Validation of a natural language processing algorithm using national reporting data to improve identification of anesthesia-related ADVerse evENTs: The “ADVENTURE” study

Reporting and analysis of adverse events (AE) is associated with improved health system learning, quality outcomes, and patient safety. Manual text analysis is time-consuming, costly, and prone to human errors. We aimed to demonstrate the feasibility of novel machine learning and natural language pr...

Full description

Saved in:
Bibliographic Details
Published inAnaesthesia critical care & pain medicine Vol. 43; no. 4; p. 101390
Main Authors Mertes, Paul M, Morgand, Claire, Barach, Paul, Jurkolow, Geoffrey, Assmann, Karen E., Dufetelle, Edouard, Susplugas, Vincent, Alauddin, Bilal, Yavordios, Patrick Georges, Tourres, Jean, Dumeix, Jean-Marc, Capdevila, Xavier
Format Journal Article
LanguageEnglish
Published France Elsevier Masson SAS 01.08.2024
Subjects
Online AccessGet full text
ISSN2352-5568
2352-5568
DOI10.1016/j.accpm.2024.101390

Cover

Abstract Reporting and analysis of adverse events (AE) is associated with improved health system learning, quality outcomes, and patient safety. Manual text analysis is time-consuming, costly, and prone to human errors. We aimed to demonstrate the feasibility of novel machine learning and natural language processing (NLP) approaches for early predictions of adverse events and provide input to direct quality improvement and patient safety initiatives. We used machine learning to analyze 9559 continuously reported AE by clinicians and healthcare systems to the French National Health accreditor (HAS) between January 1, 2009, and December 31, 2020 . We validated the labeling of 135,000 unique de-identified AE reports and determined the associations between different system's root causes and patient consequences. The model was validated by independent expert anesthesiologists. The machine learning (ML) and Artificial Intelligence (AI) model trained on 9559 AE datasets accurately categorized 8800 (88%) of reported AE. The three most frequent AE types were “difficult orotracheal intubation” (16.9% of AE reports), “medication error” (10.5%), and “post-induction hypotension” (6.9%). The accuracy of the AI model reached 70.9% sensitivity, 96.6% specificity for “difficult intubation”, 43.2% sensitivity, and 98.9% specificity for “medication error.” This unsupervised ML method provides an accurate, automated, AI-supported search algorithm that ranks and helps to understand complex risk patterns and has greater speed, precision, and clarity when compared to manual human data extraction. Machine learning and Natural language processing (NLP) models can effectively be used to process natural language AE reports and augment expert clinician input. This model can support clinical applications and methodological standards and used to better inform and enhance decision-making for improved risk management and patient safety. The study was approved by the ethics committee of the French Society of Anesthesiology (IRB 00010254-2020-20) and the CNIL (CNIL: 118 58 95) and the study was registered with ClinicalTrials.gov (NCT: NCT05185479).
AbstractList Reporting and analysis of adverse events (AE) is associated with improved health system learning, quality outcomes, and patient safety. Manual text analysis is time-consuming, costly, and prone to human errors. We aimed to demonstrate the feasibility of novel machine learning and natural language processing (NLP) approaches for early predictions of adverse events and provide input to direct quality improvement and patient safety initiatives. We used machine learning to analyze 9559 continuously reported AE by clinicians and healthcare systems to the French National Health accreditor (HAS) between January 1, 2009, and December 31, 2020 . We validated the labeling of 135,000 unique de-identified AE reports and determined the associations between different system's root causes and patient consequences. The model was validated by independent expert anesthesiologists. The machine learning (ML) and Artificial Intelligence (AI) model trained on 9559 AE datasets accurately categorized 8800 (88%) of reported AE. The three most frequent AE types were “difficult orotracheal intubation” (16.9% of AE reports), “medication error” (10.5%), and “post-induction hypotension” (6.9%). The accuracy of the AI model reached 70.9% sensitivity, 96.6% specificity for “difficult intubation”, 43.2% sensitivity, and 98.9% specificity for “medication error.” This unsupervised ML method provides an accurate, automated, AI-supported search algorithm that ranks and helps to understand complex risk patterns and has greater speed, precision, and clarity when compared to manual human data extraction. Machine learning and Natural language processing (NLP) models can effectively be used to process natural language AE reports and augment expert clinician input. This model can support clinical applications and methodological standards and used to better inform and enhance decision-making for improved risk management and patient safety. The study was approved by the ethics committee of the French Society of Anesthesiology (IRB 00010254-2020-20) and the CNIL (CNIL: 118 58 95) and the study was registered with ClinicalTrials.gov (NCT: NCT05185479).
Reporting and analysis of adverse events (AE) is associated with improved health system learning, quality outcomes, and patient safety. Manual text analysis is time-consuming, costly, and prone to human errors. We aimed to demonstrate the feasibility of novel machine learning and natural language processing (NLP) approaches for early predictions of adverse events and provide input to direct quality improvement and patient safety initiatives.BACKGROUNDReporting and analysis of adverse events (AE) is associated with improved health system learning, quality outcomes, and patient safety. Manual text analysis is time-consuming, costly, and prone to human errors. We aimed to demonstrate the feasibility of novel machine learning and natural language processing (NLP) approaches for early predictions of adverse events and provide input to direct quality improvement and patient safety initiatives.We used machine learning to analyze 9559 continuously reported AE by clinicians and healthcare systems to the French National Health accreditor (HAS) between January 1, 2009, and December 31, 2020 . We validated the labeling of 135,000 unique de-identified AE reports and determined the associations between different system's root causes and patient consequences. The model was validated by independent expert anesthesiologists.METHODSWe used machine learning to analyze 9559 continuously reported AE by clinicians and healthcare systems to the French National Health accreditor (HAS) between January 1, 2009, and December 31, 2020 . We validated the labeling of 135,000 unique de-identified AE reports and determined the associations between different system's root causes and patient consequences. The model was validated by independent expert anesthesiologists.The machine learning (ML) and Artificial Intelligence (AI) model trained on 9559 AE datasets accurately categorized 8800 (88%) of reported AE. The three most frequent AE types were "difficult orotracheal intubation" (16.9% of AE reports), "medication error" (10.5%), and "post-induction hypotension" (6.9%). The accuracy of the AI model reached 70.9% sensitivity, 96.6% specificity for "difficult intubation", 43.2% sensitivity, and 98.9% specificity for "medication error."RESULTSThe machine learning (ML) and Artificial Intelligence (AI) model trained on 9559 AE datasets accurately categorized 8800 (88%) of reported AE. The three most frequent AE types were "difficult orotracheal intubation" (16.9% of AE reports), "medication error" (10.5%), and "post-induction hypotension" (6.9%). The accuracy of the AI model reached 70.9% sensitivity, 96.6% specificity for "difficult intubation", 43.2% sensitivity, and 98.9% specificity for "medication error."This unsupervised ML method provides an accurate, automated, AI-supported search algorithm that ranks and helps to understand complex risk patterns and has greater speed, precision, and clarity when compared to manual human data extraction. Machine learning and Natural language processing (NLP) models can effectively be used to process natural language AE reports and augment expert clinician input. This model can support clinical applications and methodological standards and used to better inform and enhance decision-making for improved risk management and patient safety.CONCLUSIONSThis unsupervised ML method provides an accurate, automated, AI-supported search algorithm that ranks and helps to understand complex risk patterns and has greater speed, precision, and clarity when compared to manual human data extraction. Machine learning and Natural language processing (NLP) models can effectively be used to process natural language AE reports and augment expert clinician input. This model can support clinical applications and methodological standards and used to better inform and enhance decision-making for improved risk management and patient safety.The study was approved by the ethics committee of the French Society of Anesthesiology (IRB 00010254-2020-20) and the CNIL (CNIL: 118 58 95) and the study was registered with ClinicalTrials.gov (NCT: NCT05185479).TRIAL REGISTRATIONThe study was approved by the ethics committee of the French Society of Anesthesiology (IRB 00010254-2020-20) and the CNIL (CNIL: 118 58 95) and the study was registered with ClinicalTrials.gov (NCT: NCT05185479).
AbstractBackgroundReporting and analysis of adverse events (AE) is associated with improved health system learning, quality outcomes, and patient safety. Manual text analysis is time-consuming, costly, and prone to human errors. We aimed to demonstrate the feasibility of novel machine learning and natural language processing (NLP) approaches for early predictions of adverse events and provide input to direct quality improvement and patient safety initiatives. MethodsWe used machine learning to analyze 9559 continuously reported AE by clinicians and healthcare systems to the French National Health accreditor (HAS) between January 1, 2009, and December 31, 2020 . We validated the labeling of 135,000 unique de-identified AE reports and determined the associations between different system's root causes and patient consequences. The model was validated by independent expert anesthesiologists. ResultsThe machine learning (ML) and Artificial Intelligence (AI) model trained on 9559 AE datasets accurately categorized 8800 (88%) of reported AE. The three most frequent AE types were “difficult orotracheal intubation” (16.9% of AE reports), “medication error” (10.5%), and “post-induction hypotension” (6.9%). The accuracy of the AI model reached 70.9% sensitivity, 96.6% specificity for “difficult intubation”, 43.2% sensitivity, and 98.9% specificity for “medication error.” ConclusionsThis unsupervised ML method provides an accurate, automated, AI-supported search algorithm that ranks and helps to understand complex risk patterns and has greater speed, precision, and clarity when compared to manual human data extraction. Machine learning and Natural language processing (NLP) models can effectively be used to process natural language AE reports and augment expert clinician input. This model can support clinical applications and methodological standards and used to better inform and enhance decision-making for improved risk management and patient safety. Trial RegistrationThe study was approved by the ethics committee of the French Society of Anesthesiology (IRB 00010254-2020-20) and the CNIL (CNIL: 118 58 95) and the study was registered with ClinicalTrials.gov (NCT: NCT05185479).
