De Novo Identification and Visualization of Important Cell Populations for Classic Hodgkin Lymphoma Using Flow Cytometry and Machine Learning

Abstract Objectives Automated classification of flow cytometry data has the potential to reduce errors and accelerate flow cytometry interpretation. We desired a machine learning approach that is accurate, is intuitively easy to understand, and highlights the cells that are most important in the alg...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of clinical pathology Vol. 156; no. 6; pp. 1092 - 1102
Main Authors Simonson, Paul D, Wu, Yue, Wu, David, Fromm, Jonathan R, Lee, Aaron Y
Format Journal Article
LanguageEnglish
Published US Oxford University Press 01.12.2021
Subjects
Online AccessGet full text
ISSN0002-9173
1943-7722
1943-7722
DOI10.1093/ajcp/aqab076

Cover

Abstract Abstract Objectives Automated classification of flow cytometry data has the potential to reduce errors and accelerate flow cytometry interpretation. We desired a machine learning approach that is accurate, is intuitively easy to understand, and highlights the cells that are most important in the algorithm’s prediction for a given case. Methods We developed an ensemble of convolutional neural networks for classification and visualization of impactful cell populations in detecting classic Hodgkin lymphoma using two-dimensional (2D) histograms. Data from 977 and 245 clinical flow cytometry cases were used for training and testing, respectively. Seventy-eight nongated 2D histograms were created per flow cytometry file. Shapley additive explanation (SHAP) values were calculated to determine the most impactful 2D histograms and regions within histograms. SHAP values from all 78 histograms were then projected back to the original cell data for gating and visualization using standard flow cytometry software. Results The algorithm achieved 67.7% recall (sensitivity), 82.4% precision, and 0.92 area under the receiver operating characteristic. Visualization of the important cell populations for individual predictions demonstrated correlations with known biology. Conclusions The method presented enables model explainability while highlighting important cell populations in individual flow cytometry specimens, with potential applications in both diagnosis and discovery of previously overlooked key cell populations.
AbstractList Objectives Automated classification of flow cytometry data has the potential to reduce errors and accelerate flow cytometry interpretation. We desired a machine learning approach that is accurate, is intuitively easy to understand, and highlights the cells that are most important in the algorithm’s prediction for a given case. Methods We developed an ensemble of convolutional neural networks for classification and visualization of impactful cell populations in detecting classic Hodgkin lymphoma using two-dimensional (2D) histograms. Data from 977 and 245 clinical flow cytometry cases were used for training and testing, respectively. Seventy-eight nongated 2D histograms were created per flow cytometry file. Shapley additive explanation (SHAP) values were calculated to determine the most impactful 2D histograms and regions within histograms. SHAP values from all 78 histograms were then projected back to the original cell data for gating and visualization using standard flow cytometry software. Results The algorithm achieved 67.7% recall (sensitivity), 82.4% precision, and 0.92 area under the receiver operating characteristic. Visualization of the important cell populations for individual predictions demonstrated correlations with known biology. Conclusions The method presented enables model explainability while highlighting important cell populations in individual flow cytometry specimens, with potential applications in both diagnosis and discovery of previously overlooked key cell populations.
Automated classification of flow cytometry data has the potential to reduce errors and accelerate flow cytometry interpretation. We desired a machine learning approach that is accurate, is intuitively easy to understand, and highlights the cells that are most important in the algorithm's prediction for a given case.OBJECTIVESAutomated classification of flow cytometry data has the potential to reduce errors and accelerate flow cytometry interpretation. We desired a machine learning approach that is accurate, is intuitively easy to understand, and highlights the cells that are most important in the algorithm's prediction for a given case.We developed an ensemble of convolutional neural networks for classification and visualization of impactful cell populations in detecting classic Hodgkin lymphoma using two-dimensional (2D) histograms. Data from 977 and 245 clinical flow cytometry cases were used for training and testing, respectively. Seventy-eight nongated 2D histograms were created per flow cytometry file. Shapley additive explanation (SHAP) values were calculated to determine the most impactful 2D histograms and regions within histograms. SHAP values from all 78 histograms were then projected back to the original cell data for gating and visualization using standard flow cytometry software.METHODSWe developed an ensemble of convolutional neural networks for classification and visualization of impactful cell populations in detecting classic Hodgkin lymphoma using two-dimensional (2D) histograms. Data from 977 and 245 clinical flow cytometry cases were used for training and testing, respectively. Seventy-eight nongated 2D histograms were created per flow cytometry file. Shapley additive explanation (SHAP) values were calculated to determine the most impactful 2D histograms and regions within histograms. SHAP values from all 78 histograms were then projected back to the original cell data for gating and visualization using standard flow cytometry software.The algorithm achieved 67.7% recall (sensitivity), 82.4% precision, and 0.92 area under the receiver operating characteristic. Visualization of the important cell populations for individual predictions demonstrated correlations with known biology.RESULTSThe algorithm achieved 67.7% recall (sensitivity), 82.4% precision, and 0.92 area under the receiver operating characteristic. Visualization of the important cell populations for individual predictions demonstrated correlations with known biology.The method presented enables model explainability while highlighting important cell populations in individual flow cytometry specimens, with potential applications in both diagnosis and discovery of previously overlooked key cell populations.CONCLUSIONSThe method presented enables model explainability while highlighting important cell populations in individual flow cytometry specimens, with potential applications in both diagnosis and discovery of previously overlooked key cell populations.
