A statistical comparison of EEG time- and time–frequency domain representations of error processing
Successful behavior relies on error detection and subsequent remedial adjustment of behavior. Researchers have identified two electrophysiological signatures of error processing: the time-domain error-related negativity (ERN), and the time–frequency domain increased power in the delta/theta frequenc...
Saved in:
| Published in | Brain research Vol. 1618; pp. 222 - 230 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Netherlands
Elsevier B.V
27.08.2015
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0006-8993 1872-6240 1872-6240 |
| DOI | 10.1016/j.brainres.2015.05.030 |
Cover
| Abstract | Successful behavior relies on error detection and subsequent remedial adjustment of behavior. Researchers have identified two electrophysiological signatures of error processing: the time-domain error-related negativity (ERN), and the time–frequency domain increased power in the delta/theta frequency bands (~2–8Hz). The relationship between these two signatures is not entirely clear: on the one hand they occur after the same type of event and with similar latency, but on the other hand, the time-domain ERP component contains only phase-locked activity whereas the time–frequency response additionally contains non-phase-locked dynamics. Here we examined the ERN and error-related delta/theta activity in relation to each other, focusing on within-subject analyses that utilize single-trial data. Using logistic regression, we constructed three statistical models in which the accuracy of each trial was predicted from the ERN, delta/theta power, or both. We found that both the ERN and delta/theta power worked roughly equally well as predictors of single-trial accuracy (~70% accurate prediction). Furthermore, a model including both measures provided a stronger overall prediction compared to either model alone. Based on these findings two conclusions are drawn: first, the phase-locked part of the EEG signal appears to be roughly as predictive of single-trial response accuracy as the non-phase-locked part; second, the single-trial ERP and delta/theta power contain both overlapping and independent information.
•We investigated the relationship between ERN and delta/theta EEG error signatures.•Both the ERN and delta/theta activity predict error trials with ~70% accuracy.•A model with both measures predicted better than models with either measure alone.•Both phase-locked and non-phase-locked factors contribute to error-related cognition. |
|---|---|
| AbstractList | Successful behavior relies on error detection and subsequent remedial adjustment of behavior. Researchers have identified two electrophysiological signatures of error processing: the time-domain error-related negativity (ERN), and the time-frequency domain increased power in the delta/theta frequency bands (~2-8 Hz). The relationship between these two signatures is not entirely clear: on the one hand they occur after the same type of event and with similar latency, but on the other hand, the time-domain ERP component contains only phase-locked activity whereas the time-frequency response additionally contains non-phase-locked dynamics. Here we examined the ERN and error-related delta/theta activity in relation to each other, focusing on within-subject analyses that utilize single-trial data. Using logistic regression, we constructed three statistical models in which the accuracy of each trial was predicted from the ERN, delta/theta power, or both. We found that both the ERN and delta/theta power worked roughly equally well as predictors of single-trial accuracy (~70% accurate prediction). Furthermore, a model including both measures provided a stronger overall prediction compared to either model alone. Based on these findings two conclusions are drawn: first, the phase-locked part of the EEG signal appears to be roughly as predictive of single-trial response accuracy as the non-phase-locked part; second, the single-trial ERP and delta/theta power contain both overlapping and independent information.Successful behavior relies on error detection and subsequent remedial adjustment of behavior. Researchers have identified two electrophysiological signatures of error processing: the time-domain error-related negativity (ERN), and the time-frequency domain increased power in the delta/theta frequency bands (~2-8 Hz). The relationship between these two signatures is not entirely clear: on the one hand they occur after the same type of event and with similar latency, but on the other hand, the time-domain ERP component contains only phase-locked activity whereas the time-frequency response additionally contains non-phase-locked dynamics. Here we examined the ERN and error-related delta/theta activity in relation to each other, focusing on within-subject analyses that utilize single-trial data. Using logistic regression, we constructed three statistical models in which the accuracy of each trial was predicted from the