Reporting and analysis of adverse events (AE) is associated with improved healthcare learning, quality outcomes, and patient safety. Manual text analysis is time-consuming, costly, and prone to human errors. We aimed to demonstrate the feasibility of machine learning and natural language processing (NLP) approaches for early predictions of adverse events and provide input to direct quality improvement and patient safety initiatives. We used machine learning to analyze 9,559 continuously reported AE by clinicians and healthcare systems to the French National Health accreditor (HAS) between January 1, 2009, and December 31, 2020, for a total of 135,000 unique de-identified AE reports. We validated the labeling and determined the associations between different root causes and patient consequences. The model was validated by independent expert anesthesiologists. The machine learning and Artificial Intelligence (AI) model trained on 9,559 AE datasets accurately categorized 8800 (88%) of reported AE. The three most frequent AE types were "difficult orotracheal intubation" (16.9% of AE reports), "medication error" (10.5%), and "post-induction hypotension" (6.9%). The accuracy of the AI model reached 70.9% sensitivity, 96.6% specificity for "difficult intubation", 43.2% sensitivity, and 98.9% specificity for "medication error." This unsupervised method provides an accurate, automated, AI-supported search algorithm that ranks and helps to understand complex patterns of risky patient situations and has greater speed, precision, and clarity when compared to manual human data extraction. Machine learning (ML) and natural language processing models can effectively be used to process natural language AE reports and augment expert clinician input. This model can support clinical applications and methodological standards of implementations and be used to better inform and enhance decision-making for improved risk management and patient safety. The study was approved by the ethics committee of the French Society of Anesthesiology (IRB 00010254-2020-20) and the CNIL (CNIL: 118 58 95) and the study was registered with ClinicalTrials.gov (NCT: NCT05185479).
ArticleNumber 101390
Author Dufetelle, Edouard
Tourres, Jean
Capdevila, Xavier
Morgand, Claire
Mertes, Paul M
Dumeix, Jean-Marc
Barach, Paul
Jurkolow, Geoffrey
Assmann, Karen E.
Susplugas, Vincent
Alauddin, Bilal
Yavordios, Patrick Georges
Author_xml – sequence: 1
  givenname: Paul M
  orcidid: 0000-0002-6060-9438
  surname: Mertes
  fullname: Mertes, Paul M
  organization: Department of Anesthesia and Intensive Care, Hôpitaux Universitaires de Strasbourg, Nouvel Hôpital Civil, EA 3072, FMTS de Strasbourg, Strasbourg, France
– sequence: 2
  givenname: Claire
  orcidid: 0000-0003-2282-1494
  surname: Morgand
  fullname: Morgand, Claire
  organization: Evaluation Department and Tools for Quality and Safety of Care, French national authority for health (Haute Autorité de Santé - EvOQSS), Saint Denis, France
– sequence: 3
  givenname: Paul
  orcidid: 0000-0002-7906-698X
  surname: Barach
  fullname: Barach, Paul
  organization: Thomas Jefferson School of Medicine, Philadelphia, USA
– sequence: 4
  givenname: Geoffrey
  orcidid: 0000-0003-0261-5837
  surname: Jurkolow
  fullname: Jurkolow, Geoffrey
  email: contact@cfar.org
  organization: CFAR - Collège Français des Anesthésistes-Réanimateurs, 75016 Paris, France
– sequence: 5
  givenname: Karen E.
  orcidid: 0000-0003-3618-9573
  surname: Assmann
  fullname: Assmann, Karen E.
  organization: Evaluation Department and Tools for Quality and Safety of Care, French national authority for health (Haute Autorité de Santé - EvOQSS), Saint Denis, France
– sequence: 6
  givenname: Edouard
  orcidid: 0000-0002-3786-6233
  surname: Dufetelle
  fullname: Dufetelle, Edouard
  organization: Collective Thinking, 23 rue Yves Toudic, 75010 Paris, France
– sequence: 7
  givenname: Vincent
  orcidid: 0000-0003-4843-7888
  surname: Susplugas
  fullname: Susplugas, Vincent
  organization: Collective Thinking, 23 rue Yves Toudic, 75010 Paris, France
– sequence: 8
  givenname: Bilal
  orcidid: 0000-0002-6598-8799
  surname: Alauddin
  fullname: Alauddin, Bilal
  organization: Collective Thinking, 23 rue Yves Toudic, 75010 Paris, France
– sequence: 9
  givenname: Patrick Georges
  orcidid: 0000-0003-3633-5681
  surname: Yavordios
  fullname: Yavordios, Patrick Georges
  organization: CFAR - Collège Français des Anesthésistes-Réanimateurs, 75016 Paris, France
– sequence: 10
  givenname: Jean
  orcidid: 0000-0002-8170-8793
  surname: Tourres
  fullname: Tourres, Jean
  organization: CFAR - Collège Français des Anesthésistes-Réanimateurs, 75016 Paris, France
– sequence: 11
  givenname: Jean-Marc
  orcidid: 0000-0002-0279-4065
  surname: Dumeix
  fullname: Dumeix, Jean-Marc
  organization: CFAR - Collège Français des Anesthésistes-Réanimateurs, 75016 Paris, France
– sequence: 12
  givenname: Xavier
  orcidid: 0000-0002-9791-8779
  surname: Capdevila
  fullname: Capdevila, Xavier
  organization: Department of Anesthesiology and Critical Care Medicine, Lapeyronie University Hospital, 34295 Montpellier Cedex 5, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38718923$$D View this record in MEDLINE/PubMed
BookMark eNqNUttuEzEQXaEiWkq_AAn5kZcEe70XB0SlqoSLVIEEaV-tiT2bODjeYHuD8tYPgU_gp_oleJNyUSUUnjwenXPmcuZhduBah1n2mNEho6x6thiCUqvlMKd50Wf4iN7LjnJe5oOyrMTBX_FhdhLCglLKiqrmo_pBdshFzcQo50fZjyuwRkM0rSNtQ4A4iJ0HSyy4WQczJCvfKgzBuBkBO2u9ifMl6bZ_t-UlsMdV62OfSlJAYkvMMvHWSIxGF01j1J8SDkOcYzAw8GghoiZnr67QByS4Hr-fhOdkMkdyc_0tpdP_8uP45vo7CbHTm0fZ_QZswJPb9zi7fD2enL8dXHx48-787GKgSsbiQIyqSmOj8rypmGKqQM1Bp0AxTkuAWtCmqfgUdIlQCqFrBbrIRS1KPqVC8eOs2Ol2bgWbr2CtXHmzBL-RjMreALmQWwNkb4DcGZBoT3e0NPuXLo0plyYotGmX2HZBpuKc8VqIOkGf3EK76RL1b_lfziTAaAdQvg3BYyOVidslRg_G7umD3-H-X_cvdyxMm10b9DIog06hNh5VlLo1e_ind_jKGpect59xg2HRdj7dSpBMhlxS-ak_0P4-8yLdZiFYEnjxb4G95X8CaHD5Ww
CitedBy_id crossref_primary_10_1016_j_braindev_2024_104311
Cites_doi 10.1093/bja/aex127
10.1148/rg.2016150080
10.1093/bja/aew379
10.1097/ALN.0000000000000904
10.1097/MLR.0000000000000471
10.1377/hlthaff.2014.0053
10.1007/s12630-012-9855-9
10.1016/j.jss.2018.09.079
10.1136/qshc.2003.008425
10.1016/j.bja.2021.05.030
10.1177/0141076813505045
10.1016/j.bja.2019.10.013
10.1056/NEJMp1800874
10.1016/j.bja.2021.05.023
10.1093/jamia/ocv032
10.1377/hlthaff.2018.0738
10.1177/1062860605281850
10.1136/bmj.320.7237.745
10.1016/j.jcrc.2006.07.001
10.1111/anae.15920
10.1056/NEJMsr2214184
10.1186/1471-2490-14-48
10.1097/MLR.0000000000000346
10.1016/j.acvd.2016.01.011
10.1503/cmaj.081233
10.1136/bmjqs-2015-004405
10.1001/jama.2018.5605
10.1016/j.neurol.2016.01.398
10.1162/tacl_a_00325
10.1111/jdv.16566
10.1056/NEJMra2302038
10.1001/archsurg.141.9.931
10.1016/S0140-6736(03)14546-1
10.1111/anae.14984
10.1016/j.suc.2011.12.008
10.1007/s11239-017-1532-y
10.1097/PTS.0000000000000127
10.1093/aje/kwt441
10.1016/j.diabres.2016.09.012
10.1016/j.bpa.2020.04.013
10.1007/s00484-017-1373-6
10.1136/amiajnl-2014-002768
10.1093/bja/aes149
10.1093/jamia/ocx039
10.1038/srep46226
10.1177/0844562117699349
10.2196/17125
10.1046/j.1525-1497.2003.20147.x
10.1016/j.ijmedinf.2019.103971
10.1136/bmj.39335.541782.AD
10.1097/ACO.0000000000000540
10.1016/j.cardfail.2020.07.018
10.1093/jamia/ocx156
10.1002/asi.23937
10.5539/gjhs.v8n3p17
10.1016/j.jbi.2015.07.012
10.1007/s12630-019-01413-9
10.1136/bmjqs-2016-005991
ContentType Journal Article
Copyright 2024 The Author(s)
The Author(s)
Copyright © 2024. Published by Elsevier Masson SAS.
Copyright © 2024 The Author(s). Published by Elsevier Masson SAS.. All rights reserved.
Copyright_xml – notice: 2024 The Author(s)
– notice: The Author(s)
– notice: Copyright © 2024. Published by Elsevier Masson SAS.
– notice: Copyright © 2024 The Author(s). Published by Elsevier Masson SAS.. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
ADTOC
UNPAY
DOI 10.1016/j.accpm.2024.101390
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISSN 2352-5568
EndPage 101390
ExternalDocumentID 10.1016/j.accpm.2024.101390
38718923
10_1016_j_accpm_2024_101390
S2352556824000481
1_s2_0_S2352556824000481
Genre Journal Article
GroupedDBID --M
.1-
.FO
0R~
1P~
4.4
457
53G
5VS
7-5
8P~
AABNK
AAEDT
AAEDW
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABJNI
ABMAC
ABMZM
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACLOT
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGUBO
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
BKOJK
BLXMC
BNPGV
EBS
EFJIC
EFKBS
EFLBG
EJD
FDB
FEDTE
FIRID
FYGXN
GBLVA
HVGLF
KOM
LN9
O9-
O90
OAUVE
OL-
ROL
SEM
SPCBC
SSH
SSZ
T5K
Z5R
~G-
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
RIG
6I.
