PI3Kγ within a nonhematopoietic cell type negatively regulates diet-induced thermogenesis and promotes obesity and insulin resistance
Obesity is associated with a chronic low-grade inflammation, and specific antiinflammatory interventions may be beneficial for the treatment of type 2 diabetes and other obesity-related diseases. The lipid kinase PI3Kγ is a central proinflammatory signal transducer that plays a major role in leukocy...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 108; no. 42; pp. E854 - E863 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
18.10.2011
National Acad Sciences |
Series | PNAS Plus |
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.1106698108 |
Cover
Abstract | Obesity is associated with a chronic low-grade inflammation, and specific antiinflammatory interventions may be beneficial for the treatment of type 2 diabetes and other obesity-related diseases. The lipid kinase PI3Kγ is a central proinflammatory signal transducer that plays a major role in leukocyte chemotaxis, mast cell degranulation, and endothelial cell activation. It was also reported that PI3Kγ activity within hematopoietic cells plays an important role in obesity-induced inflammation and insulin resistance. Here, we show that protection from insulin resistance, metabolic inflammation, and fatty liver in mice lacking functional PI3Kγ is largely consequent to their leaner phenotype. We also show that this phenotype is largely based on decreased fat gain, despite normal caloric intake, consequent to increased energy expenditure. Furthermore, our data show that PI3Kγ action on diet-induced obesity depends on PI3Kγ activity within a nonhematopoietic compartment, where it promotes energetic efficiency for fat mass gain. We also show that metabolic modulation by PI3Kγ depends on its lipid kinase activity and might involve kinase-independent signaling. Thus, PI3Kγ is an unexpected but promising drug target for the treatment of obesity and its complications. |
---|---|
AbstractList | Obesity is associated with a chronic low-grade inflammation, and specific antiinflammatory interventions may be beneficial for the treatment of type 2 diabetes and other obesity-related diseases. The lipid kinase PI3Kγ is a central proinflammatory signal transducer that plays a major role in leukocyte chemotaxis, mast cell degranulation, and endothelial cell activation. It was also reported that PI3Kγ activity within hematopoietic cells plays an important role in obesity-induced inflammation and insulin resistance. Here, we show that protection from insulin resistance, metabolic inflammation, and fatty liver in mice lacking functional PI3Kγ is largely consequent to their leaner phenotype. We also show that this phenotype is largely based on decreased fat gain, despite normal caloric intake, consequent to increased energy expenditure. Furthermore, our data show that PI3Kγ action on diet-induced obesity depends on PI3Kγ activity within a nonhematopoietic compartment, where it promotes energetic efficiency for fat mass gain. We also show that metabolic modulation by PI3Kγ depends on its lipid kinase activity and might involve kinase-independent signaling. Thus, PI3Kγ is an unexpected but promising drug target for the treatment of obesity and its complications. Obesity is associated with a chronic low-grade inflammation, and specific antiinflammatory interventions may be beneficial for the treatment of type 2 diabetes and other obesity-related diseases. The lipid kinase PI3K gamma is a central proinflammatory signal transducer that plays a major role in leukocyte chemotaxis, mast cell degranulation, and endothelial cell activation. It was also reported that PI3K gamma activity within hematopoietic cells plays an important role in obesity-induced inflammation and insulin resistance. Here, we show that protection from insulin resistance, metabolic inflammation, and fatty liver in mice lacking functional PI3K gamma is largely consequent to their leaner phenotype. We also show that this phenotype is largely based on decreased fat gain, despite normal caloric intake, consequent to increased energy expenditure. Furthermore, our data show that PI3K gamma action on diet-induced obesity depends on PI3K gamma activity within a nonhematopoietic compartment, where it promotes energetic efficiency for fat mass