ERN, delta/theta power, or both. We found that both the ERN and delta/theta power worked roughly equally well as predictors of single-trial accuracy (~70% accurate prediction). Furthermore, a model including both measures provided a stronger overall prediction compared to either model alone. Based on these findings two conclusions are drawn: first, the phase-locked part of the EEG signal appears to be roughly as predictive of single-trial response accuracy as the non-phase-locked part; second, the single-trial ERP and delta/theta power contain both overlapping and independent information. Successful behavior relies on error detection and subsequent remedial adjustment of behavior. Researchers have identified two electrophysiological signatures of error processing: the time-domain error-related negativity (ERN), and the time–frequency domain increased power in the delta/theta frequency bands (~2–8Hz). The relationship between these two signatures is not entirely clear: on the one hand they occur after the same type of event and with similar latency, but on the other hand, the time-domain ERP component contains only phase-locked activity whereas the time–frequency response additionally contains non-phase-locked dynamics. Here we examined the ERN and error-related delta/theta activity in relation to each other, focusing on within-subject analyses that utilize single-trial data. Using logistic regression, we constructed three statistical models in which the accuracy of each trial was predicted from the ERN, delta/theta power, or both. We found that both the ERN and delta/theta power worked roughly equally well as predictors of single-trial accuracy (~70% accurate prediction). Furthermore, a model including both measures provided a stronger overall prediction compared to either model alone. Based on these findings two conclusions are drawn: first, the phase-locked part of the EEG signal appears to be roughly as predictive of single-trial response accuracy as the non-phase-locked part; second, the single-trial ERP and delta/theta power contain both overlapping and independent information. •We investigated the relationship between ERN and delta/theta EEG error signatures.•Both the ERN and delta/theta activity predict error trials with ~70% accuracy.•A model with both measures predicted better than models with either measure alone.•Both phase-locked and non-phase-locked factors contribute to error-related cognition. Successful behavior relies on error detection and subsequent remedial adjustment of behavior. Researchers have identified two electrophysiological signatures of error processing: the time-domain error-related negativity (ERN), and the time-frequency domain increased power in the delta/theta frequency bands (~2-8 Hz). The relationship between these two signatures is not entirely clear: on the one hand they occur after the same type of event and with similar latency, but on the other hand, the time-domain ERP component contains only phase-locked activity whereas the time-frequency response additionally contains non-phase-locked dynamics. Here we examined the ERN and error-related delta/theta activity in relation to each other, focusing on within-subject analyses that utilize single-trial data. Using logistic regression, we constructed three statistical models in which the accuracy of each trial was predicted from the ERN, delta/theta power, or both. We found that both the ERN and delta/theta power worked roughly equally well as predictors of single-trial accuracy (~70% accurate prediction). Furthermore, a model including both measures provided a stronger overall prediction compared to either model alone. Based on these findings two conclusions are drawn: first, the phase-locked part of the EEG signal appears to be roughly as predictive of single-trial response accuracy as the non-phase-locked part; second, the single-trial ERP and delta/theta power contain both overlapping and independent information. Abstract Successful behavior relies on error detection and subsequent remedial adjustment of behavior. Researchers have identified two electrophysiological signatures of error processing: the time-domain error-related negativity (ERN), and the time–frequency domain increased power in the delta/theta frequency bands (~2–8 Hz). The relationship between these two signatures is not entirely clear: on the one hand they occur after the same type of event and with similar latency, but on the other hand, the time-domain ERP component contains only phase-locked activity whereas the time–frequency response additionally contains non-phase-locked dynamics. Here we examined the ERN and error-related delta/theta activity in relation to each other, focusing on within-subject analyses that utilize single-trial data. Using logistic regression, we constructed three statistical models in which the accuracy of each trial was predicted from the ERN, delta/theta power, or both. We found that both the ERN and delta/theta power worked roughly equally well as predictors of single-trial accuracy (~70% accurate prediction). Furthermore, a model including both measures provided a stronger overall prediction compared to either model alone. Based on these findings two conclusions are drawn: first, the phase-locked part of the EEG signal appears to be roughly as predictive of single-trial response accuracy as the non-phase-locked part; second, the single-trial ERP and delta/theta power contain both overlapping and independent information. Successful behavior relies on error detection and subsequent remedial adjustment of behavior. Researchers have identified two electrophysiological signatures of error processing: the time-domain error-related negativity (ERN), and the time-frequency domain increased power in the delta/theta frequency bands (~2-8Hz). The relationship between these two signatures is not entirely clear: on the one hand they occur after the same type of event and with similar latency, but on the other hand, the time-domain ERP component contains only phase-locked activity whereas the time-frequency response additionally contains non-phase-locked dynamics. Here we examined the ERN and error-related delta/theta activity in relation to each other, focusing on within-subject analyses that utilize single-trial data. Using logistic regression, we constructed three statistical models in which the accuracy of each trial was predicted from the ERN, delta/theta power, or both. We found that both the ERN and delta/theta power worked roughly equally well as predictors of single-trial accuracy (~70% accurate prediction). Furthermore, a model including both measures provided a stronger overall prediction compared to either model alone. Based on these findings two conclusions are drawn: first, the phase-locked part of the EEG signal appears to be roughly as predictive of single-trial response accuracy as the non-phase-locked part; second, the single-trial ERP and delta/theta power contain both overlapping and independent information. |
| Author | Nap, Tanja S. Cohen, Michael X Munneke, Gert-Jan Schippers, Eveline E. |
| Author_xml | – sequence: 1 givenname: Gert-Jan surname: Munneke fullname: Munneke, Gert-Jan organization: Institute for Logic, Language and Computation, University of Amsterdam, Science Park 107, P.O. Box 94242, 1090 GE Amsterdam, The Netherlands – sequence: 2 givenname: Tanja S. surname: Nap fullname: Nap, Tanja S. organization: Amsterdam Brain and Cognition, University of Amsterdam, Nieuwe Achtergracht 129, 1018 WS Amsterdam, The Netherlands – sequence: 3 givenname: Eveline E. surname: Schippers fullname: Schippers, Eveline E. organization: Department of Psychology, University of Amsterdam, Weesperplein 4, 1018 XA Amsterdam, The Netherlands – sequence: 4 givenname: Michael X surname: Cohen fullname: Cohen, Michael X email: mikexcohen@gmail.com organization: Department of Psychology, University of Amsterdam, Weesperplein 4, 1018 XA Amsterdam, The Netherlands |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26032741$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUtFqFDEUDVKx2-ovlHn0ZdabZCbZgIilrFUo-ND6HDLJHck6k6zJrLBv_kP_sF9ixm196IMtXEgC55wczrkn5CjEgIScUVhSoOLdZtkl40PCvGRA2yWU4fCCLOhKslqwBo7IAgBEvVKKH5OTnDflybmCV-SYCeBMNnRB8LzKk5l8nrw1Q2XjuDXJ5xiq2Ffr9WU1-RHrygT393b3-7ZP-HOHwe4rF8dioUq4LTYwzDIx5JmIKcVUbVO0mLMP31-Tl70ZMr65P0_Jt0_rm4vP9dXXyy8X51e1bSmdakk7sAK5UJI1vWKCNxYQG0nFyhjlrHIC0WIvmEPrZN91lPaNsbJ1ZtUofkreHnTL18VknvTos8VhMAHjLmsqoQWh2pY_B0o5Ayln6Nk9dNeN6PQ2-dGkvX5IsQDEAWBTzDlh_w9CQc916Y1-qEvPdWkow6EQ3z8iWn-IcSrw4Wn6xwMdS6a_PCadrS_VoPMJ7aRd9E9LfHgkYQcf5l34gXvMm7hLoTSmqc5Mg76eV2reKNoCNJzR_ws8x8Ef_VLheQ |
| CitedBy_id | crossref_primary_10_1016_j_clinph_2020_06_029 crossref_primary_10_1016_j_euroneuro_2019_02_004 crossref_primary_10_1016_j_schres_2017_08_002 crossref_primary_10_3758_s13415_025_01281_5 crossref_primary_10_1371_journal_pone_0239612 crossref_primary_10_1016_j_biopsycho_2023_108652 crossref_primary_10_1038_s41598_022_12158_9 crossref_primary_10_1111_psyp_12664 crossref_primary_10_1111_psyp_13595 crossref_primary_10_1111_psyp_14003 crossref_primary_10_1162_jocn_a_01205 crossref_primary_10_3758_s13415_017_0555_3 crossref_primary_10_1088_1741_2552_aa8416 crossref_primary_10_1167_tvst_11_10_19 crossref_primary_10_1016_j_biopsycho_2024_108849 crossref_primary_10_1111_ejn_13727 crossref_primary_10_1016_j_ijpsycho_2023_01_005 crossref_primary_10_1002_dev_22215 crossref_primary_10_3389_fnins_2019_00152 crossref_primary_10_1016_j_compbiomed_2025_109944 crossref_primary_10_1111_psyp_14216 crossref_primary_10_1016_j_jpsychires_2021_09_022 crossref_primary_10_1016_j_neuroimage_2016_07_054 crossref_primary_10_1111_psyp_14211 crossref_primary_10_1016_j_neuroimage_2020_117557 crossref_primary_10_1038_s41598_019_49476_4 crossref_primary_10_3389_fnins_2022_1007258 crossref_primary_10_1016_j_neuroimage_2019_01_022 crossref_primary_10_1016_j_neuroimage_2017_08_032 crossref_primary_10_1016_j_neuroimage_2019_116340 |
