Exploring Publicly Accessible Optical Coherence Tomography Datasets: A Comprehensive Overview

Artificial intelligence has transformed medical diagnostic capabilities, particularly through medical image analysis. AI algorithms perform well in detecting abnormalities with a strong performance, enabling computer-aided diagnosis by analyzing the extensive amounts of patient data. The data serve...

Full description

Saved in:
Bibliographic Details
Published inDiagnostics (Basel) Vol. 14; no. 15; p. 1668
Main Authors Rozhyna, Anastasiia, Somfai, Gábor Márk, Atzori, Manfredo, DeBuc, Delia Cabrera, Saad, Amr, Zoellin, Jay, Müller, Henning
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.08.2024
Subjects
Online AccessGet full text
ISSN2075-4418
2075-4418
DOI10.3390/diagnostics14151668

Cover

Abstract Artificial intelligence has transformed medical diagnostic capabilities, particularly through medical image analysis. AI algorithms perform well in detecting abnormalities with a strong performance, enabling computer-aided diagnosis by analyzing the extensive amounts of patient data. The data serve as a foundation upon which algorithms learn and make predictions. Thus, the importance of data cannot be underestimated, and clinically corresponding datasets are required. Many researchers face a lack of medical data due to limited access, privacy concerns, or the absence of available annotations. One of the most widely used diagnostic tools in ophthalmology is Optical Coherence Tomography (OCT). Addressing the data availability issue is crucial for enhancing AI applications in the field of OCT diagnostics. This review aims to provide a comprehensive analysis of all publicly accessible retinal OCT datasets. Our main objective is to compile a list of OCT datasets and their properties, which can serve as an accessible reference, facilitating data curation for medical image analysis tasks. For this review, we searched through the Zenodo repository, Mendeley Data repository, MEDLINE database, and Google Dataset search engine. We systematically evaluated all the identified datasets and found 23 open-access datasets containing OCT images, which significantly vary in terms of size, scope, and ground-truth labels. Our findings indicate the need for improvement in data-sharing practices and standardized documentation. Enhancing the availability and quality of OCT datasets will support the development of AI algorithms and ultimately improve diagnostic capabilities in ophthalmology. By providing a comprehensive list of accessible OCT datasets, this review aims to facilitate better utilization and development of AI in medical image analysis.
AbstractList Artificial intelligence has transformed medical diagnostic capabilities, particularly through medical image analysis. AI algorithms perform well in detecting abnormalities with a strong performance, enabling computer-aided diagnosis by analyzing the extensive amounts of patient data. The data serve as a foundation upon which algorithms learn and make predictions. Thus, the importance of data cannot be underestimated, and clinically corresponding datasets are required. Many researchers face a lack of medical data due to limited access, privacy concerns, or the absence of available annotations. One of the most widely used diagnostic tools in ophthalmology is Optical Coherence Tomography (OCT). Addressing the data availability issue is crucial for enhancing AI applications in the field of OCT diagnostics. This review aims to provide a comprehensive analysis of all publicly accessible retinal OCT datasets. Our main objective is to compile a list of OCT datasets and their properties, which can serve as an accessible reference, facilitating data curation for medical image analysis tasks. For this review, we searched through the Zenodo repository, Mendeley Data repository, MEDLINE database, and Google Dataset search engine. We systematically evaluated all the identified datasets and found 23 open-access datasets containing OCT images, which significantly vary in terms of size, scope, and ground-truth labels. Our findings indicate the need for improvement in data-sharing practices and standardized documentation. Enhancing the availability and quality of OCT datasets will support the development of AI algorithms and ultimately improve diagnostic capabilities in ophthalmology. By providing a comprehensive list of accessible OCT datasets, this review aims to facilitate better utilization and development of AI in medical image analysis.