gain. We also show that metabolic modulation by PI3K gamma depends on its lipid kinase activity and might involve kinase-independent signaling. Thus, PI3K gamma is an unexpected but promising drug target for the treatment of obesity and its complications. Obesity is associated with a chronic low-grade inflammation, and specific antiinflammatory interventions may be beneficial for the treatment of type 2 diabetes and other obesity-related diseases. The lipid kinase PI3Kγ is a central proinflammatory signal transducer that plays a major role in leukocyte chemotaxis, mast cell degranulation, and endothelial cell activation. It was also reported that PI3Kγ activity within hematopoietic cells plays an important role in obesity-induced inflammation and insulin resistance. Here, we show that protection from insulin resistance, metabolic inflammation, and fatty liver in mice lacking functional PI3Kγ is largely consequent to their leaner phenotype. We also show that this phenotype is largely based on decreased fat gain, despite normal caloric intake, consequent to increased energy expenditure. Furthermore, our data show that PI3Kγ action on diet-induced obesity depends on PI3Kγ activity within a nonhematopoietic compartment, where it promotes energetic efficiency for fat mass gain. We also show that metabolic modulation by PI3Kγ depends on its lipid kinase activity and might involve kinase-independent signaling. Thus, PI3Kγ is an unexpected but promising drug target for the treatment of obesity and its complications. We conclude that PI3Kγ should be evaluated as a valuable target of drug therapy for obesity and its associated complications. An effective drug candidate targeting the PI3Kγ pathway should be able to efficiently inhibit PI3Kγ activity in nonhematopoietic cells, which are responsible for the obese phenotype of mice, compared with the lean phenotype of PI3Kγ −/− mice. A PI3Kγ lipid kinase-independent pathway was shown to repress PKA signaling, which is involved in lipid metabolism in the heart, where sympathetic activity is elevated by overfeeding. In this study, we showed that a PI3Kγ lipid kinase-independent pathway is a negative regulator of the PKA-mediated activation of hormone-sensitive lipase, an enzyme that breaks down fat molecules in white adipose tissue. An important factor involved in the resistance to obesity in mice lacking PI3Kγ lipid kinase activity may be the reduced ratio of two types of cell-signaling molecules or cytokines (i.e., IL-1Ra and IL-1β) in the white adipose tissue of these mice. Indeed, it has been reported that mice lacking IL-1 type I receptor maintained on a standard diet develop mature onset obesity, whereas mice that do not express IL-1Ra are resistant to diet-induced obesity because of a high metabolic rate. Furthermore, it was shown that the thermogenic effects of leptin, a central hormone that regulates energy intake and expenditure, can be blocked with IL-1Ra. The molecular mechanisms by which PI3Kγ promotes diet-induced obesity remain to be identified. However, we showed that both PI3Kγ lipid kinase-dependent and -independent pathways (mediated by protein–protein interaction) potentially contribute to weight gain ( Fig. P1 B ). PI3Kγ is an important enzyme in signaling pathways that are activated in obesity. On activation, PI3Kγ negatively regulates adaptive heat production (thermogenesis) by an unknown mechanism operating within a nonhematopoietic cell type, and the mechanism possibly involves PI3Kγ lipid kinase-dependent and -independent scaffolding function. We showed that diet-induced obesity, glucose intolerance, fatty liver, and metabolic inflammation depend on PI3Kγ activity in nonblood cells (nonhematopoietic cells). By contrast, PI3Kγ activity in blood cells (hematopoietic cells) did not affect glucose tolerance, fatty liver, or metabolic inflammation in mice, including mice that were overtly obese (weight ∼42 g). The work by Kobayashi et al. ( 5 ) reported that selective ablation of PI3Kγ activity in hematopoietic cells ameliorates glucose tolerance in morbidly obese ob/ob mice but not mice in which obesity was induced by HFD ( 5 ). We conclude that PI3Kγ activity in hematopoietic cells does not significantly contribute to glucose intolerance or the inflammation of fat tissues until mice develop morbid obesity. Thus, in