| Cites_doi | 10.1371/journal.pone.0057293 10.1016/j.clinph.2004.03.031 10.1111/j.1467-9280.1994.tb00630.x 10.1016/j.clinph.2006.11.009 10.1016/j.neuroimage.2004.01.040 10.1016/j.clinph.2010.09.011 10.1016/j.neulet.2012.07.051 10.1523/JNEUROSCI.4137-08.2009 10.1111/j.1467-9280.1993.tb00586.x 10.1016/j.clinph.2011.10.037 10.1016/S1388-2457(01)00559-4 10.1016/j.neuroimage.2013.10.033 10.1016/j.jneumeth.2003.10.009 10.3389/fpsyg.2011.00233 10.1027/0269-8803.23.4.216 10.1016/j.jneumeth.2007.03.024 10.1016/j.neuroimage.2006.03.056 10.1016/j.tins.2014.06.004 10.1152/jn.00479.2013 10.1111/j.1469-8986.2004.00239.x 10.1111/j.1469-8986.2006.00482.x 10.1037/a0014491 10.1080/02724980443000269 10.1016/j.neuroimage.2011.06.052 10.1016/j.brainres.2012.04.028 10.1016/0013-4694(91)90062-9 10.1016/j.neuroimage.2010.12.072 10.1111/j.1469-8986.2011.01293.x |
| ContentType | Journal Article |
| Copyright | 2015 Elsevier B.V. Elsevier B.V. Copyright © 2015 Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2015 Elsevier B.V. – notice: Elsevier B.V. – notice: Copyright © 2015 Elsevier B.V. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TK |
| DOI | 10.1016/j.brainres.2015.05.030 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Neurosciences Abstracts |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Neurosciences Abstracts |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Neurosciences Abstracts |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 1872-6240 |
| EndPage | 230 |
| ExternalDocumentID | 26032741 10_1016_j_brainres_2015_05_030 S0006899315004321 1_s2_0_S0006899315004321 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M -DZ -~X .1- .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 5GY 5RE 5VS 6J9 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABCQJ ABFNM ABFRF ABIVO ABJNI ABLJU ABMAC ABTEW ABUFD ACDAQ ACGFO ACGFS ACIUM ACLOT ACNCT ACRLP ACVFH ADBBV ADCNI ADEZE AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFPUW AFRHN AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AIEXJ AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM L7B M2V M41 MO0 MOBAO N9A O-L O9- OAUVE OP~ OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCC SDF SDG SES SPCBC SSN SSZ T5K Z5R ZGI ~G- ~HD .55 .GJ 41~ 53G AACTN AAQXK AAYJJ ABWVN ABXDB ACRPL ADIYS ADMUD ADNMO AFCTW AFJKZ AFKWA AHHHB AI. AJOXV AMFUW ASPBG AVWKF AZFZN FEDTE FGOYB G-2 HMQ HVGLF HZ~ MVM PKN R2- RIG SEW SNS VH1 WUQ X7M XPP AADPK AAIAV ABYKQ AJBFU AAYXX AGQPQ AIGII APXCP CITATION CGR CUY CVF ECM EIF NPM SSH 7X8 7TK |
| ID | FETCH-LOGICAL-c511t-71b0c6e369724f92634c0ee47168aa9dc9d6eecef62decd7fbb11f4ac75da8493 |
| IEDL.DBID | .~1 |
| ISSN | 0006-8993 1872-6240 |
| IngestDate | Mon Sep 29 06:19:00 EDT 2025 Wed Oct 01 14:58:32 EDT 2025 Thu Apr 03 07:07:53 EDT 2025 Thu Apr 24 23:06:28 EDT 2025 Wed Oct 01 05:13:47 EDT 2025 Fri Feb 23 02:19:41 EST 2024 Sun Feb 23 10:19:22 EST 2025 Tue Oct 14 19:34:46 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | ERN ERP Time–frequency EEG Error processing Theta |
| Language | English |
| License | Copyright © 2015 Elsevier B.V. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c511t-71b0c6e369724f92634c0ee47168aa9dc9d6eecef62decd7fbb11f4ac75da8493 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 26032741 |
| PQID | 1701320773 |
| PQPubID | 23479 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_1705069553 proquest_miscellaneous_1701320773 pubmed_primary_26032741 crossref_primary_10_1016_j_brainres_2015_05_030 crossref_citationtrail_10_1016_j_brainres_2015_05_030 elsevier_sciencedirect_doi_10_1016_j_brainres_2015_05_030 elsevier_clinicalkeyesjournals_1_s2_0_S0006899315004321 elsevier_clinicalkey_doi_10_1016_j_brainres_2015_05_030 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2015-08-27 |
| PublicationDateYYYYMMDD | 2015-08-27 |
| PublicationDate_xml | – month: 08 year: 2015 text: 2015-08-27 day: 27 |
| PublicationDecade | 2010 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Brain research |
| PublicationTitleAlternate | Brain Res |
| PublicationYear | 2015 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Kolev, Beste, Falkenstein, Yordanova (bib21) 2009; 23 Cohen, van Gaal (bib10) 2014; 86 Luu, Tucker (bib23) 2001; 112 Taylor, Stern, Gehring (bib28) 2007; 13 Yeung, Bogacz, Holroyd, Nieuwenhuis, Cohen (bib33) 2007; 44 Strozyk, Jentzsch (bib27) 2012; 1460 Falkenstein, Hohnsbein, Hoormann, Blanke (bib15) 1991; 78 Yordanova, Falkenstein, Hohnsbein, Kolev (bib34) 2004; 22 Maris, Oostenveld (bib25) 2007; 164 Cavanagh, Cohen, Allen (bib2) 2009; 29 Wühr, Ansorge (bib31) 2005; 58 Cavanagh, Zambrano-Vazquez, Allen (bib3) 2012; 49 Clemans, El-Baz, Hollifield, Sokhadze (bib5) 2012; 525 Cohen, Ridderinkhof (bib9) 2013; 8 Cohen, Donner (bib8) 2013; 110 Dehaene, Posner, Tucker (bib12) 1994; 5 Yeung, Bogacz, Holroyd, Cohen (bib32) 2004; 41 Luu, Tucker, Makeig (bib24) 2004; 115 Trujillo, Allen (bib29) 2007; 118 Danielmeier, Ullsperger (bib11) 2011; 2 Cohen (bib6) 2014; 37 Cohen (bib7) 2011; 55 Delorme, Makeig (bib13) 2004; 134 Holroyd, Nieuwenhuis, Mars, Coles (bib19) 2004 Wang, Ding (bib30) 2011; 122 Selimbeyoglu, Keskin-Ergen, Demiralp (bib26) 2012; 