PI3Kγ within a nonhematopoietic cell type negatively regulates diet-induced thermogenesis and promotes obesity and insulin resistance

Obesity is associated with a chronic low-grade inflammation, and specific antiinflammatory interventions may be beneficial for the treatment of type 2 diabetes and other obesity-related diseases. The lipid kinase PI3Kγ is a central proinflammatory signal transducer that plays a major role in leukocy...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 108; no. 42; pp. E854 - E863
Main Authors Becattini, Barbara, Marone, Romina, Zani, Fabio, Arsenijevic, Denis, Seydoux, Josiane, Montani, Jean-Pierre, Dulloo, Abdul G, Thorens, Bernard, Preitner, Frédéric, Wymann, Matthias P, Solinas, Giovanni
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 18.10.2011
National Acad Sciences
SeriesPNAS Plus
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.1106698108

Cover

Abstract Obesity is associated with a chronic low-grade inflammation, and specific antiinflammatory interventions may be beneficial for the treatment of type 2 diabetes and other obesity-related diseases. The lipid kinase PI3Kγ is a central proinflammatory signal transducer that plays a major role in leukocyte chemotaxis, mast cell degranulation, and endothelial cell activation. It was also reported that PI3Kγ activity within hematopoietic cells plays an important role in obesity-induced inflammation and insulin resistance. Here, we show that protection from insulin resistance, metabolic inflammation, and fatty liver in mice lacking functional PI3Kγ is largely consequent to their leaner phenotype. We also show that this phenotype is largely based on decreased fat gain, despite normal caloric intake, consequent to increased energy expenditure. Furthermore, our data show that PI3Kγ action on diet-induced obesity depends on PI3Kγ activity within a nonhematopoietic compartment, where it promotes energetic efficiency for fat mass gain. We also show that metabolic modulation by PI3Kγ depends on its lipid kinase activity and might involve kinase-independent signaling. Thus, PI3Kγ is an unexpected but promising drug target for the treatment of obesity and its complications.
AbstractList Obesity is associated with a chronic low-grade inflammation, and specific antiinflammatory interventions may be beneficial for the treatment of type 2 diabetes and other obesity-related diseases. The lipid kinase PI3Kγ is a central proinflammatory signal transducer that plays a major role in leukocyte chemotaxis, mast cell degranulation, and endothelial cell activation. It was also reported that PI3Kγ activity within hematopoietic cells plays an important role in obesity-induced inflammation and insulin resistance. Here, we show that protection from insulin resistance, metabolic inflammation, and fatty liver in mice lacking functional PI3Kγ is largely consequent to their leaner phenotype. We also show that this phenotype is largely based on decreased fat gain, despite normal caloric intake, consequent to increased energy expenditure. Furthermore, our data show that PI3Kγ action on diet-induced obesity depends on PI3Kγ activity within a nonhematopoietic compartment, where it promotes energetic efficiency for fat mass gain. We also show that metabolic modulation by PI3Kγ depends on its lipid kinase activity and might involve kinase-independent signaling. Thus, PI3Kγ is an unexpected but promising drug target for the treatment of obesity and its complications.
Obesity is associated with a chronic low-grade inflammation, and specific antiinflammatory interventions may be beneficial for the treatment of type 2 diabetes and other obesity-related diseases. The lipid kinase PI3K gamma is a central proinflammatory signal transducer that plays a major role in leukocyte chemotaxis, mast cell degranulation, and endothelial cell activation. It was also reported that PI3K gamma activity within hematopoietic cells plays an important role in obesity-induced inflammation and insulin resistance. Here, we show that protection from insulin resistance, metabolic inflammation, and fatty liver in mice lacking functional PI3K gamma is largely consequent to their leaner phenotype. We also show that this phenotype is largely based on decreased fat gain, despite normal caloric intake, consequent to increased energy expenditure. Furthermore, our data show that PI3K gamma action on diet-induced obesity depends on PI3K gamma activity within a nonhematopoietic compartment, where it promotes energetic efficiency for fat mass gain. We also show that metabolic modulation by PI3K gamma depends on its lipid kinase activity and might involve kinase-independent signaling. Thus, PI3K gamma is an unexpected but promising drug target for the treatment of obesity and its complications.