mice, including overtly obese animals, the promotion of diet-induced obesity involving nonhematopoietic cells seems to be the main pathogenic role of PI3Kγ ( Fig. P1 A ). Using mice lacking the PI3Kγ gene ( PI3Kγ −/− mice), we showed that resistance to diet-induced obesity is the main mechanism by which PI3Kγ inactivation protects mice from diet-induced insulin resistance, inflammation, and fat accumulation in liver cells (fatty liver). The impact of PI3Kγ gene deletion on diet-induced obesity was striking and comparable with the results typically obtained after weight loss surgery. We fed mice a high-fat diet (HFD) for 12 wk and observed a 20% reduction in body weight in PI3Kγ −/− mice compared with WT mice; this difference was largely attributable to a reduction in body fat. Obesity is the main cause of diabetes, a disease characterized by high blood sugar levels. Obese patients display chronic low-grade inflammation, and treatment with antiinflammatory drugs (high doses of salicylates, TNF-α–neutralizing antibodies infliximab, and recombinant IL-1Ra anakinra) can often improve glucose homeostasis in these patients ( 1 ). The lipid kinase PI3Kγ is an important signaling molecule that plays a major role in promoting inflammation. Previous studies have implicated PI3Kγ in the controlled secretion of the blood sugar-regulating hormone insulin, suggesting that reduced PI3Kγ activity may be a predisposing factor for glucose intolerance ( 2 – 4 ). In striking contrast to the results of these previous studies, results presented here and in a recent study by Kobayashi et al. ( 5 ) show that mice lacking PI3Kγ are dramatically protected from diet-induced glucose intolerance. The work by Kobayashi et al. ( 5 ) also suggested that inactivation of PI3Kγ reduces the sugar-lowering activity of insulin by directly affecting leukocytes (white blood cells): in other words, PI3Kγ activity within leukocytes was suggested to promote insulin resistance ( 5 ). Obesity is associated with a chronic low-grade inflammation, and specific antiinflammatory interventions may be beneficial for the treatment of type 2 diabetes and other obesity-related diseases. The lipid kinase PI3Kγ is a central proinflammatory signal transducer that plays a major role in leukocyte chemotaxis, mast cell degranulation, and endothelial cell activation. It was also reported that PI3Kγ activity within hematopoietic cells plays an important role in obesity-induced inflammation and insulin resistance. Here, we show that protection from insulin resistance, metabolic inflammation, and fatty liver in mice lacking functional PI3Kγ is largely consequent to their leaner phenotype. We also show that this phenotype is largely based on decreased fat gain, despite normal caloric intake, consequent to increased energy expenditure. Furthermore, our data show that PI3Kγ action on diet-induced obesity depends on PI3Kγ activity within a nonhematopoietic compartment, where it promotes energetic efficiency for fat mass gain. We also show that metabolic modulation by PI3Kγ depends on its lipid kinase activity and might involve kinase-independent signaling. Thus, PI3Kγ is an unexpected but promising drug target for the treatment of obesity and its complications.Obesity is associated with a chronic low-grade inflammation, and specific antiinflammatory interventions may be beneficial for the treatment of type 2 diabetes and other obesity-related diseases. The lipid kinase PI3Kγ is a central proinflammatory signal transducer that plays a major role in leukocyte chemotaxis, mast cell degranulation, and endothelial cell activation. It was also reported that PI3Kγ activity within hematopoietic cells plays an important role in obesity-induced inflammation and insulin resistance. Here, we show that protection from insulin resistance, metabolic inflammation, and fatty liver in mice lacking functional PI3Kγ is largely consequent to their leaner phenotype. We also show that this phenotype is largely based on decreased fat gain, despite normal caloric intake, consequent to increased energy expenditure. Furthermore, our data show that PI3Kγ action on diet-induced obesity depends on PI3Kγ activity within a nonhematopoietic compartment, where it promotes energetic efficiency for fat mass gain. We also show that metabolic modulation by PI3Kγ depends on its lipid kinase activity and might involve kinase-independent signaling. Thus, PI3Kγ is an unexpected but promising drug target for the treatment of obesity and its complications. |