Artificial intelligence has transformed medical diagnostic capabilities, particularly through medical image analysis. AI algorithms perform well in detecting abnormalities with a strong performance, enabling computer-aided diagnosis by analyzing the extensive amounts of patient data. The data serve as a foundation upon which algorithms learn and make predictions. Thus, the importance of data cannot be underestimated, and clinically corresponding datasets are required. Many researchers face a lack of medical data due to limited access, privacy concerns, or the absence of available annotations. One of the most widely used diagnostic tools in ophthalmology is Optical Coherence Tomography (OCT). Addressing the data availability issue is crucial for enhancing AI applications in the field of OCT diagnostics. This review aims to provide a comprehensive analysis of all publicly accessible retinal OCT datasets. Our main objective is to compile a list of OCT datasets and their properties, which can serve as an accessible reference, facilitating data curation for medical image analysis tasks. For this review, we searched through the Zenodo repository, Mendeley Data repository, MEDLINE database, and Google Dataset search engine. We systematically evaluated all the identified datasets and found 23 open-access datasets containing OCT images, which significantly vary in terms of size, scope, and ground-truth labels. Our findings indicate the need for improvement in data-sharing practices and standardized documentation. Enhancing the availability and quality of OCT datasets will support the development of AI algorithms and ultimately improve diagnostic capabilities in ophthalmology. By providing a comprehensive list of accessible OCT datasets, this review aims to facilitate better utilization and development of AI in medical image analysis.Artificial intelligence has transformed medical diagnostic capabilities, particularly through medical image analysis. AI algorithms perform well in detecting abnormalities with a strong performance, enabling computer-aided diagnosis by analyzing the extensive amounts of patient data. The data serve as a foundation upon which algorithms learn and make predictions. Thus, the importance of data cannot be underestimated, and clinically corresponding datasets are required. Many researchers face a lack of medical data due to limited access, privacy concerns, or the absence of available annotations. One of the most widely used diagnostic tools in ophthalmology is Optical Coherence Tomography (OCT). Addressing the data availability issue is crucial for enhancing AI applications in the field of OCT diagnostics. This review aims to provide a comprehensive analysis of all publicly accessible retinal OCT datasets. Our main objective is to compile a list of OCT datasets and their properties, which can serve as an accessible reference, facilitating data curation for medical image analysis tasks. For this review, we searched through the Zenodo repository, Mendeley Data repository, MEDLINE database, and Google Dataset search engine. We systematically evaluated all the identified datasets and found 23 open-access datasets containing OCT images, which significantly vary in terms of size, scope, and ground-truth labels. Our findings indicate the need for improvement in data-sharing practices and standardized documentation. Enhancing the availability and quality of OCT datasets will support the development of AI algorithms and ultimately improve diagnostic capabilities in ophthalmology. By providing a comprehensive list of accessible OCT datasets, this review aims to facilitate better utilization and development of AI in medical image analysis.
Audience Academic
Author Atzori, Manfredo
Rozhyna, Anastasiia
DeBuc, Delia Cabrera
Müller, Henning
Zoellin, Jay
Somfai, Gábor Márk
Saad, Amr
Author_xml – sequence: 1
  givenname: Anastasiia
  orcidid: 0009-0000-6912-2565
  surname: Rozhyna
  fullname: Rozhyna, Anastasiia
– sequence: 2
  givenname: Gábor Márk
  orcidid: 0000-0001-6329-442X
  surname: Somfai
  fullname: Somfai, Gábor Márk
– sequence: 3
  givenname: Manfredo
  orcidid: 0000-0001-5397-2063
  surname: Atzori
  fullname: Atzori, Manfredo
– sequence: 4
  givenname: Delia Cabrera
  orcidid: 0000-0002-4726-894X
  surname: DeBuc
  fullname: DeBuc, Delia Cabrera
– sequence: 5
  givenname: Amr
  orcidid: 0000-0002-0574-6739
  surname: Saad
  fullname: Saad, Amr
– sequence: 6
  givenname: Jay
  surname: Zoellin
  fullname: Zoellin, Jay
– sequence: 7
  givenname: Henning
  orcidid: 0000-0001-6800-9878
  surname: Müller
  fullname: Müller, Henning
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39125544$$D View this record in MEDLINE/PubMed
BookMark eNqNks1u1DAUhSNUREvpEyChSGzYTPFvnLAbDQUqVSqLskSW7dxkPHLsYCdT5u3xMKVAVQnsha2r75zre-TnxZEPHoriJUbnlDbobWtV70OarEmYYY6rqn5SnBAk-IIxXB_9cT8uzlLaoLwaTGvCnxXHtMGEc8ZOiq8X30cXovV9-XnWzhq3K5fGQEpWOyivx9xBuXIV1hDBGyhvwhD6qMb1rnyvJpVgSu_KZQaGMcIafLLbLNtC3Fq4fVE87ZRLcHZ3nhZfPlzcrD4trq4_Xq6WVwvDMZ4WWgnFWmgY1IwR1bWgcSVQRWjVUkx1i0kFCGuBa64JEVowZjRgoaDpkGnpaXF58G2D2sgx2kHFnQzKyp-FEHupYp7EgexIV2NMOmOqilVGZHOtFSdcY95RjbIXO3jNflS7W-XcvSFGch--fCT8LHtzkI0xfJshTXKwyYBzykOYk6Q5fVJXomEZff0A3YQ5-hzQnkJ1LZDAv6le5Wdb34UpKrM3lcsaMY4pRlWmzh-h8m5hsCb_mc7m-l-CV3fNZz1Aez_bry-RgeYAmBhSitBJYyc12eCzs3X_CIE-0P5PdD8AqLrgGg
CitedBy_id crossref_primary_10_3390_app15052863
crossref_primary_10_7759_cureus_77109
Cites_doi 10.1007/s40123-023-00842-6
10.1109/ICECE.2018.8636699
10.1364/BOE.5.003568
10.1109/TTS.2023.3234203
10.1016/S2589-7500(20)30240-5
10.1109/CVPR42600.2020.00963
10.1109/TMI.2019.2901398
10.3390/bioengineering10040407
10.1109/TMI.2024.3383466
10.1038/s41598-022-14140-x
10.1007/s11517-021-02321-1
10.1371/journal.pone.0219126
10.1007/s12194-017-0406-5
10.1016/j.ophtha.2013.07.013
10.1038/s42256-021-00305-2
10.1212/WNL.0000000000012125
10.1109/ICoDT255437.2022.9787482
10.3390/s19235087
10.1016/j.dib.2018.12.073
10.4103/2228-7477.137763
10.1145/3502287
10.1038/s41597-023-02675-1
10.1016/j.compbiomed.2022.105368
10.1109/ACCESS.2017.2788044
10.1016/j.ophtha.2023.10.001
10.3390/photonics5020009
10.1016/j.ophtha.2021.03.003
10.3390/bioengineering9080366
10.1109/2944.796348
10.1186/s12859-021-04001-1
10.1364/BOE.6.001172
10.1117/1.JBO.24.5.056003
10.1364/BOE.3.000927
10.1364/BOE.450193
10.1038/s41597-023-02460-0
10.1016/j.media.2020.101856
10.1097/ICU.0000000000000878
10.1038/s41597-024-03182-7
10.1146/annurev-bioeng-071516-044442
10.1109/ISBI52829.2022.9761713
10.1109/ACCESS.2018.2791427
10.1007/s40123-023-00775-0
10.1016/j.ophtha.2021.04.027
10.1016/j.compeleceng.2019.106532
10.1016/S2214-109X(13)70145-1
10.1155/2015/746150
10.1016/j.preteyeres.2019.04.003
10.1016/j.oret.2022.02.007
10.1016/j.oret.2020.12.022
10.1016/j.xops.2022.100262
10.1007/s00500-020-04933-5
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
NPM
3V.
