From Machine Learning to Patient Outcomes: A Comprehensive Review of AI in Pancreatic Cancer
Pancreatic cancer is a highly aggressive and difficult-to-detect cancer with a poor prognosis. Late diagnosis is common due to a lack of early symptoms, specific markers, and the challenging location of the pancreas. Imaging technologies have improved diagnosis, but there is still room for improveme...
Saved in:
| Published in | Diagnostics (Basel) Vol. 14; no. 2; p. 174 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
MDPI AG
01.01.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2075-4418 2075-4418 |
| DOI | 10.3390/diagnostics14020174 |
Cover
| Abstract | Pancreatic cancer is a highly aggressive and difficult-to-detect cancer with a poor prognosis. Late diagnosis is common due to a lack of early symptoms, specific markers, and the challenging location of the pancreas. Imaging technologies have improved diagnosis, but there is still room for improvement in standardizing guidelines. Biopsies and histopathological analysis are challenging due to tumor heterogeneity. Artificial Intelligence (AI) revolutionizes healthcare by improving diagnosis, treatment, and patient care. AI algorithms can analyze medical images with precision, aiding in early disease detection. AI also plays a role in personalized medicine by analyzing patient data to tailor treatment plans. It streamlines administrative tasks, such as medical coding and documentation, and provides patient assistance through AI chatbots. However, challenges include data privacy, security, and ethical considerations. This review article focuses on the potential of AI in transforming pancreatic cancer care, offering improved diagnostics, personalized treatments, and operational efficiency, leading to better patient outcomes. |
|---|---|
| AbstractList | Pancreatic cancer is a highly aggressive and difficult-to-detect cancer with a poor prognosis. Late diagnosis is common due to a lack of early symptoms, specific markers, and the challenging location of the pancreas. Imaging technologies have improved diagnosis, but there is still room for improvement in standardizing guidelines. Biopsies and histopathological analysis are challenging due to tumor heterogeneity. Artificial Intelligence (AI) revolutionizes healthcare by improving diagnosis, treatment, and patient care. AI algorithms can analyze medical images with precision, aiding in early disease detection. AI also plays a role in personalized medicine by analyzing patient data to tailor treatment plans. It streamlines administrative tasks, such as medical coding and documentation, and provides patient assistance through AI chatbots. However, challenges include data privacy, security, and ethical considerations. This review article focuses on the potential of AI in transforming pancreatic cancer care, offering improved diagnostics, personalized treatments, and operational efficiency, leading to better patient outcomes.Pancreatic cancer is a highly aggressive and difficult-to-detect cancer with a poor prognosis. Late diagnosis is common due to a lack of early symptoms, specific markers, and the challenging location of the pancreas. Imaging technologies have improved diagnosis, but there is still room for improvement in standardizing guidelines. Biopsies and histopathological