Author | Becattini, Barbara Wymann, Matthias P Zani, Fabio Solinas, Giovanni Preitner, Frédéric Arsenijevic, Denis Seydoux, Josiane Dulloo, Abdul G Montani, Jean-Pierre Marone, Romina Thorens, Bernard |
Author_xml | – sequence: 1 fullname: Becattini, Barbara – sequence: 2 fullname: Marone, Romina – sequence: 3 fullname: Zani, Fabio – sequence: 4 fullname: Arsenijevic, Denis – sequence: 5 fullname: Seydoux, Josiane – sequence: 6 fullname: Montani, Jean-Pierre – sequence: 7 fullname: Dulloo, Abdul G – sequence: 8 fullname: Thorens, Bernard – sequence: 9 fullname: Preitner, Frédéric – sequence: 10 fullname: Wymann, Matthias P – sequence: 11 fullname: Solinas, Giovanni |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21949398$$D View this record in MEDLINE/PubMed https://gup.ub.gu.se/publication/241721$$DView record from Swedish Publication Index |
BookMark | eNp9kstu1DAUhi1URKeFNTvIDjZpfUtib5BQVaCiEkiUteU4JxmjjB1sp9W8AC_Ee_BMOMzQUhZdWTrn-8_F5z9CB847QOg5wScEN-x0cjqeEILrWgqCxSO0IliSsuYSH6AVxrQpBaf8EB3F-A1jLCuBn6BDSiSXTIoV-vH5gn389bO4sWltXaGL3GANG5385C0kawoD41ik7QSFg0Enew3jtggwzKNOEIsuU6V13WygK9IawsYP4CDaWGjXFVPwG79wvs2xtP0TtC7OY-4WFixpZ-ApetzrMcKz_XuMrt6dX519KC8_vb84e3tZmoqQVAqGey1MY3pDSFthrFsBvKW04n1TN3UrdGtk17RdKwkw2VPR15VhRFJBaM-OUbkrG29gmls1BbvRYau8tmqYJ5VDw6wiKMpJQ0nm3-z4DG-gM-BS0OM92f2Ms2s1-GuVOwrW4Fzg1b5A8N9niEltbFx-VDvwc1QS45oyUfFMvn6QJJw2GDNJqoy--Heq23H-XjUDpzvABB9jgP4WIVgtvlGLb9Sdb7Ki-k9hbMrH9stadnxA93I_ypK46yIUp-p8t9ee6LVXegg2qq9fKCY8u7GWlFH2G_z04Do |
CitedBy_id | crossref_primary_10_1016_j_molmet_2015_03_004 crossref_primary_10_3390_biom9090402 crossref_primary_10_3390_ijms24098391 crossref_primary_10_1016_j_tibs_2014_12_003 crossref_primary_10_3389_fimmu_2020_585070 crossref_primary_10_1016_j_jbior_2012_04_002 crossref_primary_10_2217_epi_2018_0055 crossref_primary_10_1073_pnas_1813012116 crossref_primary_10_1371_journal_pbio_1001587 crossref_primary_10_1016_j_molmet_2013_06_006 crossref_primary_10_1038_s41577_022_00701_8 crossref_primary_10_1074_jbc_M114_577510 crossref_primary_10_1016_j_jmb_2017_01_023 crossref_primary_10_1038_scibx_2012_539 crossref_primary_10_1371_journal_pone_0144494 crossref_primary_10_1016_j_jhepr_2021_100359 crossref_primary_10_3389_fimmu_2015_00637 crossref_primary_10_1016_j_celrep_2023_112172 crossref_primary_10_1016_j_neulet_2020_135339 crossref_primary_10_1371_journal_pbio_1001594 crossref_primary_10_1016_j_jbior_2014_11_004 crossref_primary_10_1016_j_isci_2024_111562 crossref_primary_10_3390_biom9090427 crossref_primary_10_1016_j_biopha_2023_114244 crossref_primary_10_1038_s41589_018_0215_0 crossref_primary_10_1080_21623945_2016_1208867 crossref_primary_10_1096_fj_201700372RR crossref_primary_10_7554_eLife_88058_3 crossref_primary_10_1096_fj_201600393R crossref_primary_10_1038_ki_2013_89 crossref_primary_10_1096_fba_2020_00081 crossref_primary_10_1016_j_biopha_2021_111650 crossref_primary_10_7554_eLife_88058 crossref_primary_10_3389_fphys_2014_00391 crossref_primary_10_1126_scisignal_2005485 crossref_primary_10_1038_s41598_024_71591_0 crossref_primary_10_1126_scisignal_aaf2969 crossref_primary_10_1371_journal_pone_0163568 crossref_primary_10_1111_nyas_12037 crossref_primary_10_1038_ki_2012_154 crossref_primary_10_3389_fphys_2018_00789 crossref_primary_10_1111_febs_12428 crossref_primary_10_1016_j_cmet_2015_02_017 crossref_primary_10_1080_1120009X_2019_1708153 crossref_primary_10_1021_acs_jmedchem_8b01298 crossref_primary_10_1038_nchembio_957 crossref_primary_10_3389_fphys_2015_00341 crossref_primary_10_1021_acs_jmedchem_4c00347 crossref_primary_10_1111_j_1467_789X_2012_01047_x |