7XB
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
ADTOC
UNPAY
DOA
DOI 10.3390/diagnostics14151668
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
ProQuest Research Library
ProQuest research library
Research Library (Corporate)
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

CrossRef
PubMed
MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2075-4418
ExternalDocumentID oai_doaj_org_article_f2f8112fcc6646c7bd1bba525b15f3b0
10.3390/diagnostics14151668
A804513106
39125544
10_3390_diagnostics14151668
Genre Journal Article
Review
GroupedDBID 53G
5VS
8G5
AADQD
AAFWJ
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BCNDV
BENPR
BPHCQ
CCPQU
CITATION
DWQXO
EBD
ESX
GNUQQ
GROUPED_DOAJ
GUQSH
HYE
IAO
IHR
ITC
KQ8
M2O
M48
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RPM
3V.
NPM
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
ADRAZ
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c511t-ba7a4de94e8442afdeb16706236d313bd126e01b7185b227b744cbe17ae9f0cd3
IEDL.DBID M48
ISSN 2075-4418
IngestDate Tue Oct 14 19:01:35 EDT 2025
Sun Oct 26 04:14:32 EDT 2025
Fri Sep 05 06:51:19 EDT 2025
Mon Jun 30 17:29:12 EDT 2025
Tue Jun 17 22:04:24 EDT 2025
Mon Oct 20 16:56:42 EDT 2025
Thu Jan 02 22:34:54 EST 2025
Thu Oct 16 04:47:22 EDT 2025
Thu Apr 24 23:01:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords OCT
data analysis
data
optical coherence tomography
datasets
open data
data sharing
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c511t-ba7a4de94e8442afdeb16706236d313bd126e01b7185b227b744cbe17ae9f0cd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-0574-6739
0000-0001-5397-2063
0009-0000-6912-2565
0000-0002-4726-894X
0000-0001-6800-9878
0000-0001-6329-442X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.3390/diagnostics14151668
PMID 39125544
PQID 3090887071
PQPubID 2032410
ParticipantIDs doaj_primary_oai_doaj_org_article_f2f8112fcc6646c7bd1bba525b15f3b0
unpaywall_primary_10_3390_diagnostics14151668
proquest_miscellaneous_3091286794
proquest_journals_3090887071
gale_infotracmisc_A804513106
gale_infotracacademiconefile_A804513106
pubmed_primary_39125544
crossref_citationtrail_10_3390_diagnostics14151668
crossref_primary_10_3390_diagnostics14151668
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Diagnostics (Basel)
PublicationTitleAlternate Diagnostics (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Khan (ref_18) 2021; 3
ref_58
ref_56
ref_55
Wang (ref_9) 2023; 10
Munk (ref_11) 2022; 6
Dhar (ref_1) 2023; 4
Hardin (ref_20) 2015; 2015
Munk (ref_12) 2021; 5
Chiu (ref_32) 2015; 6
ref_15
Vatavuk (ref_26) 2021; 62
Bansal (ref_5) 2022; 54
Venhuizen (ref_37) 2019; 38
Ker (ref_4) 2017; 6
Goetz (ref_13) 2024; 131
ref_61
He (ref_35) 2019; 22
Fang (ref_34) 2012; 3
Ye (ref_36) 2023; 10
ref_25
ref_22
Gholami (ref_23) 2020; 81
ref_63
ref_62
Farsiu (ref_28) 2014; 121
ref_29
Wong (ref_45) 2014; 2
ref_27
Somfai (ref_19) 2006; 47
Koseoglu (ref_52) 2023; 12
Jain (ref_64) 2024; 13
Mukherjee (ref_39) 2022; 13
Korot (ref_53) 2021; 3
Halfpenny (ref_14) 2022; 33
Kermany (ref_21) 2018; 2
Schmitt (ref_8) 1999; 5
ref_31
Teo (ref_46) 2021; 128
ref_30
Khalil (ref_59) 2018; 6
Srinivasan (ref_33) 2014; 5
ref_38
Shweikh (ref_44) 2023; 3
Aytulun (ref_10) 2021; 97
Chen (ref_57) 2024; 13164
Suzuki (ref_3) 2017; 10
He (ref_60) 2021; 68
Jahromi (ref_24) 2014; 4
Lee (ref_16) 2021; 128
Ting (ref_47) 2019; 72
ref_43
ref_42
Yoo (ref_51) 2021; 59
ref_40
Koresh (ref_54) 2020; 24
Shen (ref_2) 2017; 19
ref_49
ref_48
Li (ref_17) 2023; 56
ref_7
Yan (ref_41) 2023; 53
ref_6
References_xml – volume: 13
  start-page: 305
  year: 2024
  ident: ref_64
  article-title: Deep transfer learning for ethnically distinct populations: Prediction of refractive error using optical coherence tomography
  publication-title: Ophthalmol. Ther.
