Exploring Publicly Accessible Optical Coherence Tomography Datasets: A Comprehensive Overview
Artificial intelligence has transformed medical diagnostic capabilities, particularly through medical image analysis. AI algorithms perform well in detecting abnormalities with a strong performance, enabling computer-aided diagnosis by analyzing the extensive amounts of patient data. The data serve...
Saved in:
| Published in | Diagnostics (Basel) Vol. 14; no. 15; p. 1668 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
MDPI AG
01.08.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2075-4418 2075-4418 |
| DOI | 10.3390/diagnostics14151668 |
Cover
| Abstract | Artificial intelligence has transformed medical diagnostic capabilities, particularly through medical image analysis. AI algorithms perform well in detecting abnormalities with a strong performance, enabling computer-aided diagnosis by analyzing the extensive amounts of patient data. The data serve as a foundation upon which algorithms learn and make predictions. Thus, the importance of data cannot be underestimated, and clinically corresponding datasets are required. Many researchers face a lack of medical data due to limited access, privacy concerns, or the absence of available annotations. One of the most widely used diagnostic tools in ophthalmology is Optical Coherence Tomography (OCT). Addressing the data availability issue is crucial for enhancing AI applications in the field of OCT diagnostics. This review aims to provide a comprehensive analysis of all publicly accessible retinal OCT datasets. Our main objective is to compile a list of OCT datasets and their properties, which can serve as an accessible reference, facilitating data curation for medical image analysis tasks. For this review, we searched through the Zenodo repository, Mendeley Data repository, MEDLINE database, and Google Dataset search engine. We systematically evaluated all the identified datasets and found 23 open-access datasets containing OCT images, which significantly vary in terms of size, scope, and ground-truth labels. Our findings indicate the need for improvement in data-sharing practices and standardized documentation. Enhancing the availability and quality of OCT datasets will support the development of AI algorithms and ultimately improve diagnostic capabilities in ophthalmology. By providing a comprehensive list of accessible OCT datasets, this review aims to facilitate better utilization and development of AI in medical image analysis. |
|---|---|
| AbstractList | Artificial intelligence has transformed medical diagnostic capabilities, particularly through medical image analysis. AI algorithms perform well in detecting abnormalities with a strong performance, enabling computer-aided diagnosis by analyzing the extensive amounts of patient data. The data serve as a foundation upon which algorithms learn and make predictions. Thus, the importance of data cannot be underestimated, and clinically corresponding datasets are required. Many researchers face a lack of medical data due to limited access, privacy concerns, or the absence of available annotations. One of the most widely used diagnostic tools in ophthalmology is Optical Coherence Tomography (OCT). Addressing the data availability issue is crucial for enhancing AI applications in the field of OCT diagnostics. This review aims to provide a comprehensive analysis of all publicly accessible retinal OCT datasets. Our main objective is to compile a list of OCT datasets and their properties, which can serve as an accessible reference, facilitating data curation for medical image analysis tasks. For this review, we searched through the Zenodo repository, Mendeley Data repository, MEDLINE database, and Google Dataset search engine. We systematically evaluated all the identified datasets and found 23 open-access datasets containing OCT images, which significantly vary in terms of size, scope, and ground-truth labels. Our findings indicate the need for improvement in data-sharing practices and standardized documentation. Enhancing the availability and quality of OCT datasets will support the development of AI algorithms and ultimately improve