De Novo Identification and Visualization of Important Cell Populations for Classic Hodgkin Lymphoma Using Flow Cytometry and Machine Learning
Abstract Objectives Automated classification of flow cytometry data has the potential to reduce errors and accelerate flow cytometry interpretation. We desired a machine learning approach that is accurate, is intuitively easy to understand, and highlights the cells that are most important in the alg...
Saved in:
| Published in | American journal of clinical pathology Vol. 156; no. 6; pp. 1092 - 1102 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
US
Oxford University Press
01.12.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0002-9173 1943-7722 1943-7722 |
| DOI | 10.1093/ajcp/aqab076 |
Cover
| Abstract | Abstract
Objectives
Automated classification of flow cytometry data has the potential to reduce errors and accelerate flow cytometry interpretation. We desired a machine learning approach that is accurate, is intuitively easy to understand, and highlights the cells that are most important in the algorithm’s prediction for a given case.
Methods
We developed an ensemble of convolutional neural networks for classification and visualization of impactful cell populations in detecting classic Hodgkin lymphoma using two-dimensional (2D) histograms. Data from 977 and 245 clinical flow cytometry cases were used for training and testing, respectively. Seventy-eight nongated 2D histograms were created per flow cytometry file. Shapley additive explanation (SHAP) values were calculated to determine the most impactful 2D histograms and regions within histograms. SHAP values from all 78 histograms were then projected back to the original cell data for gating and visualization using standard flow cytometry software.
Results
The algorithm achieved 67.7% recall (sensitivity), 82.4% precision, and 0.92 area under the receiver operating characteristic. Visualization of the important cell populations for individual predictions demonstrated correlations with known biology.
Conclusions
The method presented enables model explainability while highlighting important cell populations in individual flow cytometry specimens, with potential applications in both diagnosis and discovery of previously overlooked key cell populations. |
|---|---|
| AbstractList | Objectives Automated classification of flow cytometry data has the potential to reduce errors and accelerate flow cytometry interpretation. We desired a machine learning approach that is accurate, is intuitively easy to understand, and highlights the cells that are most important in the algorithm’s prediction for a given case. Methods We developed an ensemble of convolutional neural networks for classification and visualization of impactful cell populations in detecting classic Hodgkin lymphoma using two-dimensional (2D) histograms. Data from 977 and 245 clinical flow cytometry cases were used for training and testing, respectively. Seventy-eight nongated 2D histograms were created per flow cytometry file. Shapley additive explanation (SHAP) values were calculated to determine the most impactful 2D histograms and regions within histograms. SHAP values from all 78 histograms were then projected back to the original cell data for gating and visualization using standard flow cytometry software. Results The algorithm achieved 67.7% recall (sensitivity), 82.4% precision, and 0.92 area under the receiver operating characteristic. Visualization of the important cell populations for individual predictions demonstrated correlations with known biology. Conclusions The method presented enables model explainability while highlighting important cell populations in individual flow cytometry specimens, with potential applications in both diagnosis and discovery of previously overlooked key cell populations. Automated classification of flow cytometry data has the potential to reduce errors and accelerate flow cytometry interpretation. We desired a machine learning approach that is accurate, is intuitively easy to understand, and highlights the cells that are most important in the algorithm's prediction for a given case.OBJECTIVESAutomated classification of flow cytometry data has the potential to reduce errors and accelerate flow cytometry interpretation. We desired a machine learning approach that is accurate, is intuitively easy to understand, and highlights the cells that are most important in the algorithm's prediction for a given case.We developed an ensemble of convolutional neural networks for classification and visualization of impactful cell populations in