analysis are challenging due to tumor heterogeneity. Artificial Intelligence (AI) revolutionizes healthcare by improving diagnosis, treatment, and patient care. AI algorithms can analyze medical images with precision, aiding in early disease detection. AI also plays a role in personalized medicine by analyzing patient data to tailor treatment plans. It streamlines administrative tasks, such as medical coding and documentation, and provides patient assistance through AI chatbots. However, challenges include data privacy, security, and ethical considerations. This review article focuses on the potential of AI in transforming pancreatic cancer care, offering improved diagnostics, personalized treatments, and operational efficiency, leading to better patient outcomes. Pancreatic cancer is a highly aggressive and difficult-to-detect cancer with a poor prognosis. Late diagnosis is common due to a lack of early symptoms, specific markers, and the challenging location of the pancreas. Imaging technologies have improved diagnosis, but there is still room for improvement in standardizing guidelines. Biopsies and histopathological analysis are challenging due to tumor heterogeneity. Artificial Intelligence (AI) revolutionizes healthcare by improving diagnosis, treatment, and patient care. AI algorithms can analyze medical images with precision, aiding in early disease detection. AI also plays a role in personalized medicine by analyzing patient data to tailor treatment plans. It streamlines administrative tasks, such as medical coding and documentation, and provides patient assistance through AI chatbots. However, challenges include data privacy, security, and ethical considerations. This review article focuses on the potential of AI in transforming pancreatic cancer care, offering improved diagnostics, personalized treatments, and operational efficiency, leading to better patient outcomes. |
| Audience | Academic |
| Author | Tripathi, Satvik Tabari, Azadeh Dabbara, Harika Mansur, Arian Bridge, Christopher P. Daye, Dania |
| Author_xml | – sequence: 1 givenname: Satvik orcidid: 0000-0001-6214-1464 surname: Tripathi fullname: Tripathi, Satvik – sequence: 2 givenname: Azadeh orcidid: 0000-0002-5685-6401 surname: Tabari fullname: Tabari, Azadeh – sequence: 3 givenname: Arian orcidid: 0000-0003-2406-5127 surname: Mansur fullname: Mansur, Arian – sequence: 4 givenname: Harika surname: Dabbara fullname: Dabbara, Harika – sequence: 5 givenname: Christopher P. surname: Bridge fullname: Bridge, Christopher P. – sequence: 6 givenname: Dania surname: Daye fullname: Daye, Dania |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38248051$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNklFrFDEQxxep2Fr7CQQJ-OLL1WST3GZ9O45WD04qom9CmE0m15Td5Ex2W_rtzXm11FLEhJAw_P7_zAzzsjoIMWBVvWb0lPOWvrceNiHm0ZvMBK0pa8Sz6qimjZwJwdTBg_dhdZLzFS2rZVzV8kV1WC6hqGRH1Y_zFAfyGcylD0jWCCn4sCFjJF9g9BhGcjGNJg6YP5AFWcZhm_ASQ_bXSL7itccbEh1ZrIgPRRFMwiIzZFmemF5Vzx30GU_u7uPq-_nZt-Wn2fri42q5WM-MZGycSWMbwBqctE7wxlID5VBGOylVZ1jDWQ0GBLRm7jrTMdtRKQXWLUXFmeHH1WrvayNc6W3yA6RbHcHr34GYNhpSSatHzYE52lEnpKgFCKcaAcaioTiXVtWueIm91xS2cHsDfX9vyKje9V4_0fsie7eXbVP8OWEe9eCzwb6HgHHKum5ZI2VLuSzo20foVZxSKA3aUWqu6PwhtYGStg8ujgnMzlQvGkVVw9uGFur0Capsi4M3ZWScL_G_BG_uPp-6Ae19bX8mogB8D5gUc07o_rP89pHK-LFMQgwlH9__U_sL0QPerg |