AAFTH
AAYXX
CITATION
AGCQF
AGRNS
NPM
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c511t-8966defc22f61c1c4ed3adc1cc1305aa780ff63bad5ea588d7cad4287853b08c3
IEDL.DBID UNPAY
ISSN 2352-5568
IngestDate Tue Aug 19 22:35:51 EDT 2025
Sun Sep 28 07:38:00 EDT 2025
Mon Jul 21 06:03:09 EDT 2025
Wed Oct 01 03:49:54 EDT 2025
Thu Apr 24 22:59:48 EDT 2025
Sun Apr 06 06:54:24 EDT 2025
Tue Feb 25 20:02:43 EST 2025
Tue Oct 14 19:35:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Patient safety
Quality improvement
Natural language processing
Adverse events
Artificial intelligence
patient safety
Natural Language Processing
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2024. Published by Elsevier Masson SAS.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c511t-8966defc22f61c1c4ed3adc1cc1305aa780ff63bad5ea588d7cad4287853b08c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
ORCID 0000-0002-7906-698X
0000-0003-0261-5837
0000-0003-3618-9573
0000-0002-3786-6233
0000-0003-2282-1494
0000-0003-3633-5681
0000-0002-0279-4065
0000-0003-4843-7888
0000-0002-9791-8779
0000-0002-8170-8793
0000-0002-6060-9438
0000-0002-6598-8799
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.accpm.2024.101390
PMID 38718923
PQID 3053137887
PQPubID 23479
PageCount 1
ParticipantIDs unpaywall_primary_10_1016_j_accpm_2024_101390
proquest_miscellaneous_3053137887
pubmed_primary_38718923
crossref_citationtrail_10_1016_j_accpm_2024_101390
crossref_primary_10_1016_j_accpm_2024_101390
elsevier_sciencedirect_doi_10_1016_j_accpm_2024_101390
elsevier_clinicalkeyesjournals_1_s2_0_S2352556824000481
elsevier_clinicalkey_doi_10_1016_j_accpm_2024_101390
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace France
PublicationPlace_xml – name: France
PublicationTitle Anaesthesia critical care & pain medicine
PublicationTitleAlternate Anaesth Crit Care Pain Med
PublicationYear 2024
Publisher Elsevier Masson SAS
Publisher_xml – name: Elsevier Masson SAS
References Govindan, Van Citters, Nelson, Kelly-Cummings, Suresh (bib0090) 2010; 19
Toyabe (bib0175) 2015; 8
Tuppin, Rivière, Rigault, Tala, Drouin, Pestel (bib0030) 2016; 109
Cassin, Barach (bib0325) 2012; 92
Tian, Sun, Eguale, Rochefort (bib0125) 2017; 55
Lee, Doran (bib0300) 2017; 49
Tuppin, Samson, Fagot-Campagna, Lukacs, Alla, CNAMTS scientific board members (bib0055) 2014; 14
Mercereau, Todd, Rey, Valleron (bib0045) 2017; 61
Haug, Drazen (bib0110) 2023; 388
Yim, Kwan, Yetisgen (bib0135) 2017; 68
Kang, Lee, Jung, Lee, Park, Woo (bib0265) 2020; 15
Pronovost, Thompson, Holzmueller, Lubomski, Dorman, Dickman (bib0220) 2007; 21
Falissard, Morgand, Roussel, Imbaud, Ghosn, Bounebache (bib0380) 2020; 8
Institute of Medicine, Kohn, Corrigan, Donaldson (bib0005) 2000
Ni, Lingren, Hall, Leonard, Melton, Kirkendall (bib0160) 2018; 25
2001.
Pivovarov, Elhadad (bib0100) 2015; 22
Grodner, Sbidian, Weill, Mezzarobba (bib0040) 2021; 35
Young, Luz, Lone (bib0200) 2019; 132
Algie, Mahar, Wasiak, Batty, Gruen, Mahar (bib0360) 2015; 2015
Bates, Singh (bib0015) 2018; 37
Carrell, Schoen, Leffler, Morris, Rose, Baer (bib0095) 2017; 24
Bratch, Pandit (bib0365) 2021; 127
Cabarrot, Legris, May, Grenier (bib0205) 2017
Liang, Gong (bib0085) 2017; 245
Wachter, Howell (bib0280) 2018; 320
Smith, Alderson (bib0340) 2012; 109
Cabarrot, Coniel, Haniquaut, Fourali, Morgand, May-Michelangeli (bib0065) 2020; 17
Douglas, Stephens, Posner, Davies, Mincer, Burden (bib0315) 2021; 127
Mitchell, Schuster, Smith, Pronovost, Wu (bib0025) 2016; 25
Crosby (bib0345) 2013; 60
Taylor-Adams, Vincent (bib0215) 2019
Moore, Farrag, Ashkin (bib0140) 2017; 13
Frasier, Pavuluri Quamme, Ma, Wiegmann, Leverson, DuGoff (bib0295) 2019; 235
Nunes, Yang, Radican, Engel, Kurtyka, Tunceli (bib0170) 2016; 121
.
Südfeld, Brechnitz, Wagner, Reese, Pinnschmidt, Reuter (bib0275) 2017; 119
Yetisgen-Yildiz, Gunn, Xia, Payne (bib0145) 2011
Barach, Phelps (bib0080) 2013; 106
Godlee, Cabarrot, Desplanques, Smith, Degos (bib0225) 2010; 19
Haute Autorité de Santé (HAS). Rapport d’activité 2020 des organismes agréés pour l’accréditation de la qualité de la pratique professionnelle des médecins et des équipes médicales. Available from
Sexton, Thomas, Helmreich (bib0310) 2000; 320
von Elm, Altman, Egger, Pocock, Gøtzsche, Vandenbroucke (bib0230) 2007; 335
Nanji, Patel, Shaikh, Seger, Bates (bib0255) 2016; 124
Choi, Gitelman, Asch (bib0285) 2018; 378
Grol, Grimshaw (bib0350) 2003; 362
Etherington, Wu, Cheng-Boivin, Larrigan, Boet (bib0290) 2019; 66
Bannay, Chaignot, Blotière, Basson, Weill, Ricordeau (bib0035) 2016; 54
Kellogg, Hettinger, Shah, Wears, Sellers, Squires (bib0335) 2017; 26
Arnal-Velasco, Barach (bib0020) 2021; 35
Van der Maaten, Hinton (bib0245) 2008; 9
Dieng, Ruiz, Blei (bib0235) 2020
Seiden, Barach (bib0355) 2006; 141
Wood, Nash (bib0010) 2005; 20
Pavillon, Johansson (bib0075) 2001
Gálvez, Pappas, Ahumada, Martin, Simpao, Rehman (bib0130) 2017; 44
Sanduende-Otero, Villalón-Coca, Romero-García, Díaz-Cambronero, Barach, Arnal-Velasco (bib0370) 2020; 124
Thomas, Petersen (bib0375) 2003; 18
Angelov D. Top2vec: Distributed representations of topics. arXiv preprint 2020: arXiv:2008.09470.
Wahr, Abernathy, Lazarra, Keebler, Wall, Lynch (bib0260) 2017; 118
Jougla E, Rossollin F, Niyonsenga A, Chappert JL, Johansson LA, Pavillon G.