diagnostic capabilities in ophthalmology. By providing a comprehensive list of accessible OCT datasets, this review aims to facilitate better utilization and development of AI in medical image analysis. Artificial intelligence has transformed medical diagnostic capabilities, particularly through medical image analysis. AI algorithms perform well in detecting abnormalities with a strong performance, enabling computer-aided diagnosis by analyzing the extensive amounts of patient data. The data serve as a foundation upon which algorithms learn and make predictions. Thus, the importance of data cannot be underestimated, and clinically corresponding datasets are required. Many researchers face a lack of medical data due to limited access, privacy concerns, or the absence of available annotations. One of the most widely used diagnostic tools in ophthalmology is Optical Coherence Tomography (OCT). Addressing the data availability issue is crucial for enhancing AI applications in the field of OCT diagnostics. This review aims to provide a comprehensive analysis of all publicly accessible retinal OCT datasets. Our main objective is to compile a list of OCT datasets and their properties, which can serve as an accessible reference, facilitating data curation for medical image analysis tasks. For this review, we searched through the Zenodo repository, Mendeley Data repository, MEDLINE database, and Google Dataset search engine. We systematically evaluated all the identified datasets and found 23 open-access datasets containing OCT images, which significantly vary in terms of size, scope, and ground-truth labels. Our findings indicate the need for improvement in data-sharing practices and standardized documentation. Enhancing the availability and quality of OCT datasets will support the development of AI algorithms and ultimately improve diagnostic capabilities in ophthalmology. By providing a comprehensive list of accessible OCT datasets, this review aims to facilitate better utilization and development of AI in medical image analysis.Artificial intelligence has transformed medical diagnostic capabilities, particularly through medical image analysis. AI algorithms perform well in detecting abnormalities with a strong performance, enabling computer-aided diagnosis by analyzing the extensive amounts of patient data. The data serve as a foundation upon which algorithms learn and make predictions. Thus, the importance of data cannot be underestimated, and clinically corresponding datasets are required. Many researchers face a lack of medical data due to limited access, privacy concerns, or the absence of available annotations. One of the most widely used diagnostic tools in ophthalmology is Optical Coherence Tomography (OCT). Addressing the data availability issue is crucial for enhancing AI applications in the field of OCT diagnostics. This review aims to provide a comprehensive analysis of all publicly accessible retinal OCT datasets. Our main objective is to compile a list of OCT datasets and their properties, which can serve as an accessible reference, facilitating data curation for medical image analysis tasks. For this review, we searched through the Zenodo repository, Mendeley Data repository, MEDLINE database, and Google Dataset search engine. We systematically evaluated all the identified datasets and found 23 open-access datasets containing OCT images, which significantly vary in terms of size, scope, and ground-truth labels. Our findings indicate the need for improvement in data-sharing practices and standardized documentation. Enhancing the availability and quality of OCT datasets will support the development of AI algorithms and ultimately improve diagnostic capabilities in ophthalmology. By providing a comprehensive list of accessible OCT datasets, this review aims to facilitate better utilization and development of AI in medical image analysis. |
| Audience | Academic |
| Author | Atzori, Manfredo Rozhyna, Anastasiia DeBuc, Delia Cabrera Müller, Henning Zoellin, Jay Somfai, Gábor Márk Saad, Amr |