Obesity is associated with a chronic low-grade inflammation, and specific antiinflammatory interventions may be beneficial for the treatment of type 2 diabetes and other obesity-related diseases. The lipid kinase PI3Kγ is a central proinflammatory signal transducer that plays a major role in leukocyte chemotaxis, mast cell degranulation, and endothelial cell activation. It was also reported that PI3Kγ activity within hematopoietic cells plays an important role in obesity-induced inflammation and insulin resistance. Here, we show that protection from insulin resistance, metabolic inflammation, and fatty liver in mice lacking functional PI3Kγ is largely consequent to their leaner phenotype. We also show that this phenotype is largely based on decreased fat gain, despite normal caloric intake, consequent to increased energy expenditure. Furthermore, our data show that PI3Kγ action on diet-induced obesity depends on PI3Kγ activity within a nonhematopoietic compartment, where it promotes energetic efficiency for fat mass gain. We also show that metabolic modulation by PI3Kγ depends on its lipid kinase activity and might involve kinase-independent signaling. Thus, PI3Kγ is an unexpected but promising drug target for the treatment of obesity and its complications. We conclude that PI3Kγ should be evaluated as a valuable target of drug therapy for obesity and its associated complications. An effective drug candidate targeting the PI3Kγ pathway should be able to efficiently inhibit PI3Kγ activity in nonhematopoietic cells, which are responsible for the obese phenotype of mice, compared with the lean phenotype of PI3Kγ −/− mice. A PI3Kγ lipid kinase-independent pathway was shown to repress PKA signaling, which is involved in lipid metabolism in the heart, where sympathetic activity is elevated by overfeeding. In this study, we showed that a PI3Kγ lipid kinase-independent pathway is a negative regulator of the PKA-mediated activation of hormone-sensitive lipase, an enzyme that breaks down fat molecules in white adipose tissue. An important factor involved in the resistance to obesity in mice lacking PI3Kγ lipid kinase activity may be the reduced ratio of two types of cell-signaling molecules or cytokines (i.e., IL-1Ra and IL-1β) in the white adipose tissue of these mice. Indeed, it has been reported that mice lacking IL-1 type I receptor maintained on a standard diet develop mature onset obesity, whereas mice that do not express IL-1Ra are resistant to diet-induced obesity because of a high metabolic rate. Furthermore, it was shown that the thermogenic effects of leptin, a central hormone that regulates energy intake and expenditure, can be blocked with IL-1Ra. The molecular mechanisms by which PI3Kγ promotes diet-induced obesity remain to be identified. However, we showed that both PI3Kγ lipid kinase-dependent and -independent pathways (mediated by protein–protein interaction) potentially contribute to weight gain ( Fig. P1 B ). PI3Kγ is an important enzyme in signaling pathways that are activated in obesity. On activation, PI3Kγ negatively regulates adaptive heat production (thermogenesis) by an unknown mechanism operating within a nonhematopoietic cell type, and the mechanism possibly involves PI3Kγ lipid kinase-dependent and -independent scaffolding function. We showed that diet-induced obesity, glucose intolerance, fatty liver, and metabolic inflammation depend on PI3Kγ activity in nonblood cells (nonhematopoietic cells). By contrast, PI3Kγ activity in blood cells (hematopoietic cells) did not affect glucose tolerance, fatty liver, or metabolic inflammation in mice, including mice that were overtly obese (weight ∼42 g). The work by Kobayashi et al. ( 5 ) reported that selective ablation of PI3Kγ activity in hematopoietic cells ameliorates glucose tolerance in morbidly obese ob/ob mice but not mice in which obesity was induced by HFD ( 5 ). We conclude that PI3Kγ activity in hematopoietic cells does not significantly contribute to glucose intolerance or the inflammation of fat tissues until mice develop morbid obesity. Thus, in mice, including overtly obese animals, the promotion of diet-induced obesity involving nonhematopoietic cells seems to be the main pathogenic role of PI3Kγ ( Fig. P1 A ). Using mice lacking the PI3Kγ gene ( PI3Kγ −/− mice), we showed that resistance to diet-induced obesity is the main mechanism by which PI3Kγ inactivation protects mice from diet-induced insulin resistance, inflammation, and fat accumulation in liver cells (fatty liver). The impact of PI3Kγ gene deletion on diet-induced obesity was striking and comparable with the results typically obtained after weight loss surgery. We fed mice a high-fat diet (HFD) for 12 wk and observed a 20% reduction in body weight in PI3Kγ −/− mice compared with WT mice; this difference was largely attributable to a reduction in body fat. Obesity is the main cause of diabetes, a disease characterized by high blood sugar levels. Obese patients display chronic low-grade inflammation, and treatment with antiinflammatory drugs (high doses of salicylates, TNF-α–neutralizing antibodies infliximab, and recombinant IL-1Ra anakinra) can often improve glucose homeostasis in these patients ( 1 ). The lipid kinase PI3Kγ is an important signaling molecule that plays a major role in promoting inflammation. Previous studies have implicated PI3Kγ in the controlled secretion of the blood sugar-regulating hormone insulin, suggesting that reduced PI3Kγ activity may be a predisposing factor for glucose intolerance ( 2 – 4 ). In striking contrast to the results of these previous studies, results presented here and in a recent study by Kobayashi et al. ( 5 ) show that mice lacking PI3Kγ are dramatically protected from diet-induced glucose intolerance. The work by Kobayashi et al. ( 5 ) also suggested that inactivation of PI3Kγ reduces the sugar-lowering activity of insulin by directly affecting leukocytes (white blood cells): in other words, PI3Kγ activity within leukocytes was suggested to promote insulin resistance ( 5 ).