Wensing, Bosch, Grol (bib0330) 2010; 182
Tuppin, Samson, Fagot-Campagna, Woimant (bib0060) 2016; 172
Rochefort, Verma, Eguale, Lee, Buckeridge (bib0120) 2015; 22
Lingard, Espin, Whyte, Regehr, Baker, Reznick (bib0305) 2004; 13
Duke, Friedlin (bib0150) 2010
Tanushi, Kvist, Sparrelid (bib0180) 2014; 207
Falissard, Morgand, Ghosn, Imbaud, Bounebache, Rey (bib0190) 2022; 10
Cai, Giannopoulos, Yu, Kelil, Ripley, Kumamaru (bib0165) 2016; 36
Jensen, Soguero-Ruiz, Oyvind Mikalsen, Lindsetmo, Kouskoumvekaki, Girolami (bib0195) 2017; 7
Constantinou, Pelletier-Fleury, Olié, Gastaldi-Ménager, JuillÈre, Tuppin (bib0050) 2021; 27
Li, Kirkendall, Hall, Ni, Lingren, Kaiser (bib0155) 2015; 57
Khan, Fischer, Pedoto, Seier, Tan, Dalbagni (bib0270) 2020; 75
Kelly, Frerk, Bailey, Cook, Ferguson, Flin (bib0320) 2023; 78
Xu, Ma, Hester, Jiang (bib0250) 2018; 31
Krumholz (bib0105) 2014; 33
Lee, Bubeck, Petro (bib0115) 2023; 388
Carrell, Halgrim, Tran, Buist, Chubak, Chapman (bib0185) 2014; 179
Lee (10.1016/j.accpm.2024.101390_bib0300) 2017; 49
Etherington (10.1016/j.accpm.2024.101390_bib0290) 2019; 66
Kelly (10.1016/j.accpm.2024.101390_bib0320) 2023; 78
Mercereau (10.1016/j.accpm.2024.101390_bib0045) 2017; 61
Ni (10.1016/j.accpm.2024.101390_bib0160) 2018; 25
Cassin (10.1016/j.accpm.2024.101390_bib0325) 2012; 92
Pivovarov (10.1016/j.accpm.2024.101390_bib0100) 2015; 22
Duke (10.1016/j.accpm.2024.101390_bib0150) 2010
10.1016/j.accpm.2024.101390_bib0070
Rochefort (10.1016/j.accpm.2024.101390_bib0120) 2015; 22
Seiden (10.1016/j.accpm.2024.101390_bib0355) 2006; 141
Wood (10.1016/j.accpm.2024.101390_bib0010) 2005; 20
Van der Maaten (10.1016/j.accpm.2024.101390_bib0245) 2008; 9
Lingard (10.1016/j.accpm.2024.101390_bib0305) 2004; 13
Yim (10.1016/j.accpm.2024.101390_bib0135) 2017; 68
Kang (10.1016/j.accpm.2024.101390_bib0265) 2020; 15
Smith (10.1016/j.accpm.2024.101390_bib0340) 2012; 109
Bannay (10.1016/j.accpm.2024.101390_bib0035) 2016; 54
Wensing (10.1016/j.accpm.2024.101390_bib0330) 2010; 182
Falissard (10.1016/j.accpm.2024.101390_bib0380) 2020; 8
Nanji (10.1016/j.accpm.2024.101390_bib0255) 2016; 124
Tuppin (10.1016/j.accpm.2024.101390_bib0055) 2014; 14
Wahr (10.1016/j.accpm.2024.101390_bib0260) 2017; 118
Carrell (10.1016/j.accpm.2024.101390_bib0095) 2017; 24
Taylor-Adams (10.1016/j.accpm.2024.101390_bib0215) 2019
Khan (10.1016/j.accpm.2024.101390_bib0270) 2020; 75
Kellogg (10.1016/j.accpm.2024.101390_bib0335) 2017; 26
von Elm (10.1016/j.accpm.2024.101390_bib0230) 2007; 335
Haug (10.1016/j.accpm.2024.101390_bib0110) 2023; 388
Nunes (10.1016/j.accpm.2024.101390_bib0170) 2016; 121
Xu (10.1016/j.accpm.2024.101390_bib0250) 2018; 31
Govindan (10.1016/j.accpm.2024.101390_bib0090) 2010; 19
10.1016/j.accpm.2024.101390_bib0240
Toyabe (10.1016/j.accpm.2024.101390_bib0175) 2015; 8
Krumholz (10.1016/j.accpm.2024.101390_bib0105) 2014; 33
Frasier (10.1016/j.accpm.2024.101390_bib0295) 2019; 235
Moore (10.1016/j.accpm.2024.101390_bib0140) 2017; 13
Tuppin (10.1016/j.accpm.2024.101390_bib0030) 2016; 109
Bratch (10.1016/j.accpm.2024.101390_bib0365) 2021; 127
Douglas (10.1016/j.accpm.2024.101390_bib0315) 2021; 127
Gálvez (10.1016/j.accpm.2024.101390_bib0130) 2017; 44
Südfeld (10.1016/j.accpm.2024.101390_bib0275) 2017; 119
Falissard (10.1016/j.accpm.2024.101390_bib0190) 2022; 10
Yetisgen-Yildiz (10.1016/j.accpm.2024.101390_bib0145) 2011
Tanushi (10.1016/j.accpm.2024.101390_bib0180) 2014; 207
10.1016/j.accpm.2024.101390_bib0210
Jensen (10.1016/j.accpm.2024.101390_bib0195) 2017; 7
Pavillon (10.1016/j.accpm.2024.101390_bib0075) 2001
Godlee (10.1016/j.accpm.2024.101390_bib0225) 2010; 19
Institute of Medicine (10.1016/j.accpm.2024.101390_bib0005) 2000
Algie (10.1016/j.accpm.2024.101390_bib0360) 2015; 2015
Sexton (10.1016/j.accpm.2024.101390_bib0310) 2000; 320
Cabarrot (10.1016/j.accpm.2024.101390_bib0065) 2020; 17
Li (10.1016/j.accpm.2024.101390_bib0155) 2015; 57
Arnal-Velasco (10.1016/j.accpm.2024.101390_bib0020) 2021; 35
Cai (10.1016/j.accpm.2024.101390_bib0165) 2016; 36
Carrell (10.1016/j.accpm.2024.101390_bib0185) 2014; 179
Pronovost (10.1016/j.accpm.2024.101390_bib0220) 2007; 21
Wachter (10.1016/j.accpm.2024.101390_bib0280) 2018; 320
Crosby (10.1016/j.accpm.2024.101390_bib0345) 2013; 60
Young (10.1016/j.accpm.2024.101390_bib0200) 2019; 132
Thomas (10.1016/j.accpm.2024.101390_bib0375) 2003; 18
Bates (10.1016/j.accpm.2024.101390_bib0015) 2018; 37
Mitchell (10.1016/j.accpm.2024.101390_bib0025) 2016; 25
Lee (10.1016/j.accpm.2024.101390_bib0115) 2023; 388
Dieng (10.1016/j.accpm.2024.101390_bib0235) 2020
Choi (10.1016/j.accpm.2024.101390_bib0285) 2018; 378
Grol (10.1016/j.accpm.2024.101390_bib0350) 2003; 362
Constantinou (10.1016/j.accpm.2024.101390_bib0050) 2021; 27
Liang (10.1016/j.accpm.2024.101390_bib0085) 2017; 245
Sanduende-Otero (10.1016/j.accpm.2024.101390_bib0370) 2020; 124
Tuppin (10.1016/j.accpm.2024.101390_bib0060) 2016; 172
Grodner (10.1016/j.accpm.2024.101390_bib0040) 2021; 35
Cabarrot (10.1016/j.accpm.2024.101390_bib0205) 2017
Tian (10.1016/j.accpm.2024.101390_bib0125) 2017; 55
Barach (10.1016/j.accpm.2024.101390_bib0080) 2013; 106
References_xml – volume: 127
  start-page: 470
  year: 2021
  end-page: 478
  ident: bib0315
  article-title: Communication failures contributing to patient injury in anaesthesia malpractice claims
  publication-title: Br J Anaesth
– volume: 21
  start-page: 305
  year: 2007
  end-page: 315
  ident: bib0220
  article-title: Toward learning from patient safety reporting systems
  publication-title: J Crit Care
– volume: 20
  start-page: 297
  year: 2005
  end-page: 303
  ident: bib0010
  article-title: Mandatory state-based error-reporting systems: current and future prospects
  publication-title: Am J Med Qual
– volume: 27
  start-page: 266
  year: 2021
  end-page: 276
  ident: bib0050
  article-title: Patient stratification for risk of readmission due to heart failure by using nationwide administrative data
  publication-title: J Card Fail
– volume: 60
  start-page: 143
  year: 2013
  end-page: 151
  ident: bib0345
  article-title: Review article: the role of practice guidelines and evidence-based medicine in perioperative patient safety
  publication-title: Can J Anaesth
– start-page: 1593
  year: 2011
  end-page: 1602
  ident: bib0145
  article-title: Automatic identification of critical follow-up recommendation sentences in radiology reports
  publication-title: AMIA … Annual Symposium Proceedings. AMIA Symposium 2011
– volume: 8
  start-page: 17
  year: 2015
  end-page: 25
  ident: bib0175
  article-title: Characteristics of inpatient falls not reported in an incident reporting system
  publication-title: Glob J Health Sci
– volume: 362
  start-page: 1225
  year: 2003
  end-page: 1230
  ident: bib0350
  article-title: From best evidence to best practice: effective implementation of change in patients’ care
  publication-title: Lancet
– volume: 8
  year: 2020
  ident: bib0380
  article-title: A deep artificial neural network-based model for prediction of underlying cause of death from death certificates: algorithm development and validation
  publication-title: JMIR Med Inform
– volume: 35
  start-page: 93
  year: 2021
  end-page: 103
  ident: bib0020
  article-title: Anaesthesia and perioperative incident reporting systems: opportunities and challenges
  publication-title: Best Pract Res Clin Anaesthesiol
– volume: 55
  start-page: e73
  year: 2017
  end-page: e80
  ident: bib0125
  article-title: Automated extraction of VTE events from narrative radiology reports in electronic health records: a validation study
  publication-title: Med Care
– volume: 9
  start-page: 2579
  year: 2008
  end-page: 2605
  ident: bib0245
  article-title: Visualizing data usint t-SNE
  publication-title: JMLR
– volume: 75
  start-page: 634
  year: 2020
  end-page: 641
  ident: bib0270
  article-title: The impact of fluid optimisation before induction of anaesthesia on hypotension after induction
  publication-title: Anaesthesia
– volume: 378
  start-page: 1960
  year: 2018
  end-page: 1962
  ident: bib0285
  article-title: Subscribing to your patients - reimagining the future of electronic health records
  publication-title: N Engl J Med
– volume: 109
  start-page: 399
  year: 2016
  end-page: 411
  ident: bib0030
  article-title: Prevalence and economic burden of cardiovascular diseases in France in 2013 according to the national health insurance scheme database
  publication-title: Arch Cardiovasc Dis
– volume: 124
  start-page: 197
  year: 2020
  end-page: 205
  ident: bib0370
  article-title: Patterns in medication incidents: a 10-yr experience of a cross-national anaesthesia incident reporting system
  publication-title: Br J Anaesth
– reference: Angelov D. Top2vec: Distributed representations of topics. arXiv preprint 2020: arXiv:2008.09470.
– volume: 121
  start-page: 192
  year: 2016
  end-page: 203
  ident: bib0170
  article-title: Assessing occurrence of hypoglycemia and its severity from electronic health records of patients with type 2 diabetes mellitus
  publication-title: Diabetes Res Clin Pract
– volume: 54
  start-page: 188
  year: 2016
  end-page: 194
  ident: bib0035
  article-title: The best use of the Charlson comorbidity index with electronic health care database to predict mortality
  publication-title: Med Care
– volume: 7
  year: 2017
  ident: bib0195
  article-title: Analysis of free text in electronic health records for identification of cancer patient trajectories
  publication-title: Sci Rep
– volume: 182
  start-page: E85
  year: 2010
  end-page: 8
  ident: bib0330
  article-title: Developing and selecting interventions for translating knowledge to action
  publication-title: CMAJ
– volume: 22
  start-page: 155
  year: 2015
  end-page: 165
  ident: bib0120
  article-title: A novel method of adverse event detection can accurately identify venous thromboembolisms (VTEs) from narrative electronic health record data
  publication-title: J Am Med Inform Assoc
– volume: 119
  start-page: 57
  year: 2017
  end-page: 64
  ident: bib0275
  article-title: Post-induction hypotension and early intraoperative hypotension associated with general anaesthesia
  publication-title: Br J Anaesth
– reference: Jougla E, Rossollin F, Niyonsenga A, Chappert JL, Johansson LA, Pavillon G.