123 Yordanova, Heinrich, Kolev, Rothenberger (bib35) 2006; 32 Luck (bib22) 2005 Gaspar, Rousselet, Pernet (bib16) 2011; 58 Gehring, Goss, Coles, Meyer, Donchin (bib17) 1993; 4 Cho, Orr, Cohen, Carter (bib4) 2009; 35 Gaspar (10.1016/j.brainres.2015.05.030_bib16) 2011; 58 Cohen (10.1016/j.brainres.2015.05.030_bib10) 2014; 86 Maris (10.1016/j.brainres.2015.05.030_bib25) 2007; 164 Luu (10.1016/j.brainres.2015.05.030_bib24) 2004; 115 Wühr (10.1016/j.brainres.2015.05.030_bib31) 2005; 58 Yordanova (10.1016/j.brainres.2015.05.030_bib35) 2006; 32 Dehaene (10.1016/j.brainres.2015.05.030_bib12) 1994; 5 Cavanagh (10.1016/j.brainres.2015.05.030_bib3) 2012; 49 Cohen (10.1016/j.brainres.2015.05.030_bib7) 2011; 55 Cohen (10.1016/j.brainres.2015.05.030_bib8) 2013; 110 Taylor (10.1016/j.brainres.2015.05.030_bib28) 2007; 13 Strozyk (10.1016/j.brainres.2015.05.030_bib27) 2012; 1460 Clemans (10.1016/j.brainres.2015.05.030_bib5) 2012; 525 Luu (10.1016/j.brainres.2015.05.030_bib23) 2001; 112 Yeung (10.1016/j.brainres.2015.05.030_bib33) 2007; 44 Danielmeier (10.1016/j.brainres.2015.05.030_bib11) 2011; 2 Cohen (10.1016/j.brainres.2015.05.030_bib9) 2013; 8 Trujillo (10.1016/j.brainres.2015.05.030_bib29) 2007; 118 Holroyd (10.1016/j.brainres.2015.05.030_bib19) 2004 Luck (10.1016/j.brainres.2015.05.030_bib22) 2005 Cho (10.1016/j.brainres.2015.05.030_bib4) 2009; 35 Cohen (10.1016/j.brainres.2015.05.030_bib6) 2014; 37 Gehring (10.1016/j.brainres.2015.05.030_bib17) 1993; 4 Delorme (10.1016/j.brainres.2015.05.030_bib13) 2004; 134 Kolev (10.1016/j.brainres.2015.05.030_bib21) 2009; 23 Yordanova (10.1016/j.brainres.2015.05.030_bib34) 2004; 22 Selimbeyoglu (10.1016/j.brainres.2015.05.030_bib26) 2012; 123 Cavanagh (10.1016/j.brainres.2015.05.030_bib2) 2009; 29 Yeung (10.1016/j.brainres.2015.05.030_bib32) 2004; 41 Falkenstein (10.1016/j.brainres.2015.05.030_bib15) 1991; 78 Wang (10.1016/j.brainres.2015.05.030_bib30) 2011; 122 |
| References_xml | – volume: 164 start-page: 177 year: 2007 end-page: 190 ident: bib25 article-title: Nonparametric statistical testing of EEG- and MEG-data publication-title: J. Neurosci. Methods – volume: 58 start-page: 705 year: 2005 end-page: 731 ident: bib31 article-title: Exploring trial-by-trial modulations of the Simon effect publication-title: Q. J. Exp. Psychol. Hum. Exp. Psychol. – volume: 525 start-page: 105 year: 2012 end-page: 110 ident: bib5 article-title: Single trial time–frequency domain analysis of error processing in post-traumatic stress disorder publication-title: Neurosci. Lett. – volume: 37 start-page: 480 year: 2014 end-page: 490 ident: bib6 article-title: A neural microcircuit for cognitive conflict detection and signaling publication-title: Trends Neurosci. – volume: 123 start-page: 1158 year: 2012 end-page: 1167 ident: bib26 article-title: What if you are not sure? Electroencephalographic correlates of subjective confidence level about a decision publication-title: Clin. Neurophysiol.: Off. J. Int. Fed. Clin. Neurophysiol. – volume: 4 start-page: 385 year: 1993 end-page: 390 ident: bib17 article-title: A neural system for error detection and compensation publication-title: Psychol. Sci. – volume: 112 start-page: 1295 year: 2001 end-page: 1306 ident: bib23 article-title: Regulating action: alternating activation of midline frontal and motor cortical networks publication-title: Clin. Neurophysiol.: Off. J. Int. Fed. Clin. Neurophysiol. – volume: 1460 start-page: 41 year: 2012 end-page: 49 ident: bib27 article-title: Weaker error signals do not reduce the effectiveness of post-error adjustments: comparing error processing in young and middle-aged adults publication-title: Brain Res. – volume: 118 start-page: 645 year: 2007 end-page: 668 ident: bib29 article-title: Theta EEG dynamics of the error-related negativity publication-title: Clin. Neurophysiol.: Off. J. Int. Fed. Clin. Neurophysiol. – volume: 44 start-page: 39 year: 2007 end-page: 49 ident: bib33 article-title: Theta phase resetting and the error-related negativity publication-title: Psychophysiology – volume: 134 start-page: 9 year: 2004 end-page: 21 ident: bib13 article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis publication-title: J. Neurosci. Methods – volume: 13 start-page: 160 year: 2007 end-page: 172 ident: bib28 article-title: Neural systems for error monitoring: recent findings and theoretical perspectives publication-title: Neurosci..: Rev. J. Bringing Neurobiol. Neurol. Psychiatry – volume: 29 start-page: 98 year: 2009 end-page: 105 ident: bib2 article-title: Prelude to and resolution of an error: EEG phase synchrony reveals cognitive control dynamics during action monitoring publication-title: J. Neurosci. – volume: 49 start-page: 220 year: 2012 end-page: 238 ident: bib3 article-title: Theta lingua franca: a common mid-frontal substrate for action monitoring processes publication-title: Psychophysiology – volume: 122 start-page: 916 year: 2011 end-page: 924 ident: bib30 article-title: Relation between P300 and event-related theta-band synchronization: a single-trial