zemedi_2008_10_010
crossref_primary_10_1186_1748_717X_2_32
crossref_primary_10_1097_SPC_0b013e32834de6d8
crossref_primary_10_1111_j_1440_1673_2006_01660_x
crossref_primary_10_1016_j_ijrobp_2004_05_063
crossref_primary_10_1002_acm2_12755
crossref_primary_10_1002_mp_12239
crossref_primary_10_1118_1_3438081
crossref_primary_10_6009_jjrt_62_742
crossref_primary_10_6009_jjrt_62_1666
crossref_primary_10_1016_j_ijrobp_2007_03_040
crossref_primary_10_6009_jjrt_2018_JSRT_74_11_1286
crossref_primary_10_1016_j_ejmp_2019_05_012
crossref_primary_10_1016_j_radonc_2006_02_015
crossref_primary_10_1016_j_ijrobp_2006_12_046
crossref_primary_10_1088_0031_9155_57_2_357
crossref_primary_10_1186_1475_925X_13_144
crossref_primary_10_1016_j_canrad_2007_06_002
crossref_primary_10_1016_j_ijrobp_2004_07_681
crossref_primary_10_1016_j_ijrobp_2004_08_007
crossref_primary_10_1118_1_3556588
crossref_primary_10_1016_j_ijrobp_2007_11_027
crossref_primary_10_1016_j_meddos_2006_10_002
crossref_primary_10_1088_0031_9155_50_23_002
crossref_primary_10_1088_0031_9155_54_23_009
crossref_primary_10_1016_j_clon_2008_06_005
crossref_primary_10_1118_1_1626121
crossref_primary_10_14316_pmp_2016_27_3_117
crossref_primary_10_1016_S0360_3016_02_03941_X
crossref_primary_10_1007_BF03179341
crossref_primary_10_1007_s11517_019_02096_6
crossref_primary_10_1080_02841860600902817
crossref_primary_10_1118_1_4919446
crossref_primary_10_1120_jacmp_v13i2_3715
crossref_primary_10_1016_S1120_1797_06_80047_5
crossref_primary_10_1016_j_ijrobp_2004_03_037
crossref_primary_10_1088_0031_9155_53_4_001
crossref_primary_10_1118_1_1539039
crossref_primary_10_1118_1_1592017
crossref_primary_10_1016_j_radonc_2019_04_036
crossref_primary_10_1007_s11604_015_0418_1
crossref_primary_10_3109_10929088_2014_891657
crossref_primary_10_1016_j_meddos_2005_12_002
crossref_primary_10_1016_j_ijrobp_2009_09_049
crossref_primary_10_1080_02841860802258778
crossref_primary_10_1118_1_2222075
crossref_primary_10_1177_153303460300200503
crossref_primary_10_1259_bjr_24917728
crossref_primary_10_1371_journal_pone_0156357
crossref_primary_10_1016_j_ijrobp_2005_05_020
crossref_primary_10_1007_s40134_024_00427_6
crossref_primary_10_1016_j_meddos_2005_12_005
crossref_primary_10_1016_j_meddos_2005_12_004
crossref_primary_10_1186_1756_6649_8_5
crossref_primary_10_6009_jjrt_62_1682
crossref_primary_10_1118_1_1861522
crossref_primary_10_1016_S0360_3016_03_00710_7
crossref_primary_10_1186_s13014_016_0720_9
crossref_primary_10_1016_j_ejmp_2020_06_026
crossref_primary_10_1088_0031_9155_58_13_4659
crossref_primary_10_1002_mp_14438
crossref_primary_10_1186_1471_2407_8_351
crossref_primary_10_1016_j_ijrobp_2008_03_047
crossref_primary_10_1002_mp_13507
crossref_primary_10_1016_j_radonc_2006_08_003
crossref_primary_10_1016_j_ijrobp_2005_01_032
crossref_primary_10_3390_cancers17030531
crossref_primary_10_1016_j_ijrobp_2010_07_1982
crossref_primary_10_1118_1_3250856
crossref_primary_10_1088_0031_9155_52_20_010
crossref_primary_10_1088_0031_9155_58_5_1447
crossref_primary_10_5392_JKCA_2014_14_09_362