Automated classification of flow cytometry data has the potential to reduce errors and accelerate flow cytometry interpretation. We desired a machine learning approach that is accurate, is intuitively easy to understand, and highlights the cells that are most important in the algorithm's prediction for a given case. We developed an ensemble of convolutional neural networks for classification and visualization of impactful cell populations in detecting classic Hodgkin lymphoma using two-dimensional (2D) histograms. Data from 977 and 245 clinical flow cytometry cases were used for training and testing, respectively. Seventy-eight nongated 2D histograms were created per flow cytometry file. Shapley additive explanation (SHAP) values were calculated to determine the most impactful 2D histograms and regions within histograms. SHAP values from all 78 histograms were then projected back to the original cell data for gating and visualization using standard flow cytometry software. The algorithm achieved 67.7% recall (sensitivity), 82.4% precision, and 0.92 area under the receiver operating characteristic. Visualization of the important cell populations for individual predictions demonstrated correlations with known biology. The method presented enables model explainability while highlighting important cell populations in individual flow cytometry specimens, with potential applications in both diagnosis and discovery of previously overlooked key cell populations.
Objectives: Automated classification of flow cytometry data has the potential to reduce errors and accelerate flow cytometry interpretation. We desired a machine learning approach that is accurate, is intuitively easy to understand, and highlights the cells that are most important in the algorithm's prediction for a given case. Methods: We developed an ensemble of convolutional neural networks for classification and visualization of impactful cell populations in detecting classic Hodgkin lymphoma using two-dimensional (2D) histograms. Data from 977 and 245 clinical flow cytometry cases were used for training and testing, respectively. Seventy-eight nongated 2D histograms were created per flow cytometry file. Shapley additive explanation (SHAP) values were calculated to determine the most impactful 2D histograms and regions within histograms. SHAP values from all 78 histograms were then projected back to the original cell data for gating and visualization using standard flow cytometry software. Results: The algorithm achieved 67.7% recall (sensitivity), 82.4% precision, and 0.92 area under the receiver operating characteristic. Visualization of the important cell populations for individual predictions demonstrated correlations with known biology. Conclusions: The method presented enables model explainability while highlighting important cell populations in individual flow cytometry specimens, with potential applications in both diagnosis and discovery of previously overlooked key cell populations. Key Words: Flow cytometry; Machine learning; Hodgkin lymphoma; Convolutional neural network; CNN; Random forest; Ensemble classifier; SHAP; Explainability; Explainable artificial intelligence
Abstract Objectives Automated classification of flow cytometry data has the potential to reduce errors and accelerate flow cytometry interpretation. We desired a machine learning approach that is accurate, is intuitively easy to understand, and highlights the cells that are most important in the algorithm’s prediction for a given case. Methods We developed an ensemble of convolutional neural networks for classification and visualization of impactful cell populations in detecting classic Hodgkin lymphoma using two-dimensional (2D) histograms. Data from 977 and 245 clinical flow cytometry cases were used for training and testing, respectively. Seventy-eight nongated 2D histograms were created per flow cytometry file. Shapley additive explanation (SHAP) values were calculated to determine the most impactful 2D histograms and regions within histograms. SHAP values from all 78 histograms were then projected back to the original cell data for gating and visualization using standard flow cytometry software. Results The algorithm achieved 67.7% recall (sensitivity), 82.4% precision, and 0.92 area under the receiver operating characteristic. Visualization of the important cell populations for individual predictions demonstrated correlations with known biology. Conclusions The method presented enables model explainability while highlighting important cell populations in individual flow cytometry specimens, with potential applications in both diagnosis and discovery of previously overlooked key cell populations.
Audience Professional
Academic
Author Simonson, Paul D
Lee, Aaron Y
Fromm, Jonathan R
Wu, Yue
Wu, David
AuthorAffiliation 2 Department of Ophthalmology, University of Washington , Seattle, WA , USA
3 Department of Laboratory Medicine and Pathology, University of Washington , Seattle, WA , USA
1 Department of Pathology and Laboratory Medicine, Weill Cornell Medicine , New York, NY , USA
AuthorAffiliation_xml – name: 2 Department of Ophthalmology, University of Washington , Seattle, WA , USA
– name: 3 Department of Laboratory Medicine and Pathology, University of Washington , Seattle, WA , USA