  doi: 10.1007/s40123-023-00842-6
– ident: ref_50
  doi: 10.1109/ICECE.2018.8636699
– volume: 5
  start-page: 3568
  year: 2014
  ident: ref_33
  article-title: Fully automated detection of diabetic macular edema and dry age-related macular degeneration from optical coherence tomography images
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.5.003568
– volume: 4
  start-page: 68
  year: 2023
  ident: ref_1
  article-title: Challenges of deep learning in medical image analysis—Improving explainability and trust
  publication-title: IEEE Trans. Technol. Soc.
  doi: 10.1109/TTS.2023.3234203
– volume: 2
  start-page: 651
  year: 2018
  ident: ref_21
  article-title: Labeled optical coherence tomography (oct) and chest X-ray images for classification
  publication-title: Mendeley Data
– volume: 3
  start-page: e51
  year: 2021
  ident: ref_18
  article-title: A global review of publicly available datasets for ophthalmological imaging: Barriers to access, usability, and generalisability
  publication-title: Lancet Digit. Health
  doi: 10.1016/S2589-7500(20)30240-5
– ident: ref_62
  doi: 10.1109/CVPR42600.2020.00963
– volume: 38
  start-page: 1858
  year: 2019
  ident: ref_37
  article-title: RETOUCH: The Retinal OCT Fluid Detection and Segmentation Benchmark and Challenge
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2019.2901398
– ident: ref_38
  doi: 10.3390/bioengineering10040407
– ident: ref_61
  doi: 10.1109/TMI.2024.3383466
– ident: ref_48
  doi: 10.1038/s41598-022-14140-x
– volume: 59
  start-page: 401
  year: 2021
  ident: ref_51
  article-title: Feasibility study to improve deep learning in OCT diagnosis of rare retinal diseases with few-shot classification
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-021-02321-1
– ident: ref_56
  doi: 10.1371/journal.pone.0219126
– volume: 10
  start-page: 257
  year: 2017
  ident: ref_3
  article-title: Overview of deep learning in medical imaging
  publication-title: Radiol. Phys. Technol.
  doi: 10.1007/s12194-017-0406-5
– ident: ref_31
– volume: 121
  start-page: 162
  year: 2014
  ident: ref_28
  article-title: Quantitative classification of eyes with and without intermediate age-related macular degeneration using optical coherence tomography
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2013.07.013
– ident: ref_27
– volume: 3
  start-page: 288
  year: 2021
  ident: ref_53
  article-title: Code-free deep learning for multi-modality medical image classification
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-021-00305-2
– volume: 97
  start-page: 68
  year: 2021
  ident: ref_10
  article-title: APOSTEL 2.0 recommendations for reporting quantitative optical coherence tomography studies
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000012125
– ident: ref_25
  doi: 10.1109/ICoDT255437.2022.9787482
– ident: ref_42
  doi: 10.3390/s19235087
– volume: 22
  start-page: 601
  year: 2019
  ident: ref_35
  article-title: Retinal layer parcellation of optical coherence tomography images: Data resource for multiple sclerosis and healthy controls
  publication-title: Data Brief
  doi: 10.1016/j.dib.2018.12.073
– volume: 13164
  start-page: 622
  year: 2024
  ident: ref_57
  article-title: Multimodality semisupervised learning for ophthalmic biomarkers detection
  publication-title: Int. Workshop Adv. Imaging Technol. (IWAIT)
– volume: 4
  start-page: 171
  year: 2014
  ident: ref_24
  article-title: An automatic algorithm for segmentation of the boundaries of corneal layers in optical coherence tomography images using gaussian mixture model
  publication-title: J. Med. Signals Sensors.
  doi: 10.4103/2228-7477.137763
– volume: 54
  start-page: 1
  year: 2022
  ident: ref_5
  article-title: A systematic review on data scarcity problem in deep learning: Solution and applications
  publication-title: ACM Comput. Surv. (CSUR)
  doi: 10.1145/3502287
– volume: 10
  start-page: 769
  year: 2023
  ident: ref_36
  article-title: OIMHS: An Optical Coherence Tomography Image Dataset Based on Macular Hole Manual Segmentation
  publication-title: Sci. Data.
  doi: 10.1038/s41597-023-02675-1
– ident: ref_55
  doi: 10.1016/j.compbiomed.2022.105368
– volume: 62
  start-page: 375
  year: 2021
  ident: ref_26
  article-title: Annotated retinal optical coherence tomography images (AROI) database for joint retinal layer and fluid segmentation
  publication-title: Autom. Časopis Autom. Mjer. Elektron. Računarstvo Komun.