crossref_primary_10_1016_j_canrad_2009_01_006
crossref_primary_10_1118_1_2804576
crossref_primary_10_1118_1_2335485
crossref_primary_10_1016_j_ijrobp_2007_04_051
crossref_primary_10_1088_0031_9155_53_12_R01
crossref_primary_10_1120_jacmp_v7i2_2190
crossref_primary_10_1118_1_1517614
crossref_primary_10_1016_j_lungcan_2012_01_007
crossref_primary_10_1016_S1877_1203_10_70060_4
crossref_primary_10_1088_0031_9155_57_21_7053
crossref_primary_10_1016_j_ijrobp_2003_09_077
crossref_primary_10_1118_1_2731029
crossref_primary_10_1016_j_ejmp_2017_02_004
crossref_primary_10_1177_153303460600500503
crossref_primary_10_1051_radiopro_2012030
crossref_primary_10_1016_j_ijrobp_2009_05_024
crossref_primary_10_1007_s10269_007_0639_8
crossref_primary_10_1016_j_ijrobp_2010_10_028
crossref_primary_10_1118_1_3129161
crossref_primary_10_1155_2013_519602
crossref_primary_10_1016_S1359_6349_07_70052_6
crossref_primary_10_1016_j_ijrobp_2009_05_026
crossref_primary_10_1088_0031_9155_59_8_1935
crossref_primary_10_1016_j_ijrobp_2004_05_007
crossref_primary_10_1016_j_ejmp_2017_09_128
crossref_primary_10_1118_1_1558675
crossref_primary_10_1016_S1470_2045_03_01191_4
crossref_primary_10_1088_0031_9155_54_7_013
crossref_primary_10_1016_j_ijrobp_2006_02_035
crossref_primary_10_1177_153303460800700205
crossref_primary_10_1088_0031_9155_61_6_2372
crossref_primary_10_1016_j_ijrobp_2006_11_055
crossref_primary_10_1002_mp_13377
crossref_primary_10_1016_j_meddos_2008_08_002
crossref_primary_10_1016_j_ejmp_2017_11_001
crossref_primary_10_1016_j_radonc_2005_01_008
crossref_primary_10_3938_jkps_62_657
crossref_primary_10_1016_j_radonc_2007_11_017
crossref_primary_10_1088_0031_9155_48_5_303
crossref_primary_10_1118_1_1739671
crossref_primary_10_1007_s13246_014_0310_9
crossref_primary_10_1371_journal_pone_0112824
crossref_primary_10_1088_0031_9155_51_20_015
Cites_doi 10.1016/S0360-3016(00)00524-1
10.1118/1.598837
10.1120/1.1409235
10.1016/S0360-3016(01)01649-2
10.1016/S0360-3016(99)00413-7
10.1016/0360-3016(95)02395-X
10.1259/0007-1285-67-803-1096
10.1148/radiology.190.3.8115638
10.1016/S0169-5002(97)00086-X
10.1088/0031-9155/41/1/007
10.1118/1.598723
10.1016/S0360-3016(99)00056-5
10.1016/0360-3016(90)90076-V
10.1016/S0360-3016(00)00748-3
10.1088/0031-9155/45/9/402
10.1016/0167-8140(93)90098-S
10.1016/S0360-3016(00)00518-6
10.1016/S0360-3016(99)90480-7
10.1118/1.598758
10.1016/S0360-3016(01)02653-0
10.1016/S0360-3016(00)00747-1
10.1016/S0360-3016(97)00009-6
10.1016/S0167-8140(98)00046-2
10.1016/S0360-3016(00)01354-7
10.1016/S0360-3016(99)00154-6
10.1016/S0360-3016(00)80122-4
ContentType Journal Article
Copyright 2002 Elsevier Science Inc.
2002 INIST-CNRS
Copyright_xml – notice: 2002 Elsevier Science Inc.
– notice: 2002 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/S0360-3016(01)02681-5
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1879-355X
EndPage 531
ExternalDocumentID 11872300
13443513
10_1016_S0360_3016_01_02681_5
S0360301601026815
Genre Journal Article
GroupedDBID ---
--K
.1-
.55
.FO
.GJ
0R~
1B1
1P~
1RT
1~5
29J
4.4
457
4G.