Obesity is associated with a chronic low-grade inflammation, and specific antiinflammatory interventions may be beneficial for the treatment of type 2 diabetes and other obesity-related diseases. The lipid kinase PI3Kγ is a central proinflammatory signal transducer that plays a major role in leukocyte chemotaxis, mast cell degranulation, and endothelial cell activation. It was also reported that PI3Kγ activity within hematopoietic cells plays an important role in obesity-induced inflammation and insulin resistance. Here, we show that protection from insulin resistance, metabolic inflammation, and fatty liver in mice lacking functional PI3Kγ is largely consequent to their leaner phenotype. We also show that this phenotype is largely based on decreased fat gain, despite normal caloric intake, consequent to increased energy expenditure. Furthermore, our data show that PI3Kγ action on diet-induced obesity depends on PI3Kγ activity within a nonhematopoietic compartment, where it promotes energetic efficiency for fat mass gain. We also show that metabolic modulation by PI3Kγ depends on its lipid kinase activity and might involve kinase-independent signaling. Thus, PI3Kγ is an unexpected but promising drug target for the treatment of obesity and its complications.Obesity is associated with a chronic low-grade inflammation, and specific antiinflammatory interventions may be beneficial for the treatment of type 2 diabetes and other obesity-related diseases. The lipid kinase PI3Kγ is a central proinflammatory signal transducer that plays a major role in leukocyte chemotaxis, mast cell degranulation, and endothelial cell activation. It was also reported that PI3Kγ activity within hematopoietic cells plays an important role in obesity-induced inflammation and insulin resistance. Here, we show that protection from insulin resistance, metabolic inflammation, and fatty liver in mice lacking functional PI3Kγ is largely consequent to their leaner phenotype. We also show that this phenotype is largely based on decreased fat gain, despite normal caloric intake, consequent to increased energy expenditure. Furthermore, our data show that PI3Kγ action on diet-induced obesity depends on PI3Kγ activity within a nonhematopoietic compartment, where it promotes energetic efficiency for fat mass gain. We also show that metabolic modulation by PI3Kγ depends on its lipid kinase activity and might involve kinase-independent signaling. Thus, PI3Kγ is an unexpected but promising drug target for the treatment of obesity and its complications.
Author Becattini, Barbara
Wymann, Matthias P
Zani, Fabio
Solinas, Giovanni
Preitner, Frédéric
Arsenijevic, Denis
Seydoux, Josiane
Dulloo, Abdul G
Montani, Jean-Pierre
Marone, Romina
Thorens, Bernard
Author_xml – sequence: 1
  fullname: Becattini, Barbara
– sequence: 2
  fullname: Marone, Romina
– sequence: 3
  fullname: Zani, Fabio
– sequence: 4
  fullname: Arsenijevic, Denis
– sequence: 5
  fullname: Seydoux, Josiane
– sequence: 6
  fullname: Montani, Jean-Pierre
– sequence: 7
  fullname: Dulloo, Abdul G
– sequence: 8
  fullname: Thorens, Bernard
– sequence: 9
  fullname: Preitner, Frédéric
– sequence: 10
  fullname: Wymann, Matthias P
– sequence: 11
  fullname: Solinas, Giovanni
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21949398$$D View this record in MEDLINE/PubMed
https://gup.ub.gu.se/publication/241721$$DView record from Swedish Publication Index
BookMark eNp9kstu1DAUhi1URKeFNTvIDjZpfUtib5BQVaCiEkiUteU4JxmjjB1sp9W8AC_Ee_BMOMzQUhZdWTrn-8_F5z9CB847QOg5wScEN-x0cjqeEILrWgqCxSO0IliSsuYSH6AVxrQpBaf8EB3F-A1jLCuBn6BDSiSXTIoV-vH5gn389bO4sWltXaGL3GANG5385C0kawoD41ik7QSFg0Enew3jtggwzKNOEIsuU6V13WygK9IawsYP4CDaWGjXFVPwG79wvs2xtP0TtC7OY-4WFixpZ-ApetzrMcKz_XuMrt6dX519KC8_vb84e3tZmoqQVAqGey1MY3pDSFthrFsBvKW04n1TN3UrdGtk17RdKwkw2VPR15VhRFJBaM-OUbkrG29gmls1BbvRYau8tmqYJ5VDw6wiKMpJQ0nm3-z4DG-gM-BS0OM92f2Ms2s1-GuVOwrW4Fzg1b5A8N9niEltbFx-VDvwc1QS45oyUfFMvn6QJJw2GDNJqoy--Heq23H-XjUDpzvABB9jgP4WIVgtvlGLb9Sdb7Ki-k9hbMrH9stadnxA93I_ypK46yIUp-p8t9ee6LVXegg2qq9fKCY8u7GWlFH2G_z04Do
CitedBy_id crossref_primary_10_1016_j_molmet_2015_03_004
crossref_primary_10_3390_biom9090402
crossref_primary_10_3390_ijms24098391
crossref_primary_10_1016_j_tibs_2014_12_003
crossref_primary_10_3389_fimmu_2020_585070
crossref_primary_10_1016_j_jbior_2012_04_002
crossref_primary_10_2217_epi_2018_0055
crossref_primary_10_1073_pnas_1813012116
crossref_primary_10_1371_journal_pbio_1001587
crossref_primary_10_1016_j_molmet_2013_06_006
crossref_primary_10_1038_s41577_022_00701_8
crossref_primary_10_1074_jbc_M114_577510
crossref_primary_10_1016_j_jmb_2017_01_023
crossref_primary_10_1038_scibx_2012_539
crossref_primary_10_1371_journal_pone_0144494
crossref_primary_10_1016_j_jhepr_2021_100359
crossref_primary_10_3389_fimmu_2015_00637
crossref_primary_10_1016_j_celrep_2023_112172