– name: 1 Department of Pathology and Laboratory Medicine, Weill Cornell Medicine , New York, NY , USA
Author_xml – sequence: 1
  givenname: Paul D
  orcidid: 0000-0001-6237-6861
  surname: Simonson
  fullname: Simonson, Paul D
  email: pds9003@med.cornell.edu
  organization: Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
– sequence: 2
  givenname: Yue
  surname: Wu
  fullname: Wu, Yue
  organization: Department of Ophthalmology, University of Washington, Seattle, WA, USA
– sequence: 3
  givenname: David
  surname: Wu
  fullname: Wu, David
  organization: Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
– sequence: 4
  givenname: Jonathan R
  surname: Fromm
  fullname: Fromm, Jonathan R
  organization: Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
– sequence: 5
  givenname: Aaron Y
  surname: Lee
  fullname: Lee, Aaron Y
  organization: Department of Ophthalmology, University of Washington, Seattle, WA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34175918$$D View this record in MEDLINE/PubMed
BookMark eNqFkktv1DAURi1URKeFHWtkiQUsSOtHMo43SFWgdKThsShsLcd2Zjw4dhonrYb_wH_G84DSioeyiHR97mfd43sEDnzwBoCnGJ1gxOmpXKnuVF7JGrHpAzDBPKcZY4QcgAlCiGQcM3oIjmJcIYRJifJH4JDmmBUclxPw_Y2BH8J1gDNt_GAbq-Rgg4fSa_jFxlE6-21XCQ2ctV3oB-kHWBnn4KfQjW57GGETelg5GaNV8CLoxVfr4XzddsvQSvg5Wr-A5y7cwGo9hNYM_Xp7w3upltYbODey94l5DB420kXzZP8_Bpfnby-ri2z-8d2sOptnqsB4yGo6zXVJFOM1IqjJCaNNKqmaUlYYmlPNa24ILhqEJNNSYppG14RrbBDX9Bhku9jRd3J9I50TXW9b2a8FRmJjVWysir3VxL_e8d1Yt0arZKqXtz1BWnH3xNulWIRrURaMTlmeAl7uA_pwNZo4iNZGlRxKb8IYBSnygvMyZyyhz--hqzD2PtkQpCS0pAwzckstpDPC-iake9UmVJwxhKfp4VGRqJM_UOnTprUqrVFjU_1Ow7PfB_014c99SQDZAaoPMfamEcoO2xVIydb9Td-re03_sf1ih4ex-zf5A2t98ro
CitedBy_id crossref_primary_10_1177_00045632231154782
crossref_primary_10_3390_cancers16223855
crossref_primary_10_1515_cclm_2023_1037
crossref_primary_10_1002_cyto_b_22166
crossref_primary_10_1002_cyto_b_22177
crossref_primary_10_3390_diagnostics14040420
crossref_primary_10_1016_j_ijmedinf_2024_105689
crossref_primary_10_1016_j_cll_2023_04_009
crossref_primary_10_3390_cancers17030483
crossref_primary_10_1053_j_semdp_2023_02_004
crossref_primary_10_1007_s00428_024_03819_3
crossref_primary_10_1002_cyto_b_22229
crossref_primary_10_1016_j_modpat_2023_100373
Cites_doi 10.1097/CCO.0000000000000607
10.1145/2786984.2786995
10.1002/1097-0142(20010225)93:1<52::AID-CNCR9007>3.0.CO;2-3
10.1309/AJCP0Q1SVOXBHMAM
10.1002/cyto.b.20407
10.1309/AJCPW3UN9DYLDSPB
10.1093/ajcp/aqaa166
10.1007/s10115-013-0679-x
10.1109/MCSE.2007.55
10.1145/2939672.2939778
10.1109/MCSE.2007.58
10.1016/j.ypat.2011.11.026
10.1002/cyto.a.20825
10.1109/MCSE.2011.37
10.11120/msor.2001.01010023
10.1093/bioinformatics/btw570
10.1002/cyto.b.20376
10.1309/7371XK6F6P7474XX
10.3322/caac.21387
10.1309/AJCPY8E2LYHCGUFP
10.1002/cyto.b.20459
10.1038/nmeth.2365
10.1038/s41551-018-0304-0
10.1002/cyto.a.24159
10.1016/j.ebiom.2018.10.042
10.1002/cyto.b.20535
ContentType Journal Article
Copyright The Author(s) 2021. Published by Oxford University Press on behalf of American Society for Clinical Pathology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2021
American Society for Clinical Pathology, 2021. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
COPYRIGHT 2021 Oxford University Press
The Author(s) 2021. Published by Oxford University Press on behalf of American Society for Clinical Pathology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
American Society for Clinical Pathology, 2021. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2021
Copyright_xml – notice: The Author(s) 2021. Published by Oxford University Press on behalf of American Society for Clinical Pathology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2021
– notice: American Society for Clinical Pathology, 2021. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
– notice: COPYRIGHT 2021 Oxford University Press
– notice: The Author(s) 2021. Published by Oxford University Press on behalf of American Society for Clinical Pathology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
– notice: American Society for Clinical Pathology, 2021. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
LK8
M0S
M1P
M7P
NAPCQ
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
7X8
5PM
ADTOC
UNPAY
DOI 10.1093/ajcp/aqab076
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest Central Student
MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1943-7722
EndPage 1102
ExternalDocumentID oai:pubmedcentral.nih.gov:8573674
PMC8573674
A701600205
34175918
10_1093_ajcp_aqab076
10.1093/ajcp/aqab076
Genre Journal Article
GrantInformation_xml – fundername: NEI NIH HHS
  grantid: K23EY029246
– fundername: ;
– fundername: ;
  grantid: K23EY029246
GroupedDBID ---
.55
.GJ
0R~
1CY
1KJ
1TH
23M
2WC
3O-
4.4
48X
53G
5GY
5RE
5WD
6J9
7RV
7X7
88E
8FE
8FH
8FI
8FJ
AABZA
AACZT
AAIMJ
AAJQQ
AAMDB
AAMVS
AAPGJ
AAPQZ
AAPXW
AAQOH
AAQQT
AARHZ
AAUAY
AAUQX
AAVAP
AAWDT
AAWTL
ABCQX
ABDFA
ABDPE
ABEJV
ABEUO
ABGNP
ABIXL
ABJNI
ABLJU
ABMNT
ABNHQ
ABPPZ
ABPQP
ABPTD
ABQNK
ABSMQ
ABUWG
ABVGC
ABWST
ABXVV
ABXZS
ACBNA
ACFRR
ACGFO
ACGFS
ACPRK
ACUFI
ACUTJ
ACVCV
ACYHN
ACZBC
ADBBV
ADFRT
ADGKP
ADGZP
ADHKW
ADIPN
ADMTO
ADNBA
ADQBN
ADRTK
ADVEK
AELWJ
AEMDU
AEMQT
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFFQV
AFFZL
AFGWE
AFIYH
AFKRA
AFOFC
AFXAL
AFYAG
AGINJ
AGKRT
AGMDO
AGQXC
AGSYK
AGUTN
AHMBA
AHMMS
AI.