– volume: 6
  start-page: 9375
  year: 2017
  ident: ref_4
  article-title: Deep learning applications in medical image analysis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2788044
– volume: 131
  start-page: 12
  year: 2024
  ident: ref_13
  article-title: Accelerating Care: A Roadmap to Interoperable Ophthalmic Imaging Standards in the United States
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2023.10.001
– volume: 53
  start-page: 5554
  year: 2023
  ident: ref_41
  article-title: Automatic choroid layer segmentation in OCT images via context efficient adaptive network
  publication-title: Appl. Intell.
– ident: ref_7
  doi: 10.3390/photonics5020009
– ident: ref_30
– volume: 128
  start-page: 969
  year: 2021
  ident: ref_16
  article-title: Recommendations for standardization of images in ophthalmology
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2021.03.003
– ident: ref_6
  doi: 10.3390/bioengineering9080366
– volume: 5
  start-page: 1205
  year: 1999
  ident: ref_8
  article-title: Optical coherence tomography (OCT): A review
  publication-title: IEEE J. Sel. Top. Quantum Electron.
  doi: 10.1109/2944.796348
– ident: ref_49
  doi: 10.1186/s12859-021-04001-1
– volume: 6
  start-page: 1172
  year: 2015
  ident: ref_32
  article-title: Kernel regression based segmentation of optical coherence tomography images with diabetic macular edema
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.6.001172
– ident: ref_40
  doi: 10.1117/1.JBO.24.5.056003
– volume: 3
  start-page: 927
  year: 2012
  ident: ref_34
  article-title: Sparsity based denoising of spectral domain optical coherence tomography images
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.3.000927
– volume: 13
  start-page: 3195
  year: 2022
  ident: ref_39
  article-title: Retinal layer segmentation in optical coherence tomography (OCT) using a 3D deep-convolutional regression network for patients with age-related macular degeneration
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.450193
– volume: 10
  start-page: 574
  year: 2023
  ident: ref_9
  article-title: A real-world dataset and benchmark for foundation model adaptation in medical image classification
  publication-title: Sci. Data
  doi: 10.1038/s41597-023-02460-0
– volume: 68
  start-page: 101856
  year: 2021
  ident: ref_60
  article-title: Structured layer surface segmentation for retina OCT using fully convolutional regression networks
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101856
– ident: ref_63
– volume: 33
  start-page: 418
  year: 2022
  ident: ref_14
  article-title: Towards effective data sharing in ophthalmology: Data standardization and data privacy
  publication-title: Curr. Opin. Ophthalmol.
  doi: 10.1097/ICU.0000000000000878
– ident: ref_43
  doi: 10.1038/s41597-024-03182-7
– ident: ref_29
– volume: 19
  start-page: 221
  year: 2017
  ident: ref_2
  article-title: Deep learning in medical image analysis
  publication-title: Annu. Rev. Biomed. Eng.
  doi: 10.1146/annurev-bioeng-071516-044442
– ident: ref_58
  doi: 10.1109/ISBI52829.2022.9761713
– volume: 6
  start-page: 4560
  year: 2018
  ident: ref_59
  article-title: Detection of glaucoma using cup to disc ratio from spectral domain optical coherence tomography images
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2791427
– volume: 12
  start-page: 2347
  year: 2023
  ident: ref_52
  article-title: Deep learning applications to classification and detection of age-related macular degeneration on optical coherence tomography imaging: A review
  publication-title: Ophthalmol. Ther.
  doi: 10.1007/s40123-023-00775-0
– volume: 128
  start-page: 1580
  year: 2021
  ident: ref_46
  article-title: Global prevalence of diabetic retinopathy and projection of burden through 2045: Systematic review and meta-analysis
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2021.04.027
– volume: 81
  start-page: 106532
  year: 2020
  ident: ref_23
  article-title: OCTID: Optical coherence tomography image database
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2019.106532
– volume: 2
  start-page: e106
  year: 2014
  ident: ref_45
  article-title: Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: A systematic review and meta-analysis
  publication-title: Lancet Glob. Health
  doi: 10.1016/S2214-109X(13)70145-1
– ident: ref_15
– volume: 2015
  start-page: 746150
  year: 2015
  ident: ref_20
  article-title: Factors affecting Cirrus-HD OCT optic disc scan quality: A review with case examples
  publication-title: J. Ophthalmol.
  doi: 10.1155/2015/746150
– volume: 47
  start-page: 2631
  year: 2006
  ident: ref_19
  article-title: Evaluation of Potential Pitfalls Related to Operator Errors During OCT Image Acquisition
  publication-title: Investig. Ophthalmol. Vis. Sci.