crossref_primary_10_1016_j_neulet_2020_135339
crossref_primary_10_1371_journal_pbio_1001594
crossref_primary_10_1016_j_jbior_2014_11_004
crossref_primary_10_1016_j_isci_2024_111562
crossref_primary_10_3390_biom9090427
crossref_primary_10_1016_j_biopha_2023_114244
crossref_primary_10_1038_s41589_018_0215_0
crossref_primary_10_1080_21623945_2016_1208867
crossref_primary_10_1096_fj_201700372RR
crossref_primary_10_7554_eLife_88058_3
crossref_primary_10_1096_fj_201600393R
crossref_primary_10_1038_ki_2013_89
crossref_primary_10_1096_fba_2020_00081
crossref_primary_10_1016_j_biopha_2021_111650
crossref_primary_10_7554_eLife_88058
crossref_primary_10_3389_fphys_2014_00391
crossref_primary_10_1126_scisignal_2005485
crossref_primary_10_1038_s41598_024_71591_0
crossref_primary_10_1126_scisignal_aaf2969
crossref_primary_10_1371_journal_pone_0163568
crossref_primary_10_1111_nyas_12037
crossref_primary_10_1038_ki_2012_154
crossref_primary_10_3389_fphys_2018_00789
crossref_primary_10_1111_febs_12428
crossref_primary_10_1016_j_cmet_2015_02_017
crossref_primary_10_1080_1120009X_2019_1708153
crossref_primary_10_1021_acs_jmedchem_8b01298
crossref_primary_10_1038_nchembio_957
crossref_primary_10_3389_fphys_2015_00341
crossref_primary_10_1021_acs_jmedchem_4c00347
crossref_primary_10_1111_j_1467_789X_2012_01047_x
Cites_doi 10.1152/ajpendo.00362.2009
10.2337/diabetes.54.12.3503
10.1038/sj.ijo.0801108
10.1182/blood-2005-01-0023
10.1016/S0014-5793(02)03387-2
10.1038/nature05485
10.1210/en.2004-0028
10.1083/jcb.200202113
10.1002/eji.201040319
10.1038/nm0809-846
10.1016/j.cmet.2007.10.011
10.1152/ajpendo.1983.245.2.E148
10.1126/science.1073160
10.1194/jlr.M500294-JLR200
10.1210/en.2005-0003
10.1210/en.2006-0155
10.2337/db08-1371
10.1042/bst0310275
10.1016/S0021-9258(18)64849-5
10.2337/db09-1471
10.1038/nature07091
10.2337/dc07-1338
10.1073/pnas.96.12.7047
10.1056/NEJMoa065213
10.1126/scisignal.2000259
10.1172/JCI29069
10.1161/01.HYP.30.3.619
10.1016/j.cell.2004.07.017
10.2337/db10-0245
10.1161/CIRCULATIONAHA.107.720466
10.1038/281031a0
10.2337/db08-1793
10.1016/j.febslet.2004.10.066
10.1126/scisignal.1161577
10.1074/jbc.M102582200
10.1126/science.287.5455.1049
10.1126/science.282.5387.293
10.1038/295323a0
10.2337/diabetes.52.5.1104
10.1194/jlr.M800248-JLR200
10.1073/pnas.0702663104
10.1073/pnas.1016430108
10.1038/ncb1278
10.1016/S0022-2275(20)30474-0
10.1096/fj.09-151340
10.1136/bmj.2.5053.1071
10.1038/nature04694
10.1074/jbc.M102376200
10.1084/jem.20040995
10.1111/j.1365-2362.2004.01390.x
10.1093/jn/127.10.2065
10.1172/JCI34260
10.1016/j.cmet.2007.09.011
10.2337/db05-1304
10.1172/JCI24335
ContentType Journal Article
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TS
7X8
5PM
ADTPV
AOWAS
F1U
DOI 10.1073/pnas.1106698108
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Physical Education Index
MEDLINE - Academic
PubMed Central (Full Participant titles)
SwePub
SwePub Articles
SWEPUB Göteborgs universitet
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Physical Education Index
MEDLINE - Academic
DatabaseTitleList
MEDLINE


Physical Education Index

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage E863
ExternalDocumentID oai_gup_ub_gu_se_241721
PMC3198370
21949398
10_1073_pnas_1106698108
108_42_E854
US201400069232
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACKIV
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFHIN
AFOSN
AFQQW
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FBQ
FRP
GX1
H13
HGD
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
W8F
WH7
WHG
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
ZCG
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
AJYGW
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XHC
ZA5
AAYXX
ADXHL
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TS
7X8
5PM
ADTPV
AOWAS
F1U
ID FETCH-LOGICAL-c511t-830fa8c7cfc11b500ab8e4b2254f7676b8abc9d7bdb91e39f28f65c3192812f3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 06:37:41 EDT 2025
Thu Aug 21 14:03:36 EDT 2025
Thu Sep 04 20:56:37 EDT 2025
Thu Sep 04 18:18:01 EDT 2025
Thu Apr 03 07:01:58 EDT 2025
Tue Jul 01 00:47:17 EDT 2025
Thu Apr 24 22:55:39 EDT 2025
Wed Nov 11 00:29:40 EST 2020
Thu Apr 03 09:45:52 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 42
Language English
License Freely available online through the PNAS open access option.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c511t-830fa8c7cfc11b500ab8e4b2254f7676b8abc9d7bdb91e39f28f65c3192812f3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
Author contributions: M.P.W. and G.S. designed research; B.B., R.M., F.Z., D.A., J.S., F.P., and G.S. performed research; J.-P.M. and B.T. contributed new reagents/analytic tools; B.B., R.M., F.Z., D.A., J.S., A.G.D., F.P., M.P.W., and G.S. analyzed data; and B.B., R.M., M.P.W., and G.S. wrote the paper.