AJDVS
AJEEA
AJNCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
APIBT
APJGH
AQDSO
AQKUS
ARIXL
ATGXG
AVNTJ
AVWKF
AYOIW
BAWUL
BAYMD
BBNVY
BCRHZ
BENPR
BEYMZ
BHONS
BHPHI
BKEYQ
BPHCQ
BQDIO
BSWAC
BTRTY
BVRKM
BVXVI
BZKNY
C45
CCPQU
CDBKE
CS3
DAKXR
DIK
DILTD
E3Z
EBS
EIHJH
EJD
EMB
EMOBN
ENERS
EX3
F5P
FECEO
FHSFR
FLUFQ
FOEOM
FOTVD
FQBLK
FYUFA
GAUVT
GJXCC
GX1
H13
HCIFZ
HMCUK
IAO
IH2
IHR
INH
ITC
J21
J5H
JXSIZ
KBUDW
KOP
KQ8
KSI
KSN
L7B
LID
LK8
LSO
M1P
M7P
MBLQV
MHKGH
N4W
NAPCQ
NLBLG
NOMLY
NOYVH
NVLIB
O9-
OAUYM
OAWHX
OBFPC
OBOKY
OCZFY
ODMLO
OHT
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
P2P
P6G
PAFKI
PEELM
PHGZT
PQQKQ
PROAC
PSQYO
ROX
ROZ
RUSNO
SJN
SV3
TEORI
TJX
TLC
TMA
TPV
TR2
TWZ
UDS
UKHRP
VH1
W8F
WH7
WOW
X7M
YAYTL
YKOAZ
YQI
YQJ
YXANX
ZGI
ZXP
AAYXX
AHGBF
AJBYB
CITATION
NU-
PHGZM
PJZUB
PPXIY
PQGLB
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQUKI
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c511t-b364d82c79b020f4273f364cb3375e343d9b9e215f00a7daa13012d29d1e09d3
IEDL.DBID UNPAY
ISSN 0002-9173
1943-7722
IngestDate Sun Oct 26 04:14:30 EDT 2025
Tue Sep 30 16:45:56 EDT 2025
Sun Sep 28 01:12:11 EDT 2025
Tue Oct 07 05:57:55 EDT 2025
Mon Oct 20 22:13:58 EDT 2025
Mon Oct 20 16:01:30 EDT 2025
Thu Apr 03 07:00:58 EDT 2025
Wed Oct 01 03:44:37 EDT 2025
Thu Apr 24 23:11:07 EDT 2025
Wed Apr 02 07:10:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Flow cytometry
CNN
SHAP
Convolutional neural network
Machine learning
Explainable artificial intelligence
Random forest
Explainability
Ensemble classifier
Hodgkin lymphoma
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/pages/standard-publication-reuse-rights)
https://academic.oup.com/pages/standard-publication-reuse-rights
American Society for Clinical Pathology, 2021. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c511t-b364d82c79b020f4273f364cb3375e343d9b9e215f00a7daa13012d29d1e09d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Senior authors.
ORCID 0000-0001-6237-6861
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/8573674
PMID 34175918
PQID 2823837172
PQPubID 586299
PageCount 11
ParticipantIDs unpaywall_primary_10_1093_ajcp_aqab076
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8573674
proquest_miscellaneous_2545998477
proquest_journals_2823837172
gale_infotracmisc_A701600205
gale_infotracacademiconefile_A701600205
pubmed_primary_34175918
crossref_citationtrail_10_1093_ajcp_aqab076
crossref_primary_10_1093_ajcp_aqab076
oup_primary_10_1093_ajcp_aqab076
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace US
PublicationPlace_xml – name: US
– name: England
– name: Chicago
PublicationTitle American journal of clinical pathology
PublicationTitleAlternate Am J Clin Pathol
PublicationYear 2021
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Chhieng (2023020912513763900_CIT0003) 2001; 93
Hudnall (2023020912513763900_CIT0034) 2008; 74
Varoquaux (2023020912513763900_CIT0017) 2015; 19
Ripley (2023020912513763900_CIT0025) 2001; 1
Fromm (2023020912513763900_CIT0005) 2006; 126
Lundberg (2023020912513763900_CIT0012) 2019
Waskom (2023020912513763900_CIT0021) 2020
Ko (2023020912513763900_CIT0030) 2018; 37
Spidlen (2023020912513763900_CIT0028) 2010; 77
Ribeiro (2023020912513763900_CIT0010)
Fromm (2023020912513763900_CIT0006) 2009; 131
Zhao (2023020912513763900_CIT0031) 2020; 97
Pedregosa (2023020912513763900_CIT0024) 2011; 12
Lundberg (2023020912513763900_CIT0013) 2018; 2
Ng (2023020912513763900_CIT0029) 2021;155:597-605
Abadi (2023020912513763900_CIT0018) 2016
Duetz (2023020912513763900_CIT0032) 2020;32:162-169
Bosler (2023020912513763900_CIT0035) 2008; 74
Aghaeepour (2023020912513763900_CIT0009) 2013; 10
Hunter (2023020912513763900_CIT0020) 2007; 9
Fromm (2023020912513763900_CIT0007) 2014; 141
Campo (2023020912513763900_CIT0001) 2017
Fromm (2023020912513763900_CIT0036) 2010; 78
Yurtsev (2023020912513763900_CIT0016)
Seegmiller (2023020912513763900_CIT0033) 2009; 76
Štrumbelj (2023020912513763900_CIT0014) 2014; 41
2023020912513763900_CIT0026
Chollet (2023020912513763900_CIT0019) 2018
Saito (2023020912513763900_CIT0027) 2017; 33
Lundberg (2023020912513763900_CIT0011) 2017
Ng (2023020912513763900_CIT0008) 2015; 144
van der Walt (2023020912513763900_CIT0022) 2011; 13
Reback (2023020912513763900_CIT0023) 2020
Siegel (2023020912513763900_CIT0002) 2017; 67
Raab (2023020912513763900_CIT0004) 2012; 2012
Oliphant (2023020912513763900_CIT0015) 2007; 9
References_xml – year: 2020;32:162-169
  ident: 2023020912513763900_CIT0032
  article-title: Computational analysis of flow cytometry data in hematological malignancies: future clinical practice?