Cites_doi | 10.1152/ajpendo.00362.2009 10.2337/diabetes.54.12.3503 10.1038/sj.ijo.0801108 10.1182/blood-2005-01-0023 10.1016/S0014-5793(02)03387-2 10.1038/nature05485 10.1210/en.2004-0028 10.1083/jcb.200202113 10.1002/eji.201040319 10.1038/nm0809-846 10.1016/j.cmet.2007.10.011 10.1152/ajpendo.1983.245.2.E148 10.1126/science.1073160 10.1194/jlr.M500294-JLR200 10.1210/en.2005-0003 10.1210/en.2006-0155 10.2337/db08-1371 10.1042/bst0310275 10.1016/S0021-9258(18)64849-5 10.2337/db09-1471 10.1038/nature07091 10.2337/dc07-1338 10.1073/pnas.96.12.7047 10.1056/NEJMoa065213 10.1126/scisignal.2000259 10.1172/JCI29069 10.1161/01.HYP.30.3.619 10.1016/j.cell.2004.07.017 10.2337/db10-0245 10.1161/CIRCULATIONAHA.107.720466 10.1038/281031a0 10.2337/db08-1793 10.1016/j.febslet.2004.10.066 10.1126/scisignal.1161577 10.1074/jbc.M102582200 10.1126/science.287.5455.1049 10.1126/science.282.5387.293 10.1038/295323a0 10.2337/diabetes.52.5.1104 10.1194/jlr.M800248-JLR200 10.1073/pnas.0702663104 10.1073/pnas.1016430108 10.1038/ncb1278 10.1016/S0022-2275(20)30474-0 10.1096/fj.09-151340 10.1136/bmj.2.5053.1071 10.1038/nature04694 10.1074/jbc.M102376200 10.1084/jem.20040995 10.1111/j.1365-2362.2004.01390.x 10.1093/jn/127.10.2065 10.1172/JCI34260 10.1016/j.cmet.2007.09.011 10.2337/db05-1304 10.1172/JCI24335 |
ContentType | Journal Article |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TS 7X8 5PM ADTPV AOWAS F1U |
DOI | 10.1073/pnas.1106698108 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Physical Education Index MEDLINE - Academic PubMed Central (Full Participant titles) SwePub SwePub Articles SWEPUB Göteborgs universitet |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Physical Education Index MEDLINE - Academic |
DatabaseTitleList | MEDLINE Physical Education Index CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | E863 |
ExternalDocumentID | oai_gup_ub_gu_se_241721 PMC3198370 21949398 10_1073_pnas_1106698108 108_42_E854 US201400069232 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACKIV ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFHIN AFOSN AFQQW AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM AS~ BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FBQ FRP GX1 H13 HGD HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH W8F WH7 WHG WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ZCG ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD AJYGW ASUFR DNJUQ DOOOF DWIUU DZ F20 JSODD KM PQEST RHF VQA X XHC ZA5 AAYXX ADXHL CITATION CGR CUY CVF ECM EIF NPM 7TS 7X8 5PM ADTPV AOWAS F1U |
ID | FETCH-LOGICAL-c511t-830fa8c7cfc11b500ab8e4b2254f7676b8abc9d7bdb91e39f28f65c3192812f3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 06:37:41 EDT 2025 Thu Aug 21 14:03:36 EDT 2025 Thu Sep 04 20:56:37 EDT 2025 Thu Sep 04 18:18:01 EDT 2025 Thu Apr 03 07:01:58 EDT 2025 Tue Jul 01 00:47:17 EDT 2025 Thu Apr 24 22:55:39 EDT 2025 Wed Nov 11 00:29:40 EST 2020 Thu Apr 03 09:45:52 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 42 |
Language | English |
License | Freely available online through the PNAS open access option. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c511t-830fa8c7cfc11b500ab8e4b2254f7676b8abc9d7bdb91e39f28f65c3192812f3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 Author contributions: M.P.W. and G.S. designed research; B.B., R.M., F.Z., D.A., J.S., F.P., and G.S. performed research; J.-P.M. and B.T. contributed new reagents/analytic tools; B.B., R.M., F.Z., D.A., J.S., A.G.D., F.P., M.P.W., and G.S. analyzed data; and B.B., R.M., M.P.W., and G.S. wrote the paper. Edited* by Michael Karin, University of California at San Diego School of Medicine, La Jolla, CA, and approved August 30, 2011 (received for review April 29, 2011) 1B.B., R.M., F.Z., M.P.W., and G.S. contributed equally to this work. |
OpenAccessLink | https://www.pnas.org/content/pnas/108/42/E854.full.pdf |
PMID | 21949398 |
PQID | 1427003915 |
PQPubID | 23462 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3198370 proquest_miscellaneous_900623854 fao_agris_US201400069232 pubmed_primary_21949398 swepub_primary_oai_gup_ub_gu_se_241721 crossref_primary_10_1073_pnas_1106698108 crossref_citationtrail_10_1073_pnas_1106698108 proquest_miscellaneous_1427003915 pnas_primary_108_42_E854 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-10-18 |
PublicationDateYYYYMMDD | 2011-10-18 |