| CitedBy_id | crossref_primary_10_1016_j_igie_2024_06_006 crossref_primary_10_26416_OnHe_69_4_2024_10351 crossref_primary_10_1016_j_ejso_2024_108577 crossref_primary_10_3390_cancers16111975 crossref_primary_10_3390_diagnostics14192174 crossref_primary_10_7759_cureus_72646 crossref_primary_10_3390_cancers17061048 crossref_primary_10_1007_s10462_024_10873_5 crossref_primary_10_1039_D4MO00187G crossref_primary_10_3390_cancers16091686 crossref_primary_10_2139_ssrn_4785683 crossref_primary_10_3390_jpm14080877 crossref_primary_10_3389_fonc_2025_1475893 |
| Cites_doi | 10.1016/S2589-7500(22)00063-2 10.1016/j.pan.2021.03.016 10.1186/s12859-023-05322-z 10.1016/j.ejmp.2021.02.006 10.1097/MPA.0000000000001762 10.1038/nrgastro.2011.2 10.1186/1471-2105-12-S8-S2 10.3390/jcm10163589 10.18653/v1/E17-2110 10.1186/s12913-022-08215-8 10.1016/j.cell.2023.02.014 10.1186/s12910-021-00687-3 10.1016/j.addr.2021.113844 10.3389/fonc.2021.665929 10.1056/NEJMra1814259 10.1308/147870804290 10.1007/s11831-021-09648-w 10.1016/S2589-7500(19)30123-2 10.1186/s12864-015-1717-8 10.2214/ajr.182.3.1820619 10.1016/j.media.2021.102342 10.4324/9780429329067 10.1038/s42256-019-0088-2 10.3389/fimmu.2022.972298 10.1038/s41591-023-02332-5 10.1038/s41571-020-0417-8 10.1038/s41421-021-00366-y 10.1186/s13244-020-00861-y 10.1093/bib/bbab454 10.1038/s41467-023-40024-3 10.2196/18599 10.1016/j.tibtech.2019.12.021 10.1145/3173574.3174209 10.1038/nature16965 10.1002/mp.15437 10.1093/jamia/ocy072 10.1016/S2468-1253(19)30416-9 10.1259/bjr.20190580 10.1038/s43018-022-00349-2 10.1038/nrg1768 10.3233/CBM-210273 10.3389/fonc.2019.00246 10.1201/9781003129783 10.1038/s41591-021-01614-0 10.3390/diagnostics13132183 10.1001/jamasurg.2017.2227 10.3390/jpm13060951 10.1148/radiol.220152 10.2174/0929867328666210208111821 10.1038/s41575-021-00470-0 10.1038/s41591-018-0300-7 10.1038/s41598-022-07111-9 10.1109/TMI.2016.2528162 10.1016/S2589-7500(21)00086-8 10.1001/amajethics.2019.121 10.1002/sim.3720 10.1016/j.jbi.2019.103301 10.3322/caac.21660 10.1038/nm.3967 10.1007/s00330-022-09315-z 10.1158/0008-5472.CAN-14-0155 10.3389/fonc.2022.973999 10.1016/j.artmed.2020.101965 10.1109/BRACIS.2016.027 10.1117/1.JMI.9.2.024002 10.1109/JPROC.2020.3004555 10.1001/jama.2019.18058 10.3233/CBM-210301 10.3390/cancers12030603 10.3390/cancers14143498 10.1158/2159-8290.CD-22-0876 10.1136/jitc-2022-005292 10.1200/JCO.22.01134 10.1148/radiol.2020200038 10.1155/2018/7068349 10.1038/ng.3398 10.1109/JPROC.2021.3054390 10.1016/j.oraloncology.2018.10.026 10.1049/iet-ipr.2019.1041 10.1016/j.ccell.2022.07.004 10.1155/2022/2872461 10.1007/978-3-030-01424-7_27 10.1007/s43681-021-00131-7 10.1093/bioinformatics/btz342 10.3390/diagnostics11050901 10.1016/j.artmed.2023.102659 10.1186/s12916-022-02258-8 10.1016/j.bpg.2016.10.013 10.2214/AJR.22.27873 10.1007/978-3-030-45529-3 10.3390/cancers14215382 10.1016/j.jik.2023.100333 10.3390/s23020634 10.1038/s41586-020-2766-y 10.1097/MPA.0000000000001499 10.1017/9781139061773 10.3390/cancers13040895 10.3748/wjg.v24.i43.4846 10.1148/radiol.10091819 10.3390/cancers12113309 10.1109/ACCESS.2023.3283216 10.1016/S1076-6332(03)80186-1 10.1097/MPA.0000000000001882 10.1038/s41746-020-0288-5 10.3389/fsurg.2022.862322 10.1155/2022/8979404 10.1038/s41598-023-36886-8 10.1177/1533033819873922 10.1155/2022/3124122 10.1016/j.procs.2015.04.221 10.7326/M18-1990 10.1053/j.seminoncol.2016.09.002 