  publication-title: Curr Opin Oncol.
  doi: 10.1097/CCO.0000000000000607
– volume: 19
  start-page: 29
  year: 2015
  ident: 2023020912513763900_CIT0017
  article-title: Scikit-learn
  publication-title: GetMobile.
  doi: 10.1145/2786984.2786995
– volume: 93
  start-page: 52
  year: 2001
  ident: 2023020912513763900_CIT0003
  article-title: Fine-needle aspiration cytology of Hodgkin disease: a study of 89 cases with emphasis on false-negative cases
  publication-title: Cancer.
  doi: 10.1002/1097-0142(20010225)93:1<52::AID-CNCR9007>3.0.CO;2-3
– volume: 141
  start-page: 388
  year: 2014
  ident: 2023020912513763900_CIT0007
  article-title: A six-color flow cytometry assay for immunophenotyping classical Hodgkin lymphoma in lymph nodes
  publication-title: Am J Clin Pathol.
  doi: 10.1309/AJCP0Q1SVOXBHMAM
– volume: 74
  start-page: 227
  year: 2008
  ident: 2023020912513763900_CIT0035
  article-title: Detection of T-regulatory cells has a potential role in the diagnosis of classical Hodgkin lymphoma
  publication-title: Cytometry B Clin Cytom.
  doi: 10.1002/cyto.b.20407
– volume: 131
  start-page: 322
  year: 2009
  ident: 2023020912513763900_CIT0006
  article-title: Flow cytometry can diagnose classical Hodgkin lymphoma in lymph nodes with high sensitivity and specificity
  publication-title: Am J Clin Pathol.
  doi: 10.1309/AJCPW3UN9DYLDSPB
– year: 2021;155:597-605
  ident: 2023020912513763900_CIT0029
  article-title: Augmented human intelligence and automated diagnosis in flow cytometry for hematologic malignancies
  publication-title: Am J Clin Pathol.
  doi: 10.1093/ajcp/aqaa166
– volume: 41
  start-page: 647
  year: 2014
  ident: 2023020912513763900_CIT0014
  article-title: Explaining prediction models and individual predictions with feature contributions
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-013-0679-x
– year: 2020
  ident: 2023020912513763900_CIT0021
– volume: 9
  start-page: 90
  year: 2007
  ident: 2023020912513763900_CIT0020
  article-title: Matplotlib: a 2D graphics environment
  publication-title: Comput Sci Eng
  doi: 10.1109/MCSE.2007.55
– ident: 2023020912513763900_CIT0010
  article-title: “Why should I trust you?”: explaining the predictions of any classifier
  doi: 10.1145/2939672.2939778
– volume: 9
  start-page: 10
  year: 2007
  ident: 2023020912513763900_CIT0015
  article-title: Python for scientific computing
  publication-title: Comput Sci Eng
  doi: 10.1109/MCSE.2007.58
– volume: 2012
  start-page: 245
  year: 2012
  ident: 2023020912513763900_CIT0004
  article-title: Combined core needle biopsy and fine-needle aspiration with ancillary studies correlate highly with traditional techniques in the diagnosis of nodal-based lymphoma
  publication-title: Yearbook Pathol Lab Med
  doi: 10.1016/j.ypat.2011.11.026
– volume: 12
  start-page: 2825
  year: 2011
  ident: 2023020912513763900_CIT0024
  article-title: Scikit-learn: machine learning in Python
  publication-title: J Mach Learn Res.