53G
5RE
5VS
7-5
AAEDT
AAEDW
AALRI
AAQFI
AAQQT
AAQXK
AAWTL
AAXUO
AAYWO
ABEFU
ABJNI
ABLJU
ABNEU
ABOCM
ABUDA
ABWVN
ACGFS
ACIUM
ACRPL
ACVFH
ADBBV
ADCNI
ADMUD
ADNMO
ADVLN
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFPUW
AFRHN
AFTJW
AGQPQ
AGRDE
AHHHB
AIGII
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BELOY
DU5
EBS
EFKBS
EJD
F5P
FDB
FEDTE
FGOYB
FIRID
G-2
GBLVA
HED
HMK
HMO
HVGLF
HX~
HZ~
IHE
J1W
KOM
LX3
M41
MO0
NQ-
O9-
OC~
OO-
R2-
RNS
ROL
RPZ
SAE
SDG
SEL
SES
SEW
SSZ
UDS
UV1
X7M
XH2
XPP
Z5R
ZGI
~S-
AAIAV
ADPAM
AFCTW
AGZHU
AHPSJ
ALXNB
EFJIC
RIG
ZA5
AAYXX
CITATION
AGCQF
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c511t-e34dd8d184f1b5201c194b07c5e40e1cdb44424ad37bc5bad5ba2482f0972c8f3
ISSN 0360-3016
IngestDate Sat Sep 27 22:25:38 EDT 2025
Wed Feb 19 02:34:36 EST 2025
Mon Jul 21 09:13:39 EDT 2025
Thu Apr 24 23:04:41 EDT 2025
Wed Oct 01 04:34:49 EDT 2025
Fri Feb 23 02:20:24 EST 2024
Tue Oct 14 19:31:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Respiratory motion
Electronic portal imaging device
Fluoroscopic images
Gating
Performance evaluation
Human
Treatment
Radiotherapy
Respiration
Measurement technique
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c511t-e34dd8d184f1b5201c194b07c5e40e1cdb44424ad37bc5bad5ba2482f0972c8f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 11872300
PQID 71491969
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_71491969
pubmed_primary_11872300
pascalfrancis_primary_13443513
crossref_primary_10_1016_S0360_3016_01_02681_5
crossref_citationtrail_10_1016_S0360_3016_01_02681_5
elsevier_sciencedirect_doi_10_1016_S0360_3016_01_02681_5
elsevier_clinicalkey_doi_10_1016_S0360_3016_01_02681_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2002-02-01
PublicationDateYYYYMMDD 2002-02-01
PublicationDate_xml – month: 02
  year: 2002
  text: 2002-02-01
  day: 01
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
PublicationTitle International journal of radiation oncology, biology, physics
PublicationTitleAlternate Int J Radiat Oncol Biol Phys
PublicationYear 2002
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Balter, Dawson, Kazanjian (BIB29) 2001; 51
Ritchie, Hsieh, Gard (BIB10) 1994; 190
Kiffer, Berlangieri, Scott (BIB24) 1998; 19
Ekberg, Holmberg, Wittgren (BIB25) 1998; 48
Kubo, Hill (BIB3) 1996; 41
Davies, Hill, Holmes (BIB2) 1994; 67
Herfarth, Debus, Lohr (BIB7) 2000; 46
Ten Haken, Balter, Marsh (BIB4) 1997; 38
Craig, Battista, Moiseenko (BIB27) 2001; 49
Kini, Keall, Vedam (BIB15) 2000; 48
Mah, Hanley, Rosenzweig (BIB22) 2000; 48
Dawson, Brock, Kazanijan (BIB23) 2001; 51
Kubo, Shapiro, Seppi (BIB20) 1999; 26
Hanley, Debois, Mah (BIB5) 1999; 45
Minohara, Kanai, Endo (BIB9) 2000; 47
van Herk, Remeijer, Rasch (BIB26) 2000; 47
Ramsey, Cordrey, Oliver (BIB14) 1999; 26
Mageras, Yorke, Rosenzweig (BIB16) 2001; 2
Bel, Vos, Rodrigus (BIB28) 1996; 35
Paoli, Rosenzweig, Yorke (BIB17) 1999; 45
Kubo, Len, Minohara (BIB13) 2000; 27
el-Gayed, Bel, Vijlbrief (BIB21) 1993; 26
Mah, Hanley, Rosenzweig (BIB30) 1998; 25
Wong, Sharpe, Jaffray (BIB6) 1999; 44
Ross, Hussey, Pennington (BIB1) 1990; 18
Shirato, Shimizu, Kunieda (BIB12) 2000; 48
Keatley, Mageras (BIB18) 2000
Seiler, Blattmann, Kirsch (BIB11) 2000; 45
Mageras, Kutcher (BIB19) 1998
Okumura, Tsuji, Hayakawa (BIB8) 1994
Ramsey (10.1016/S0360-3016(01)02681-5_BIB14) 1999; 26
el-Gayed (10.1016/S0360-3016(01)02681-5_BIB21) 1993; 26
Paoli (10.1016/S0360-3016(01)02681-5_BIB17) 1999; 45
Bel (10.1016/S0360-3016(01)02681-5_BIB28) 1996; 35
Craig (10.1016/S0360-3016(01)02681-5_BIB27) 2001; 49
Kubo (10.1016/S0360-3016(01)02681-5_BIB3) 1996; 41