– volume: 72
  start-page: 100759
  year: 2019
  ident: ref_47
  article-title: Deep learning in ophthalmology: The technical and clinical considerations
  publication-title: Prog. Retin. Eye Res.
  doi: 10.1016/j.preteyeres.2019.04.003
– ident: ref_22
– volume: 6
  start-page: 753
  year: 2022
  ident: ref_11
  article-title: Recommendations for OCT angiography reporting in retinal vascular disease: A Delphi approach by international experts
  publication-title: Ophthalmol. Retin.
  doi: 10.1016/j.oret.2022.02.007
– volume: 5
  start-page: 981
  year: 2021
  ident: ref_12
  article-title: Standardization of OCT angiography nomenclature in retinal vascular diseases: First survey results
  publication-title: Ophthalmol. Retin.
  doi: 10.1016/j.oret.2020.12.022
– volume: 3
  start-page: 100262
  year: 2023
  ident: ref_44
  article-title: The Growing Need for Ophthalmic Data Standardization
  publication-title: Ophthalmol. Sci.
  doi: 10.1016/j.xops.2022.100262
– volume: 56
  start-page: 1
  year: 2023
  ident: ref_17
  article-title: A systematic collection of medical image datasets for deep learning
  publication-title: ACM Comput. Surv.
– volume: 24
  start-page: 16201
  year: 2020
  ident: ref_54
  article-title: Classification of noiseless corneal image using capsule networks
  publication-title: Soft Comput.
  doi: 10.1007/s00500-020-04933-5
SSID ssj0000913825
Score 2.2800176
SecondaryResourceType review_article
Snippet Artificial intelligence has transformed medical diagnostic capabilities, particularly through medical image analysis. AI algorithms perform well in detecting...
SourceID doaj
unpaywall
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1668
SubjectTerms Algorithms
Artificial intelligence
data
data sharing
Datasets
Medical advice systems
Medical imaging
Medical imaging equipment
OCT
open data
Ophthalmology
optical coherence tomography
Privacy, Right of
Search engines
Tomography
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9VAFB6kC3Ujvo1WGUFwY2gymUfi7vooRajdtNCNDPNEIeZe2lxL_73nzKQhRVEXbjMTyJw5j-9MzvmGkFeQVAlmfCiFdLbksQOTCk6UXKkI0Upwz7Df-fCzPDjhn07F6eKqL6wJy_TAWXB7kcUWMEF0TkounbK-ttYIJmwtYmNTtl613SKZSj64Q249kWmGGsjr93yuXEPu4xqCVi2RXHURihJj_69-eRGYbm2Hjbm8MH2_iED7d8mdCTrSVf7ke-RGGO6Tm4fTz_EH5MtcT0fzYVx_SVfpPsRvtg_0aJOOrSk2ZKQWP3q8_j4RVtMPZoRwNp6_pSuKLuIsfM2V7fToB3qTcPGQnOx_PH5_UE63J5QOQNRYWqMM96HjoeWcmejBK0tVAdyRvqkbkCOToaotBCdhGVNWce5sqJUJXaycbx6RnWE9hCeEGsCEzokqthzyL-yt5V5BpK9b76UyviDsSpDaTdTieMNFryHFQOnr30i_IG_mlzaZWePP09_hDs1TkRY7PQBl0ZOy6L8pS0Fe4_5qNF74QGemHgRYJtJg6VWLdDuAeGVBdq_NBKNz14evNERPRn-umwqLxhSAtoK8nIfxTSxkG8J6m-YAIpDgBQvyOGvWvKQGhsA6YKScVe1fRPP0f4jmGbnNAK_l2sZdsjOebcNzwFujfZFM6yfDQykk