PublicationDate_xml | – month: 10 year: 2011 text: 2011-10-18 day: 18 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationSeriesTitle | PNAS Plus |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2011 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_3_50_2 e_1_1_2_18_10_2_2 e_1_1_2_18_10_4_2 Landsberg L (e_1_3_3_36_2) 1984; 247 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_56_2 e_1_3_3_33_2 e_1_3_3_54_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_40_2 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_51_2 e_1_1_2_18_10_1_2 e_1_1_2_18_10_3_2 e_1_1_2_18_10_5_2 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_32_2 e_1_3_3_55_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_53_2 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 18594509 - Nature. 2008 Aug 7;454(7205):776-9 18780892 - Sci Signal. 2008;1(36):ra3 12161655 - Science. 2002 Aug 2;297(5582):843-5 19509406 - Sci Signal. 2009;2(74):ra27 11443116 - J Biol Chem. 2001 Aug 31;276(35):32545-51 15294162 - Cell. 2004 Aug 6;118(3):375-87 15769890 - Blood. 2005 Jul 1;106(1):150-7 551265 - Nature. 1979 Sep 6;281(5726):31-5 19602538 - Diabetes. 2009 Oct;58(10):2228-37 15231713 - Endocrinology. 2004 Sep;145(9):4078-83 17483449 - Proc Natl Acad Sci U S A. 2007 May 8;104(19):8077-82 6380306 - Am J Physiol. 1984 Aug;247(2 Pt 1):E181-9 15556643 - FEBS Lett. 2004 Nov 19;577(3):539-44 20201008 - Eur J Immunol. 2010 Mar;40(3):599-606 16150820 - J Lipid Res. 2005 Nov;46(11):2347-55 16306368 - Diabetes. 2005 Dec;54(12):3503-9 21436039 - Proc Natl Acad Sci U S A. 2011 Apr 5;108(14):5753-8 16574789 - Endocrinology. 2006 Jul;147(7):3318-25 19826103 - Am J Physiol Endocrinol Metab. 2009 Dec;297(6):E1420-9 12387862 - FEBS Lett. 2002 Oct 23;530(1-3):37-40 6881329 - Am J Physiol. 1983 Aug;245(2):E148-54 15379764 - Eur J Clin Invest. 2004 Sep;34(9):641-2 16823477 - J Clin Invest. 2006 Jul;116(7):1793-801 16625210 - Nature. 2006 May 18;441(7091):366-70 12546701 - Biochem Soc Trans. 2003 Feb;31(Pt 1):275-80 13428781 - J Biol Chem. 1957 May;226(1):497-509 18268153 - Circulation. 2008 Mar 11;117(10):1310-7 16341265 - J Clin Invest. 2006 Jan;116(1):115-24 13472052 - Br Med J. 1957 Nov 9;2(5053):1071-4 18769626 - J Clin Invest. 2008 Sep;118(9):2992-3002 17959861 - Diabetes Care. 2008 Feb;31(2):289-94 12032175 - J Lipid Res. 2002 Jun;43(6):986-9 17167474 - Nature. 2006 Dec 14;444(7121):860-7 12716739 - Diabetes. 2003 May;52(5):1104-10 19661987 - Nat Med. 2009 Aug;15(8):846-7 15878965 - Endocrinology. 2005 Aug;146(8):3481-9 20682684 - Diabetes. 2010 Oct;59(10):2474-83 10359836 - Proc Natl Acad Sci U S A. 1999 Jun 8;96(12):7047-52 17429083 - N Engl J Med. 2007 Apr 12;356(15):1517-26 15824082 - J Exp Med. 2005 Apr 18;201(8):1217-28 16644674 - Diabetes. 2006 May;55(5):1205-13 18054319 - Cell Metab. 2007 Dec;6(6):506-12 9311966 - J Nutr. 1997 Oct;127(10):2065-72 18515909 - J Lipid Res. 2008 Sep;49(9):2038-44 20371626 - FASEB J. 2010 Aug;24(8):2596-611 10578199 - Int J Obes Relat Metab Disord. 1999 Nov;23(11):1105-17 9765155 - Science. 1998 Oct 9;282(5387):293-6 19549714 - Diabetes. 2009 Sep;58(9):2084-92 17983584 - Cell Metab. 2007 Nov;6(5):386-97 12163475 - J Cell Biol. 2002 Aug 5;158(3):563-75 20103710 - Diabetes. 2010 Feb;59(2):323-9 9322991 - Hypertension. 1997 Sep;30(3 Pt 2):619-23 16094730 - Nat Cell Biol. 2005 Aug;7(8):785-96 10669418 - Science. 2000 Feb 11;287(5455):1049-53 11259422 - J Biol Chem. 2001 Jun 1;276(22):18953-9 7057896 - Nature. 1982 Jan 28;295(5847):323-5 |
References_xml | – ident: e_1_3_3_51_2 doi: 10.1152/ajpendo.00362.2009 – ident: e_1_3_3_43_2 doi: 10.2337/diabetes.54.12.3503 – ident: e_1_3_3_26_2 doi: 10.1038/sj.ijo.0801108 – ident: e_1_3_3_27_2 doi: 10.1182/blood-2005-01-0023 – ident: e_1_3_3_28_2 doi: 10.1016/S0014-5793(02)03387-2 – ident: e_1_3_3_2_2 doi: 10.1038/nature05485 – ident: e_1_3_3_20_2 doi: 10.1210/en.2004-0028 – ident: e_1_3_3_33_2 doi: 10.1083/jcb.200202113 – ident: e_1_3_3_41_2 doi: 10.1002/eji.201040319 – ident: e_1_3_3_4_2 doi: 10.1038/nm0809-846 – ident: e_1_3_3_39_2 doi: 10.1016/j.cmet.2007.10.011 – ident: e_1_3_3_31_2 doi: 10.1152/ajpendo.1983.245.2.E148 – ident: e_1_3_3_25_2 doi: 10.1126/science.1073160 – ident: e_1_3_3_55_2 doi: 10.1194/jlr.M500294-JLR200 – volume: 247 start-page: E181 year: 1984 ident: e_1_3_3_36_2 article-title: Sympathoadrenal system and regulation of thermogenesis publication-title: Am J Physiol – ident: e_1_3_3_38_2 doi: 10.1210/en.2005-0003 – ident: e_1_1_2_18_10_3_2 doi: 10.1210/en.2006-0155 – ident: e_1_1_2_18_10_4_2 doi: 10.2337/db08-1371 – ident: e_1_3_3_17_2 doi: 10.1042/bst0310275 – ident: e_1_3_3_48_2 doi: 10.1016/S0021-9258(18)64849-5 – ident: e_1_3_3_50_2 doi: 10.2337/db09-1471 – ident: e_1_3_3_10_2 doi: 10.1038/nature07091 – ident: e_1_3_3_9_2 doi: 10.2337/dc07-1338 – ident: e_1_3_3_44_2 doi: 10.1073/pnas.96.12.7047 – ident: e_1_3_3_8_2 doi: 10.1056/NEJMoa065213 – ident: e_1_3_3_22_2 doi: 