Shirato (10.1016/S0360-3016(01)02681-5_BIB12) 2000; 48
Dawson (10.1016/S0360-3016(01)02681-5_BIB23) 2001; 51
Minohara (10.1016/S0360-3016(01)02681-5_BIB9) 2000; 47
Seiler (10.1016/S0360-3016(01)02681-5_BIB11) 2000; 45
Kubo (10.1016/S0360-3016(01)02681-5_BIB13) 2000; 27
Ritchie (10.1016/S0360-3016(01)02681-5_BIB10) 1994; 190
Keatley (10.1016/S0360-3016(01)02681-5_BIB18) 2000
Okumura (10.1016/S0360-3016(01)02681-5_BIB8) 1994
Ross (10.1016/S0360-3016(01)02681-5_BIB1) 1990; 18
Kubo (10.1016/S0360-3016(01)02681-5_BIB20) 1999; 26
Herfarth (10.1016/S0360-3016(01)02681-5_BIB7) 2000; 46
Mageras (10.1016/S0360-3016(01)02681-5_BIB16) 2001; 2
Kini (10.1016/S0360-3016(01)02681-5_BIB15) 2000; 48
Davies (10.1016/S0360-3016(01)02681-5_BIB2) 1994; 67
Balter (10.1016/S0360-3016(01)02681-5_BIB29) 2001; 51
Wong (10.1016/S0360-3016(01)02681-5_BIB6) 1999; 44
van Herk (10.1016/S0360-3016(01)02681-5_BIB26) 2000; 47
Mageras (10.1016/S0360-3016(01)02681-5_BIB19) 1998
Mah (10.1016/S0360-3016(01)02681-5_BIB30) 1998; 25
Ekberg (10.1016/S0360-3016(01)02681-5_BIB25) 1998; 48
Ten Haken (10.1016/S0360-3016(01)02681-5_BIB4) 1997; 38
Kiffer (10.1016/S0360-3016(01)02681-5_BIB24) 1998; 19
Mah (10.1016/S0360-3016(01)02681-5_BIB22) 2000; 48
Hanley (10.1016/S0360-3016(01)02681-5_BIB5) 1999; 45
References_xml – volume: 45
  start-page: N103
  year: 2000
  end-page: N110
  ident: BIB11
  article-title: A novel tracking technique for the continuous precise measurement of tumor positions in conformal radiotherapy
  publication-title: Phys Med Biol
– volume: 18
  start-page: 671
  year: 1990
  end-page: 677
  ident: BIB1
  article-title: Analysis of movement of intrathoracic neoplasms using ultrafast computed tomography
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 2
  start-page: 191
  year: 2001
  end-page: 200
  ident: BIB16
  article-title: Fluoroscopic evaluation of diaphragmatic motion reduction with a respiratory gated radiotherapy system
  publication-title: J Appl Clin Med Phys
– start-page: 132
  year: 2000
  end-page: 143
  ident: BIB18
  article-title: Computer automated quantification of respiratory motion in a fluoroscopic movie
  publication-title: The use of computers in radiation therapy
– volume: 47
  start-page: 1121
  year: 2000
  end-page: 1135
  ident: BIB26
  article-title: The probability of correct target dosage
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 38
  start-page: 613
  year: 1997
  end-page: 617
  ident: BIB4
  article-title: Potential benefits of eliminating planning target volume expansions for patient breathing in the treatment of liver tumors
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 35
  start-page: 321
  year: 1996
  end-page: 332
  ident: BIB28
  article-title: High-precision prostate cancer irradiation by clinical application of an offline patient setup verification procedure, using portal imaging
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 45
  start-page: 603
  year: 1999
  end-page: 611
  ident: BIB5
  article-title: Deep inspiration breath-hold technique for lung tumors
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 46
  start-page: 329
  year: 2000
  end-page: 335
  ident: BIB7
  article-title: Extracranial stereotactic radiation therapy
  publication-title: Int J Radiat Oncol Biol Phys
– year: 1994
  ident: BIB8
  article-title: Respiration-gated irradiation system for proton radiotherapy
  publication-title: Proceedings of the 11th International Conference on the Use of Computers in Radiation Therapy
– volume: 51
  start-page: 1410
  year: 2001
  end-page: 1421
  ident: BIB23