– volume: 132
  year: 2019
  ident: bib0200
  article-title: A systematic review of natural language processing for classification tasks in the field of incident reporting and adverse event analysis
  publication-title: Int J Med Inf
– volume: 127
  start-page: 458
  year: 2021
  end-page: 469
  ident: bib0365
  article-title: An integrative review of method types used in the study of medication error during anaesthesia: implications for estimating incidence
  publication-title: Br J Anaesth
– volume: 388
  start-page: 1201
  year: 2023
  end-page: 1208
  ident: bib0110
  article-title: Artificial intelligence and machine learning in clinical medicine, 2023
  publication-title: N Engl J Med
– volume: 207
  start-page: 330
  year: 2014
  end-page: 339
  ident: bib0180
  article-title: Detection of healthcare-associated urinary tract infection in Swedish electronic health records
  publication-title: Stud Health Technol Inform
– volume: 22
  start-page: 938
  year: 2015
  end-page: 947
  ident: bib0100
  article-title: Automated methods for the summarization of electronic health records
  publication-title: J Am Med Inform Assoc
– volume: 44
  start-page: 281
  year: 2017
  end-page: 290
  ident: bib0130
  article-title: The use of natural language processing on pediatric diagnostic radiology reports in the electronic health record to identify deep venous thrombosis in children
  publication-title: J Thromb Thrombolysis
– volume: 19
  start-page: e11
  year: 2010
  ident: bib0090
  article-title: Automated detection of harm in healthcare with information technology: a systematic review
  publication-title: Qual Saf Health Care
– start-page: 177
  year: 2010
  end-page: 181
  ident: bib0150
  article-title: ADESSA: a real-time decision support service for delivery of semantically coded adverse drug event data
  publication-title: AMIA … Annual Symposium Proceedings. AMIA Symposium 2010
– volume: 179
  start-page: 749
  year: 2014
  end-page: 758
  ident: bib0185
  article-title: Using natural language processing to improve efficiency of manual chart abstraction in research: the case of breast cancer recurrence
  publication-title: Am J Epidemiol
– volume: 66
  start-page: 1251
  year: 2019
  end-page: 1260
  ident: bib0290
  article-title: Interprofessional communication in the operating room: a narrative review to advance research and practice
  publication-title: Can J Anaesth
– volume: 106
  start-page: 387
  year: 2013
  end-page: 390
  ident: bib0080
  article-title: Clinical sensemaking: a systematic approach to reduce the impact of normalised deviance in the medical profession
  publication-title: J R Soc Med
– volume: 13
  start-page: 330
  year: 2004
  end-page: 334
  ident: bib0305
  article-title: Communication failures in the operating room: an observational classification of recurrent types and effects
  publication-title: Qual Saf Health Care
– volume: 141
  start-page: 931
  year: 2006
  end-page: 939
  ident: bib0355
  article-title: Wrong-side/wrong-site, wrong-procedure, and wrong-patient adverse events: are they preventable?
  publication-title: Arch Surg
– volume: 2015
  year: 2015
  ident: bib0360
  article-title: Interventions for reducing wrong-site surgery and invasive clinical procedures
  publication-title: Cochrane Database Syst Rev
– volume: 388
  start-page: 1233
  year: 2023
  end-page: 1239
  ident: bib0115
  article-title: Benefits, limits, and risks of GPT-4 as an AI chatbot for medicine
  publication-title: N Engl J Med
– volume: 36
  start-page: 176
  year: 2016
  end-page: 191
  ident: bib0165
  article-title: Natural language processing technologies in radiology research and clinical applications
  publication-title: Radiographics
– volume: 14
  start-page: 48
  year: 2014
  ident: bib0055
  article-title: Prostate cancer outcomes in France: treatments, adverse effects and two-year mortality
  publication-title: BMC Urol
– volume: 335
  start-page: 806
  year: 2007
  end-page: 808
  ident: bib0230
  article-title: Strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies
  publication-title: BMJ
– year: 2001
  ident: bib0075
  article-title: Production of methods and tools for improving causes of death statistics at codification level
– volume: 25
  start-page: 555
  year: 2018
  end-page: 563
  ident: bib0160
  article-title: Designing and evaluating an automated system for real-time medication administration error detection in a neonatal intensive care unit
  publication-title: J Am Med Inform Assoc
– volume: 320
  start-page: 745
  year: 2000
  end-page: 749
  ident: bib0310
  article-title: Error, stress, and teamwork in medicine and aviation: cross sectional surveys
  publication-title: BMJ
– volume: 320
  start-page: 25
  year: 2018
  end-page: 26
  ident: bib0280
  article-title: Resolving the productivity paradox of health information technology: a time for optimism
  publication-title: JAMA
– year: 2017
  ident: bib0205
  article-title: French process of accreditation of medical teams
– volume: 172
  start-page: 295
  year: 2016
  end-page: 306
  ident: bib0060
  article-title: Care pathways and healthcare use of stroke survivors six months after admission to an acute-care hospital in France in 2012
  publication-title: Rev Neurol (Paris)
– year: 2000
  ident: bib0005
  article-title: To err is human
– start-page: 439
  year: 2020
  end-page: 453
  ident: bib0235
  article-title: Topic modeling in embedding spaces
  publication-title: Trans Assoc Comput Linguist
– reference: Haute Autorité de Santé (HAS). Rapport d’activité 2020 des organismes agréés pour l’accréditation de la qualité de la pratique professionnelle des médecins et des équipes médicales. Available from /
– volume: 18
  start-page: 61
  year: 2003
  end-page: 67
  ident: bib0375
  article-title: Measuring errors and adverse events in health care
  publication-title: J Gen Intern Med
– volume: 61
  start-page: 1873
  year: 2017
  end-page: 1884
  ident: bib0045
  article-title: Comparison of the temperature-mortality relationship in foreign born and native born died in France between 2000 and 2009
  publication-title: Int J Biometeorol
– volume: 57
  start-page: 124
  year: 2015
  end-page: 133
  ident: bib0155
  article-title: Automated detection of medication administration errors in neonatal intensive care
  publication-title: J Biomed Inform
– volume: 245
  start-page: 1070
  year: 2017
  end-page: 1074
  ident: bib0085
  article-title: Automated classification of multi-labeled patient safety reports: a shift from quantity to quality measure
  publication-title: Stud Health Technol Inform
– volume: 235
  start-page: 395
  year: 2019
  end-page: 403
  ident: bib0295
  article-title: Familiarity and communication in the operating room
  publication-title: J Surg Res
– volume: 13
  start-page: 138
  year: 2017
  end-page: 143
  ident: bib0140
  article-title: Using natural language processing to extract abnormal results from cancer screening reports
  publication-title: J Patient Saf
– volume: 19
  start-page: A1
  year: 2010
  end-page: A2
  ident: bib0225
  article-title: Foreword
  publication-title: Qual Saf Health Care
– volume: 109
  start-page: 1
  year: 2012
  end-page: 4
  ident: bib0340
  article-title: Guidelines in anaesthesia: support or constraint?
  publication-title: Br J Anaesth
– volume: 124
  start-page: 25
  year: 2016
  end-page: 34
  ident: bib0255
  article-title: Evaluation of perioperative medication errors and adverse drug events
  publication-title: Anesthesiology
– volume: 68
  start-page: 2662
  year: 2017
  end-page: 2674
  ident: bib0135
  article-title: Classifying tumor event attributes in radiology reports
  publication-title: J Assoc Inform Sci Technol
– volume: 26
  start-page: 381
  year: 2017
  end-page: 387
  ident: bib0335
  article-title: Our current approach to root cause analysis: is it contributing to our failure to improve patient safety?
  publication-title: BMJ Qual Saf
– volume: 37
  start-page: 1736
  year: 2018
  end-page: 1743
  ident: bib0015
  article-title: Two decades since to err is human: an assessment of progress and emerging priorities in patient safety
  publication-title: Health Aff (Millwood)
– reference: .
– volume: 15
  year: 2020
  ident: bib0265
  article-title: Development of a prediction model for hypotension after induction of anesthesia using machine learning
  publication-title: PLoS ONE
– volume: 49
  start-page: 75
  year: 2017
  end-page: 93
  ident: bib0300
  article-title: The role of interpersonal relations in healthcare team communication and patient safety: a proposed model of interpersonal process in teamwork
  publication-title: Can J Nurs Res
– volume: 25
  start-page: 92
  year: 2016
  end-page: 99
  ident: bib0025
  article-title: Patient safety incident reporting: a qualitative study of thoughts and perceptions of experts 15 years after ‘To Err is Human’
  publication-title: BMJ Qual Saf
– volume: 118
  start-page: 32
  year: 2017
  end-page: 43
  ident: bib0260
  article-title: Medication safety in the operating room: literature and expert-based recommendations
  publication-title: Br J Anaesth
– volume: 78
  start-page: 479
  year: 2023
  end-page: 490
  ident: bib0320
  article-title: Human factors in anaesthesia: a narrative review
  publication-title: Anaesthesia
– volume: 33
  start-page: 1163
  year: 2014
  end-page: 1170
  ident: bib0105
  article-title: Big data and new knowledge in medicine: the thinking, training, and tools needed for a learning health system
  publication-title: Health Aff (Millwood)
– volume: 17
  start-page: 195
  year: 2020
  end-page: 205
  ident: bib0065
  article-title: La crise Covid a-t-elle submergé les barrières de sécurité du système de santé? Analyse des déclarations d’événements indésirables en lien avec la Covid-19 déclarés dans la base de l’accréditation des médecins et revue critique de la littérature
  publication-title: Risques Qualité
– year: 2019
  ident: bib0215
  article-title: Systems analysis of clinical incidents. The London protocol
– volume: 35
  start-page: 411
  year: 2021
  end-page: 416
  ident: bib0040
  article-title: Epidemiologic study in a real-world analysis of patients with treatment for psoriasis in the French national health insurance database
  publication-title: J Eur Acad Dermatol Venereol
– volume: 10
  year: 2022
  ident: bib0190
  article-title: Neural translation and automated recognition of ICD10 medical entities from natural language
  publication-title: MIR Med Inform
– volume: 31
  start-page: 96
  year: 2018
  end-page: 103
  ident: bib0250
  article-title: Anticipated and unanticipated difficult airway management
  publication-title: Curr Opin Anaesthesiol
– volume: 24
  start-page: 986
  year: 2017
  end-page: 991
  ident: bib0095
  article-title: Challenges in adapting existing clinical natural language processing systems to multiple, diverse health care settings
  publication-title: J Am Med Inform Assoc
– reference: 2001.