detecting classic Hodgkin lymphoma using two-dimensional (2D) histograms. Data from 977 and 245 clinical flow cytometry cases were used for training and testing, respectively. Seventy-eight nongated 2D histograms were created per flow cytometry file. Shapley additive explanation (SHAP) values were calculated to determine the most impactful 2D histograms and regions within histograms. SHAP values from all 78 histograms were then projected back to the original cell data for gating and visualization using standard flow cytometry software.METHODSWe developed an ensemble of convolutional neural networks for classification and visualization of impactful cell populations in detecting classic Hodgkin lymphoma using two-dimensional (2D) histograms. Data from 977 and 245 clinical flow cytometry cases were used for training and testing, respectively. Seventy-eight nongated 2D histograms were created per flow cytometry file. Shapley additive explanation (SHAP) values were calculated to determine the most impactful 2D histograms and regions within histograms. SHAP values from all 78 histograms were then projected back to the original cell data for gating and visualization using standard flow cytometry software.The algorithm achieved 67.7% recall (sensitivity), 82.4% precision, and 0.92 area under the receiver operating characteristic. Visualization of the important cell populations for individual predictions demonstrated correlations with known biology.RESULTSThe algorithm achieved 67.7% recall (sensitivity), 82.4% precision, and 0.92 area under the receiver operating characteristic. Visualization of the important cell populations for individual predictions demonstrated correlations with known biology.The method presented enables model explainability while highlighting important cell populations in individual flow cytometry specimens, with potential applications in both diagnosis and discovery of previously overlooked key cell populations.CONCLUSIONSThe method presented enables model explainability while highlighting important cell populations in individual flow cytometry specimens, with potential applications in both diagnosis and discovery of previously overlooked key cell populations. Automated classification of flow cytometry data has the potential to reduce errors and accelerate flow cytometry interpretation. We desired a machine learning approach that is accurate, is intuitively easy to understand, and highlights the cells that are most important in the algorithm's prediction for a given case. We developed an ensemble of convolutional neural networks for classification and visualization of impactful cell populations in detecting classic Hodgkin lymphoma using two-dimensional (2D) histograms. Data from 977 and 245 clinical flow cytometry cases were used for training and testing, respectively. Seventy-eight nongated 2D histograms were created per flow cytometry file. Shapley additive explanation (SHAP) values were calculated to determine the most impactful 2D histograms and regions within histograms. SHAP values from all 78 histograms were then projected back to the original cell data for gating and visualization using standard flow cytometry software. The algorithm achieved 67.7% recall (sensitivity), 82.4% precision, and 0.92 area under the receiver operating characteristic. Visualization of the important cell populations for individual predictions demonstrated correlations with known biology. The method presented enables model explainability while highlighting important cell populations in individual flow cytometry specimens, with potential applications in both diagnosis and discovery of previously overlooked key cell populations. Objectives: Automated classification of flow cytometry data has the potential to reduce errors and accelerate flow cytometry interpretation. We desired a machine learning approach that is accurate, is intuitively easy to understand, and highlights the cells that are most important in the algorithm's prediction for a given case. Methods: We developed an ensemble of convolutional neural networks for classification and visualization of impactful cell populations in detecting classic Hodgkin lymphoma using two-dimensional (2D) histograms. Data from 977 and 245 clinical flow cytometry cases were used for training and testing, respectively. Seventy-eight nongated 2D histograms were created per flow cytometry file. Shapley additive explanation (SHAP) values were calculated to determine the most impactful 2D histograms and regions within histograms. SHAP values from all 78 histograms were then projected back to the