  article-title: The reproducibility of organ position using active breathing control (ABC) during liver radiotherapy
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 41
  start-page: 83
  year: 1996
  end-page: 91
  ident: BIB3
  article-title: Respiration gated radiotherapy treatment
  publication-title: Phys Med Biol
– volume: 190
  start-page: 847
  year: 1994
  end-page: 852
  ident: BIB10
  article-title: Predictive respiratory gating
  publication-title: Radiology
– volume: 67
  start-page: 1096
  year: 1994
  end-page: 1102
  ident: BIB2
  article-title: Ultrasound quantitation of respiratory organ motion in the upper abdomen
  publication-title: Br J Radiol
– volume: 26
  start-page: 162
  year: 1993
  end-page: 171
  ident: BIB21
  article-title: Time trend of patient setup deviations during pelvic irradiation using electronic portal imaging
  publication-title: Radiother Oncol
– volume: 25
  start-page: A80
  year: 1998
  ident: BIB30
  article-title: Movement of anatomic landmarks and its effect on patient position determination in thoracic conformal radiation treatment
  publication-title: Med Phys
– volume: 48
  start-page: 164
  year: 2000
  ident: BIB15
  article-title: Preliminary results from a study of a respiratory motion tracking system
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 45
  start-page: 386
  year: 1999
  end-page: 387
  ident: BIB17
  article-title: Comparison of different respiratory levels in the treatment of lung cancer
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 49
  start-page: 241
  year: 2001
  end-page: 250
  ident: BIB27
  article-title: Considerations for the implementation of target volume protocols in radiation therapy
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 26
  start-page: 2410
  year: 1999
  end-page: 2414
  ident: BIB20
  article-title: Potential and role of a prototype amorphous silicon array electronic portal imaging device in breathing synchronized radiotherapy
  publication-title: Med Phys
– volume: 27
  start-page: 346
  year: 2000
  end-page: 353
  ident: BIB13
  article-title: Breathing-synchronized radiotherapy program at the University of California Davis Cancer Center
  publication-title: Med Phys
– volume: 26
  start-page: 2086
  year: 1999
  end-page: 2091
  ident: BIB14
  article-title: A comparison of beam characteristics for gated and nongated clinical x-ray beams
  publication-title: Med Phys
– volume: 48
  start-page: 1175
  year: 2000
  end-page: 1185
  ident: BIB22
  article-title: Technical aspects of the deep inspiration breath-hold technique in the treatment of thoracic cancer
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 48
  start-page: 1187
  year: 2000
  end-page: 1195
  ident: BIB12
  article-title: Physical aspects of a real-time tumor-tracking system for gated radiotherapy
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 19
  start-page: 167
  year: 1998
  end-page: 177
  ident: BIB24
  article-title: The contribution of F18-fluoro-2-deoxy-glucose positron emission tomographic imaging to radiotherapy planning in lung cancer
  publication-title: Lung Cancer
– start-page: 393
  year: 1998
  end-page: 414
  ident: BIB19
  article-title: The role of EPIDs in conformal therapy
  publication-title: Imaging in radiation therapy. American Physicists in Medicine, 1998 Summer School Proceedings, University of Wisconsin
– volume: 48
  start-page: 71
  year: 1998
  end-page: 77
  ident: BIB25
  article-title: What margins should be added to the clinical target volume in radiotherapy treatment planning for lung cancer?