– volume: 92
  start-page: 101
  year: 2012
  end-page: 115
  ident: bib0325
  article-title: Making sense of root cause analysis investigations of surgery-related adverse events
  publication-title: Surg Clin North Am
– volume: 119
  start-page: 57
  year: 2017
  ident: 10.1016/j.accpm.2024.101390_bib0275
  article-title: Post-induction hypotension and early intraoperative hypotension associated with general anaesthesia
  publication-title: Br J Anaesth
  doi: 10.1093/bja/aex127
– volume: 36
  start-page: 176
  year: 2016
  ident: 10.1016/j.accpm.2024.101390_bib0165
  article-title: Natural language processing technologies in radiology research and clinical applications
  publication-title: Radiographics
  doi: 10.1148/rg.2016150080
– volume: 118
  start-page: 32
  year: 2017
  ident: 10.1016/j.accpm.2024.101390_bib0260
  article-title: Medication safety in the operating room: literature and expert-based recommendations
  publication-title: Br J Anaesth
  doi: 10.1093/bja/aew379
– volume: 124
  start-page: 25
  year: 2016
  ident: 10.1016/j.accpm.2024.101390_bib0255
  article-title: Evaluation of perioperative medication errors and adverse drug events
  publication-title: Anesthesiology
  doi: 10.1097/ALN.0000000000000904
– volume: 54
  start-page: 188
  year: 2016
  ident: 10.1016/j.accpm.2024.101390_bib0035
  article-title: The best use of the Charlson comorbidity index with electronic health care database to predict mortality
  publication-title: Med Care
  doi: 10.1097/MLR.0000000000000471
– volume: 33
  start-page: 1163
  year: 2014
  ident: 10.1016/j.accpm.2024.101390_bib0105
  article-title: Big data and new knowledge in medicine: the thinking, training, and tools needed for a learning health system
  publication-title: Health Aff (Millwood)
  doi: 10.1377/hlthaff.2014.0053
– volume: 60
  start-page: 143
  year: 2013
  ident: 10.1016/j.accpm.2024.101390_bib0345
  article-title: Review article: the role of practice guidelines and evidence-based medicine in perioperative patient safety
  publication-title: Can J Anaesth
  doi: 10.1007/s12630-012-9855-9
– volume: 235
  start-page: 395
  year: 2019
  ident: 10.1016/j.accpm.2024.101390_bib0295
  article-title: Familiarity and communication in the operating room
  publication-title: J Surg Res
  doi: 10.1016/j.jss.2018.09.079
– volume: 13
  start-page: 330
  year: 2004
  ident: 10.1016/j.accpm.2024.101390_bib0305
  article-title: Communication failures in the operating room: an observational classification of recurrent types and effects
  publication-title: Qual Saf Health Care
  doi: 10.1136/qshc.2003.008425
– volume: 127
  start-page: 470
  year: 2021
  ident: 10.1016/j.accpm.2024.101390_bib0315
  article-title: Communication failures contributing to patient injury in anaesthesia malpractice claims
  publication-title: Br J Anaesth
  doi: 10.1016/j.bja.2021.05.030
– volume: 106
  start-page: 387
  year: 2013
  ident: 10.1016/j.accpm.2024.101390_bib0080
  article-title: Clinical sensemaking: a systematic approach to reduce the impact of normalised deviance in the medical profession
  publication-title: J R Soc Med
  doi: 10.1177/0141076813505045
– volume: 124
  start-page: 197
  year: 2020
  ident: 10.1016/j.accpm.2024.101390_bib0370
  article-title: Patterns in medication incidents: a 10-yr experience of a cross-national anaesthesia incident reporting system
  publication-title: Br J Anaesth
  doi: 10.1016/j.bja.2019.10.013
– volume: 378
  start-page: 1960
  year: 2018
  ident: 10.1016/j.accpm.2024.101390_bib0285
  article-title: Subscribing to your patients - reimagining the future of electronic health records
  publication-title: N Engl J Med
  doi: 10.1056/NEJMp1800874
– volume: 207
  start-page: 330
  year: 2014
  ident: 10.1016/j.accpm.2024.101390_bib0180
  article-title: Detection of healthcare-associated urinary tract infection in Swedish electronic health records
  publication-title: Stud Health Technol Inform
– volume: 127
  start-page: 458
  year: 2021
  ident: 10.1016/j.accpm.2024.101390_bib0365
  article-title: An integrative review of method types used in the study of medication error during anaesthesia: implications for estimating incidence
  publication-title: Br J Anaesth
  doi: 10.1016/j.bja.2021.05.023
– volume: 22
  start-page: 938
  year: 2015
  ident: 10.1016/j.accpm.2024.101390_bib0100
  article-title: Automated methods for the summarization of electronic health records
  publication-title: J Am Med Inform Assoc
  doi: 10.1093/jamia/ocv032
– volume: 37
  start-page: 1736
  year: 2018
  ident: 10.1016/j.accpm.2024.101390_bib0015
  article-title: Two decades since to err is human: an assessment of progress and emerging priorities in patient safety
  publication-title: Health Aff (Millwood)
  doi: 10.1377/hlthaff.2018.0738
– year: 2017
  ident: 10.1016/j.accpm.2024.101390_bib0205
– volume: 20
  start-page: 297
  year: 2005
  ident: 10.1016/j.accpm.2024.101390_bib0010
  article-title: Mandatory state-based error-reporting systems: current and future prospects
  publication-title: Am J Med Qual
  doi: 10.1177/1062860605281850
– volume: 320
  start-page: 745
  year: 2000
  ident: 10.1016/j.accpm.2024.101390_bib0310
  article-title: Error, stress, and teamwork in medicine and aviation: cross sectional surveys
  publication-title: BMJ
  doi: 10.1136/bmj.320.7237.745
– ident: 10.1016/j.accpm.2024.101390_bib0210
– volume: 21
  start-page: 305
  year: 2007
  ident: 10.1016/j.accpm.2024.101390_bib0220
  article-title: Toward learning from patient safety reporting systems
  publication-title: J Crit Care
  doi: 10.1016/j.jcrc.2006.07.001
– volume: 15
  year: 2020
  ident: 10.1016/j.accpm.2024.101390_bib0265
  article-title: Development of a prediction model for hypotension after induction of anesthesia using machine learning
  publication-title: PLoS ONE
– volume: 78
  start-page: 479
  year: 2023
  ident: 10.1016/j.accpm.2024.101390_bib0320
  article-title: Human factors in anaesthesia: a narrative review
  publication-title: Anaesthesia
  doi: 10.1111/anae.15920
– volume: 388
  start-page: 1233
  year: 2023
  ident: 10.1016/j.accpm.2024.101390_bib0115
  article-title: Benefits, limits, and risks of GPT-4 as an AI chatbot for medicine
  publication-title: N Engl J Med
  doi: 10.1056/NEJMsr2214184
– volume: 14
  start-page: 48
  year: 2014
  ident: 10.1016/j.accpm.2024.101390_bib0055
  article-title: Prostate cancer outcomes in France: treatments, adverse effects and two-year mortality
  publication-title: BMC Urol
  doi: 10.1186/1471-2490-14-48
– volume: 55
  start-page: e73
  year: 2017
  ident: 10.1016/j.accpm.2024.101390_bib0125
  article-title: Automated extraction of VTE events from narrative radiology reports in electronic health records: a validation study
  publication-title: Med Care
  doi: 10.1097/MLR.0000000000000346
– volume: 109
  start-page: 399
  year: 2016
  ident: 10.1016/j.accpm.2024.101390_bib0030
  article-title: Prevalence and economic burden of cardiovascular diseases in France in 2013 according to the national health insurance scheme database
  publication-title: Arch Cardiovasc Dis
  doi: 10.1016/j.acvd.2016.01.011
– volume: 182
  start-page: E85
  year: 2010
  ident: 10.1016/j.accpm.2024.101390_bib0330
  article-title: Developing and selecting interventions for translating knowledge to action
  publication-title: CMAJ
  doi: 10.1503/cmaj.081233
– volume: 25
  start-page: 92
  year: 2016
  ident: 10.1016/j.accpm.2024.101390_bib0025
  article-title: Patient safety incident reporting: a qualitative study of thoughts and perceptions of experts 15 years after ‘To Err is Human’
  publication-title: BMJ Qual Saf
  doi: 10.1136/bmjqs-2015-004405
– volume: 320
  start-page: 25
  year: 2018
  ident: 10.1016/j.accpm.2024.101390_bib0280
  article-title: Resolving the productivity paradox of health information technology: a time for optimism
  publication-title: JAMA
  doi: 10.1001/jama.2018.5605
– volume: 172
  start-page: 295
  year: 2016
  ident: 10.1016/j.accpm.2024.101390_bib0060
  article-title: Care pathways and healthcare use of stroke survivors six months after admission to an acute-care hospital in France in 2012
  publication-title: Rev Neurol (Paris)
  doi: 10.1016/j.neurol.2016.01.398
– volume: 10
  year: 2022
  ident: 10.1016/j.accpm.2024.101390_bib0190
  article-title: Neural translation and automated recognition of ICD10 medical entities from natural language
  publication-title: MIR Med Inform
– start-page: 439
  year: 2020
  ident: 10.1016/j.accpm.2024.101390_bib0235
  article-title: Topic modeling in embedding spaces
  publication-title: Trans Assoc Comput Linguist
  doi: 10.1162/tacl_a_00325
– volume: 35
  start-page: 411
  year: 2021
  ident: 10.1016/j.accpm.2024.101390_bib0040
  article-title: Epidemiologic study in a real-world analysis of patients with treatment for psoriasis in the French national health insurance database
  publication-title: J Eur Acad Dermatol Venereol
  doi: 10.1111/jdv.16566
– volume: 388
  start-page: 1201
  year: 2023
  ident: 10.1016/j.accpm.2024.101390_bib0110
  article-title: Artificial intelligence and machine learning in clinical medicine, 2023
  publication-title: N Engl J Med
  doi: 10.1056/NEJMra2302038
– volume: 141
  start-page: 931
  year: 2006
  ident: 10.1016/j.accpm.2024.101390_bib0355
  article-title: Wrong-side/wrong-site, wrong-procedure, and wrong-patient adverse events: are they preventable?