| Author_xml | – sequence: 1 givenname: Anastasiia orcidid: 0009-0000-6912-2565 surname: Rozhyna fullname: Rozhyna, Anastasiia – sequence: 2 givenname: Gábor Márk orcidid: 0000-0001-6329-442X surname: Somfai fullname: Somfai, Gábor Márk – sequence: 3 givenname: Manfredo orcidid: 0000-0001-5397-2063 surname: Atzori fullname: Atzori, Manfredo – sequence: 4 givenname: Delia Cabrera orcidid: 0000-0002-4726-894X surname: DeBuc fullname: DeBuc, Delia Cabrera – sequence: 5 givenname: Amr orcidid: 0000-0002-0574-6739 surname: Saad fullname: Saad, Amr – sequence: 6 givenname: Jay surname: Zoellin fullname: Zoellin, Jay – sequence: 7 givenname: Henning orcidid: 0000-0001-6800-9878 surname: Müller fullname: Müller, Henning |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39125544$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNks1u1DAUhSNUREvpEyChSGzYTPFvnLAbDQUqVSqLskSW7dxkPHLsYCdT5u3xMKVAVQnsha2r75zre-TnxZEPHoriJUbnlDbobWtV70OarEmYYY6rqn5SnBAk-IIxXB_9cT8uzlLaoLwaTGvCnxXHtMGEc8ZOiq8X30cXovV9-XnWzhq3K5fGQEpWOyivx9xBuXIV1hDBGyhvwhD6qMb1rnyvJpVgSu_KZQaGMcIafLLbLNtC3Fq4fVE87ZRLcHZ3nhZfPlzcrD4trq4_Xq6WVwvDMZ4WWgnFWmgY1IwR1bWgcSVQRWjVUkx1i0kFCGuBa64JEVowZjRgoaDpkGnpaXF58G2D2sgx2kHFnQzKyp-FEHupYp7EgexIV2NMOmOqilVGZHOtFSdcY95RjbIXO3jNflS7W-XcvSFGch--fCT8LHtzkI0xfJshTXKwyYBzykOYk6Q5fVJXomEZff0A3YQ5-hzQnkJ1LZDAv6le5Wdb34UpKrM3lcsaMY4pRlWmzh-h8m5hsCb_mc7m-l-CV3fNZz1Aez_bry-RgeYAmBhSitBJYyc12eCzs3X_CIE-0P5PdD8AqLrgGg |
| CitedBy_id | crossref_primary_10_3390_app15052863 crossref_primary_10_7759_cureus_77109 |
| Cites_doi | 10.1007/s40123-023-00842-6 10.1109/ICECE.2018.8636699 10.1364/BOE.5.003568 10.1109/TTS.2023.3234203 10.1016/S2589-7500(20)30240-5 10.1109/CVPR42600.2020.00963 10.1109/TMI.2019.2901398 10.3390/bioengineering10040407 10.1109/TMI.2024.3383466 10.1038/s41598-022-14140-x 10.1007/s11517-021-02321-1 10.1371/journal.pone.0219126 10.1007/s12194-017-0406-5 10.1016/j.ophtha.2013.07.013 10.1038/s42256-021-00305-2 10.1212/WNL.0000000000012125 10.1109/ICoDT255437.2022.9787482 10.3390/s19235087 10.1016/j.dib.2018.12.073 10.4103/2228-7477.137763 10.1145/3502287 10.1038/s41597-023-02675-1 10.1016/j.compbiomed.2022.105368 10.1109/ACCESS.2017.2788044 10.1016/j.ophtha.2023.10.001 10.3390/photonics5020009 10.1016/j.ophtha.2021.03.003 10.3390/bioengineering9080366 10.1109/2944.796348 10.1186/s12859-021-04001-1 10.1364/BOE.6.001172 10.1117/1.JBO.24.5.056003 10.1364/BOE.3.000927 10.1364/BOE.450193 10.1038/s41597-023-02460-0 10.1016/j.media.2020.101856 10.1097/ICU.0000000000000878 10.1038/s41597-024-03182-7 10.1146/annurev-bioeng-071516-044442 10.1109/ISBI52829.2022.9761713 10.1109/ACCESS.2018.2791427 10.1007/s40123-023-00775-0 10.1016/j.ophtha.2021.04.027 10.1016/j.compeleceng.2019.106532 10.1016/S2214-109X(13)70145-1 10.1155/2015/746150 10.1016/j.preteyeres.2019.04.003 10.1016/j.oret.2022.02.007 10.1016/j.oret.2020.12.022 10.1016/j.xops.2022.100262 10.1007/s00500-020-04933-5 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION NPM 3V. 7XB 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH M2O MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 ADTOC UNPAY DOA |
| DOI | 10.3390/diagnostics14151668 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials - QC ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Student ProQuest Research Library ProQuest research library Research Library (Corporate) Proquest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef PubMed MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2075-4418 |
| ExternalDocumentID | oai_doaj_org_article_f2f8112fcc6646c7bd1bba525b15f3b0 10.3390/diagnostics14151668 A804513106 39125544 10_3390_diagnostics14151668 |
| Genre | Journal Article Review |
| GroupedDBID | 53G 5VS 8G5 AADQD AAFWJ AAYXX ABDBF ABUWG ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BCNDV BENPR BPHCQ CCPQU CITATION DWQXO EBD ESX GNUQQ GROUPED_DOAJ GUQSH HYE IAO IHR ITC KQ8 M2O M48 MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RPM 3V. NPM 7XB 8FK MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO ADRAZ ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c511t-ba7a4de94e8442afdeb16706236d313bd126e01b7185b227b744cbe17ae9f0cd3 |
| IEDL.DBID | M48 |
| ISSN | 2075-4418 |