  publication-title: Radiat Oncol
– volume: 47
  start-page: 1097
  year: 2000
  end-page: 1103
  ident: BIB9
  article-title: Respiratory gated irradiation system for heavy-ion radiotherapy
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 44
  start-page: 911
  year: 1999
  end-page: 919
  ident: BIB6
  article-title: The use of active breathing control (ABC) to reduce margin for breathing motion
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 51
  start-page: 267
  year: 2001
  end-page: 270
  ident: BIB29
  article-title: Determination of ventilatory liver movement via radiographic evaluation of diaphragm position
  publication-title: Int J Radiat Oncol Biol Phys
– start-page: 132
  year: 2000
  ident: 10.1016/S0360-3016(01)02681-5_BIB18
  article-title: Computer automated quantification of respiratory motion in a fluoroscopic movie
– volume: 47
  start-page: 1097
  year: 2000
  ident: 10.1016/S0360-3016(01)02681-5_BIB9
  article-title: Respiratory gated irradiation system for heavy-ion radiotherapy
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/S0360-3016(00)00524-1
– volume: 27
  start-page: 346
  year: 2000
  ident: 10.1016/S0360-3016(01)02681-5_BIB13
  article-title: Breathing-synchronized radiotherapy program at the University of California Davis Cancer Center
  publication-title: Med Phys
  doi: 10.1118/1.598837
– volume: 2
  start-page: 191
  year: 2001
  ident: 10.1016/S0360-3016(01)02681-5_BIB16
  article-title: Fluoroscopic evaluation of diaphragmatic motion reduction with a respiratory gated radiotherapy system
  publication-title: J Appl Clin Med Phys
  doi: 10.1120/1.1409235
– volume: 51
  start-page: 267
  year: 2001
  ident: 10.1016/S0360-3016(01)02681-5_BIB29
  article-title: Determination of ventilatory liver movement via radiographic evaluation of diaphragm position
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/S0360-3016(01)01649-2
– volume: 46
  start-page: 329
  year: 2000
  ident: 10.1016/S0360-3016(01)02681-5_BIB7
  article-title: Extracranial stereotactic radiation therapy
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/S0360-3016(99)00413-7
– volume: 35
  start-page: 321
  year: 1996
  ident: 10.1016/S0360-3016(01)02681-5_BIB28
  article-title: High-precision prostate cancer irradiation by clinical application of an offline patient setup verification procedure, using portal imaging
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/0360-3016(95)02395-X
– volume: 67
  start-page: 1096
  year: 1994
  ident: 10.1016/S0360-3016(01)02681-5_BIB2
  article-title: Ultrasound quantitation of respiratory organ motion in the upper abdomen
  publication-title: Br J Radiol
  doi: 10.1259/0007-1285-67-803-1096
– volume: 190
  start-page: 847
  year: 1994
  ident: 10.1016/S0360-3016(01)02681-5_BIB10
  article-title: Predictive respiratory gating
  publication-title: Radiology
  doi: 10.1148/radiology.190.3.8115638
– volume: 19
  start-page: 167
  year: 1998
  ident: 10.1016/S0360-3016(01)02681-5_BIB24
  article-title: The contribution of F18-fluoro-2-deoxy-glucose positron emission tomographic imaging to radiotherapy planning in lung cancer
  publication-title: Lung Cancer
  doi: 10.1016/S0169-5002(97)00086-X
– volume: 41
  start-page: 83
  year: 1996
  ident: 10.1016/S0360-3016(01)02681-5_BIB3
  article-title: Respiration gated radiotherapy treatment
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/41/1/007
– volume: 26
  start-page: 2086
  year: 1999
  ident: 10.1016/S0360-3016(01)02681-5_BIB14
  article-title: A comparison of beam characteristics for gated and nongated clinical x-ray beams
  publication-title: Med Phys
  doi: 10.1118/1.598723
– year: 1994
  ident: 10.1016/S0360-3016(01)02681-5_BIB8
  article-title: Respiration-gated irradiation system for proton radiotherapy
  publication-title: Proceedings of the 11th International Conference on the Use of Computers in Radiation Therapy
– volume: 25
  start-page: A80
  year: 1998
  ident: 10.1016/S0360-3016(01)02681-5_BIB30
  article-title: Movement of anatomic landmarks and its effect on patient position determination in thoracic conformal radiation treatment
  publication-title: Med Phys
– volume: 44
  start-page: 911
  year: 1999
  ident: 10.1016/S0360-3016(01)02681-5_BIB6