– year: 2017
  ident: 2023020912513763900_CIT0011
– ident: 2023020912513763900_CIT0026
– volume: 77
  start-page: 97
  year: 2010
  ident: 2023020912513763900_CIT0028
  article-title: Data file standard for flow cytometry, version FCS 3.1
  publication-title: Cytometry A.
  doi: 10.1002/cyto.a.20825
– volume: 13
  start-page: 22
  year: 2011
  ident: 2023020912513763900_CIT0022
  article-title: The NumPy array: a structure for efficient numerical computation
  publication-title: Comput Sci Eng.
  doi: 10.1109/MCSE.2011.37
– volume: 1
  start-page: 23
  year: 2001
  ident: 2023020912513763900_CIT0025
  article-title: The R project in statistical computing
  publication-title: MSOR Connect.
  doi: 10.11120/msor.2001.01010023
– volume: 33
  start-page: 145
  year: 2017
  ident: 2023020912513763900_CIT0027
  article-title: Precrec: fast and accurate precision-recall and ROC curve calculations in R
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btw570
– volume: 74
  start-page: 1
  year: 2008
  ident: 2023020912513763900_CIT0034
  article-title: Comparative flow immunophenotypic features of the inflammatory infiltrates of Hodgkin lymphoma and lymphoid hyperplasia
  publication-title: Cytometry B Clin Cytom.
  doi: 10.1002/cyto.b.20376
– volume: 126
  start-page: 764
  year: 2006
  ident: 2023020912513763900_CIT0005
  article-title: Identification and purification of classical Hodgkin cells from lymph nodes by flow cytometry and flow cytometric cell sorting
  publication-title: Am J Clin Pathol.
  doi: 10.1309/7371XK6F6P7474XX
– year: 2019
  ident: 2023020912513763900_CIT0012
  article-title: Explainable AI for trees: from local explanations to global understanding
– volume: 67
  start-page: 7
  year: 2017
  ident: 2023020912513763900_CIT0002
  article-title: Cancer statistics, 2017
  publication-title: CA Cancer J Clin.
  doi: 10.3322/caac.21387
– volume: 144
  start-page: 517
  year: 2015
  ident: 2023020912513763900_CIT0008
  article-title: Computer-aided detection of rare tumor populations in flow cytometry: an example with classic Hodgkin lymphoma
  publication-title: Am J Clin Pathol.
  doi: 10.1309/AJCPY8E2LYHCGUFP
– volume: 76
  start-page: 169
  year: 2009
  ident: 2023020912513763900_CIT0033
  article-title: Overexpression of CD7 in classical Hodgkin lymphoma-infiltrating T lymphocytes
  publication-title: Cytometry B Clin Cytom.
  doi: 10.1002/cyto.b.20459
– volume: 10
  start-page: 228
  year: 2013
  ident: 2023020912513763900_CIT0009
  article-title: Critical assessment of automated flow cytometry data analysis techniques
  publication-title: Nat Methods.
  doi: 10.1038/nmeth.2365
– volume-title: WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues.
  year: 2017
  ident: 2023020912513763900_CIT0001
– volume-title: Deep Learning With Python.
  year: 2018
  ident: 2023020912513763900_CIT0019
– volume: 2
  start-page: 749
  year: 2018
  ident: 2023020912513763900_CIT0013
  article-title: Explainable machine-learning predictions for the prevention of hypoxaemia during surgery
  publication-title: Nat Biomed Eng.
  doi: 10.1038/s41551-018-0304-0
– ident: 2023020912513763900_CIT0016
– volume: 97
  start-page: 1073
  year: 2020
  ident: 2023020912513763900_CIT0031
  article-title: Hematologist-level classification of mature B-cell neoplasm using deep learning on multiparameter flow cytometry data
  publication-title: . Cytometry A.
  doi: 10.1002/cyto.a.24159
– start-page: 265
  year: 2016
  ident: 2023020912513763900_CIT0018
  article-title: TensorFlow: a system for large-scale machine learning.
– volume: 37
  start-page: 91
  year: 2018
  ident: 2023020912513763900_CIT0030
  article-title: Clinically validated machine learning algorithm for detecting residual diseases with multicolor flow cytometry analysis in acute myeloid leukemia and myelodysplastic syndrome
  publication-title: Ebiomedicine.
  doi: 10.1016/j.ebiom.2018.10.042
– year: 2020
  ident: 2023020912513763900_CIT0023
– volume: 78
  start-page: 387
  year: 2010
  ident: 2023020912513763900_CIT0036
  article-title: Increased expression of T cell antigens on T cells in classical Hodgkin lymphoma
  publication-title: Cytometry B Clin Cytom.
  doi: 10.1002/cyto.b.20535
SSID ssj0012804
Score 2.4339006
Snippet Abstract Objectives Automated classification of flow cytometry data has the potential to reduce errors and accelerate flow cytometry interpretation. We desired...
Automated classification of flow cytometry data has the potential to reduce errors and accelerate flow cytometry interpretation. We desired a machine learning...
Objectives: Automated classification of flow cytometry data has the potential to reduce errors and accelerate flow cytometry interpretation. We desired a...
Objectives Automated classification of flow cytometry data has the potential to reduce errors and accelerate flow cytometry interpretation. We desired a...