analysis publication-title: Clin. Neurophysiol. – volume: 41 start-page: 822 year: 2004 end-page: 832 ident: bib32 article-title: Detection of synchronized oscillations in the electroencephalogram: an evaluation of methods publication-title: Psychophysiology – volume: 35 start-page: 1161 year: 2009 end-page: 1177 ident: bib4 article-title: Generalized signaling for control: evidence from postconflict and posterror performance adjustments publication-title: J. Exp. Psychol. Hum. Percept. Perform. – volume: 32 start-page: 940 year: 2006 end-page: 955 ident: bib35 article-title: Increased event-related theta activity as a psychophysiological marker of comorbidity in children with tics and attention-deficit/hyperactivity disorders publication-title: NeuroImage – volume: 55 start-page: 1373 year: 2011 end-page: 1383 ident: bib7 article-title: Error-related medial frontal theta activity predicts cingulate-related structural connectivity publication-title: NeuroImage – volume: 110 start-page: 2752 year: 2013 end-page: 2763 ident: bib8 article-title: Midfrontal conflict-related theta-band power reflects neural oscillations that predict behavior publication-title: J. Neurophysiol. – volume: 8 start-page: e57293 year: 2013 ident: bib9 article-title: EEG source reconstruction reveals frontal-parietal dynamics of spatial conflict processing publication-title: PLoS ONE – volume: 115 start-page: 1821 year: 2004 end-page: 1835 ident: bib24 article-title: Frontal midline theta and the error-related negativity: neurophysiological mechanisms of action regulation publication-title: Clin. Neurophysiol.: Off. J. Int. Fed. Clin. Neurophysiol. – volume: 58 start-page: 620 year: 2011 end-page: 629 ident: bib16 article-title: Reliability of ERP and single-trial analyses publication-title: NeuroImage – volume: 5 start-page: 303 year: 1994 end-page: 305 ident: bib12 article-title: Localization of a neural system for error detection and compensation publication-title: Psychol. Sci. – start-page: 219 year: 2004 end-page: 231 ident: bib19 article-title: Anterior cingulate cortex, selection for action, and error processing publication-title: Cognitive Neuroscience of Attention – volume: 78 start-page: 447 year: 1991 end-page: 455 ident: bib15 article-title: Effects of crossmodal divided attention on late ERP components. II. Error processing in choice reaction tasks publication-title: Electroencephalogr. Clin. Neurophysiol. – volume: 23 start-page: 216 year: 2009 end-page: 223 ident: bib21 article-title: Error-related oscillations: effects of aging on neural systems for behavioral monitoring publication-title: J. Psychophysiol. – volume: 2 year: 2011 ident: bib11 article-title: Post-Error Adjustments publication-title: Front. Psychol. – volume: 86 start-page: 503 year: 2014 end-page: 513 ident: bib10 article-title: Subthreshold muscle twitches dissociate oscillatory neural signatures of conflicts from errors publication-title: NeuroImage – year: 2005 ident: bib22 article-title: An Introduction to the Event-Related Potential Technique – volume: 22 start-page: 590 year: 2004 end-page: 602 ident: bib34 article-title: Parallel systems of error processing in the brain publication-title: NeuroImage – volume: 8 start-page: e57293 issue: 2 year: 2013 ident: 10.1016/j.brainres.2015.05.030_bib9 article-title: EEG source reconstruction reveals frontal-parietal dynamics of spatial conflict processing publication-title: PLoS ONE doi: 10.1371/journal.pone.0057293 – volume: 115 start-page: 1821 issue: 8 year: 2004 ident: 10.1016/j.brainres.2015.05.030_bib24 article-title: Frontal midline theta and the error-related negativity: neurophysiological mechanisms of action regulation publication-title: Clin. Neurophysiol.: Off. J. Int. Fed. Clin. Neurophysiol. doi: 10.1016/j.clinph.2004.03.031 – volume: 5 start-page: 303 issue: 5 year: 1994 ident: 10.1016/j.brainres.2015.05.030_bib12 article-title: Localization of a neural system for error detection and compensation publication-title: Psychol. Sci. doi: 10.1111/j.1467-9280.1994.tb00630.x – volume: 118 start-page: 645 issue: 3 year: 2007 ident: 10.1016/j.brainres.2015.05.030_bib29 article-title: Theta EEG dynamics of the error-related negativity publication-title: Clin. Neurophysiol.: Off. J. Int. Fed. Clin. Neurophysiol. doi: 10.1016/j.clinph.2006.11.009 – volume: 22 start-page: 590 issue: 2 year: 2004 ident: 10.1016/j.brainres.2015.05.030_bib34 article-title: Parallel systems of error processing in the brain publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.01.040 – volume: 122 start-page: 916 issue: 5 year: 2011 ident: 10.1016/j.brainres.2015.05.030_bib30 article-title: Relation between P300 and event-related theta-band synchronization: a single-trial analysis publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2010.09.011 – volume: 525 start-page: 105 issue: 2 year: 2012 ident: 10.1016/j.brainres.2015.05.030_bib5 article-title: Single trial time–frequency domain analysis of error processing in post-traumatic stress disorder publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2012.07.051 – volume: 29 start-page: 98 issue: 1 year: 2009 ident: 10.1016/j.brainres.2015.05.030_bib2 article-title: Prelude to and resolution of an error: EEG phase synchrony reveals cognitive control dynamics during action monitoring publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4137-08.2009 – start-page: 219 year: 2004 ident: 10.1016/j.brainres.2015.05.030_bib19 article-title: Anterior cingulate cortex, selection for action, and error processing – volume: 4 start-page: 385 issue: 6 year: 1993 ident: 10.1016/j.brainres.2015.05.030_bib17 article-title: A neural system for error detection and compensation publication-title: Psychol. Sci. doi: 10.1111/j.1467-9280.1993.tb00586.x – volume: 123 start-page: 1158 issue: 6 year: 2012 ident: 10.1016/j.brainres.2015.05.030_bib26 article-title: What if you are not sure? Electroencephalographic correlates of subjective confidence level about a decision publication-title: Clin. Neurophysiol.: Off. J. Int. Fed. Clin. Neurophysiol. doi: 10.1016/j.clinph.2011.10.037 – volume: 112 start-page: 1295 issue: 7 year: 2001 ident: 10.1016/j.brainres.2015.05.030_bib23 article-title: Regulating action: alternating activation of midline frontal and motor cortical networks publication-title: Clin. Neurophysiol.: Off. J. Int. Fed. Clin. Neurophysiol. doi: 10.1016/S1388-2457(01)00559-4 – volume: 86 start-page: 503 year: 2014 ident: 10.1016/j.brainres.2015.05.030_bib10 article-title: Subthreshold muscle twitches dissociate oscillatory neural signatures of conflicts from errors publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.10.033 – volume: 134 start-page: 9 issue: 1 year: 2004 ident: 10.1016/j.brainres.2015.05.030_bib13 article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2003.10.009 – volume: 2 year: 2011 ident: 10.1016/j.brainres.2015.05.030_bib11 article-title: Post-Error Adjustments publication-title: Front. Psychol. doi: 10.3389/fpsyg.2011.00233 – volume: 23 start-page: 216 issue: 4 year: 2009 ident: 10.1016/j.brainres.2015.05.030_bib21 article-title: Error-related oscillations: effects of aging on neural systems for behavioral monitoring publication-title: J. Psychophysiol. doi: 10.1027/0269-8803.23.4.216 – volume: 164 start-page: 177 issue: 1 year: 2007 ident: 10.1016/j.brainres.2015.05.030_bib25 article-title: Nonparametric statistical testing of EEG- and MEG-data publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2007.03.024 – volume: 32 start-page: 940 issue: 2 year: 2006 ident: 10.1016/j.brainres.2015.05.030_bib35 article-title: Increased event-related theta activity as a psychophysiological marker of comorbidity in children with tics and attention-deficit/hyperactivity disorders publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.03.056 – volume: 37 start-page: 480 issue: 9 year: 2014 ident: 10.1016/j.brainres.2015.05.030_bib6 article-title: A neural microcircuit for cognitive conflict detection and signaling publication-title: Trends Neurosci. doi: 10.1016/j.tins.2014.06.004 – volume: 110 start-page: 2752 issue: 12 year: 2013 ident: 10.1016/j.brainres.2015.05.030_bib8 article-title: Midfrontal conflict-related theta-band power reflects neural oscillations that predict behavior publication-title: J. Neurophysiol. doi: 10.1152/jn.00479.2013 – volume: 41 start-page: 822 issue: 6 year: 2004 ident: 10.1016/j.brainres.2015.05.030_bib32 article-title: Detection of synchronized oscillations in the electroencephalogram: an evaluation of methods publication-title: Psychophysiology doi: 10.1111/j.1469-8986.2004.00239.x – volume: 44 start-page: 39 issue: 1 year: 2007 ident: 10.1016/j.brainres.2015.05.030_bib33 article-title: Theta phase resetting and the error-related negativity publication-title: Psychophysiology doi: 10.1111/j.1469-8986.2006.00482.x – volume: 35 start-page: 1161 issue: 4 year: 2009 ident: 10.1016/j.brainres.2015.05.030_bib4 article-title: Generalized signaling for control: evidence from postconflict and posterror performance adjustments publication-title: J. Exp. Psychol. Hum. Percept. Perform. doi: 10.1037/a0014491 – volume: 58 start-page: 705 issue: 4 year: 2005 ident: 10.1016/j.brainres.2015.05.030_bib31 article-title: Exploring trial-by-trial modulations of the Simon effect publication-title: Q. J. Exp. Psychol. Hum. Exp. Psychol. doi: 10.1080/02724980443000269 – volume: 13 start-page: 160 issue: 2 year: 2007 ident: 10.1016/j.brainres.2015.05.030_bib28 article-title: Neural systems for error monitoring: recent findings and theoretical perspectives publication-title: Neurosci..: Rev. J. Bringing Neurobiol. Neurol. Psychiatry – volume: 58 start-page: 620 issue: 2 year: 2011 ident: 10.1016/j.brainres.2015.05.030_bib16 article-title: Reliability of ERP and single-trial analyses publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.06.052 – volume: 1460 start-page: 41 year: 2012 ident: 10.1016/j.brainres.2015.05.030_bib27 article-title: Weaker error signals do not reduce the effectiveness of post-error adjustments: comparing error processing