  article-title: The use of active breathing control (ABC) to reduce margin for breathing motion
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/S0360-3016(99)00056-5
– volume: 18
  start-page: 671
  year: 1990
  ident: 10.1016/S0360-3016(01)02681-5_BIB1
  article-title: Analysis of movement of intrathoracic neoplasms using ultrafast computed tomography
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/0360-3016(90)90076-V
– volume: 48
  start-page: 1187
  year: 2000
  ident: 10.1016/S0360-3016(01)02681-5_BIB12
  article-title: Physical aspects of a real-time tumor-tracking system for gated radiotherapy
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/S0360-3016(00)00748-3
– volume: 45
  start-page: N103
  year: 2000
  ident: 10.1016/S0360-3016(01)02681-5_BIB11
  article-title: A novel tracking technique for the continuous precise measurement of tumor positions in conformal radiotherapy
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/45/9/402
– volume: 26
  start-page: 162
  year: 1993
  ident: 10.1016/S0360-3016(01)02681-5_BIB21
  article-title: Time trend of patient setup deviations during pelvic irradiation using electronic portal imaging
  publication-title: Radiother Oncol
  doi: 10.1016/0167-8140(93)90098-S
– volume: 47
  start-page: 1121
  year: 2000
  ident: 10.1016/S0360-3016(01)02681-5_BIB26
  article-title: The probability of correct target dosage
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/S0360-3016(00)00518-6
– volume: 45
  start-page: 386
  year: 1999
  ident: 10.1016/S0360-3016(01)02681-5_BIB17
  article-title: Comparison of different respiratory levels in the treatment of lung cancer
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/S0360-3016(99)90480-7
– volume: 26
  start-page: 2410
  year: 1999
  ident: 10.1016/S0360-3016(01)02681-5_BIB20
  article-title: Potential and role of a prototype amorphous silicon array electronic portal imaging device in breathing synchronized radiotherapy
  publication-title: Med Phys
  doi: 10.1118/1.598758
– volume: 51
  start-page: 1410
  year: 2001
  ident: 10.1016/S0360-3016(01)02681-5_BIB23
  article-title: The reproducibility of organ position using active breathing control (ABC) during liver radiotherapy
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/S0360-3016(01)02653-0
– volume: 48
  start-page: 1175
  year: 2000
  ident: 10.1016/S0360-3016(01)02681-5_BIB22
  article-title: Technical aspects of the deep inspiration breath-hold technique in the treatment of thoracic cancer
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/S0360-3016(00)00747-1
– volume: 38
  start-page: 613
  year: 1997
  ident: 10.1016/S0360-3016(01)02681-5_BIB4
  article-title: Potential benefits of eliminating planning target volume expansions for patient breathing in the treatment of liver tumors
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/S0360-3016(97)00009-6
– volume: 48
  start-page: 71
  year: 1998
  ident: 10.1016/S0360-3016(01)02681-5_BIB25
  article-title: What margins should be added to the clinical target volume in radiotherapy treatment planning for lung cancer?
  publication-title: Radiat Oncol
  doi: 10.1016/S0167-8140(98)00046-2
– volume: 49
  start-page: 241
  year: 2001
  ident: 10.1016/S0360-3016(01)02681-5_BIB27
  article-title: Considerations for the implementation of target volume protocols in radiation therapy
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/S0360-3016(00)01354-7
– volume: 45
  start-page: 603
  year: 1999
  ident: 10.1016/S0360-3016(01)02681-5_BIB5
  article-title: Deep inspiration breath-hold technique for lung tumors
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/S0360-3016(99)00154-6
– volume: 48
  start-page: 164
  year: 2000
  ident: 10.1016/S0360-3016(01)02681-5_BIB15
  article-title: Preliminary results from a study of a respiratory motion tracking system
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/S0360-3016(00)80122-4
– start-page: 393
  year: 1998
  ident: 10.1016/S0360-3016(01)02681-5_BIB19
  article-title: The role of EPIDs in conformal therapy
SSID ssj0001174
Score 2.1746016
Snippet Purpose : To evaluate the effectiveness of a commercial system 1 in reducing respiration-induced treatment uncertainty by gating the radiation delivery. 1...