| IngestDate | Tue Oct 14 19:01:35 EDT 2025 Sun Oct 26 04:14:32 EDT 2025 Fri Sep 05 06:51:19 EDT 2025 Mon Jun 30 17:29:12 EDT 2025 Tue Jun 17 22:04:24 EDT 2025 Mon Oct 20 16:56:42 EDT 2025 Thu Jan 02 22:34:54 EST 2025 Thu Oct 16 04:47:22 EDT 2025 Thu Apr 24 23:01:40 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 15 |
| Keywords | OCT data analysis data optical coherence tomography datasets open data data sharing |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c511t-ba7a4de94e8442afdeb16706236d313bd126e01b7185b227b744cbe17ae9f0cd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-0574-6739 0000-0001-5397-2063 0009-0000-6912-2565 0000-0002-4726-894X 0000-0001-6800-9878 0000-0001-6329-442X |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.3390/diagnostics14151668 |
| PMID | 39125544 |
| PQID | 3090887071 |
| PQPubID | 2032410 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_f2f8112fcc6646c7bd1bba525b15f3b0 unpaywall_primary_10_3390_diagnostics14151668 proquest_miscellaneous_3091286794 proquest_journals_3090887071 gale_infotracmisc_A804513106 gale_infotracacademiconefile_A804513106 pubmed_primary_39125544 crossref_citationtrail_10_3390_diagnostics14151668 crossref_primary_10_3390_diagnostics14151668 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-08-01 |
| PublicationDateYYYYMMDD | 2024-08-01 |
| PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Diagnostics (Basel) |
| PublicationTitleAlternate | Diagnostics (Basel) |
| PublicationYear | 2024 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | ref_50 Khan (ref_18) 2021; 3 ref_58 ref_56 ref_55 Wang (ref_9) 2023; 10 Munk (ref_11) 2022; 6 Dhar (ref_1) 2023; 4 Hardin (ref_20) 2015; 2015 Munk (ref_12) 2021; 5 Chiu (ref_32) 2015; 6 ref_15 Vatavuk (ref_26) 2021; 62 Bansal (ref_5) 2022; 54 Venhuizen (ref_37) 2019; 38 Ker (ref_4) 2017; 6 Goetz (ref_13) 2024; 131 ref_61 He (ref_35) 2019; 22 Fang (ref_34) 2012; 3 Ye (ref_36) 2023; 10 ref_25 ref_22 Gholami (ref_23) 2020; 81 ref_63 ref_62 Farsiu (ref_28) 2014; 121 ref_29 Wong (ref_45) 2014; 2 ref_27 Somfai (ref_19) 2006; 47 Koseoglu (ref_52) 2023; 12 Jain (ref_64) 2024; 13 Mukherjee (ref_39) 2022; 13 Korot (ref_53) 2021; 3 Halfpenny (ref_14) 2022; 33 Kermany (ref_21) 2018; 2 Schmitt (ref_8) 1999; 5 ref_31 Teo (ref_46) 2021; 128 ref_30 Khalil (ref_59) 2018; 6 Srinivasan (ref_33) 2014; 5 ref_38 Shweikh (ref_44) 2023; 3 Aytulun (ref_10) 2021; 97 Chen (ref_57) 2024; 13164 Suzuki (ref_3) 2017; 10 He (ref_60) 2021; 68 Jahromi (ref_24) 2014; 4 Lee (ref_16) 2021; 128 Ting (ref_47) 2019; 72 ref_43 ref_42 Yoo (ref_51) 2021; 59 ref_40 Koresh (ref_54) 2020; 24 Shen (ref_2) 2017; 19 ref_49 ref_48 Li (ref_17) 2023; 56 ref_7 Yan (ref_41) 2023; 53 ref_6 |
| References_xml | – volume: 13 start-page: 305 year: 2024 ident: ref_64 article-title: Deep transfer learning for ethnically distinct populations: Prediction of refractive error using optical coherence tomography publication-title: Ophthalmol. Ther. doi: 10.1007/s40123-023-00842-6 – ident: ref_50 doi: 10.1109/ICECE.2018.8636699 – volume: 5 start-page: 3568 year: 2014 ident: ref_33 article-title: Fully automated detection of diabetic macular edema and dry age-related macular degeneration from optical coherence tomography images publication-title: Biomed. Opt. Express doi: 10.1364/BOE.5.003568 – volume: 4 start-page: 68 year: 2023 ident: ref_1 article-title: Challenges of deep learning in medical image analysis—Improving explainability and trust publication-title: IEEE Trans. Technol. Soc. doi: 10.1109/TTS.2023.3234203 – volume: 2 start-page: 651 year: 2018 ident: ref_21 article-title: Labeled optical coherence tomography (oct) and chest X-ray images for classification publication-title: Mendeley Data – volume: 3 start-page: e51 year: 2021 ident: ref_18 article-title: A global review of publicly available datasets for ophthalmological imaging: Barriers to access, usability, and generalisability publication-title: Lancet Digit. Health doi: 10.1016/S2589-7500(20)30240-5 – ident: ref_62 doi: 10.1109/CVPR42600.2020.00963 – volume: 38 start-page: 1858 year: 2019 ident: ref_37 article-title: RETOUCH: The Retinal OCT Fluid Detection and Segmentation Benchmark and Challenge publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2019.2901398 – ident: ref_38 doi: 10.3390/bioengineering10040407 – ident: ref_61 doi: 10.1109/TMI.2024.3383466 – ident: ref_48 doi: 10.1038/s41598-022-14140-x – volume: 59 start-page: 401 year: 2021 ident: ref_51 article-title: Feasibility study to improve deep learning in OCT diagnosis of rare retinal diseases with few-shot classification publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-021-02321-1 – ident: ref_56 doi: 10.1371/journal.pone.0219126 – volume: 10 start-page: 257 year: 2017 ident: ref_3 article-title: Overview of deep learning in medical imaging publication-title: Radiol. Phys. Technol. doi: 10.1007/s12194-017-0406-5 – ident: ref_31 – volume: 121 start-page: 162 year: 2014 ident: ref_28 article-title: Quantitative classification of eyes with and without intermediate age-related macular degeneration using optical coherence tomography publication-title: Ophthalmology doi: 10.1016/j.ophtha.2013.07.013 – ident: ref_27 – volume: 3 start-page: 288 year: 2021 ident: ref_53 article-title: Code-free deep learning for multi-modality medical image classification publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-021-00305-2 – volume: 97 start-page: 68 year: 2021 ident: ref_10 article-title: APOSTEL 2.0 recommendations for reporting quantitative optical coherence tomography studies publication-title: Neurology doi: 10.1212/WNL.0000000000012125 – ident: ref_25 doi: 10.1109/ICoDT255437.2022.9787482 – ident: ref_42 doi: 10.3390/s19235087 – volume: 22 start-page: 601 year: 2019 ident: ref_35 article-title: Retinal layer parcellation of optical coherence tomography images: Data resource for multiple sclerosis and healthy controls publication-title: Data Brief doi: 10.1016/j.dib.2018.12.073 – volume: 13164 start-page: 622 year: 2024 ident: ref_57 article-title: Multimodality semisupervised learning for ophthalmic biomarkers detection publication-title: Int. Workshop Adv. Imaging Technol. (IWAIT) – volume: 4 start-page: 171 year: 2014 ident: ref_24 article-title: An automatic algorithm for segmentation of the boundaries of corneal layers in optical coherence tomography images using gaussian mixture model publication-title: J. Med. Signals Sensors. doi: 10.4103/2228-7477.137763 – volume: 54 start-page: 1 year: 2022 ident: ref_5 article-title: A systematic review on data scarcity problem in deep learning: Solution and applications publication-title: ACM Comput. Surv. (CSUR) doi: 10.1145/3502287 – volume: 10 start-page: 769 year: 2023 ident: ref_36 article-title: OIMHS: An Optical Coherence Tomography Image Dataset Based on Macular Hole Manual Segmentation publication-title: Sci. Data. doi: 10.1038/s41597-023-02675-1 – ident: ref_55 doi: 10.1016/j.compbiomed.2022.105368 – volume: 62 start-page: 375 year: 2021 ident: ref_26 article-title: Annotated retinal optical coherence tomography images (AROI) database for joint retinal layer and fluid segmentation publication-title: Autom. Časopis Autom. Mjer. Elektron. Računarstvo Komun. – volume: 6 start-page: 9375 year: 2017 ident: ref_4 article-title: Deep learning applications in medical image analysis publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2788044 – volume: 131 start-page: 12 year: 2024 ident: ref_13 article-title: Accelerating Care: A Roadmap to Interoperable Ophthalmic Imaging Standards in the United States publication-title: Ophthalmology doi: 10.1016/j.ophtha.2023.10.001 – volume: 53 start-page: 5554 year: 2023 ident: ref_41 article-title: Automatic choroid layer segmentation in OCT images via context efficient adaptive network publication-title: Appl. Intell. – ident: ref_7 doi: 10.3390/photonics5020009 – ident: ref_30 – volume: 128 start-page: 969 year: 2021 ident: ref_16 article-title: Recommendations for standardization of images in ophthalmology publication-title: Ophthalmology doi: 10.1016/j.ophtha.2021.03.003 – ident: ref_6 doi: 10.3390/bioengineering9080366 – volume: 5 start-page: 1205 year: 1999 ident: ref_8 article-title: Optical coherence tomography (OCT): A review publication-title: IEEE J. Sel. Top. Quantum Electron. doi: 10.1109/2944.796348 – ident: ref_49 doi: 10.1186/s12859-021-04001-1 – volume: 6 start-page: 1172 year: 2015 ident: ref_32 article-title: Kernel regression based segmentation of optical coherence tomography images with diabetic