original cell data for gating and visualization using standard flow cytometry software. Results: The algorithm achieved 67.7% recall (sensitivity), 82.4% precision, and 0.92 area under the receiver operating characteristic. Visualization of the important cell populations for individual predictions demonstrated correlations with known biology. Conclusions: The method presented enables model explainability while highlighting important cell populations in individual flow cytometry specimens, with potential applications in both diagnosis and discovery of previously overlooked key cell populations. Key Words: Flow cytometry; Machine learning; Hodgkin lymphoma; Convolutional neural network; CNN; Random forest; Ensemble classifier; SHAP; Explainability; Explainable artificial intelligence Abstract Objectives Automated classification of flow cytometry data has the potential to reduce errors and accelerate flow cytometry interpretation. We desired a machine learning approach that is accurate, is intuitively easy to understand, and highlights the cells that are most important in the algorithm’s prediction for a given case. Methods We developed an ensemble of convolutional neural networks for classification and visualization of impactful cell populations in detecting classic Hodgkin lymphoma using two-dimensional (2D) histograms. Data from 977 and 245 clinical flow cytometry cases were used for training and testing, respectively. Seventy-eight nongated 2D histograms were created per flow cytometry file. Shapley additive explanation (SHAP) values were calculated to determine the most impactful 2D histograms and regions within histograms. SHAP values from all 78 histograms were then projected back to the original cell data for gating and visualization using standard flow cytometry software. Results The algorithm achieved 67.7% recall (sensitivity), 82.4% precision, and 0.92 area under the receiver operating characteristic. Visualization of the important cell populations for individual predictions demonstrated correlations with known biology. Conclusions The method presented enables model explainability while highlighting important cell populations in individual flow cytometry specimens, with potential applications in both diagnosis and discovery of previously overlooked key cell populations. |
| Audience | Professional Academic |
| Author | Simonson, Paul D Lee, Aaron Y Fromm, Jonathan R Wu, Yue Wu, David |
| AuthorAffiliation | 2 Department of Ophthalmology, University of Washington , Seattle, WA , USA 3 Department of Laboratory Medicine and Pathology, University of Washington , Seattle, WA , USA 1 Department of Pathology and Laboratory Medicine, Weill Cornell Medicine , New York, NY , USA |
| AuthorAffiliation_xml | – name: 2 Department of Ophthalmology, University of Washington , Seattle, WA , USA – name: 3 Department of Laboratory Medicine and Pathology, University of Washington , Seattle, WA , USA – name: 1 Department of Pathology and Laboratory Medicine, Weill Cornell Medicine , New York, NY , USA |
| Author_xml | – sequence: 1 givenname: Paul D orcidid: 0000-0001-6237-6861 surname: Simonson fullname: Simonson, Paul D email: pds9003@med.cornell.edu organization: Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA – sequence: 2 givenname: Yue surname: Wu fullname: Wu, Yue organization: Department of Ophthalmology, University of Washington, Seattle, WA, USA – sequence: 3 givenname: David surname: Wu fullname: Wu, David organization: Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA – sequence: 4 givenname: Jonathan R surname: Fromm fullname: Fromm, Jonathan R organization: Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA – sequence: 5 givenname: Aaron Y surname: Lee fullname: Lee, Aaron Y organization: Department of Ophthalmology, University of Washington, Seattle, WA, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34175918$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkktv1DAURi1URKeFHWtkiQUsSOtHMo43SFWgdKThsShsLcd2Zjw4dhonrYb_wH_G84DSioeyiHR97mfd43sEDnzwBoCnGJ1gxOmpXKnuVF7JGrHpAzDBPKcZY4QcgAlCiGQcM3oIjmJcIYRJifJH4JDmmBUclxPw_Y2BH8J1gDNt_GAbq-Rgg4fSa_jFxlE6-21XCQ2ctV3oB-kHWBnn4KfQjW57GGETelg5GaNV8CLoxVfr4XzddsvQSvg5Wr-A5y7cwGo9hNYM_Xp7w3upltYbODey94l5DB420kXzZP8_Bpfnby-ri2z-8d2sOptnqsB4yGo6zXVJFOM1IqjJCaNNKqmaUlYYmlPNa24ILhqEJNNSYppG14RrbBDX9Bhku9jRd3J9I50TXW9b2a8FRmJjVWysir3VxL_e8d1Yt0arZKqXtz1BWnH3xNulWIRrURaMTlmeAl7uA_pwNZo4iNZGlRxKb8IYBSnygvMyZyyhz--hqzD2PtkQpCS0pAwzckstpDPC-iake9UmVJwxhKfp4VGRqJM_UOnTprUqrVFjU_1Ow7PfB_014c99SQDZAaoPMfamEcoO2xVIydb9Td-re03_sf1ih4ex-zf5A2t98ro |