Edited* by Michael Karin, University of California at San Diego School of Medicine, La Jolla, CA, and approved August 30, 2011 (received for review April 29, 2011)
1B.B., R.M., F.Z., M.P.W., and G.S. contributed equally to this work.
OpenAccessLink https://www.pnas.org/content/pnas/108/42/E854.full.pdf
PMID 21949398
PQID 1427003915
PQPubID 23462
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3198370
proquest_miscellaneous_900623854
fao_agris_US201400069232
pubmed_primary_21949398
swepub_primary_oai_gup_ub_gu_se_241721
crossref_primary_10_1073_pnas_1106698108
crossref_citationtrail_10_1073_pnas_1106698108
proquest_miscellaneous_1427003915
pnas_primary_108_42_E854
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-10-18
PublicationDateYYYYMMDD 2011-10-18
PublicationDate_xml – month: 10
  year: 2011
  text: 2011-10-18
  day: 18
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationSeriesTitle PNAS Plus
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2011
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_3_50_2
e_1_1_2_18_10_2_2
e_1_1_2_18_10_4_2
Landsberg L (e_1_3_3_36_2) 1984; 247
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_56_2
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_40_2
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_51_2
e_1_1_2_18_10_1_2
e_1_1_2_18_10_3_2
e_1_1_2_18_10_5_2
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_53_2
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
18594509 - Nature. 2008 Aug 7;454(7205):776-9
18780892 - Sci Signal. 2008;1(36):ra3
12161655 - Science. 2002 Aug 2;297(5582):843-5
19509406 - Sci Signal. 2009;2(74):ra27
11443116 - J Biol Chem. 2001 Aug 31;276(35):32545-51
15294162 - Cell. 2004 Aug 6;118(3):375-87
15769890 - Blood. 2005 Jul 1;106(1):150-7
551265 - Nature. 1979 Sep 6;281(5726):31-5
19602538 - Diabetes. 2009 Oct;58(10):2228-37
15231713 - Endocrinology. 2004 Sep;145(9):4078-83
17483449 - Proc Natl Acad Sci U S A. 2007 May 8;104(19):8077-82
6380306 - Am J Physiol. 1984 Aug;247(2 Pt 1):E181-9
15556643 - FEBS Lett. 2004 Nov 19;577(3):539-44
20201008 - Eur J Immunol. 2010 Mar;40(3):599-606
16150820 - J Lipid Res. 2005 Nov;46(11):2347-55
16306368 - Diabetes. 2005 Dec;54(12):3503-9
21436039 - Proc Natl Acad Sci U S A. 2011 Apr 5;108(14):5753-8
16574789 - Endocrinology. 2006 Jul;147(7):3318-25
19826103 - Am J Physiol Endocrinol Metab. 2009 Dec;297(6):E1420-9
12387862 - FEBS Lett. 2002 Oct 23;530(1-3):37-40
6881329 - Am J Physiol. 1983 Aug;245(2):E148-54
15379764 - Eur J Clin Invest. 2004 Sep;34(9):641-2
16823477 - J Clin Invest. 2006 Jul;116(7):1793-801
16625210 - Nature. 2006 May 18;441(7091):366-70
12546701 - Biochem Soc Trans. 2003 Feb;31(Pt 1):275-80
13428781 - J Biol Chem. 1957 May;226(1):497-509
18268153 - Circulation. 2008 Mar 11;117(10):1310-7
16341265 - J Clin Invest. 2006 Jan;116(1):115-24
13472052 - Br Med J. 1957 Nov 9;2(5053):1071-4
18769626 - J Clin Invest. 2008 Sep;118(9):2992-3002
17959861 - Diabetes Care. 2008 Feb;31(2):289-94
12032175 - J Lipid Res. 2002 Jun;43(6):986-9
17167474 - Nature. 2006 Dec 14;444(7121):860-7
12716739 - Diabetes. 2003 May;52(5):1104-10
19661987 - Nat Med. 2009 Aug;15(8):846-7
15878965 - Endocrinology. 2005 Aug;146(8):3481-9
20682684 - Diabetes. 2010 Oct;59(10):2474-83
10359836 - Proc Natl Acad Sci U S A. 1999 Jun 8;96(12):7047-52
17429083 - N Engl J Med. 2007 Apr 12;356(15):1517-26
15824082 - J Exp Med. 2005 Apr 18;201(8):1217-28
16644674 - Diabetes. 2006 May;55(5):1205-13
18054319 - Cell Metab. 2007 Dec;6(6):506-12
9311966 - J Nutr. 1997 Oct;127(10):2065-72
18515909 - J Lipid Res. 2008 Sep;49(9):2038-44
20371626 - FASEB J. 2010 Aug;24(8):2596-611
10578199 - Int J Obes Relat Metab Disord. 1999 Nov;23(11):1105-17