  publication-title: Arch Surg
  doi: 10.1001/archsurg.141.9.931
– volume: 362
  start-page: 1225
  year: 2003
  ident: 10.1016/j.accpm.2024.101390_bib0350
  article-title: From best evidence to best practice: effective implementation of change in patients’ care
  publication-title: Lancet
  doi: 10.1016/S0140-6736(03)14546-1
– volume: 75
  start-page: 634
  year: 2020
  ident: 10.1016/j.accpm.2024.101390_bib0270
  article-title: The impact of fluid optimisation before induction of anaesthesia on hypotension after induction
  publication-title: Anaesthesia
  doi: 10.1111/anae.14984
– volume: 92
  start-page: 101
  year: 2012
  ident: 10.1016/j.accpm.2024.101390_bib0325
  article-title: Making sense of root cause analysis investigations of surgery-related adverse events
  publication-title: Surg Clin North Am
  doi: 10.1016/j.suc.2011.12.008
– volume: 2015
  year: 2015
  ident: 10.1016/j.accpm.2024.101390_bib0360
  article-title: Interventions for reducing wrong-site surgery and invasive clinical procedures
  publication-title: Cochrane Database Syst Rev
– volume: 44
  start-page: 281
  year: 2017
  ident: 10.1016/j.accpm.2024.101390_bib0130
  article-title: The use of natural language processing on pediatric diagnostic radiology reports in the electronic health record to identify deep venous thrombosis in children
  publication-title: J Thromb Thrombolysis
  doi: 10.1007/s11239-017-1532-y
– ident: 10.1016/j.accpm.2024.101390_bib0070
– ident: 10.1016/j.accpm.2024.101390_bib0240
– volume: 13
  start-page: 138
  year: 2017
  ident: 10.1016/j.accpm.2024.101390_bib0140
  article-title: Using natural language processing to extract abnormal results from cancer screening reports
  publication-title: J Patient Saf
  doi: 10.1097/PTS.0000000000000127
– volume: 179
  start-page: 749
  year: 2014
  ident: 10.1016/j.accpm.2024.101390_bib0185
  article-title: Using natural language processing to improve efficiency of manual chart abstraction in research: the case of breast cancer recurrence
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwt441
– start-page: 177
  year: 2010
  ident: 10.1016/j.accpm.2024.101390_bib0150
  article-title: ADESSA: a real-time decision support service for delivery of semantically coded adverse drug event data
– year: 2019
  ident: 10.1016/j.accpm.2024.101390_bib0215
– volume: 121
  start-page: 192
  year: 2016
  ident: 10.1016/j.accpm.2024.101390_bib0170
  article-title: Assessing occurrence of hypoglycemia and its severity from electronic health records of patients with type 2 diabetes mellitus
  publication-title: Diabetes Res Clin Pract
  doi: 10.1016/j.diabres.2016.09.012
– volume: 35
  start-page: 93
  year: 2021
  ident: 10.1016/j.accpm.2024.101390_bib0020
  article-title: Anaesthesia and perioperative incident reporting systems: opportunities and challenges
  publication-title: Best Pract Res Clin Anaesthesiol
  doi: 10.1016/j.bpa.2020.04.013
– volume: 61
  start-page: 1873
  year: 2017
  ident: 10.1016/j.accpm.2024.101390_bib0045
  article-title: Comparison of the temperature-mortality relationship in foreign born and native born died in France between 2000 and 2009
  publication-title: Int J Biometeorol
  doi: 10.1007/s00484-017-1373-6
– volume: 22
  start-page: 155
  year: 2015
  ident: 10.1016/j.accpm.2024.101390_bib0120
  article-title: A novel method of adverse event detection can accurately identify venous thromboembolisms (VTEs) from narrative electronic health record data
  publication-title: J Am Med Inform Assoc
  doi: 10.1136/amiajnl-2014-002768
– volume: 109
  start-page: 1
  year: 2012
  ident: 10.1016/j.accpm.2024.101390_bib0340
  article-title: Guidelines in anaesthesia: support or constraint?
  publication-title: Br J Anaesth
  doi: 10.1093/bja/aes149
– volume: 24
  start-page: 986
  year: 2017
  ident: 10.1016/j.accpm.2024.101390_bib0095
  article-title: Challenges in adapting existing clinical natural language processing systems to multiple, diverse health care settings
  publication-title: J Am Med Inform Assoc
  doi: 10.1093/jamia/ocx039
– volume: 7
  year: 2017
  ident: 10.1016/j.accpm.2024.101390_bib0195
  article-title: Analysis of free text in electronic health records for identification of cancer patient trajectories
  publication-title: Sci Rep
  doi: 10.1038/srep46226
– volume: 19
  start-page: A1
  year: 2010
  ident: 10.1016/j.accpm.2024.101390_bib0225
  article-title: Foreword
  publication-title: Qual Saf Health Care
– volume: 49
  start-page: 75
  year: 2017
  ident: 10.1016/j.accpm.2024.101390_bib0300
  article-title: The role of interpersonal relations in healthcare team communication and patient safety: a proposed model of interpersonal process in teamwork
  publication-title: Can J Nurs Res
  doi: 10.1177/0844562117699349
– volume: 8
  year: 2020
  ident: 10.1016/j.accpm.2024.101390_bib0380
  article-title: A deep artificial neural network-based model for prediction of underlying cause of death from death certificates: algorithm development and validation
  publication-title: JMIR Med Inform
  doi: 10.2196/17125
– volume: 18
  start-page: 61
  year: 2003
  ident: 10.1016/j.accpm.2024.101390_bib0375
  article-title: Measuring errors and adverse events in health care
  publication-title: J Gen Intern Med
  doi: 10.1046/j.1525-1497.2003.20147.x
– volume: 132
  year: 2019
  ident: 10.1016/j.accpm.2024.101390_bib0200
  article-title: A systematic review of natural language processing for classification tasks in the field of incident reporting and adverse event analysis
  publication-title: Int J Med Inf
  doi: 10.1016/j.ijmedinf.2019.103971
– volume: 245
  start-page: 1070
  year: 2017
  ident: 10.1016/j.accpm.2024.101390_bib0085
  article-title: Automated classification of multi-labeled patient safety reports: a shift from quantity to quality measure
  publication-title: Stud Health Technol Inform
– volume: 335
  start-page: 806
  year: 2007
  ident: 10.1016/j.accpm.2024.101390_bib0230
  article-title: Strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies
  publication-title: BMJ
  doi: 10.1136/bmj.39335.541782.AD
– year: 2001
  ident: 10.1016/j.accpm.2024.101390_bib0075
– volume: 19
  start-page: e11
  year: 2010
  ident: 10.1016/j.accpm.2024.101390_bib0090
  article-title: Automated detection of harm in healthcare with information technology: a systematic review
  publication-title: Qual Saf Health Care
– volume: 31
  start-page: 96
  year: 2018
  ident: 10.1016/j.accpm.2024.101390_bib0250
  article-title: Anticipated and unanticipated difficult airway management
  publication-title: Curr Opin Anaesthesiol
  doi: 10.1097/ACO.0000000000000540
– volume: 27
  start-page: 266
  year: 2021
  ident: 10.1016/j.accpm.2024.101390_bib0050
  article-title: Patient stratification for risk of readmission due to heart failure by using nationwide administrative data
  publication-title: J Card Fail
  doi: 10.1016/j.cardfail.2020.07.018
– volume: 25
  start-page: 555
  year: 2018
  ident: 10.1016/j.accpm.2024.101390_bib0160
  article-title: Designing and evaluating an automated system for real-time medication administration error detection in a neonatal intensive care unit
  publication-title: J Am Med Inform Assoc
  doi: 10.1093/jamia/ocx156
– volume: 68
  start-page: 2662
  year: 2017
  ident: 10.1016/j.accpm.2024.101390_bib0135
  article-title: Classifying tumor event attributes in radiology reports
  publication-title: J Assoc Inform Sci Technol
  doi: 10.1002/asi.23937
– year: 2000
  ident: 10.1016/j.accpm.2024.101390_bib0005
– volume: 8
  start-page: 17
  year: 2015
  ident: 10.1016/j.accpm.2024.101390_bib0175
  article-title: Characteristics of inpatient falls not reported in an incident reporting system
  publication-title: Glob J Health Sci
  doi: 10.5539/gjhs.v8n3p17
– volume: 17
  start-page: 195
  year: 2020
  ident: 10.1016/j.accpm.2024.101390_bib0065
  article-title: La crise Covid a-t-elle submergé les barrières de sécurité du système de santé? Analyse des déclarations d’événements indésirables en lien avec la Covid-19 déclarés dans la base de l’accréditation des médecins et revue critique de la littérature
  publication-title: Risques Qualité
– volume: 57
  start-page: 124
  year: 2015
  ident: 10.1016/j.accpm.2024.101390_bib0155
  article-title: Automated detection of medication administration errors in neonatal intensive care
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2015.07.012
– volume: 66
  start-page: 1251
  year: 2019
  ident: 10.1016/j.accpm.2024.101390_bib0290
  article-title: Interprofessional communication in the operating room: a narrative review to advance research and practice
  publication-title: Can J Anaesth
  doi: 10.1007/s12630-019-01413-9
– start-page: 1593
  year: 2011
  ident: 10.1016/j.accpm.2024.101390_bib0145
  article-title: Automatic identification of critical follow-up recommendation sentences in radiology reports
– volume: 9
  start-page: 2579
  year: 2008
  ident: 10.1016/j.accpm.2024.101390_bib0245
  article-title: Visualizing data usint t-SNE
  publication-title: JMLR
– volume: 26
  start-page: 381
  year: 2017
  ident: 10.1016/j.accpm.2024.101390_bib0335
  article-title: Our current approach to root cause analysis: is it contributing to our failure to improve patient safety?
  publication-title: BMJ Qual Saf
  doi: 10.1136/bmjqs-2016-005991
SSID ssj0001467397
Score 2.3500283
Snippet Reporting and analysis of adverse events (AE) is associated with improved health system learning, quality outcomes, and patient safety. Manual text analysis is...