| CitedBy_id | crossref_primary_10_1177_00045632231154782 crossref_primary_10_3390_cancers16223855 crossref_primary_10_1515_cclm_2023_1037 crossref_primary_10_1002_cyto_b_22166 crossref_primary_10_1002_cyto_b_22177 crossref_primary_10_3390_diagnostics14040420 crossref_primary_10_1016_j_ijmedinf_2024_105689 crossref_primary_10_1016_j_cll_2023_04_009 crossref_primary_10_3390_cancers17030483 crossref_primary_10_1053_j_semdp_2023_02_004 crossref_primary_10_1007_s00428_024_03819_3 crossref_primary_10_1002_cyto_b_22229 crossref_primary_10_1016_j_modpat_2023_100373 |
| Cites_doi | 10.1097/CCO.0000000000000607 10.1145/2786984.2786995 10.1002/1097-0142(20010225)93:1<52::AID-CNCR9007>3.0.CO;2-3 10.1309/AJCP0Q1SVOXBHMAM 10.1002/cyto.b.20407 10.1309/AJCPW3UN9DYLDSPB 10.1093/ajcp/aqaa166 10.1007/s10115-013-0679-x 10.1109/MCSE.2007.55 10.1145/2939672.2939778 10.1109/MCSE.2007.58 10.1016/j.ypat.2011.11.026 10.1002/cyto.a.20825 10.1109/MCSE.2011.37 10.11120/msor.2001.01010023 10.1093/bioinformatics/btw570 10.1002/cyto.b.20376 10.1309/7371XK6F6P7474XX 10.3322/caac.21387 10.1309/AJCPY8E2LYHCGUFP 10.1002/cyto.b.20459 10.1038/nmeth.2365 10.1038/s41551-018-0304-0 10.1002/cyto.a.24159 10.1016/j.ebiom.2018.10.042 10.1002/cyto.b.20535 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2021. Published by Oxford University Press on behalf of American Society for Clinical Pathology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2021 American Society for Clinical Pathology, 2021. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. COPYRIGHT 2021 Oxford University Press The Author(s) 2021. Published by Oxford University Press on behalf of American Society for Clinical Pathology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com American Society for Clinical Pathology, 2021. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2021 |
| Copyright_xml | – notice: The Author(s) 2021. Published by Oxford University Press on behalf of American Society for Clinical Pathology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2021 – notice: American Society for Clinical Pathology, 2021. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. – notice: COPYRIGHT 2021 Oxford University Press – notice: The Author(s) 2021. Published by Oxford University Press on behalf of American Society for Clinical Pathology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com – notice: American Society for Clinical Pathology, 2021. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2021 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. KB0 LK8 M0S M1P M7P NAPCQ PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI 7X8 5PM ADTOC UNPAY |
| DOI | 10.1093/ajcp/aqab076 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Biological Science Database Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | ProQuest Central Student MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Biology |
| EISSN | 1943-7722 |
| EndPage | 1102 |
| ExternalDocumentID | oai:pubmedcentral.nih.gov:8573674 PMC8573674 A701600205 34175918 10_1093_ajcp_aqab076 10.1093/ajcp/aqab076 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: NEI NIH HHS grantid: K23EY029246 – fundername: ; – fundername: ; grantid: K23EY029246 |
| GroupedDBID | --- .55 .GJ 0R~ 1CY 1KJ 1TH 23M 2WC 3O- 4.4 48X 53G 5GY 5RE 5WD 6J9 7RV 7X7 88E 8FE 8FH 8FI 8FJ AABZA AACZT AAIMJ AAJQQ AAMDB AAMVS AAPGJ AAPQZ AAPXW AAQOH AAQQT AARHZ AAUAY AAUQX AAVAP AAWDT AAWTL ABCQX ABDFA ABDPE ABEJV ABEUO ABGNP ABIXL ABJNI ABLJU ABMNT ABNHQ ABPPZ ABPQP ABPTD ABQNK ABSMQ ABUWG ABVGC ABWST ABXVV ABXZS ACBNA ACFRR ACGFO ACGFS ACPRK ACUFI ACUTJ ACVCV ACYHN ACZBC ADBBV ADFRT ADGKP ADGZP ADHKW ADIPN ADMTO ADNBA ADQBN ADRTK ADVEK AELWJ AEMDU AEMQT AENEX AENZO AEPUE AETBJ AEWNT AFFNX AFFQV AFFZL AFGWE AFIYH AFKRA AFOFC AFXAL AFYAG AGINJ AGKRT AGMDO AGQXC AGSYK AGUTN AHMBA AHMMS AI. AJDVS AJEEA AJNCP ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX APIBT APJGH AQDSO AQKUS ARIXL ATGXG AVNTJ AVWKF AYOIW BAWUL BAYMD BBNVY BCRHZ BENPR BEYMZ BHONS BHPHI BKEYQ BPHCQ BQDIO BSWAC BTRTY BVRKM BVXVI BZKNY C45 CCPQU CDBKE CS3 DAKXR DIK DILTD E3Z EBS EIHJH EJD EMB EMOBN ENERS EX3 F5P FECEO FHSFR FLUFQ FOEOM FOTVD FQBLK FYUFA GAUVT GJXCC GX1 H13 HCIFZ HMCUK IAO IH2 IHR INH ITC J21 J5H JXSIZ KBUDW KOP KQ8 KSI KSN L7B LID LK8 LSO M1P M7P MBLQV MHKGH N4W NAPCQ NLBLG NOMLY NOYVH NVLIB O9- OAUYM OAWHX OBFPC OBOKY OCZFY ODMLO OHT OJQWA OJZSN OK1 OPAEJ OVD OWPYF P2P P6G PAFKI PEELM PHGZT PQQKQ PROAC PSQYO ROX ROZ RUSNO SJN SV3 TEORI TJX TLC TMA TPV TR2 TWZ UDS UKHRP VH1 W8F WH7 WOW X7M YAYTL YKOAZ YQI YQJ YXANX ZGI ZXP AAYXX AHGBF AJBYB CITATION NU- PHGZM PJZUB PPXIY PQGLB PUEGO CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQUKI 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c511t-b364d82c79b020f4273f364cb3375e343d9b9e215f00a7daa13012d29d1e09d3 |