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9RAFB7qFtQX8VpTq4wg-GJoMplLVhDZaksRuhVpoS8S5hYVYrLdZi39956TTOIWpfiamUBmci7fmTnnO4S8gqBKMO18LKQ1MS-noFLeipgrVYK3EtwxrHc-msvDU_7pTJxtkPlQC4NplYNN7Ay1ayyeke9mCWbkKPCI7xfnMXaNwtvVoYWGDq0V3LuOYuwW2WTIjDUhm3v7889fxlMXZMGEmKinH8og3t91fUYbciKn4MxSiaSray6qY_L_216vOaw7q3qhry51Va15poP75F6AlHTWy8ADsuHrh-T2Ubg0f0S-jnl2tD-kq67orOuT-MNUnh4vuuNsioUaXekfPWl-BiJr-lG34Obai7d0RtF0LP33PuOdHv9CK-MvH5PTg_2TD4dx6KoQWwBXbWy00tz5Kfc550yXDqy1VAnAIOmyNDMuZdInqQGnJQxjyijOrfGp0n5aJtZlT8ikbmr_lFANWNFakZQ5h7gMa265U4AA0tw5qbSLCBs2srCBchw7X1QFhB64-8U_dj8ib8aXFj3jxs3T9_APjVORLrt70Cy_FUH7ipKVOQDL0lopubQKFmmMFkyYVJSZSSLyGv9vgUoNH2h1qE2AZSI9VjHLkYYHkLCMyM61maCM9vrwICFFMAYXxR_RjcjLcRjfxAS32jerbg4gBQnWMSJbvWSNS8pgCLQGRuJR1P5na7Zv_phn5C4DhNZnM-6QSbtc-eeAsFrzIqjNb0APJnE
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Jb9QwFLZgKgEX9iVQkJGQuJCSOF4y3MJSVUhtOXSkckCRtwhEyIw6Gary63kvdqMZNpVr_CzF9ls-2-99JuQZbKoE086nQlqT8mYKJuWtSLlSDUQrwR3Deuf9A7k34--PxXHk2cZamLX7-wK24y9dSDhDyuIcYk0uZXmZbEkBwHtCtmYHH6qP-HwcBL4UAnsZeIX-1nMj9gwU_b874rVIdHXVLfTZqW7btZCzeyPUci8HpkLMNPm6s-rNjv3xC4_jBUdzk1yP0JNWQVdukUu-u02u7MfL9Tvk05iPR8NhXntGq-E9xS-m9fRwMRx7UyzoGEoE6dH8WyS8pm91D-GwX76iFUUXc-I_h8x4evgdvZE_vUtmu--O3uyl8fWF1AII61OjlebOT7kvOWe6ceDVpcoALklX5IVxOZM-yw0EN2EYU0Zxbo3PlfbTJrOuuEcm3bzzDwjVgCmtFVlTcti_YW0udwqQQl46J5V2CWHn61LbSE2OL2S0NWxRcOLqP0xcQl6MnRaBmePf4q9xwUdRpNUePsD61NFK64Y1JQDQxlopubQKBmmMFkyYXDSFyRLyHNWlRuOHH7Q61jDAMJFGq65KpOsBxCwTsr0hCUZrN5vPFa6OTmNZFxkmnSkAfQl5OjZjT0yE6_x8NcgAopDgRRNyPyjqOKQCmsC6oCUdNfciU_PwP-UfkWsMoF1Ig9wmk_5k5R8DNOvNk2iSPwEY3TdO
  priority: 102
  providerName: Unpaywall
Title Exploring Publicly Accessible Optical Coherence Tomography Datasets: A Comprehensive Overview
URI https://www.ncbi.nlm.nih.gov/pubmed/39125544
https://www.proquest.com/docview/3090887071
https://www.proquest.com/docview/3091286794
https://doi.org/10.3390/diagnostics14151668
https://doaj.org/article/f2f8112fcc6646c7bd1bba525b15f3b0
UnpaywallVersion publishedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: ABDBF
  dateStart: 20120901
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: RPM
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: M48
  dateStart: 20110501
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEB9qC7Uv4rfReqwg-GI02Wx2E0Hkqi1FuGuRHtQHCfsVLaR35_XOev-9M0ku9LAVX5NNyO7Ox282M78BeIlBVcq182EqrQlFmaNKeZuGQqkSvVUqHKd658FQHo7E59P0dANWXVHbBby4NrSjflKjWfXm98_lB1T49xRxYsj-1jVJaURrHKM_iqXMbsEWuqqcejkMWrxfm-acKPcorZGjqwwRCmQNE9FN79mB7SRHDJAKsea4an7_v634FTd2ezGe6uWlrqor_urgLtxpgSbrN5JxDzb8-D5sD9pf6Q_gW5d9x5qju2rJ-nX3xDNTeXY0rQ-5GZVv1AWB7GRy3tJbs096js5vfvGO9RkZlJn_0eTBs6NfZHv85UMYHeyffDwM214LoUXINQ-NVlo4nwufCcF16dCGSxUhOJIuiRPjYi59FBt0ZanhXBklhDU-VtrnZWRd8gg2x5OxfwJMI4K0No3KTGC0RpW4winEBXHmnFTaBcBXC1nYloic-mFUBQYktBHFNRsRwOvuoWnDw_Hv4Xu0Q91QItGuL0xm34tWJ4uSlxnCzdJaKYW0CidpjE55auK0TEwUwCva34KEDz_Q6rZiAadJpFlFPyNyHsTHMoDdtZGoonb99kpCipWEF0lEKWYKIV4AL7rb9CSlvY39ZFGPQfwg0WYG8LiRrG5KK7kMIOxE7X-W5umNb3oGOxwhW5PeuAub89nCP0fINTc92NrbHx5_6dVHFr1aqfDaaHjc__oHnjArcQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJrG9IL4JDDASiBeiJY5jp0gT6timjq0dQp20FxT8lYFU2tIPqv5z_G3cJU7oBJp42WvtVPHZd_c75-53hLyEoCplyrowFUaHvGiBSjmThlzKArxVyi3DeuduT3TO-Ifz9HyN_KprYTCtsraJpaG2I4N35DtJhBk5Ejziu_GPELtG4dfVuoWG8q0V7G5JMeYLO47dcgEh3HT3aB_2-xVjhwf9953QdxkIDYCNWaiVVNy6FncZ50wVFqyXkBHAAmGTONE2ZsJFsQYjnmrGpJacG-1iqVyriIxN4H9vkA2e8BYEfxt7B72Pn5pbHmTdhBisojtKkla0Y6sMOuRgjsF5xgJJXldcYtk54G__sOIgN-fDsVou1GCw4gkPb5NbHsLSdnXm7pA1N7xLbnb9R_p75HOT10erS8HBkrbLvozf9MDR03F5fU6xMKQsNaT90XdPnE331Qzc6mz6lrYpmqqJ-1pl2NPTn2jV3OI-ObsW-T4g68PR0D0iVAE2NSaNioxDHIg1vtxKQBxxZq2QygaE1YLMjac4x04bgxxCHZR-_g_pB-RN89C4Yvi4evoe7lAzFem5yx9Gk4vca3tesCIDIFsYIwQXRsIitVYpS3WcFomOAvIa9zdHIwIvaJSvhYBlIh1X3s6Q9geQtwjI9qWZoPzm8nB9QnJvfKb5H1UJyItmGJ_EhLqhG83LOYBMBFjjgDysTlazpASGQEthJGyO2v-I5vHVL_OcbHb63ZP85Kh3_IRsMUCHVSblNlmfTebuKaC7mX7mVYiSL9ettb8BNWpjuw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJo29IL4JDDASiBeiJo5jp0gT6uiqjbFuQpu0FxT8lYFU0tIPqv6L_FXcJW7oBJp42WvsRPHZ97uzffc7Ql7CpiplyrowFUaHvGiDSjmThlzKAqxVyi3DfOejvtg_4x_O0_M18muZC4NhlUtMrIDaDg2ekbeSCCNyJFjEVuHDIk66vXejHyFWkMKb1mU5DeXLLNidim7MJ3kcusUctnOTnYMuzP0rxnp7p-_3Q19xIDTgeExDraTi1rW5yzhnqrCAZEJG4CIIm8SJtjETLoo1AHqqGZNacm60i6Vy7SIyNoHv3iAbePkFILGxu9c_-dSc-CADJ-zHauqjJGlHLVtH0yEfcwyGNBZI-LpiHqsqAn_bihVjeXNWjtRirgaDFavYu01ueXeWdur1d4esufIu2TzyF_b3yOcmxo_WB4SDBe1UNRq_6YGjx6PqKJ1ikkiVdkhPh989iTbtqimY2OnkLe1QhK2x-1pH29Pjn4hwbn6fnF2LfB-Q9XJYukeEKvBTjUmjIuOwJ8R8X24leB9xZq2QygaELQWZG093jlU3Bjlse1D6-T-kH5A3zUujmu3j6u67OENNV6Tqrh4Mxxe51_y8YEUGTm1hjBBcGAmD1FqlLNVxWiQ6CshrnN8cAQV-0CifFwHDRGquvJMhBRB44SIg25d6AhCYy83LFZJ7IJrkf9QmIC-aZnwTg-tKN5xVfcBLEYDMAXlYr6xmSAk0gcZCS9gstf8RzeOrf-Y52QTtzT8e9A-fkC0GjmIdVLlN1qfjmXsKjt5UP_MaRMmX61ba36Y9Z-o
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Jb9QwFLZgKgEX9iVQkJGQuJCSOF4y3MJSVUhtOXSkckCRtwhEyIw6Gary63kvdqMZNpVr_CzF9ls-2-99JuQZbKoE086nQlqT8mYKJuWtSLlSDUQrwR3Deuf9A7k34--PxXHk2cZamLX7-wK24y9dSDhDyuIcYk0uZXmZbEkBwHtCtmYHH6qP-HwcBL4UAnsZeIX-1nMj9gwU_b874rVIdHXVLfTZqW7btZCzeyPUci8HpkLMNPm6s-rNjv3xC4_jBUdzk1yP0JNWQVdukUu-u02u7MfL9Tvk05iPR8NhXntGq-E9xS-m9fRwMRx7UyzoGEoE6dH8WyS8pm91D-GwX76iFUUXc-I_h8x4evgdvZE_vUtmu--O3uyl8fWF1AII61OjlebOT7kvOWe6ceDVpcoALklX5IVxOZM-yw0EN2EYU0Zxbo3PlfbTJrOuuEcm3bzzDwjVgCmtFVlTcti_YW0udwqQQl46J5V2CWHn61LbSE2OL2S0NWxRcOLqP0xcQl6MnRaBmePf4q9xwUdRpNUePsD61NFK64Y1JQDQxlopubQKBmmMFkyYXDSFyRLyHNWlRuOHH7Q61jDAMJFGq65KpOsBxCwTsr0hCUZrN5vPFa6OTmNZFxkmnSkAfQl5OjZjT0yE6_x8NcgAopDgRRNyPyjqOKQCmsC6oCUdNfciU_PwP-UfkWsMoF1Ig9wmk_5k5R8DNOvNk2iSPwEY3TdO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+Publicly+Accessible+Optical+Coherence+Tomography+Datasets%3A+A+Comprehensive+Overview&rft.jtitle=Diagnostics+%28Basel%29&rft.au=Rozhyna%2C+Anastasiia&rft.au=Somfai%2C+G%C3%A1bor+M%C3%A1rk&rft.au=Atzori%2C+Manfredo&rft.au=DeBuc%2C+Delia+Cabrera&rft.date=2024-08-01&rft.issn=2075-4418&rft.eissn=2075-4418&rft.volume=14&rft.issue=15&rft_id=info:doi/10.3390%2Fdiagnostics14151668&rft_id=info%3Apmid%2F39125544&rft.externalDocID=39125544
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4418&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4418&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4418&client=summon