9765155 - Science. 1998 Oct 9;282(5387):293-6
19549714 - Diabetes. 2009 Sep;58(9):2084-92
17983584 - Cell Metab. 2007 Nov;6(5):386-97
12163475 - J Cell Biol. 2002 Aug 5;158(3):563-75
20103710 - Diabetes. 2010 Feb;59(2):323-9
9322991 - Hypertension. 1997 Sep;30(3 Pt 2):619-23
16094730 - Nat Cell Biol. 2005 Aug;7(8):785-96
10669418 - Science. 2000 Feb 11;287(5455):1049-53
11259422 - J Biol Chem. 2001 Jun 1;276(22):18953-9
7057896 - Nature. 1982 Jan 28;295(5847):323-5
References_xml – ident: e_1_3_3_51_2
  doi: 10.1152/ajpendo.00362.2009
– ident: e_1_3_3_43_2
  doi: 10.2337/diabetes.54.12.3503
– ident: e_1_3_3_26_2
  doi: 10.1038/sj.ijo.0801108
– ident: e_1_3_3_27_2
  doi: 10.1182/blood-2005-01-0023
– ident: e_1_3_3_28_2
  doi: 10.1016/S0014-5793(02)03387-2
– ident: e_1_3_3_2_2
  doi: 10.1038/nature05485
– ident: e_1_3_3_20_2
  doi: 10.1210/en.2004-0028
– ident: e_1_3_3_33_2
  doi: 10.1083/jcb.200202113
– ident: e_1_3_3_41_2
  doi: 10.1002/eji.201040319
– ident: e_1_3_3_4_2
  doi: 10.1038/nm0809-846
– ident: e_1_3_3_39_2
  doi: 10.1016/j.cmet.2007.10.011
– ident: e_1_3_3_31_2
  doi: 10.1152/ajpendo.1983.245.2.E148
– ident: e_1_3_3_25_2
  doi: 10.1126/science.1073160
– ident: e_1_3_3_55_2
  doi: 10.1194/jlr.M500294-JLR200
– volume: 247
  start-page: E181
  year: 1984
  ident: e_1_3_3_36_2
  article-title: Sympathoadrenal system and regulation of thermogenesis
  publication-title: Am J Physiol
– ident: e_1_3_3_38_2
  doi: 10.1210/en.2005-0003
– ident: e_1_1_2_18_10_3_2
  doi: 10.1210/en.2006-0155
– ident: e_1_1_2_18_10_4_2
  doi: 10.2337/db08-1371
– ident: e_1_3_3_17_2
  doi: 10.1042/bst0310275
– ident: e_1_3_3_48_2
  doi: 10.1016/S0021-9258(18)64849-5
– ident: e_1_3_3_50_2
  doi: 10.2337/db09-1471
– ident: e_1_3_3_10_2
  doi: 10.1038/nature07091
– ident: e_1_3_3_9_2
  doi: 10.2337/dc07-1338
– ident: e_1_3_3_44_2
  doi: 10.1073/pnas.96.12.7047
– ident: e_1_3_3_8_2
  doi: 10.1056/NEJMoa065213
– ident: e_1_3_3_22_2
  doi: 10.2337/db08-1371
– ident: e_1_3_3_19_2
  doi: 10.1126/scisignal.2000259
– ident: e_1_3_3_1_2
  doi: 10.1172/JCI29069
– ident: e_1_3_3_32_2
  doi: 10.1161/01.HYP.30.3.619
– ident: e_1_3_3_18_2
  doi: 10.1016/j.cell.2004.07.017
– ident: e_1_3_3_40_2
  doi: 10.2337/db10-0245
– ident: e_1_3_3_47_2
  doi: 10.1161/CIRCULATIONAHA.107.720466
– ident: e_1_3_3_35_2
  doi: 10.1038/281031a0
– ident: e_1_3_3_49_2
  doi: 10.2337/db08-1793
– ident: e_1_3_3_53_2
  doi: 10.1016/j.febslet.2004.10.066
– ident: e_1_3_3_11_2
  doi: 10.1126/scisignal.1161577
– ident: e_1_3_3_14_2
  doi: 10.1074/jbc.M102582200
– ident: e_1_3_3_13_2
  doi: 10.1126/science.287.5455.1049
– ident: e_1_3_3_21_2
  doi: 10.1210/en.2006-0155
– ident: e_1_3_3_54_2
  doi: 10.1126/science.282.5387.293
– ident: e_1_3_3_29_2
  doi: 10.1038/295323a0
– ident: e_1_1_2_18_10_2_2
  doi: 10.1210/en.2004-0028
– ident: e_1_3_3_45_2
  doi: 10.2337/diabetes.52.5.1104
– ident: e_1_3_3_52_2
  doi: 10.1194/jlr.M800248-JLR200
– ident: e_1_3_3_46_2
  doi: 10.1073/pnas.0702663104
– ident: e_1_1_2_18_10_5_2
  doi: 10.1073/pnas.1016430108
– ident: e_1_3_3_34_2
  doi: 10.1038/ncb1278
– ident: e_1_3_3_56_2
  doi: 10.1016/S0022-2275(20)30474-0
– ident: e_1_3_3_5_2
  doi: 10.1096/fj.09-151340
– ident: e_1_3_3_6_2
  doi: 10.1136/bmj.2.5053.1071
– ident: e_1_3_3_12_2
  doi: 10.1038/nature04694
– ident: e_1_3_3_15_2
  doi: 10.1074/jbc.M102376200
– ident: e_1_3_3_16_2
  doi: 10.1084/jem.20040995
– ident: e_1_3_3_7_2
  doi: 10.1111/j.1365-2362.2004.01390.x
– ident: e_1_3_3_30_2
  doi: 10.1093/jn/127.10.2065
– ident: e_1_3_3_3_2
  doi: 10.1172/JCI34260
– ident: e_1_3_3_23_2
  doi: 10.1073/pnas.1016430108
– ident: e_1_3_3_24_2
  doi: 10.1016/j.cmet.2007.09.011
– ident: e_1_1_2_18_10_1_2
  doi: 10.1096/fj.09-151340
– ident: e_1_3_3_42_2