| IEDL.DBID | UNPAY |
| ISSN | 0002-9173 1943-7722 |
| IngestDate | Sun Oct 26 04:14:30 EDT 2025 Tue Sep 30 16:45:56 EDT 2025 Sun Sep 28 01:12:11 EDT 2025 Tue Oct 07 05:57:55 EDT 2025 Mon Oct 20 22:13:58 EDT 2025 Mon Oct 20 16:01:30 EDT 2025 Thu Apr 03 07:00:58 EDT 2025 Wed Oct 01 03:44:37 EDT 2025 Thu Apr 24 23:11:07 EDT 2025 Wed Apr 02 07:10:25 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Flow cytometry CNN SHAP Convolutional neural network Machine learning Explainable artificial intelligence Random forest Explainability Ensemble classifier Hodgkin lymphoma |
| Language | English |
| License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/pages/standard-publication-reuse-rights) https://academic.oup.com/pages/standard-publication-reuse-rights American Society for Clinical Pathology, 2021. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c511t-b364d82c79b020f4273f364cb3375e343d9b9e215f00a7daa13012d29d1e09d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Senior authors. |
| ORCID | 0000-0001-6237-6861 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/8573674 |
| PMID | 34175918 |
| PQID | 2823837172 |
| PQPubID | 586299 |
| PageCount | 11 |
| ParticipantIDs | unpaywall_primary_10_1093_ajcp_aqab076 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8573674 proquest_miscellaneous_2545998477 proquest_journals_2823837172 gale_infotracmisc_A701600205 gale_infotracacademiconefile_A701600205 pubmed_primary_34175918 crossref_citationtrail_10_1093_ajcp_aqab076 crossref_primary_10_1093_ajcp_aqab076 oup_primary_10_1093_ajcp_aqab076 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-12-01 |
| PublicationDateYYYYMMDD | 2021-12-01 |
| PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | US |
| PublicationPlace_xml | – name: US – name: England – name: Chicago |
| PublicationTitle | American journal of clinical pathology |
| PublicationTitleAlternate | Am J Clin Pathol |
| PublicationYear | 2021 |
| Publisher | Oxford University Press |
| Publisher_xml | – name: Oxford University Press |
| References | Chhieng (2023020912513763900_CIT0003) 2001; 93 Hudnall (2023020912513763900_CIT0034) 2008; 74 Varoquaux (2023020912513763900_CIT0017) 2015; 19 Ripley (2023020912513763900_CIT0025) 2001; 1 Fromm (2023020912513763900_CIT0005) 2006; 126 Lundberg (2023020912513763900_CIT0012) 2019 Waskom (2023020912513763900_CIT0021) 2020 Ko (2023020912513763900_CIT0030) 2018; 37 Spidlen (2023020912513763900_CIT0028) 2010; 77 Ribeiro (2023020912513763900_CIT0010) Fromm (2023020912513763900_CIT0006) 2009; 131 Zhao (2023020912513763900_CIT0031) 2020; 97 Pedregosa (2023020912513763900_CIT0024) 2011; 12 Lundberg (2023020912513763900_CIT0013) 2018; 2 Ng (2023020912513763900_CIT0029) 2021;155:597-605 Abadi (2023020912513763900_CIT0018) 2016 Duetz (2023020912513763900_CIT0032) 2020;32:162-169 Bosler (2023020912513763900_CIT0035) 2008; 74 Aghaeepour (2023020912513763900_CIT0009) 2013; 10 Hunter (2023020912513763900_CIT0020) 2007; 9 Fromm (2023020912513763900_CIT0007) 2014; 141 Campo (2023020912513763900_CIT0001) 2017 Fromm (2023020912513763900_CIT0036) 2010; 78 Yurtsev (2023020912513763900_CIT0016) Seegmiller (2023020912513763900_CIT0033) 2009; 76 Štrumbelj (2023020912513763900_CIT0014) 2014; 41 2023020912513763900_CIT0026 Chollet (2023020912513763900_CIT0019) 2018 Saito (2023020912513763900_CIT0027) 2017; 33 Lundberg (2023020912513763900_CIT0011) 2017 Ng (2023020912513763900_CIT0008) 2015; 144 van der Walt (2023020912513763900_CIT0022) 2011; 13 Reback (2023020912513763900_CIT0023) 2020 Siegel (2023020912513763900_CIT0002) 2017; 67 Raab (2023020912513763900_CIT0004) 2012; 2012 Oliphant (2023020912513763900_CIT0015) 2007; 9 |
| References_xml | – year: 2020;32:162-169 ident: 2023020912513763900_CIT0032 article-title: Computational analysis of flow cytometry data in hematological malignancies: future clinical practice? publication-title: Curr Opin Oncol. doi: 10.1097/CCO.0000000000000607 – volume: 19 start-page: 29 year: 2015 ident: 2023020912513763900_CIT0017 article-title: Scikit-learn publication-title: GetMobile. doi: 10.1145/2786984.2786995 – volume: 93 start-page: 52 year: 2001 ident: 2023020912513763900_CIT0003 article-title: Fine-needle aspiration cytology of Hodgkin disease: a study of 89 cases with emphasis on false-negative cases publication-title: Cancer. doi: 10.1002/1097-0142(20010225)93:1<52::AID-CNCR9007>3.0.CO;2-3 – volume: 141 start-page: 388 year: 2014 