10.1111/hpb.12375 10.1186/s12911-023-02103-9 10.1038/s41598-021-95152-x 10.1109/TRPMS.2021.3107454 10.3748/wjg.v27.i32.5306 10.1001/jamanetworkopen.2022.16199 10.1016/j.canep.2018.12.001 10.3390/cancers14153803 10.1016/j.tacc.2021.02.007 10.1016/j.jbi.2020.103655 10.1016/j.media.2017.07.005 10.1097/SLA.0000000000005465 10.1007/978-981-19-5272-2 10.1158/2159-8290.CD-21-0090 10.1007/978-3-319-97982-3_16 10.1038/s41551-023-01056-8 10.1002/cam4.5578 10.1093/jamia/ocx138 10.1038/nrdp.2016.22 10.1158/0008-5472.CAN-19-0579 10.1201/9780367229184 10.1016/j.patter.2022.100493 10.1093/jamia/ocz192 10.1007/978-3-030-01252-6_17 10.1038/s41379-020-00683-9 10.1093/jamia/ocaa094 10.1016/S0140-6736(16)32409-6 10.1197/jamia.M2844 10.1097/MOG.0000000000000966 10.1186/s13036-023-00340-0 10.1038/s41568-018-0016-5 10.2196/25759 10.1007/s40192-017-0093-4 10.1186/s12885-023-10675-y 10.1186/s12916-019-1426-2 10.1007/s43681-022-00227-8 10.1016/j.jacr.2023.06.015 10.7150/thno.77949 10.3390/cancers15133392 10.3390/diagnostics10040231 10.1038/s41379-021-00919-2 10.1053/j.gastro.2022.06.066 10.1016/j.jaci.2019.12.897 10.1158/1055-9965.EPI-20-0075 10.1056/NEJMoa1011923 10.3390/diagnostics13020286 10.1109/ISBI.2019.8759268 10.1038/s41591-021-01595-0 10.1097/SLA.0000000000002234 10.1007/978-3-030-40850-3 10.1016/B978-0-12-818438-7.00002-2 10.1016/j.inffus.2023.101805 10.1172/JCI148550 10.1038/s43856-022-00199-0 10.1093/nar/gkt441 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION NPM 3V. 7XB 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH M2O MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI Q9U 7X8 ADTOC UNPAY DOA |
| DOI | 10.3390/diagnostics14020174 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Student Research Library Prep Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2075-4418 |
| ExternalDocumentID | oai_doaj_org_article_3a1f0b0f45424a4f874acdec0e65d82f 10.3390/diagnostics14020174 A780873970 38248051 10_3390_diagnostics14020174 |
| Genre | Journal Article Review |
| GroupedDBID | 53G 5VS 8G5 AADQD AAFWJ AAYXX ABDBF ABUWG ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BCNDV BENPR BPHCQ CCPQU CITATION DWQXO EBD ESX GNUQQ GROUPED_DOAJ GUQSH HYE IAO IHR ITC KQ8 M2O M48 MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RPM NPM 3V. 7XB 8FK MBDVC PKEHL PQEST PQUKI Q9U 7X8 PUEGO ADRAZ ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c511t-5cd7ae2af5df437d0cad0c010b558bc17312aca4a9c6fbcb1db0554e290e831c3 |
| IEDL.DBID | DOA |
| ISSN | 2075-4418 |
| IngestDate | Fri Oct 03 12:44:38 EDT 2025 Sun Oct 26 04:09:53 EDT 2025 Fri Sep 05 14:33:41 EDT 2025 Mon Jun 30 14:08:45 EDT 2025 Tue Jun 17 22:21:31 EDT 2025 Mon Oct 20 17:09:06 EDT 2025 Mon Jul 21 05:32:13 EDT 2025 Thu Apr 24 23:01:39 EDT 2025 Thu Oct 16 04:34:15 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | artificial neural network (ANN) machine learning (ML) pancreatic adenocarcinoma (PAC) artificial intelligence (AI) review future perspectives |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c511t-5cd7ae2af5df437d0cad0c010b558bc17312aca4a9c6fbcb1db0554e290e831c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0003-2406-5127 0000-0002-5685-6401 0000-0001-6214-1464 |
| OpenAccessLink | https://doaj.org/article/3a1f0b0f45424a4f874acdec0e65d82f |
| PMID | 38248051 |
| PQID | 2918680635 |