10.2337/db08-1371 – ident: e_1_3_3_19_2 doi: 10.1126/scisignal.2000259 – ident: e_1_3_3_1_2 doi: 10.1172/JCI29069 – ident: e_1_3_3_32_2 doi: 10.1161/01.HYP.30.3.619 – ident: e_1_3_3_18_2 doi: 10.1016/j.cell.2004.07.017 – ident: e_1_3_3_40_2 doi: 10.2337/db10-0245 – ident: e_1_3_3_47_2 doi: 10.1161/CIRCULATIONAHA.107.720466 – ident: e_1_3_3_35_2 doi: 10.1038/281031a0 – ident: e_1_3_3_49_2 doi: 10.2337/db08-1793 – ident: e_1_3_3_53_2 doi: 10.1016/j.febslet.2004.10.066 – ident: e_1_3_3_11_2 doi: 10.1126/scisignal.1161577 – ident: e_1_3_3_14_2 doi: 10.1074/jbc.M102582200 – ident: e_1_3_3_13_2 doi: 10.1126/science.287.5455.1049 – ident: e_1_3_3_21_2 doi: 10.1210/en.2006-0155 – ident: e_1_3_3_54_2 doi: 10.1126/science.282.5387.293 – ident: e_1_3_3_29_2 doi: 10.1038/295323a0 – ident: e_1_1_2_18_10_2_2 doi: 10.1210/en.2004-0028 – ident: e_1_3_3_45_2 doi: 10.2337/diabetes.52.5.1104 – ident: e_1_3_3_52_2 doi: 10.1194/jlr.M800248-JLR200 – ident: e_1_3_3_46_2 doi: 10.1073/pnas.0702663104 – ident: e_1_1_2_18_10_5_2 doi: 10.1073/pnas.1016430108 – ident: e_1_3_3_34_2 doi: 10.1038/ncb1278 – ident: e_1_3_3_56_2 doi: 10.1016/S0022-2275(20)30474-0 – ident: e_1_3_3_5_2 doi: 10.1096/fj.09-151340 – ident: e_1_3_3_6_2 doi: 10.1136/bmj.2.5053.1071 – ident: e_1_3_3_12_2 doi: 10.1038/nature04694 – ident: e_1_3_3_15_2 doi: 10.1074/jbc.M102376200 – ident: e_1_3_3_16_2 doi: 10.1084/jem.20040995 – ident: e_1_3_3_7_2 doi: 10.1111/j.1365-2362.2004.01390.x – ident: e_1_3_3_30_2 doi: 10.1093/jn/127.10.2065 – ident: e_1_3_3_3_2 doi: 10.1172/JCI34260 – ident: e_1_3_3_23_2 doi: 10.1073/pnas.1016430108 – ident: e_1_3_3_24_2 doi: 10.1016/j.cmet.2007.09.011 – ident: e_1_1_2_18_10_1_2 doi: 10.1096/fj.09-151340 – ident: e_1_3_3_42_2 doi: 10.2337/db05-1304 – ident: e_1_3_3_37_2 doi: 10.1172/JCI24335 – reference: 17983584 - Cell Metab. 2007 Nov;6(5):386-97 – reference: 10578199 - Int J Obes Relat Metab Disord. 1999 Nov;23(11):1105-17 – reference: 9311966 - J Nutr. 1997 Oct;127(10):2065-72 – reference: 15769890 - Blood. 2005 Jul 1;106(1):150-7 – reference: 17429083 - N Engl J Med. 2007 Apr 12;356(15):1517-26 – reference: 16823477 - J Clin Invest. 2006 Jul;116(7):1793-801 – reference: 6380306 - Am J Physiol. 1984 Aug;247(2 Pt 1):E181-9 – reference: 12163475 - J Cell Biol. 2002 Aug 5;158(3):563-75 – reference: 9765155 - Science. 1998 Oct 9;282(5387):293-6 – reference: 12032175 - J Lipid Res. 2002 Jun;43(6):986-9 – reference: 10669418 - Science. 2000 Feb 11;287(5455):1049-53 – reference: 16150820 - J Lipid Res. 2005 Nov;46(11):2347-55 – reference: 20103710 - Diabetes. 2010 Feb;59(2):323-9 – reference: 19602538 - Diabetes. 2009 Oct;58(10):2228-37 – reference: 18268153 - Circulation. 2008 Mar 11;117(10):1310-7 – reference: 15824082 - J Exp Med. 2005 Apr 18;201(8):1217-28 – reference: 18054319 - Cell Metab. 2007 Dec;6(6):506-12 – reference: 11443116 - J Biol Chem. 2001 Aug 31;276(35):32545-51 – reference: 16094730 - Nat Cell Biol. 2005 Aug;7(8):785-96 – reference: 19826103 - Am J Physiol Endocrinol Metab. 2009 Dec;297(6):E1420-9 – reference: 7057896 - Nature. 1982 Jan 28;295(5847):323-5 – reference: 17167474 - Nature. 2006 Dec 14;444(7121):860-7 – reference: 17483449 - Proc Natl Acad Sci U S A. 2007 May 8;104(19):8077-82 – reference: 18780892 - Sci Signal. 2008;1(36):ra3 – reference: 12387862 - FEBS Lett. 2002 Oct 23;530(1-3):37-40 – reference: 12546701 - Biochem Soc Trans. 2003 Feb;31(Pt 1):275-80 – reference: 16574789 - Endocrinology. 2006 Jul;147(7):3318-25 – reference: 11259422 - J Biol Chem. 2001 Jun 1;276(22):18953-9 – reference: 19509406 - Sci Signal. 2009;2(74):ra27 – reference: 15878965 - Endocrinology. 2005 Aug;146(8):3481-9 – reference: 551265 - Nature. 1979 Sep 6;281(5726):31-5 – reference: 20371626 - FASEB J. 2010 Aug;24(8):2596-611 – reference: 13428781 - J Biol Chem. 1957 May;226(1):497-509 – reference: 6881329 - Am J Physiol. 1983 Aug;245(2):E148-54 – reference: 16644674 - Diabetes. 2006 May;55(5):1205-13 – reference: 12716739 - Diabetes. 2003 May;52(5):1104-10 – reference: 15379764 - Eur J Clin Invest. 2004 Sep;34(9):641-2 – reference: 19661987 - Nat Med. 2009 Aug;15(8):846-7 – reference: 18769626 - J Clin Invest. 2008 Sep;118(9):2992-3002 – reference: 21436039 - Proc Natl Acad Sci U S A. 2011 Apr 5;108(14):5753-8 – reference: 20682684 - Diabetes. 2010 Oct;59(10):2474-83 – reference: 15231713 - Endocrinology. 