ident: 2023020912513763900_CIT0007 article-title: A six-color flow cytometry assay for immunophenotyping classical Hodgkin lymphoma in lymph nodes publication-title: Am J Clin Pathol. doi: 10.1309/AJCP0Q1SVOXBHMAM – volume: 74 start-page: 227 year: 2008 ident: 2023020912513763900_CIT0035 article-title: Detection of T-regulatory cells has a potential role in the diagnosis of classical Hodgkin lymphoma publication-title: Cytometry B Clin Cytom. doi: 10.1002/cyto.b.20407 – volume: 131 start-page: 322 year: 2009 ident: 2023020912513763900_CIT0006 article-title: Flow cytometry can diagnose classical Hodgkin lymphoma in lymph nodes with high sensitivity and specificity publication-title: Am J Clin Pathol. doi: 10.1309/AJCPW3UN9DYLDSPB – year: 2021;155:597-605 ident: 2023020912513763900_CIT0029 article-title: Augmented human intelligence and automated diagnosis in flow cytometry for hematologic malignancies publication-title: Am J Clin Pathol. doi: 10.1093/ajcp/aqaa166 – volume: 41 start-page: 647 year: 2014 ident: 2023020912513763900_CIT0014 article-title: Explaining prediction models and individual predictions with feature contributions publication-title: Knowl Inf Syst doi: 10.1007/s10115-013-0679-x – year: 2020 ident: 2023020912513763900_CIT0021 – volume: 9 start-page: 90 year: 2007 ident: 2023020912513763900_CIT0020 article-title: Matplotlib: a 2D graphics environment publication-title: Comput Sci Eng doi: 10.1109/MCSE.2007.55 – ident: 2023020912513763900_CIT0010 article-title: “Why should I trust you?”: explaining the predictions of any classifier doi: 10.1145/2939672.2939778 – volume: 9 start-page: 10 year: 2007 ident: 2023020912513763900_CIT0015 article-title: Python for scientific computing publication-title: Comput Sci Eng doi: 10.1109/MCSE.2007.58 – volume: 2012 start-page: 245 year: 2012 ident: 2023020912513763900_CIT0004 article-title: Combined core needle biopsy and fine-needle aspiration with ancillary studies correlate highly with traditional techniques in the diagnosis of nodal-based lymphoma publication-title: Yearbook Pathol Lab Med doi: 10.1016/j.ypat.2011.11.026 – volume: 12 start-page: 2825 year: 2011 ident: 2023020912513763900_CIT0024 article-title: Scikit-learn: machine learning in Python publication-title: J Mach Learn Res. – year: 2017 ident: 2023020912513763900_CIT0011 – ident: 2023020912513763900_CIT0026 – volume: 77 start-page: 97 year: 2010 ident: 2023020912513763900_CIT0028 article-title: Data file standard for flow cytometry, version FCS 3.1 publication-title: Cytometry A. doi: 10.1002/cyto.a.20825 – volume: 13 start-page: 22 year: 2011 ident: 2023020912513763900_CIT0022 article-title: The NumPy array: a structure for efficient numerical computation publication-title: Comput Sci Eng. doi: 10.1109/MCSE.2011.37 – volume: 1 start-page: 23 year: 2001 ident: 2023020912513763900_CIT0025 article-title: The R project in statistical computing publication-title: MSOR Connect. doi: 10.11120/msor.2001.01010023 – volume: 33 start-page: 145 year: 2017 ident: 2023020912513763900_CIT0027 article-title: Precrec: fast and accurate precision-recall and ROC curve calculations in R publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btw570 – volume: 74 start-page: 1 year: 2008 ident: 2023020912513763900_CIT0034 article-title: Comparative flow immunophenotypic features of the inflammatory infiltrates of Hodgkin lymphoma and lymphoid hyperplasia publication-title: Cytometry B Clin Cytom. doi: 10.1002/cyto.b.20376 – volume: 126 start-page: 764 year: 2006 ident: 2023020912513763900_CIT0005 article-title: Identification and purification of classical Hodgkin cells from lymph nodes by flow cytometry and flow cytometric cell sorting publication-title: Am J Clin Pathol. doi: 10.1309/7371XK6F6P7474XX – year: 2019 ident: 2023020912513763900_CIT0012 article-title: Explainable AI for trees: from local explanations to global understanding – volume: 67 start-page: 7 year: 2017 ident: 2023020912513763900_CIT0002 article-title: Cancer statistics, 2017 publication-title: CA Cancer J Clin. doi: 10.3322/caac.21387 – volume: 144 start-page: 517 year: 2015 ident: 2023020912513763900_CIT0008 article-title: Computer-aided detection of rare tumor populations in flow cytometry: an example with classic Hodgkin lymphoma publication-title: Am J Clin Pathol. doi: 10.1309/AJCPY8E2LYHCGUFP – volume: 76 start-page: 169 year: 2009 ident: 2023020912513763900_CIT0033 article-title: Overexpression of CD7 in classical Hodgkin lymphoma-infiltrating T lymphocytes publication-title: Cytometry B Clin Cytom. doi: 10.1002/cyto.b.20459 – volume: 10 start-page: 