macular edema publication-title: Biomed. Opt. Express doi: 10.1364/BOE.6.001172 – ident: ref_40 doi: 10.1117/1.JBO.24.5.056003 – volume: 3 start-page: 927 year: 2012 ident: ref_34 article-title: Sparsity based denoising of spectral domain optical coherence tomography images publication-title: Biomed. Opt. Express doi: 10.1364/BOE.3.000927 – volume: 13 start-page: 3195 year: 2022 ident: ref_39 article-title: Retinal layer segmentation in optical coherence tomography (OCT) using a 3D deep-convolutional regression network for patients with age-related macular degeneration publication-title: Biomed. Opt. Express doi: 10.1364/BOE.450193 – volume: 10 start-page: 574 year: 2023 ident: ref_9 article-title: A real-world dataset and benchmark for foundation model adaptation in medical image classification publication-title: Sci. Data doi: 10.1038/s41597-023-02460-0 – volume: 68 start-page: 101856 year: 2021 ident: ref_60 article-title: Structured layer surface segmentation for retina OCT using fully convolutional regression networks publication-title: Med. Image Anal. doi: 10.1016/j.media.2020.101856 – ident: ref_63 – volume: 33 start-page: 418 year: 2022 ident: ref_14 article-title: Towards effective data sharing in ophthalmology: Data standardization and data privacy publication-title: Curr. Opin. Ophthalmol. doi: 10.1097/ICU.0000000000000878 – ident: ref_43 doi: 10.1038/s41597-024-03182-7 – ident: ref_29 – volume: 19 start-page: 221 year: 2017 ident: ref_2 article-title: Deep learning in medical image analysis publication-title: Annu. Rev. Biomed. Eng. doi: 10.1146/annurev-bioeng-071516-044442 – ident: ref_58 doi: 10.1109/ISBI52829.2022.9761713 – volume: 6 start-page: 4560 year: 2018 ident: ref_59 article-title: Detection of glaucoma using cup to disc ratio from spectral domain optical coherence tomography images publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2791427 – volume: 12 start-page: 2347 year: 2023 ident: ref_52 article-title: Deep learning applications to classification and detection of age-related macular degeneration on optical coherence tomography imaging: A review publication-title: Ophthalmol. Ther. doi: 10.1007/s40123-023-00775-0 – volume: 128 start-page: 1580 year: 2021 ident: ref_46 article-title: Global prevalence of diabetic retinopathy and projection of burden through 2045: Systematic review and meta-analysis publication-title: Ophthalmology doi: 10.1016/j.ophtha.2021.04.027 – volume: 81 start-page: 106532 year: 2020 ident: ref_23 article-title: OCTID: Optical coherence tomography image database publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2019.106532 – volume: 2 start-page: e106 year: 2014 ident: ref_45 article-title: Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: A systematic review and meta-analysis publication-title: Lancet Glob. Health doi: 10.1016/S2214-109X(13)70145-1 – ident: ref_15 – volume: 2015 start-page: 746150 year: 2015 ident: ref_20 article-title: Factors affecting Cirrus-HD OCT optic disc scan quality: A review with case examples publication-title: J. Ophthalmol. doi: 10.1155/2015/746150 – volume: 47 start-page: 2631 year: 2006 ident: ref_19 article-title: Evaluation of Potential Pitfalls Related to Operator Errors During OCT Image Acquisition publication-title: Investig. Ophthalmol. Vis. Sci. – volume: 72 start-page: 100759 year: 2019 ident: ref_47 article-title: Deep learning in ophthalmology: The technical and clinical considerations publication-title: Prog. Retin. Eye Res. doi: 10.1016/j.preteyeres.2019.04.003 – ident: ref_22 – volume: 6 start-page: 753 year: 2022 ident: ref_11 article-title: Recommendations for OCT angiography reporting in retinal vascular disease: A Delphi approach by international experts publication-title: Ophthalmol. Retin. doi: 10.1016/j.oret.2022.02.007 – volume: 5 start-page: 981 year: 2021 ident: ref_12 article-title: Standardization of OCT angiography nomenclature in retinal vascular diseases: First survey results publication-title: Ophthalmol. Retin. doi: 10.1016/j.oret.2020.12.022 – volume: 3 start-page: 100262 year: 2023 ident: ref_44 article-title: The Growing Need for Ophthalmic Data Standardization publication-title: Ophthalmol. Sci. doi: 10.1016/j.xops.2022.100262 – volume: 56 start-page: 1 year: 2023 ident: ref_17 article-title: A systematic collection of medical image datasets for deep learning publication-title: ACM Comput. Surv. – volume: 24 start-page: 16201 year: 2020 ident: ref_54 article-title: Classification of noiseless corneal image using capsule networks publication-title: Soft Comput. doi: 10.1007/s00500-020-04933-5 |