SourceID unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1092
SubjectTerms Algorithms
Analysis
Artificial intelligence
Flow Cytometry
Hodgkin Disease - diagnosis
Hodgkin's lymphoma
Humans
Learning algorithms
Lymphoma
Lymphomas
Machine Learning
Neural networks
Neural Networks, Computer
Original
Visualization
Visualization (Computers)
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwED-NTny8IBiMBQoyEh8PKGoaJ3HygNAoqwqi1YQG2ltkO84oS5NuTZnyR_A_c06c0AoxXuNT7MTn8-_su98BvBimImSpQicH4aftScRwXDLH9gPGeYgAltblgKazYPLV-3Tqn-7ArM2F0WGVrU2sDXVSSH1GPkDXQDtTuN--W17YumqUvl1tS2hwU1oheVtTjN2AXVczY_Vg9_3R7PhLd6_gho7XAmJ0VKgJhUe3fsB_yOWAX3DhaP6RjU3KmOqt_LcNGPp3NOXtdb7k1RXPso2tanwP7hqMSQ4bpbgPOyrfg5tN1clqD25NzX36A_j1QZFZ8bMgTb5uag7wCM8T8m2-0gmXTZomKVLycVFj9bwkI5Vl5Lgr_bUiiHxJXV5zLsmkSM7O5zn5XKGiFAtO6qgEMs6KKzKqymKhysuq7mFaB3IqYjhezx7CyfjoZDSxTYEGWyJOK21BAy8JXckigagz9RAKpfhICkqZr6hHk0hECkFF6jicJZzjhjl0EzdKhsqJEroPvbzI1QEQqmjAhfAQ3yg03VEkuMupCgIRIp7hzII37YTE0pCX6xoaWdxcotNYT19sps-Cl530siHt-Ifcaz23sV7L-DbJTUoCjkmzYsWHTPPv4af5FvS3JHENyq1mgtrxn776rerExkys4j9KbcHzrlm_XIe-5apYowxiXPSJPYY_4VGjaV1HCEGYHw1DC9iWDnYCmjx8uyWff69JxEOf0YB5FrzqtPXa8T--fvxP4I6ro33qQJ8-9MrLtXqKcK0Uz8wa_A3ofUEo
  priority: 102
  providerName: ProQuest
Title De Novo Identification and Visualization of Important Cell Populations for Classic Hodgkin Lymphoma Using Flow Cytometry and Machine Learning
URI https://www.ncbi.nlm.nih.gov/pubmed/34175918
https://www.proquest.com/docview/2823837172
https://www.proquest.com/docview/2545998477
https://pubmed.ncbi.nlm.nih.gov/PMC8573674
https://www.ncbi.nlm.nih.gov/pmc/articles/8573674
UnpaywallVersion submittedVersion
Volume 156
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1943-7722
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012804
  issn: 1943-7722
  databaseCode: KQ8
  dateStart: 19310101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1943-7722
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0012804
  issn: 1943-7722
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1943-7722
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0012804
  issn: 1943-7722
  databaseCode: GX1
  dateStart: 19310101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1943-7722
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0012804
  issn: 1943-7722
  databaseCode: 7X7
  dateStart: 20110501
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1943-7722
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0012804
  issn: 1943-7722
  databaseCode: BENPR
  dateStart: 20110501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zj9MwEB7ttuJ44ViuQqmMxPGAesVJ3DyW7lZdoFW12kXlKbIdZymbJmWbsir_gf_MOHGiFsT1mHgUx-1n-5v4mxmA591Q9Fio0MlB-tm0JXI4Llmn6biM8x4SWJqVAxpP3NGZ_XbmzPagW8TCZKJ9KeatOFq04vmnTFu5XMh2oRNr9xxGXWbvQ9V1kH5XoHo2mfY_FjTXy0-V0TenmjlaRuyOjnubf5bLNv_CRUdnGNnahsxivBPhtkU0f9VL3ljHS7654lG0tRkNb8NJMYxcg3LRWqeiJb_9lOHxv8Z5B24Zakr6edNd2FPxAVzLi1VuDuD62BzD34Pvh4pMkq8JycN8Q_Pdj_A4IB_mKx2nmUd3kiQkx4uM4scpGagoItOyYtiKIGEmWVXOuSSjJDi_mMfk_QbxlSw4ycQMZBglV2SwSZOFSi83WQ_jTP-piEkNe34fTodHp4NR09R1aEqkd2lTUNcOepZknkCyGtrIoEK8JQWlzFHUpoEnPIVcJOx0OAs4x322awWWF3RVxwvoA6jESaweAaGKulwIG2mRwhXf8wS3OFWuK3pIgzirweviX_alyXmuS29Efn72Tn2NCd9gogYvSutlnuvjN3avNGB8vQTg0yQ3kQz4TjqZlt9nOm0fDs2pQX3HEqeu3GkmCLm_9FUv8Oib1WXlo5usPywg96zBs7JZP1wr5mKVrNEGqTG60jbDH-FhDt-yI2QuzPG6vRqwHWCXBjrn-G4LQjTLPW5QWYOX5RT44_s__lfDJ3DT0nKhTClUh0p6uVZPke-logH7bMYaUH1zNJme4NXh8buGmfU_AFupWx8