228 year: 2013 ident: 2023020912513763900_CIT0009 article-title: Critical assessment of automated flow cytometry data analysis techniques publication-title: Nat Methods. doi: 10.1038/nmeth.2365 – volume-title: WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. year: 2017 ident: 2023020912513763900_CIT0001 – volume-title: Deep Learning With Python. year: 2018 ident: 2023020912513763900_CIT0019 – volume: 2 start-page: 749 year: 2018 ident: 2023020912513763900_CIT0013 article-title: Explainable machine-learning predictions for the prevention of hypoxaemia during surgery publication-title: Nat Biomed Eng. doi: 10.1038/s41551-018-0304-0 – ident: 2023020912513763900_CIT0016 – volume: 97 start-page: 1073 year: 2020 ident: 2023020912513763900_CIT0031 article-title: Hematologist-level classification of mature B-cell neoplasm using deep learning on multiparameter flow cytometry data publication-title: . Cytometry A. doi: 10.1002/cyto.a.24159 – start-page: 265 year: 2016 ident: 2023020912513763900_CIT0018 article-title: TensorFlow: a system for large-scale machine learning. – volume: 37 start-page: 91 year: 2018 ident: 2023020912513763900_CIT0030 article-title: Clinically validated machine learning algorithm for detecting residual diseases with multicolor flow cytometry analysis in acute myeloid leukemia and myelodysplastic syndrome publication-title: Ebiomedicine. doi: 10.1016/j.ebiom.2018.10.042 – year: 2020 ident: 2023020912513763900_CIT0023 – volume: 78 start-page: 387 year: 2010 ident: 2023020912513763900_CIT0036 article-title: Increased expression of T cell antigens on T cells in classical Hodgkin lymphoma publication-title: Cytometry B Clin Cytom. doi: 10.1002/cyto.b.20535 |
| SSID | ssj0012804 |
| Score | 2.4339006 |
| Snippet | Abstract
Objectives
Automated classification of flow cytometry data has the potential to reduce errors and accelerate flow cytometry interpretation. We desired... Automated classification of flow cytometry data has the potential to reduce errors and accelerate flow cytometry interpretation. We desired a machine learning... Objectives: Automated classification of flow cytometry data has the potential to reduce errors and accelerate flow cytometry interpretation. We desired a... Objectives Automated classification of flow cytometry data has the potential to reduce errors and accelerate flow cytometry interpretation. We desired a... |
| SourceID | unpaywall pubmedcentral proquest gale pubmed crossref oup |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1092 |
| SubjectTerms | Algorithms Analysis Artificial intelligence Flow Cytometry Hodgkin Disease - diagnosis Hodgkin's lymphoma Humans Learning algorithms Lymphoma Lymphomas Machine Learning Neural networks Neural Networks, Computer Original Visualization Visualization (Computers) |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwED-NTny8IBiMBQoyEh8PKGoaJ3HygNAoqwqi1YQG2ltkO84oS5NuTZnyR_A_c06c0AoxXuNT7MTn8-_su98BvBimImSpQicH4aftScRwXDLH9gPGeYgAltblgKazYPLV-3Tqn-7ArM2F0WGVrU2sDXVSSH1GPkDXQDtTuN--W17YumqUvl1tS2hwU1oheVtTjN2AXVczY_Vg9_3R7PhLd6_gho7XAmJ0VKgJhUe3fsB_yOWAX3DhaP6RjU3KmOqt_LcNGPp3NOXtdb7k1RXPso2tanwP7hqMSQ4bpbgPOyrfg5tN1clqD25NzX36A_j1QZFZ8bMgTb5uag7wCM8T8m2-0gmXTZomKVLycVFj9bwkI5Vl5Lgr_bUiiHxJXV5zLsmkSM7O5zn5XKGiFAtO6qgEMs6KKzKqymKhysuq7mFaB3IqYjhezx7CyfjoZDSxTYEGWyJOK21BAy8JXckigagz9RAKpfhICkqZr6hHk0hECkFF6jicJZzjhjl0EzdKhsqJEroPvbzI1QEQqmjAhfAQ3yg03VEkuMupCgIRIp7hzII37YTE0pCX6xoaWdxcotNYT19sps-Cl530siHt-Ifcaz23sV7L-DbJTUoCjkmzYsWHTPPv4af5FvS3JHENyq1mgtrxn776rerExkys4j9KbcHzrlm_XIe-5apYowxiXPSJPYY_4VGjaV1HCEGYHw1DC9iWDnYCmjx8uyWff69JxEOf0YB5FrzqtPXa8T--fvxP4I6ro33qQJ8-9MrLtXqKcK0Uz8wa_A3ofUEo priority: 102 providerName: ProQuest |
| Title | De Novo Identification and Visualization of Important Cell Populations for Classic Hodgkin Lymphoma Using Flow Cytometry and Machine Learning |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/34175918 https://www.proquest.com/docview/2823837172 https://www.proquest.com/docview/2545998477 https://pubmed.ncbi.nlm.nih.gov/PMC8573674 https://www.ncbi.nlm.nih.gov/pmc/articles/8573674 |
| UnpaywallVersion | submittedVersion |