| SSID | ssj0000913825 |
| Score | 2.2800176 |
| SecondaryResourceType | review_article |
| Snippet | Artificial intelligence has transformed medical diagnostic capabilities, particularly through medical image analysis. AI algorithms perform well in detecting... |
| SourceID | doaj unpaywall proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 1668 |
| SubjectTerms | Algorithms Artificial intelligence data data sharing Datasets Medical advice systems Medical imaging Medical imaging equipment OCT open data Ophthalmology optical coherence tomography Privacy, Right of Search engines Tomography |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9VAFB6kC3Ujvo1WGUFwY2gymUfi7vooRajdtNCNDPNEIeZe2lxL_73nzKQhRVEXbjMTyJw5j-9MzvmGkFeQVAlmfCiFdLbksQOTCk6UXKkI0Upwz7Df-fCzPDjhn07F6eKqL6wJy_TAWXB7kcUWMEF0TkounbK-ttYIJmwtYmNTtl613SKZSj64Q249kWmGGsjr93yuXEPu4xqCVi2RXHURihJj_69-eRGYbm2Hjbm8MH2_iED7d8mdCTrSVf7ke-RGGO6Tm4fTz_EH5MtcT0fzYVx_SVfpPsRvtg_0aJOOrSk2ZKQWP3q8_j4RVtMPZoRwNp6_pSuKLuIsfM2V7fToB3qTcPGQnOx_PH5_UE63J5QOQNRYWqMM96HjoeWcmejBK0tVAdyRvqkbkCOToaotBCdhGVNWce5sqJUJXaycbx6RnWE9hCeEGsCEzokqthzyL-yt5V5BpK9b76UyviDsSpDaTdTieMNFryHFQOnr30i_IG_mlzaZWePP09_hDs1TkRY7PQBl0ZOy6L8pS0Fe4_5qNF74QGemHgRYJtJg6VWLdDuAeGVBdq_NBKNz14evNERPRn-umwqLxhSAtoK8nIfxTSxkG8J6m-YAIpDgBQvyOGvWvKQGhsA6YKScVe1fRPP0f4jmGbnNAK_l2sZdsjOebcNzwFujfZFM6yfDQykk priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9RAFB7qFtQX8VpTq4wg-GJoMplLVhDZaksRuhVpoS8S5hYVYrLdZi39956TTOIWpfiamUBmci7fmTnnO4S8gqBKMO18LKQ1MS-noFLeipgrVYK3EtwxrHc-msvDU_7pTJxtkPlQC4NplYNN7Ay1ayyeke9mCWbkKPCI7xfnMXaNwtvVoYWGDq0V3LuOYuwW2WTIjDUhm3v7889fxlMXZMGEmKinH8og3t91fUYbciKn4MxSiaSray6qY_L_216vOaw7q3qhry51Va15poP75F6AlHTWy8ADsuHrh-T2Ubg0f0S-jnl2tD-kq67orOuT-MNUnh4vuuNsioUaXekfPWl-BiJr-lG34Obai7d0RtF0LP33PuOdHv9CK-MvH5PTg_2TD4dx6KoQWwBXbWy00tz5Kfc550yXDqy1VAnAIOmyNDMuZdInqQGnJQxjyijOrfGp0n5aJtZlT8ikbmr_lFANWNFakZQ5h7gMa265U4AA0tw5qbSLCBs2srCBchw7X1QFhB64-8U_dj8ib8aXFj3jxs3T9_APjVORLrt70Cy_FUH7ipKVOQDL0lopubQKFmmMFkyYVJSZSSLyGv9vgUoNH2h1qE2AZSI9VjHLkYYHkLCMyM61maCM9vrwICFFMAYXxR_RjcjLcRjfxAS32jerbg4gBQnWMSJbvWSNS8pgCLQGRuJR1P5na7Zv_phn5C4DhNZnM-6QSbtc-eeAsFrzIqjNb0APJnE priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Jb9QwFLZgKgEX9iVQkJGQuJCSOF4y3MJSVUhtOXSkckCRtwhEyIw6Gary63kvdqMZNpVr_CzF9ls-2-99JuQZbKoE086nQlqT8mYKJuWtSLlSDUQrwR3Deuf9A7k34--PxXHk2cZamLX7-wK24y9dSDhDyuIcYk0uZXmZbEkBwHtCtmYHH6qP-HwcBL4UAnsZeIX-1nMj9gwU_b874rVIdHXVLfTZqW7btZCzeyPUci8HpkLMNPm6s-rNjv3xC4_jBUdzk1yP0JNWQVdukUu-u02u7MfL9Tvk05iPR8NhXntGq-E9xS-m9fRwMRx7UyzoGEoE6dH8WyS8pm91D-GwX76iFUUXc-I_h8x4evgdvZE_vUtmu--O3uyl8fWF1AII61OjlebOT7kvOWe6ceDVpcoALklX5IVxOZM-yw0EN2EYU0Zxbo3PlfbTJrOuuEcm3bzzDwjVgCmtFVlTcti_YW0udwqQQl46J5V2CWHn61LbSE2OL2S0NWxRcOLqP0xcQl6MnRaBmePf4q9xwUdRpNUePsD61NFK64Y1JQDQxlopubQKBmmMFkyYXDSFyRLyHNWlRuOHH7Q61jDAMJFGq65KpOsBxCwTsr0hCUZrN5vPFa6OTmNZFxkmnSkAfQl5OjZjT0yE6_x8NcgAopDgRRNyPyjqOKQCmsC6oCUdNfciU_PwP-UfkWsMoF1Ig9wmk_5k5R8DNOvNk2iSPwEY3TdO priority: 102 providerName: Unpaywall |
| Title | Exploring Publicly Accessible Optical Coherence Tomography Datasets: A Comprehensive Overview |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/39125544 https://www.proquest.com/docview/3090887071 https://www.proquest.com/docview/3091286794 https://doi.org/10.3390/diagnostics14151668 https://doaj.org/article/f2f8112fcc6646c7bd1bba525b15f3b0 |
| UnpaywallVersion | publishedVersion |