To evaluate the effectiveness of a commercial system(1) in reducing respiration-induced treatment uncertainty by gating the radiation delivery. The gating...
To evaluate the effectiveness of a commercial system(1) in reducing respiration-induced treatment uncertainty by gating the radiation delivery.PURPOSETo...
SourceID proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 522
SubjectTerms Algorithms
Biological and medical sciences
Diaphragm - diagnostic imaging
Electronic portal imaging device
Fluoroscopic images
Gating
Humans
Liver Neoplasms - diagnostic imaging
Liver Neoplasms - etiology
Lung - diagnostic imaging
Lung Neoplasms - diagnostic imaging
Lung Neoplasms - radiotherapy
Medical sciences
Miscellaneous
Movement
Physical Phenomena
Physics
Radiography
Radiotherapy, Computer-Assisted - instrumentation
Radiotherapy, Computer-Assisted - methods
Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)
Reproducibility of Results
Respiration
Respiratory motion
Technology, Radiologic - instrumentation
Technology, Radiologic - methods
Title Evaluation of respiratory movement during gated radiotherapy using film and electronic portal imaging
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0360301601026815
https://dx.doi.org/10.1016/S0360-3016(01)02681-5
https://www.ncbi.nlm.nih.gov/pubmed/11872300
https://www.proquest.com/docview/71491969
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-355X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001174
  issn: 0360-3016
  databaseCode: AKRWK
  dateStart: 19761001
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZZCmMwxu7LLp0e9rAR7Fm2ZMuPZWQrK9nD2rK8GUuWINA6JXUo7d_aH9yRJVsOW2nXh5hgLMv4fDrn0_G5IPSh0rwExScColkWUJ6LQJSJDvJUCKAbsENoO8_Nf6T7x_T7gi1Go9-DqKVNI0J59c-8krtIFc6BXE2W7H9Itr8pnID_IF84goTheCsZz_pS3YbzrQdfzU9XbR3wpktDNM6yarouq6XLuLqcblovgV6e2CYZg344lpJPl6dtB6Mhfd32Hw6qTpg7uwepZZ8AI3wujPWg-GQTF1I_C3sv7dxU07DpZd_CQ6-NXPhQnzFhekHWVxdqaZVUONtyXMRdrHPnTesyarYCPsGggl2IiCuPbZUyz_IAeNFiqLVZPEBnPFDBzOY5O2vOrI35y1BYn8VhPx3QedOyIIctKScB89axj1lsrzWXmip8cBG7h3ZiMCXRGO3sHfz8ddATAOKKf3f39oljn_2EHyPyyU12HSV6eFaew0LVtsPK9VuglgodPUaP3B4G71lAPkEjVT9F9-cuSuMZUh6XeKXxAJe4wyW2uMQtLvEQl7jFJTa4xIBL7HGJLS6xw-VzdPx1dvRlP3DtPAIJrL4JVEKrileEU00EA-IpSU5FlEmmaKSIrASlNKZllWRCMlFW8Ispj7WpMCW5Tl6gcb2q1SuEmUhFqkhe5llJEw76pmIqkbyUCdOEpxNEuzdaSFfr3rRcOSl8UCMIojCCKCJStIIo2ASF_bAzW-zlpgFpJ66iy2QG21sAym4ayPuBjupaCnubobtbuPBPmlDY-5Bkgt53QCnAVpgPgGWtVpvzIiM0N-WwJuilxY8fC2ssTqLo9d2f6w164Ff5WzRu1hv1Dgh7I3bdAvkDCCfldQ
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+respiratory+movement+during+gated+radiotherapy+using+film+and+electronic+portal+imaging&rft.jtitle=International+journal+of+radiation+oncology%2C+biology%2C+physics&rft.au=Ford%2C+E.C&rft.au=Mageras%2C+G.S&rft.au=Yorke%2C+E&rft.au=Rosenzweig%2C+K.E&rft.date=2002-02-01&rft.pub=Elsevier+Inc&rft.issn=0360-3016&rft.eissn=1879-355X&rft.volume=52&rft.issue=2&rft.spage=522&rft.epage=531&rft_id=info:doi/10.1016%2FS0360-3016%2801%2902681-5&rft.externalDocID=S0360301601026815
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3016&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3016&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3016&client=summon