| Volume | 156 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1943-7722 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012804 issn: 1943-7722 databaseCode: KQ8 dateStart: 19310101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1943-7722 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0012804 issn: 1943-7722 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1943-7722 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0012804 issn: 1943-7722 databaseCode: GX1 dateStart: 19310101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1943-7722 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0012804 issn: 1943-7722 databaseCode: 7X7 dateStart: 20110501 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1943-7722 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0012804 issn: 1943-7722 databaseCode: BENPR dateStart: 20110501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zj9MwEB7ttuJ44ViuQqmMxPGAesVJ3DyW7lZdoFW12kXlKbIdZymbJmWbsir_gf_MOHGiFsT1mHgUx-1n-5v4mxmA591Q9Fio0MlB-tm0JXI4Llmn6biM8x4SWJqVAxpP3NGZ_XbmzPagW8TCZKJ9KeatOFq04vmnTFu5XMh2oRNr9xxGXWbvQ9V1kH5XoHo2mfY_FjTXy0-V0TenmjlaRuyOjnubf5bLNv_CRUdnGNnahsxivBPhtkU0f9VL3ljHS7654lG0tRkNb8NJMYxcg3LRWqeiJb_9lOHxv8Z5B24Zakr6edNd2FPxAVzLi1VuDuD62BzD34Pvh4pMkq8JycN8Q_Pdj_A4IB_mKx2nmUd3kiQkx4uM4scpGagoItOyYtiKIGEmWVXOuSSjJDi_mMfk_QbxlSw4ycQMZBglV2SwSZOFSi83WQ_jTP-piEkNe34fTodHp4NR09R1aEqkd2lTUNcOepZknkCyGtrIoEK8JQWlzFHUpoEnPIVcJOx0OAs4x322awWWF3RVxwvoA6jESaweAaGKulwIG2mRwhXf8wS3OFWuK3pIgzirweviX_alyXmuS29Efn72Tn2NCd9gogYvSutlnuvjN3avNGB8vQTg0yQ3kQz4TjqZlt9nOm0fDs2pQX3HEqeu3GkmCLm_9FUv8Oib1WXlo5usPywg96zBs7JZP1wr5mKVrNEGqTG60jbDH-FhDt-yI2QuzPG6vRqwHWCXBjrn-G4LQjTLPW5QWYOX5RT44_s__lfDJ3DT0nKhTClUh0p6uVZPke-logH7bMYaUH1zNJme4NXh8buGmfU_AFupWx8 |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELfGJhgvCMa_QAEjMXhAUdPYiZOHCY1uVcvaakJl2ltkJ84opEm3plT5EHwkvhvnxAmtEONpr_HJdnLnu9_F9wehN51YeCyW4OQA_DRpCBiOh8wyHZdx7gGAJWU7oNHY7X-hn86d8y30q86FUWGVtU4sFXWUheofeRtcA-VMgb39ML80Vdcodbtat9DgurVCdFCWGNOJHSeyWIELtzgYHAG_9227dzzp9k3dZcAMAWzkpiAujTw7ZL4A6BRTsOcxPAoFIcyRhJLIF74EyxhbFmcR56D1O3Zk-1FHWn5EYNpbaIcS6oPvt_PxeHz6ubnGsD2L1vgb_CKiI-8tn7T5t3De5pdcWKrcyZpN1JZhI91uDfX-Hby5u0znvFjxJFmzjL376J6GtPiwksEHaEume-h21eSy2EN3Rvr6_iH6eSTxOPuR4So9ONb_CzFPI3w2Xaj8ziorFGcxHsxK1yDNcVcmCT5tOo0tMABtXHbznIa4n0UX36cpHhYgl9mM4zIIAveSbIW7RZ7NZH5VlCuMyrhRiXVJ2YtHaHITnHqMttMslU8RJpK4XAgKcEqCpfB9wW1OpOsKD-ATZwZ6XzMkCHWtdNWyIwmqO3sSKPYFmn0G2m-o51WNkH_QvVO8DZTqgNlCrjMgYE-qCFdwyFS5P3g1x0CtDUo48uHGMAbp-M9arVp0Aq2VFsGfM2Sg182wmlxF2qUyWwINQGpwwSmDj_CkkrRmIUA8zPE7noHYhgw2BKpW-eZIOv1a1iz3HEZcRg30tpHWa_f_7Pr9v0K7_cloGAwH45Pn6K6tAo3KGKMW2s6vlvIFIMVcvNTnEaPghjXAb0P0fCI |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4aQwxeEIxboICRGDygqGmcxMkDQlNLtbK12sNAfYscxxmFNOnWlCo_gh_Ev-M4cUIrxHjaa2zZTs7tO_G5ALzuJZHPEolODsJP0xGI4bhglul6jHMfASyt2gGNJ97RZ-fT1J3uwK8mF0aFVTY6sVLUcS7UP_IuugbKmUJ72010WMTpYPhhcWGqDlLqprVpp1GzyLEs1-i-Ld-PBkjrA9sefjzrH5m6w4ApEGgUZkQ9J_ZtwYIIYVPioC1P8JGIKGWupA6NgyiQaBUTy-Is5hw1fs-O7SDuSSuIKS57A24ySgMVTcimra-HWt9yGuSNHhHVMfdWQLv8m1h0-QWPLFXoZMMaapuwlWi3gXf_Dtu8vcoWvFzzNN2wicN7cFeDWXJYc9992JHZPtyq21uW-7A31hf3D-DnQJJJ_iMndWJwov8UEp7F5MtsqTI763xQkidkNK-cgqwgfZmm5LTtMbYkCLFJ1cdzJshRHp9_n2XkpESOzOecVOEPZJjma9Ivi3wui8uy2mFcRYxKoovJnj-Es-ug0yPYzfJMPgFCJfV4FDkIpCTaiCCIuM2p9LzIR-DEmQHvGoKEQldJV8060rC-raehIl-oyWfAQTt7UVcH-ce8t4q2oVIauJrgOvcBz6TKb4WHTBX6w1dzDehszURhF1vDBLnjP3t1GtYJtT5ahn-kx4BX7bBaXMXYZTJf4RwE0-h8Oww_wuOa09qNEOswN-j5BrAtHmwnqCrl2yPZ7GtVrdx3GfWYY8CblluvPP_Tq8__EvZQ7sOT0eT4GdyxVYRRFVzUgd3iciWfI0QsoheVMBIIr1n4fwPiBnm8 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zj9MwEB4tXXG8cCxXoCAjcTygXnESJ49VoSqIViu0i5anyHacpWyOsk1Zhf_Af2acOFEL4nqNR3GcfLa_ib-ZAXg6ioXPYoVODtLPniORw3HJhj3XY5z7SGBpVQ5ovvBmx87bE_dkD0ZNLEwl2pdi2c-StJ8tP1XaylUqB41ObOC7jHrMuQT7nov0uwP7x4vD8ceG5gb1qTL65lQzR9uI3dFxH_DPcjXgX7gY6gwjW9uQWYx3Ity2iOavesmrm2zFywueJFub0fQGvG-GUWtQzvqbQvTlt58yPP7XOG_CdUNNybhuugV7KjuAy3WxyvIArszNMfxt-P5KkUX-NSd1mG9s_vsRnkXkw3Kt4zTr6E6Sx-RNWlH8rCATlSTksK0YtiZImElVlXMpySyPTs-WGXlXIr7ylJNKzECmSX5BJmWRp6o4L6se5pX-UxGTGvb0DhxNXx9NZj1T16Enkd4VPUE9J_JtyQKBZDV2kEHFeEkKSpmrqEOjQAQKuUg8HHIWcY777MiO7CAaqWEQ0bvQyfJM3QdCFfW4EA7SIoUrfhAIbnOqPE_4SIM4s-Bl85VDaXKe69IbSVifvdNQYyI0mLDgWWu9qnN9_MbuhQZMqJcAvJvkJpIBn0kn0wrHTKftw6G5FnR3LHHqyp1mgpD7S1_dBo-hWV3WIbrJ-scCck8LnrTN-uZaMZepfIM2SI3RlXYYvoR7NXzbjpC5MDcY-RawHWC3Bjrn-G4LQrTKPW5QacHzdgr88fkf_KvhQ7hma7lQpRTqQqc436hHyPcK8djM8B9oEVel |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=De+Novo+Identification+and+Visualization+of+Important+Cell+Populations+for+Classic+Hodgkin+Lymphoma+Using+Flow+Cytometry+and+Machine+Learning&rft.jtitle=American+journal+of+clinical+pathology&rft.au=Simonson%2C+Paul+D&rft.au=Wu%2C+Yue&rft.au=Wu%2C+David&rft.au=Fromm%2C+Jonathan+R&rft.date=2021-12-01&rft.pub=Oxford+University+Press&rft.issn=0002-9173&rft.volume=156&rft.issue=6&rft.spage=1092&rft_id=info:doi/10.1093%2FAJCP%2FAQAB076&rft.externalDocID=A701600205 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-9173&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-9173&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-9173&client=summon |