| Volume | 14 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2075-4418 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2075-4418 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2075-4418 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: ABDBF dateStart: 20120901 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2075-4418 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2075-4418 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: RPM dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2075-4418 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2075-4418 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: M48 dateStart: 20110501 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEB9qC7Uv4rfReqwg-GI02Wx2E0Hkqi1FuGuRHtQHCfsVLaR35_XOev-9M0ku9LAVX5NNyO7Ox282M78BeIlBVcq182EqrQlFmaNKeZuGQqkSvVUqHKd658FQHo7E59P0dANWXVHbBby4NrSjflKjWfXm98_lB1T49xRxYsj-1jVJaURrHKM_iqXMbsEWuqqcejkMWrxfm-acKPcorZGjqwwRCmQNE9FN79mB7SRHDJAKsea4an7_v634FTd2ezGe6uWlrqor_urgLtxpgSbrN5JxDzb8-D5sD9pf6Q_gW5d9x5qju2rJ-nX3xDNTeXY0rQ-5GZVv1AWB7GRy3tJbs096js5vfvGO9RkZlJn_0eTBs6NfZHv85UMYHeyffDwM214LoUXINQ-NVlo4nwufCcF16dCGSxUhOJIuiRPjYi59FBt0ZanhXBklhDU-VtrnZWRd8gg2x5OxfwJMI4K0No3KTGC0RpW4winEBXHmnFTaBcBXC1nYloic-mFUBQYktBHFNRsRwOvuoWnDw_Hv4Xu0Q91QItGuL0xm34tWJ4uSlxnCzdJaKYW0CidpjE55auK0TEwUwCva34KEDz_Q6rZiAadJpFlFPyNyHsTHMoDdtZGoonb99kpCipWEF0lEKWYKIV4AL7rb9CSlvY39ZFGPQfwg0WYG8LiRrG5KK7kMIOxE7X-W5umNb3oGOxwhW5PeuAub89nCP0fINTc92NrbHx5_6dVHFr1aqfDaaHjc__oHnjArcQ |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJrG9IL4JDDASiBeiJY5jp0gT6timjq0dQp20FxT8lYFU2tIPqv5z_G3cJU7oBJp42WvtVPHZd_c75-53hLyEoCplyrowFUaHvGiBSjmThlzKArxVyi3DeuduT3TO-Ifz9HyN_KprYTCtsraJpaG2I4N35DtJhBk5Ejziu_GPELtG4dfVuoWG8q0V7G5JMeYLO47dcgEh3HT3aB_2-xVjhwf9953QdxkIDYCNWaiVVNy6FncZ50wVFqyXkBHAAmGTONE2ZsJFsQYjnmrGpJacG-1iqVyriIxN4H9vkA2e8BYEfxt7B72Pn5pbHmTdhBisojtKkla0Y6sMOuRgjsF5xgJJXldcYtk54G__sOIgN-fDsVou1GCw4gkPb5NbHsLSdnXm7pA1N7xLbnb9R_p75HOT10erS8HBkrbLvozf9MDR03F5fU6xMKQsNaT90XdPnE331Qzc6mz6lrYpmqqJ-1pl2NPTn2jV3OI-ObsW-T4g68PR0D0iVAE2NSaNioxDHIg1vtxKQBxxZq2QygaE1YLMjac4x04bgxxCHZR-_g_pB-RN89C4Yvi4evoe7lAzFem5yx9Gk4vca3tesCIDIFsYIwQXRsIitVYpS3WcFomOAvIa9zdHIwIvaJSvhYBlIh1X3s6Q9geQtwjI9qWZoPzm8nB9QnJvfKb5H1UJyItmGJ_EhLqhG83LOYBMBFjjgDysTlazpASGQEthJGyO2v-I5vHVL_OcbHb63ZP85Kh3_IRsMUCHVSblNlmfTebuKaC7mX7mVYiSL9ettb8BNWpjuw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJo29IL4JDDASiBeiJo5jp0gT6uiqjbFuQpu0FxT8lYFU0tIPqv6L_FXcJW7oBJp42WvsRPHZ97uzffc7Ql7CpiplyrowFUaHvGiDSjmThlzKAqxVyi3DfOejvtg_4x_O0_M18muZC4NhlUtMrIDaDg2ekbeSCCNyJFjEVuHDIk66vXejHyFWkMKb1mU5DeXLLNidim7MJ3kcusUctnOTnYMuzP0rxnp7p-_3Q19xIDTgeExDraTi1rW5yzhnqrCAZEJG4CIIm8SJtjETLoo1AHqqGZNacm60i6Vy7SIyNoHv3iAbePkFILGxu9c_-dSc-CADJ-zHauqjJGlHLVtH0yEfcwyGNBZI-LpiHqsqAn_bihVjeXNWjtRirgaDFavYu01ueXeWdur1d4esufIu2TzyF_b3yOcmxo_WB4SDBe1UNRq_6YGjx6PqKJ1ikkiVdkhPh989iTbtqimY2OnkLe1QhK2x-1pH29Pjn4hwbn6fnF2LfB-Q9XJYukeEKvBTjUmjIuOwJ8R8X24leB9xZq2QygaELQWZG093jlU3Bjlse1D6-T-kH5A3zUujmu3j6u67OENNV6Tqrh4Mxxe51_y8YEUGTm1hjBBcGAmD1FqlLNVxWiQ6CshrnN8cAQV-0CifFwHDRGquvJMhBRB44SIg25d6AhCYy83LFZJ7IJrkf9QmIC-aZnwTg-tKN5xVfcBLEYDMAXlYr6xmSAk0gcZCS9gstf8RzeOrf-Y52QTtzT8e9A-fkC0GjmIdVLlN1qfjmXsKjt5UP_MaRMmX61ba36Y9Z-o |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Jb9QwFLZgKgEX9iVQkJGQuJCSOF4y3MJSVUhtOXSkckCRtwhEyIw6Gary63kvdqMZNpVr_CzF9ls-2-99JuQZbKoE086nQlqT8mYKJuWtSLlSDUQrwR3Deuf9A7k34--PxXHk2cZamLX7-wK24y9dSDhDyuIcYk0uZXmZbEkBwHtCtmYHH6qP-HwcBL4UAnsZeIX-1nMj9gwU_b874rVIdHXVLfTZqW7btZCzeyPUci8HpkLMNPm6s-rNjv3xC4_jBUdzk1yP0JNWQVdukUu-u02u7MfL9Tvk05iPR8NhXntGq-E9xS-m9fRwMRx7UyzoGEoE6dH8WyS8pm91D-GwX76iFUUXc-I_h8x4evgdvZE_vUtmu--O3uyl8fWF1AII61OjlebOT7kvOWe6ceDVpcoALklX5IVxOZM-yw0EN2EYU0Zxbo3PlfbTJrOuuEcm3bzzDwjVgCmtFVlTcti_YW0udwqQQl46J5V2CWHn61LbSE2OL2S0NWxRcOLqP0xcQl6MnRaBmePf4q9xwUdRpNUePsD61NFK64Y1JQDQxlopubQKBmmMFkyYXDSFyRLyHNWlRuOHH7Q61jDAMJFGq65KpOsBxCwTsr0hCUZrN5vPFa6OTmNZFxkmnSkAfQl5OjZjT0yE6_x8NcgAopDgRRNyPyjqOKQCmsC6oCUdNfciU_PwP-UfkWsMoF1Ig9wmk_5k5R8DNOvNk2iSPwEY3TdO |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+Publicly+Accessible+Optical+Coherence+Tomography+Datasets%3A+A+Comprehensive+Overview&rft.jtitle=Diagnostics+%28Basel%29&rft.au=Rozhyna%2C+Anastasiia&rft.au=Somfai%2C+G%C3%A1bor+M%C3%A1rk&rft.au=Atzori%2C+Manfredo&rft.au=DeBuc%2C+Delia+Cabrera&rft.date=2024-08-01&rft.issn=2075-4418&rft.eissn=2075-4418&rft.volume=14&rft.issue=15&rft_id=info:doi/10.3390%2Fdiagnostics14151668&rft_id=info%3Apmid%2F39125544&rft.externalDocID=39125544 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4418&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4418&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4418&client=summon |