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELfGJhgvCMa_QAEjMXhAUdPYiZOHCY1uVcvaakJl2ltkJ84opEm3plT5EHwkvhvnxAmtEONpr_HJdnLnu9_F9wehN51YeCyW4OQA_DRpCBiOh8wyHZdx7gGAJWU7oNHY7X-hn86d8y30q86FUWGVtU4sFXWUheofeRtcA-VMgb39ML80Vdcodbtat9DgurVCdFCWGNOJHSeyWIELtzgYHAG_9227dzzp9k3dZcAMAWzkpiAujTw7ZL4A6BRTsOcxPAoFIcyRhJLIF74EyxhbFmcR56D1O3Zk-1FHWn5EYNpbaIcS6oPvt_PxeHz6ubnGsD2L1vgb_CKiI-8tn7T5t3De5pdcWKrcyZpN1JZhI91uDfX-Hby5u0znvFjxJFmzjL376J6GtPiwksEHaEume-h21eSy2EN3Rvr6_iH6eSTxOPuR4So9ONb_CzFPI3w2Xaj8ziorFGcxHsxK1yDNcVcmCT5tOo0tMABtXHbznIa4n0UX36cpHhYgl9mM4zIIAveSbIW7RZ7NZH5VlCuMyrhRiXVJ2YtHaHITnHqMttMslU8RJpK4XAgKcEqCpfB9wW1OpOsKD-ATZwZ6XzMkCHWtdNWyIwmqO3sSKPYFmn0G2m-o51WNkH_QvVO8DZTqgNlCrjMgYE-qCFdwyFS5P3g1x0CtDUo48uHGMAbp-M9arVp0Aq2VFsGfM2Sg182wmlxF2qUyWwINQGpwwSmDj_CkkrRmIUA8zPE7noHYhgw2BKpW-eZIOv1a1iz3HEZcRg30tpHWa_f_7Pr9v0K7_cloGAwH45Pn6K6tAo3KGKMW2s6vlvIFIMVcvNTnEaPghjXAb0P0fCI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4aQwxeEIxboICRGDygqGmcxMkDQlNLtbK12sNAfYscxxmFNOnWlCo_gh_Ev-M4cUIrxHjaa2zZTs7tO_G5ALzuJZHPEolODsJP0xGI4bhglul6jHMfASyt2gGNJ97RZ-fT1J3uwK8mF0aFVTY6sVLUcS7UP_IuugbKmUJ72010WMTpYPhhcWGqDlLqprVpp1GzyLEs1-i-Ld-PBkjrA9sefjzrH5m6w4ApEGgUZkQ9J_ZtwYIIYVPioC1P8JGIKGWupA6NgyiQaBUTy-Is5hw1fs-O7SDuSSuIKS57A24ySgMVTcimra-HWt9yGuSNHhHVMfdWQLv8m1h0-QWPLFXoZMMaapuwlWi3gXf_Dtu8vcoWvFzzNN2wicN7cFeDWXJYc9992JHZPtyq21uW-7A31hf3D-DnQJJJ_iMndWJwov8UEp7F5MtsqTI763xQkidkNK-cgqwgfZmm5LTtMbYkCLFJ1cdzJshRHp9_n2XkpESOzOecVOEPZJjma9Ivi3wui8uy2mFcRYxKoovJnj-Es-ug0yPYzfJMPgFCJfV4FDkIpCTaiCCIuM2p9LzIR-DEmQHvGoKEQldJV8060rC-raehIl-oyWfAQTt7UVcH-ce8t4q2oVIauJrgOvcBz6TKb4WHTBX6w1dzDehszURhF1vDBLnjP3t1GtYJtT5ahn-kx4BX7bBaXMXYZTJf4RwE0-h8Oww_wuOa09qNEOswN-j5BrAtHmwnqCrl2yPZ7GtVrdx3GfWYY8CblluvPP_Tq8__EvZQ7sOT0eT4GdyxVYRRFVzUgd3iciWfI0QsoheVMBIIr1n4fwPiBnm8
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zj9MwEB4tXXG8cCxXoCAjcTygXnESJ49VoSqIViu0i5anyHacpWyOsk1Zhf_Af2acOFEL4nqNR3GcfLa_ib-ZAXg6ioXPYoVODtLPniORw3HJhj3XY5z7SGBpVQ5ovvBmx87bE_dkD0ZNLEwl2pdi2c-StJ8tP1XaylUqB41ObOC7jHrMuQT7nov0uwP7x4vD8ceG5gb1qTL65lQzR9uI3dFxH_DPcjXgX7gY6gwjW9uQWYx3Ity2iOavesmrm2zFywueJFub0fQGvG-GUWtQzvqbQvTlt58yPP7XOG_CdUNNybhuugV7KjuAy3WxyvIArszNMfxt-P5KkUX-NSd1mG9s_vsRnkXkw3Kt4zTr6E6Sx-RNWlH8rCATlSTksK0YtiZImElVlXMpySyPTs-WGXlXIr7ylJNKzECmSX5BJmWRp6o4L6se5pX-UxGTGvb0DhxNXx9NZj1T16Enkd4VPUE9J_JtyQKBZDV2kEHFeEkKSpmrqEOjQAQKuUg8HHIWcY777MiO7CAaqWEQ0bvQyfJM3QdCFfW4EA7SIoUrfhAIbnOqPE_4SIM4s-Bl85VDaXKe69IbSVifvdNQYyI0mLDgWWu9qnN9_MbuhQZMqJcAvJvkJpIBn0kn0wrHTKftw6G5FnR3LHHqyp1mgpD7S1_dBo-hWV3WIbrJ-scCck8LnrTN-uZaMZepfIM2SI3RlXYYvoR7NXzbjpC5MDcY-RawHWC3Bjrn-G4LQrTKPW5QacHzdgr88fkf_KvhQ7hma7lQpRTqQqc436hHyPcK8djM8B9oEVel
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=De+Novo+Identification+and+Visualization+of+Important+Cell+Populations+for+Classic+Hodgkin+Lymphoma+Using+Flow+Cytometry+and+Machine+Learning&rft.jtitle=American+journal+of+clinical+pathology&rft.au=Simonson%2C+Paul+D&rft.au=Wu%2C+Yue&rft.au=Wu%2C+David&rft.au=Fromm%2C+Jonathan+R&rft.date=2021-12-01&rft.pub=Oxford+University+Press&rft.issn=0002-9173&rft.volume=156&rft.issue=6&rft.spage=1092&rft_id=info:doi/10.1093%2FAJCP%2FAQAB076&rft.externalDocID=A701600205
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-9173&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-9173&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-9173&client=summon