  doi: 10.2337/db05-1304
– ident: e_1_3_3_37_2
  doi: 10.1172/JCI24335
– reference: 17983584 - Cell Metab. 2007 Nov;6(5):386-97
– reference: 10578199 - Int J Obes Relat Metab Disord. 1999 Nov;23(11):1105-17
– reference: 9311966 - J Nutr. 1997 Oct;127(10):2065-72
– reference: 15769890 - Blood. 2005 Jul 1;106(1):150-7
– reference: 17429083 - N Engl J Med. 2007 Apr 12;356(15):1517-26
– reference: 16823477 - J Clin Invest. 2006 Jul;116(7):1793-801
– reference: 6380306 - Am J Physiol. 1984 Aug;247(2 Pt 1):E181-9
– reference: 12163475 - J Cell Biol. 2002 Aug 5;158(3):563-75
– reference: 9765155 - Science. 1998 Oct 9;282(5387):293-6
– reference: 12032175 - J Lipid Res. 2002 Jun;43(6):986-9
– reference: 10669418 - Science. 2000 Feb 11;287(5455):1049-53
– reference: 16150820 - J Lipid Res. 2005 Nov;46(11):2347-55
– reference: 20103710 - Diabetes. 2010 Feb;59(2):323-9
– reference: 19602538 - Diabetes. 2009 Oct;58(10):2228-37
– reference: 18268153 - Circulation. 2008 Mar 11;117(10):1310-7
– reference: 15824082 - J Exp Med. 2005 Apr 18;201(8):1217-28
– reference: 18054319 - Cell Metab. 2007 Dec;6(6):506-12
– reference: 11443116 - J Biol Chem. 2001 Aug 31;276(35):32545-51
– reference: 16094730 - Nat Cell Biol. 2005 Aug;7(8):785-96
– reference: 19826103 - Am J Physiol Endocrinol Metab. 2009 Dec;297(6):E1420-9
– reference: 7057896 - Nature. 1982 Jan 28;295(5847):323-5
– reference: 17167474 - Nature. 2006 Dec 14;444(7121):860-7
– reference: 17483449 - Proc Natl Acad Sci U S A. 2007 May 8;104(19):8077-82
– reference: 18780892 - Sci Signal. 2008;1(36):ra3
– reference: 12387862 - FEBS Lett. 2002 Oct 23;530(1-3):37-40
– reference: 12546701 - Biochem Soc Trans. 2003 Feb;31(Pt 1):275-80
– reference: 16574789 - Endocrinology. 2006 Jul;147(7):3318-25
– reference: 11259422 - J Biol Chem. 2001 Jun 1;276(22):18953-9
– reference: 19509406 - Sci Signal. 2009;2(74):ra27
– reference: 15878965 - Endocrinology. 2005 Aug;146(8):3481-9
– reference: 551265 - Nature. 1979 Sep 6;281(5726):31-5
– reference: 20371626 - FASEB J. 2010 Aug;24(8):2596-611
– reference: 13428781 - J Biol Chem. 1957 May;226(1):497-509
– reference: 6881329 - Am J Physiol. 1983 Aug;245(2):E148-54
– reference: 16644674 - Diabetes. 2006 May;55(5):1205-13
– reference: 12716739 - Diabetes. 2003 May;52(5):1104-10
– reference: 15379764 - Eur J Clin Invest. 2004 Sep;34(9):641-2
– reference: 19661987 - Nat Med. 2009 Aug;15(8):846-7
– reference: 18769626 - J Clin Invest. 2008 Sep;118(9):2992-3002
– reference: 21436039 - Proc Natl Acad Sci U S A. 2011 Apr 5;108(14):5753-8
– reference: 20682684 - Diabetes. 2010 Oct;59(10):2474-83
– reference: 15231713 - Endocrinology. 2004 Sep;145(9):4078-83
– reference: 13472052 - Br Med J. 1957 Nov 9;2(5053):1071-4
– reference: 15556643 - FEBS Lett. 2004 Nov 19;577(3):539-44
– reference: 16306368 - Diabetes. 2005 Dec;54(12):3503-9
– reference: 10359836 - Proc Natl Acad Sci U S A. 1999 Jun 8;96(12):7047-52
– reference: 15294162 - Cell. 2004 Aug 6;118(3):375-87
– reference: 18515909 - J Lipid Res. 2008 Sep;49(9):2038-44
– reference: 20201008 - Eur J Immunol. 2010 Mar;40(3):599-606
– reference: 18594509 - Nature. 2008 Aug 7;454(7205):776-9
– reference: 9322991 - Hypertension. 1997 Sep;30(3 Pt 2):619-23
– reference: 12161655 - Science. 2002 Aug 2;297(5582):843-5
– reference: 16341265 - J Clin Invest. 2006 Jan;116(1):115-24
– reference: 17959861 - Diabetes Care. 2008 Feb;31(2):289-94
– reference: 16625210 - Nature. 2006 May 18;441(7091):366-70
– reference: 19549714 - Diabetes. 2009 Sep;58(9):2084-92
SSID ssj0009580
Score 2.2790205
Snippet Obesity is associated with a chronic low-grade inflammation, and specific antiinflammatory interventions may be beneficial for the treatment of type 2 diabetes...