AbstractBackgroundReporting and analysis of adverse events (AE) is associated with improved health system learning, quality outcomes, and patient safety....
Reporting and analysis of adverse events (AE) is associated with improved healthcare learning, quality outcomes, and patient safety. Manual text analysis is...
SourceID unpaywall
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 101390
SubjectTerms Adverse events
Anesthesia
Artificial intelligence
Natural language processing
Patient safety
Quality improvement
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  dbid: AIKHN
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbK9gAcEIjX8pKROBJtYue13KpqqwWkPUAX9WY5fkCqZRM1WRC3_hD4Cfyp_hJmbGcLalUQt9jKyI5n_M3YmQchL5jOYH7TKew0W0WpLQAH5dRERiuWqspmUjpvi0U-X6ZvjrKjHbI_xMKgW2XAfo_pDq1DzySs5qSt68l7hpk8s7xEL0jMenKN7IL-KcsR2d17_Xa-OL9qATDgrswKkkRIM-Qfcp5eUqkWg9JZij0c4flyHXXRBr1Jrm_Wrfz2Va5Wv-mlg9vkVjAo6Z6f8x2yY9Z3yc8PYF77akm0sVRSl78TXhuuJ2nrAwRAcVG5-tic1P2nz3Tj2sP9IPX_E7AL_Uhp39DaXUEYWuvgZHQ-BEAm2JJdLSMXHmM0BY0HtqWh5stscdi9oiCR9Oz0O3RDe_ludnb6g7rstvfI8mB2uD-PQmGGSIF91kclnJG0sYoxmycqUanRXGp4UKARgbtFGVub80qiIGRlqQslNZ7NwDao4lLx-2S0btbmIaGFtAVnibEVB1tOxzLO4yrJdZHaFEj4mLCBFUKFrOVYPGMlBve0Y-H4J5B_wvNvTF5uiVqftOPq19OBx2KIRwUEFaBUriYrLiMzXUCBTiSiYyIWFyR1TPIt5R_C_vchnw8iKAAG8N8OsLfZdIIjmGJtgGJMHnjZ3H46h0NxOcW1jLbC-i_r8uh_p_mY3MCW95N8Qkb9ycY8Bdutr56FvfkLbe1FWQ
  priority: 102
  providerName: Elsevier
Title Validation of a natural language processing algorithm using national reporting data to improve identification of anesthesia-related ADVerse evENTs: The “ADVENTURE” study
URI https://www.clinicalkey.com/#!/content/1-s2.0-S2352556824000481
https://www.clinicalkey.es/playcontent/1-s2.0-S2352556824000481
https://dx.doi.org/10.1016/j.accpm.2024.101390
https://www.ncbi.nlm.nih.gov/pubmed/38718923
https://www.proquest.com/docview/3053137887
https://doi.org/10.1016/j.accpm.2024.101390
UnpaywallVersion publishedVersion
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 2352-5568
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001467397
  issn: 2352-5568
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 2352-5568
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001467397
  issn: 2352-5568
  databaseCode: AIKHN
  dateStart: 20150201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 2352-5568
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001467397
  issn: 2352-5568
  databaseCode: ACRLP
  dateStart: 20150201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 2352-5568
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001467397
  issn: 2352-5568
  databaseCode: AKRWK
  dateStart: 20150201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB5BcoAeeAhow6NaJI648tsOtwilCiBFCBpUTqv1PiAlxFFtg-DUH9L-BP5Ufwkzu3Z4lVJu2dWOHM-OZ77ZnQfAo1Al-P-GQ_zSTOHFJkM9KIba00qGsSxMIoSNtpimk1n8fD_Zb-tsUy7ML_f3Ng5LSLmilPEwphl00S9DP00QePegP5u-HL217eMSdKmSNO_qCp1N-Tfb8ye23IArzXIlvnwWi8VP9mb3ukvkrmyZQgoz-bDT1MWO_PpbEccLvsoNuNbiTjZygnITLunlLfj2BlG4a6rESsMEs2U-cVl3islWLo8A7RsTi3fl4bx-_5E1dtwdIzJ37UBTFG7K6pLN7UmFZnPVxiL9eARqVoSc1Vx4NotGK4aGESGoZvrTeLpXPWEouOz06BincTx7NT49OmG2CO5tmO2O955OvLZ_gycRxtVejq6U0kaGoUkDGchYq0go_CHRcKIQZLlvTBoVguQlyXOVSaHIhUMIUfi5jO5Ab1ku9RawTJgsCgNtigghn_KFn_pFkKosNjGSRAMIu53lsi1uTj02FryLYjvglvucuM8d9wfweE20crU9zl8edyLDu7RVVLQc9_l8suwsMl21yqLiAa9C7vPXJMUkxBTWS2V8BpCuKVs85HDOvx_5sJNojtqCroBwe8um4hHpXGohkA1g04n6-tUj9J3zIfHSW8v-Rfhy9z_X34OrNHJRlPehVx82-gEiu7rYhv7o2YvJdLv9sr8DGXpOqQ
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKeygcEIjX8ihG4ki0Sew8lltVbbWlZQ-wi3qzHD8gaNlETRbErT8EfgJ_qr-EGcfZFrUqiFviZBTHM_5mbM-DkJexTqB_oxHMNFsE3GaAg3JkAqNVzFVhEymdt8U0ncz5m-PkeIPs9bEw6Fbpsb_DdIfWvmXoR3NYl-XwfYyZPJM0Ry9IzHpyg2zxhGUwO7d2Dw4n0_OtFgAD5sqsIEmANH3-IefpJZWqMSg95tjCEJ6v1lGXbdBbZHu1rOX3b3KxuKCX9u-Q296gpLtdn--SDbO8R359APO6q5ZEK0sldfk74bV-e5LWXYAAKC4qFx-rk7L99IWu3H2_P0i78wRsQj9S2la0dFsQhpbaOxmdfwIgE2zJppSBC48xmoLGA9vSUPN1PJ01rylIJD07_QHNcD9_Nz47_Ulddtv7ZL4_nu1NAl-YIVBgn7VBDmskbayKY5tGKlLcaCY1XCjQiMDdLA-tTVkhURCSPNeZkhrXZmAbFGGu2AOyuayW5hGhmbQZiyNjCwa2nA5lmIZFlOqMWw4kbEDinhVC-azlWDxjIXr3tM_C8U8g_0THvwF5tSaqu6Qd17_Oex6LPh4VEFSAUrmeLLuKzDQeBRoRiSYWobgkqQOSrin_EPa_f_JFL4ICYADPdoC91aoRDMEUawNkA_Kwk831rzNYFOcjHMtgLaz_Mi6P_7ebz8n2ZPb2SBwdTA-fkJv4pPOZfEo225OVeQZ2XFvs-Hn6G6zeSDo
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxRBEO7gclAOCvHB-kqReHTIvGeWGzFLCIeNUdbgqdPTD1lYdzbMjEZP_BD8Cf4pfolV3TOLIiLctjtdmZ3qmqqvuuvB2KtQJfj_BgP80kzhxSZDPSgG2tNKhrEsTCKEjbYYpbvjeO8gOWjrbFMuzB_39zYOS0g5p5TxMKYZdNHvsOU0QeDdY8vj0dvtj7Z9XIIuVZLmXV2hqyn_ZXv-xpYr7G4zm4tvX8V0-pu92XngErkrW6aQwkyON5u62JTfLxVxvOGrrLL7Le6EbScoa2xJzx6ynx8QhbumSlAaEGDLfOKy7hQT5i6PAO0biOmn8mRSH36Gxo67Y0Rw1w40ReGmUJcwsScVGiaqjUW6eARqVoSc1UR4NotGK0DDiBBUg_4yHO1XW4CCC-enZziN4_G74fnpD7BFcB-x8c5w_82u1_Zv8CTCuNrL0ZVS2sgwNGkgAxlrFQmFPyQaThSCLPeNSaNCkLwkea4yKRS5cAghCj-X0WPWm5Uzvc4gEyaLwkCbIkLIp3zhp34RpCqLTYwkUZ-F3c5y2RY3px4bU95FsR1xy31O3OeO-332ekE0d7U9rl8edyLDu7RVVLQc9_l6suwqMl21yqLiAa9C7vP3JMUkxBTWS2V8-ixdULZ4yOGc_z9yo5NojtqCroBwe8um4hHpXGohkPXZEyfqi1eP0HfOB8RLbyH7N-HL01uuf8bu0chFUT5nvfqk0S8Q2dXFy_aL_gWsT00b
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Validation+of+a+natural+language+processing+algorithm+using+national+reporting+data+to+improve+identification+of+anesthesia-related+ADVerse+evENTs%3A+The+%E2%80%9CADVENTURE%E2%80%9D+study&rft.jtitle=Anaesthesia+critical+care+%26+pain+medicine&rft.au=Mertes%2C+Paul+M&rft.au=Morgand%2C+Claire&rft.au=Barach%2C+Paul&rft.au=Jurkolow%2C+Geoffrey&rft.date=2024-08-01&rft.issn=2352-5568&rft.eissn=2352-5568&rft.volume=43&rft.issue=4&rft.spage=101390&rft.epage=101390&rft_id=info:doi/10.1016%2Fj.accpm.2024.101390&rft.externalDBID=ECK1-s2.0-S2352556824000481&rft.externalDocID=1_s2_0_S2352556824000481
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F23525568%2FS2352556824X00041%2Fcov150h.gif