2004 Sep;145(9):4078-83 – reference: 13472052 - Br Med J. 1957 Nov 9;2(5053):1071-4 – reference: 15556643 - FEBS Lett. 2004 Nov 19;577(3):539-44 – reference: 16306368 - Diabetes. 2005 Dec;54(12):3503-9 – reference: 10359836 - Proc Natl Acad Sci U S A. 1999 Jun 8;96(12):7047-52 – reference: 15294162 - Cell. 2004 Aug 6;118(3):375-87 – reference: 18515909 - J Lipid Res. 2008 Sep;49(9):2038-44 – reference: 20201008 - Eur J Immunol. 2010 Mar;40(3):599-606 – reference: 18594509 - Nature. 2008 Aug 7;454(7205):776-9 – reference: 9322991 - Hypertension. 1997 Sep;30(3 Pt 2):619-23 – reference: 12161655 - Science. 2002 Aug 2;297(5582):843-5 – reference: 16341265 - J Clin Invest. 2006 Jan;116(1):115-24 – reference: 17959861 - Diabetes Care. 2008 Feb;31(2):289-94 – reference: 16625210 - Nature. 2006 May 18;441(7091):366-70 – reference: 19549714 - Diabetes. 2009 Sep;58(9):2084-92 |
SSID | ssj0009580 |
Score | 2.2790205 |
Snippet | Obesity is associated with a chronic low-grade inflammation, and specific antiinflammatory interventions may be beneficial for the treatment of type 2 diabetes... |
SourceID | swepub pubmedcentral proquest pubmed crossref pnas fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | E854 |
SubjectTerms | Adipose Tissue, White - enzymology Adiposity Animals Basic Medicine Biological Sciences Class Ib Phosphatidylinositol 3-Kinase - deficiency Class Ib Phosphatidylinositol 3-Kinase - genetics Class Ib Phosphatidylinositol 3-Kinase - metabolism Diabetes Diet, High-Fat - adverse effects Energy Balance energy efficiency energy intake fatty liver Fatty Liver - enzymology Fatty Liver - etiology Fatty Liver - prevention & control Inflammation Inflammation - enzymology insulin resistance Insulin Resistance - physiology Male Medicinska och farmaceutiska grundvetenskaper Mice Mice, Inbred C57BL Mice, Knockout Models, Biological noninsulin-dependent diabetes mellitus Obesity Obesity - enzymology Obesity - etiology Obesity - prevention & control obesity-related diseases Phenotype PI3K PNAS Plus RNA, Messenger - genetics RNA, Messenger - metabolism Signal Transduction Sterol Esterase - metabolism thermic effect of food Thermogenesis - physiology Thinness - enzymology |
Title | PI3Kγ within a nonhematopoietic cell type negatively regulates diet-induced thermogenesis and promotes obesity and insulin resistance |
URI | http://www.pnas.org/content/108/42/E854.abstract https://www.ncbi.nlm.nih.gov/pubmed/21949398 https://www.proquest.com/docview/1427003915 https://www.proquest.com/docview/900623854 https://pubmed.ncbi.nlm.nih.gov/PMC3198370 https://gup.ub.gu.se/publication/241721 |
Volume | 108 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtNAFB2lZcMGUV4NLw0SRUWWixO_xstSJSpQQgSJlN1oPBmHoNaO4mQBH8DnsOE_-Cbu9YztuE3FY2NF4_HYyT2-r9w5l5DnYHQCqSJpg-mCACXxXZtNmW-HXjQNnUCIYIoJ_feD4HTsvZ34k1brx0bV0noVH8lvW_eV_I9UYQzkirtk_0Gy1aIwAJ9BvnAECcPxr2Q8fOO-OzjpHbx2i3zqPLWEBeF8wcOaLbI5blC0MDWvM62pmhU03-dfraVuQa9yawqzbAjM11gIgN7gRTZD_TfPDYcAlushM63uIGDYmnQB-xKnrSrcGB93WNnEvKxAGJQpx-N6A4vRKrllW8PBRjtkJQXWYs83_g2p0-bLTGdgP2YXpu93kfXWjamsvoh1WZmGcK7S-Rcw_FIrVs2hUuU4dJFdQy2DV2MHnm4seqS2jJW63GEboNW8XUY195hmq75iM0DJYaPjVOS4JyIIIlau0mDnHnzg_fHZGR_1JqMdcqMbgq-Gm8snnQ2SZ6bZL8yTlVRSofvq0vINL2gnERly68KUbXHO1XLdBqlt4QiNbpNbJoKhxxqOe6Sl0jtkr5QmPTRE5i_vku-Iz18_qcYmFfQyNilikyI2aY1NWmGTbmKTNrBJAYa0xCY12CwGDTZpjc17ZNTvjU5ObdP3w5bg_q9s5jqJYDKUiex0Yt9xRMyUF4Pl8ZIwCIOYiViCKomncdRRbpR0WRL4EoxJF9zVxL1PduH7qH1CwRhFAkIYVyRTT4FIPN8RbuAlsLTPmGyTo1IMXBpOfGzNcs6L2ozQ5SgUXsutTQ6rCxaaDub6qfsgVy5mYKz5-FMXUxnICw4hDJwqJtcrMO51OSK0TZ6VAOCg6FEMIlXZGlb2sEYE-zm0Cb1mToRbot1imQcaM9U9wDPxIjeCxwobaKomIM9880w6_1zwzcMPixRZbfJC465xyWy94DA0W_NccQgHwm7n4Z-f7xG5Wb_nj8nuarlWT8C7X8VPi1fqN6kHAVw |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PI3K%CE%B3+within+a+nonhematopoietic+cell+type+negatively+regulates+diet-induced+thermogenesis+and+promotes+obesity+and+insulin+resistance&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Becattini%2C+Barbara&rft.au=Marone%2C+Romina&rft.au=Zani%2C+Fabio&rft.au=Arsenijevic%2C+Denis&rft.date=2011-10-18&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=108&rft.issue=42&rft.spage=E854&rft_id=info:doi/10.1073%2Fpnas.1106698108&rft.externalDBID=NO_FULL_TEXT |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F108%2F42.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F108%2F42.cover.gif |