SourceID swepub
pubmedcentral
proquest
pubmed
crossref
pnas
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage E854
SubjectTerms Adipose Tissue, White - enzymology
Adiposity
Animals
Basic Medicine
Biological Sciences
Class Ib Phosphatidylinositol 3-Kinase - deficiency
Class Ib Phosphatidylinositol 3-Kinase - genetics
Class Ib Phosphatidylinositol 3-Kinase - metabolism
Diabetes
Diet, High-Fat - adverse effects
Energy Balance
energy efficiency
energy intake
fatty liver
Fatty Liver - enzymology
Fatty Liver - etiology
Fatty Liver - prevention & control
Inflammation
Inflammation - enzymology
insulin resistance
Insulin Resistance - physiology
Male
Medicinska och farmaceutiska grundvetenskaper
Mice
Mice, Inbred C57BL
Mice, Knockout
Models, Biological
noninsulin-dependent diabetes mellitus
Obesity
Obesity - enzymology
Obesity - etiology
Obesity - prevention & control
obesity-related diseases
Phenotype
PI3K
PNAS Plus
RNA, Messenger - genetics
RNA, Messenger - metabolism
Signal Transduction
Sterol Esterase - metabolism
thermic effect of food
Thermogenesis - physiology
Thinness - enzymology
Title PI3Kγ within a nonhematopoietic cell type negatively regulates diet-induced thermogenesis and promotes obesity and insulin resistance
URI http://www.pnas.org/content/108/42/E854.abstract
https://www.ncbi.nlm.nih.gov/pubmed/21949398
https://www.proquest.com/docview/1427003915
https://www.proquest.com/docview/900623854
https://pubmed.ncbi.nlm.nih.gov/PMC3198370
https://gup.ub.gu.se/publication/241721
Volume 108
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtNAFB2lZcMGUV4NLw0SRUWWixO_xstSJSpQQgSJlN1oPBmHoNaO4mQBH8DnsOE_-Cbu9YztuE3FY2NF4_HYyT2-r9w5l5DnYHQCqSJpg-mCACXxXZtNmW-HXjQNnUCIYIoJ_feD4HTsvZ34k1brx0bV0noVH8lvW_eV_I9UYQzkirtk_0Gy1aIwAJ9BvnAECcPxr2Q8fOO-OzjpHbx2i3zqPLWEBeF8wcOaLbI5blC0MDWvM62pmhU03-dfraVuQa9yawqzbAjM11gIgN7gRTZD_TfPDYcAlushM63uIGDYmnQB-xKnrSrcGB93WNnEvKxAGJQpx-N6A4vRKrllW8PBRjtkJQXWYs83_g2p0-bLTGdgP2YXpu93kfXWjamsvoh1WZmGcK7S-Rcw_FIrVs2hUuU4dJFdQy2DV2MHnm4seqS2jJW63GEboNW8XUY195hmq75iM0DJYaPjVOS4JyIIIlau0mDnHnzg_fHZGR_1JqMdcqMbgq-Gm8snnQ2SZ6bZL8yTlVRSofvq0vINL2gnERly68KUbXHO1XLdBqlt4QiNbpNbJoKhxxqOe6Sl0jtkr5QmPTRE5i_vku-Iz18_qcYmFfQyNilikyI2aY1NWmGTbmKTNrBJAYa0xCY12CwGDTZpjc17ZNTvjU5ObdP3w5bg_q9s5jqJYDKUiex0Yt9xRMyUF4Pl8ZIwCIOYiViCKomncdRRbpR0WRL4EoxJF9zVxL1PduH7qH1CwRhFAkIYVyRTT4FIPN8RbuAlsLTPmGyTo1IMXBpOfGzNcs6L2ozQ5SgUXsutTQ6rCxaaDub6qfsgVy5mYKz5-FMXUxnICw4hDJwqJtcrMO51OSK0TZ6VAOCg6FEMIlXZGlb2sEYE-zm0Cb1mToRbot1imQcaM9U9wDPxIjeCxwobaKomIM9880w6_1zwzcMPixRZbfJC465xyWy94DA0W_NccQgHwm7n4Z-f7xG5Wb_nj8nuarlWT8C7X8VPi1fqN6kHAVw
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PI3K%CE%B3+within+a+nonhematopoietic+cell+type+negatively+regulates+diet-induced+thermogenesis+and+promotes+obesity+and+insulin+resistance&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Becattini%2C+Barbara&rft.au=Marone%2C+Romina&rft.au=Zani%2C+Fabio&rft.au=Arsenijevic%2C+Denis&rft.date=2011-10-18&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=108&rft.issue=42&rft.spage=E854&rft_id=info:doi/10.1073%2Fpnas.1106698108&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F108%2F42.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F108%2F42.cover.gif