in young and middle-aged adults publication-title: Brain Res. doi: 10.1016/j.brainres.2012.04.028 – volume: 78 start-page: 447 issue: 6 year: 1991 ident: 10.1016/j.brainres.2015.05.030_bib15 article-title: Effects of crossmodal divided attention on late ERP components. II. Error processing in choice reaction tasks publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(91)90062-9 – year: 2005 ident: 10.1016/j.brainres.2015.05.030_bib22 – volume: 55 start-page: 1373 issue: 3 year: 2011 ident: 10.1016/j.brainres.2015.05.030_bib7 article-title: Error-related medial frontal theta activity predicts cingulate-related structural connectivity publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.12.072 – volume: 49 start-page: 220 issue: 2 year: 2012 ident: 10.1016/j.brainres.2015.05.030_bib3 article-title: Theta lingua franca: a common mid-frontal substrate for action monitoring processes publication-title: Psychophysiology doi: 10.1111/j.1469-8986.2011.01293.x |
| SSID | ssj0003390 |
| Score | 2.329232 |
| Snippet | Successful behavior relies on error detection and subsequent remedial adjustment of behavior. Researchers have identified two electrophysiological signatures... Abstract Successful behavior relies on error detection and subsequent remedial adjustment of behavior. Researchers have identified two electrophysiological... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 222 |
| SubjectTerms | Adult Brain - physiology Brain Mapping Contingent Negative Variation - physiology EEG Electroencephalography ERN ERP Error processing Female Humans Male Neurology Reaction Time - physiology Regression Analysis Theta Time Factors Time–frequency Young Adult |
| Title | A statistical comparison of EEG time- and time–frequency domain representations of error processing |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0006899315004321 https://www.clinicalkey.es/playcontent/1-s2.0-S0006899315004321 https://dx.doi.org/10.1016/j.brainres.2015.05.030 https://www.ncbi.nlm.nih.gov/pubmed/26032741 https://www.proquest.com/docview/1701320773 https://www.proquest.com/docview/1705069553 |
| Volume | 1618 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-6240 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003390 issn: 0006-8993 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection unibz customDbUrl: eissn: 1872-6240 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003390 issn: 0006-8993 databaseCode: ACRLP dateStart: 19950109 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-6240 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003390 issn: 0006-8993 databaseCode: AIKHN dateStart: 19950109 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1872-6240 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003390 issn: 0006-8993 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-6240 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003390 issn: 0006-8993 databaseCode: AKRWK dateStart: 19930108 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Za9wwEBYheelLaZMe2yOoUPrmrHVYWj0uyybbK5TSQN6ELI0hIbEX7-YhL6X_of-wv6Qa2d609KQFgw80SEijOeT5Zgh57pTXZsJNJr1xGTJJ5nIQGWOKG84qFQDxzm-P1eJEvjotTrfIbMDCYFhlL_s7mZ6kdf9l3M_meHl2hhjfXEVvQUSTBvPKJQS71FjF4ODjTZiHEN05C3rO2PoblPD5QYllGKJbiyFeRcrgidHQP1dQvzJAkyI6vENu9xYknXaDvEu2oN4le9M6es-X1_QFTTGd6bB8j8CUImIoJWOONH5TdJA2FZ3PjyiWls-oq0N6-vLpc9V2sdXXNDSXcdg0Zb0cEEr1CgmhbZuWLjuIQVR998jJ4fzDbJH1hRUyH-2rdaZZmXsFQhnNZWW4EtLnAFFPqYlzJngTFICHSvEAPuiqLBmrpPO6CG4ijbhPtuumhoeEQvC-0m7ChWBSC-UMA2EClEEyz5UekWKYTev7rONY_OLCDuFl53ZYBYurYPN4iXxExhu6ZZd3448UelgsO6BKoxy0UTX8GyWs-u28ssyuuM3tDyw3ImZD-R3X_lWvzwaOsnFL438aV0NzFXvT-AMs11r8tk2RK1MUsc2Djh038xRdVIFZiR79x-gek1v4hqfnXD8h2-v2Cp5G82td7qf9tU92prP3b97h_eXrxfFX69Uzjw |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaq9gAXBJTHAi1GQtzS9SOx18dVtWWBtqdW6s1y7InUqk1W2e2hF8R_4B_yS_A4yVLEUyDlECUe2bLH87DnmyHktVNem4kwWe6Ny5BJMsdAZpwrYQSvVADEOx8dq_lp_v6sONsg-wMWBsMqe9nfyfQkrfsv4342x4vzc8T4MhW9BRlNGswrF12grbwQGj2wvY_f4jyk7A5a0HXG5rdgwhd7JdZhiH4txngVKYUnhkP_XEP9ygJNmujgPrnXm5B02o3yAdmA-iHZntbRfb66oW9oCupMp-XbBKYUIUMpG3Ok8euqg7Sp6Gz2lmJt-Yy6OqS3L58-V20XXH1DQ3MVh01T2ssBolQvkRDatmnposMYRN33iJwezE7251lfWSHz0cBaZZqXzCuQymiRV0YomXsGEBWVmjhngjdBAXiolAjgg67KkvMqd14XwU1yIx-Tzbqp4SmhELyvtJsIKXmupXKGgzQBypBzL5QekWKYTev7tONY_eLSDvFlF3ZYBYurYFl8JBuR8Zpu0SXe-COFHhbLDrDSKAht1A3_RgnLfj8vLbdLYZn9gedGxKwpv2Pbv-r11cBRNu5pvKhxNTTXsTeNN2BMa_nbNgVTpihimycdO67nKfqoEtMSPfuP0b0kd-YnR4f28N3xh-fkLv7Bo3ShX5DNVXsNO9EWW5W7aa99BRujM48 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+statistical+comparison+of+EEG+time-+and+time%E2%80%93frequency+domain+representations+of+error+processing&rft.jtitle=Brain+research&rft.au=Munneke%2C+Gert-Jan&rft.au=Nap%2C+Tanja+S.&rft.au=Schippers%2C+Eveline+E.&rft.au=Cohen%2C+Michael+X&rft.date=2015-08-27&rft.pub=Elsevier+B.V&rft.issn=0006-8993&rft.volume=1618&rft.spage=222&rft.epage=230&rft_id=info:doi/10.1016%2Fj.brainres.2015.05.030&rft.externalDocID=S0006899315004321 |
| thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00068993%2FS0006899315X00205%2Fcov150h.gif |