| PQPubID | 2032410 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_3a1f0b0f45424a4f874acdec0e65d82f unpaywall_primary_10_3390_diagnostics14020174 proquest_miscellaneous_2917559035 proquest_journals_2918680635 gale_infotracmisc_A780873970 gale_infotracacademiconefile_A780873970 pubmed_primary_38248051 crossref_primary_10_3390_diagnostics14020174 crossref_citationtrail_10_3390_diagnostics14020174 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Diagnostics (Basel) |
| PublicationTitleAlternate | Diagnostics (Basel) |
| PublicationYear | 2024 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Ali (ref_165) 2023; 99 Ramesh (ref_26) 2004; 86 ref_136 Moffitt (ref_32) 2015; 47 ref_139 Straw (ref_178) 2020; 110 Sung (ref_2) 2021; 71 ref_90 Chen (ref_98) 2020; 49 ref_12 Mukherjee (ref_181) 2022; 163 ref_11 Karimian (ref_16) 2022; 2 Kenner (ref_19) 2021; 50 ref_99 Tripathi (ref_170) 2023; 20 Jobin (ref_180) 2019; 1 Mahmoudi (ref_68) 2022; 12 ref_135 Yin (ref_25) 2022; 12 ref_134 ref_17 Reddy (ref_172) 2019; 27 Kearney (ref_110) 2018; 87 Koh (ref_141) 2022; 2 McGuigan (ref_3) 2018; 24 Dinesh (ref_42) 2023; 13 Gichoya (ref_158) 2022; 4 Qureshi (ref_96) 2022; 9 Zhuang (ref_77) 2021; 109 Ho (ref_122) 2020; 38 Bailey (ref_39) 2016; 531 ref_127 Placido (ref_46) 2023; 29 Juiz (ref_103) 2019; 9 Keogan (ref_24) 2002; 9 ref_20 ref_121 Aier (ref_102) 2019; 58 Baxi (ref_7) 2022; 35 Huang (ref_18) 2022; 12 Torii (ref_51) 2009; 16 Castiglioni (ref_91) 2021; 83 Locke (ref_47) 2021; 38 Wong (ref_70) 2021; 11 Chen (ref_92) 2023; 7 Conroy (ref_145) 2011; 364 Neoptolemos (ref_146) 2017; 389 ref_79 ref_78 Zhang (ref_38) 2022; 13 Ledesma (ref_124) 2021; 28 ref_76 Pereira (ref_130) 2020; 5 Tang (ref_137) 2023; 12 Elbanna (ref_6) 2020; 11 Adam (ref_160) 2020; 586 Mikdadi (ref_128) 2022; 33 ref_83 Savova (ref_61) 2019; 79 ref_81 Topol (ref_14) 2019; 25 ref_80 Kim (ref_109) 2023; 33 Halbrook (ref_155) 2023; 186 Pianykh (ref_161) 2020; 297 Ali (ref_138) 2023; 8 ref_140 ref_89 ref_142 ref_88 Fu (ref_116) 2022; 6 Cheerla (ref_133) 2019; 35 Shah (ref_72) 2015; 49 ref_86 ref_85 Xiao (ref_123) 2021; 176 Lemberg (ref_154) 2022; 132 ref_84 Singhi (ref_129) 2021; 18 Rahib (ref_1) 2014; 74 Stanzione (ref_115) 2021; 27 Hosein (ref_153) 2022; 3 Guinney (ref_30) 2015; 21 Janssen (ref_10) 2021; 34 Li (ref_119) 2022; 49 Hosny (ref_67) 2018; 18 Marin (ref_73) 2010; 256 Wang (ref_112) 2019; 18 Babic (ref_97) 2023; 14 DeCamp (ref_176) 2020; 27 Shin (ref_82) 2016; 35 Dercle (ref_120) 2022; 10 Yao (ref_131) 2023; 278 Brough (ref_34) 2017; 6 Huang (ref_125) 2018; 15 Tripathi (ref_162) 2022; 3 Schneider (ref_152) 2023; 13 Zhang (ref_29) 2020; 14 Li (ref_75) 2023; 31 ref_58 ref_173 ref_57 Bhinder (ref_95) 2021; 11 Akbarian (ref_87) 2023; 11 ref_177 Yao (ref_132) 2023; 39 ref_179 Rigby (ref_174) 2019; 21 Bronstein (ref_71) 2004; 182 Cloyd (ref_148) 2017; 152 ref_59 Rajpurkar (ref_27) 2022; 28 Lin (ref_105) 2021; 3 ref_60 Qiao (ref_23) 2022; 2022 Zhang (ref_159) 2021; 27 Chan (ref_111) 2020; 93 Zech (ref_107) 2022; 219 ref_164 ref_163 Zhou (ref_66) 2021; 109 ref_166 ref_63 Petersen (ref_149) 2016; 43 Fan (ref_37) 2022; 8 Dey (ref_167) 2022; 3 Cirillo (ref_169) 2020; 3 ref_171 Juhn (ref_54) 2020; 145 Lu (ref_53) 2011; 12 Litjens (ref_65) 2017; 42 Kleeff (ref_143) 2016; 2 Laranjo (ref_15) 2018; 25 ref_114 Matthaei (ref_151) 2011; 8 Liu (ref_13) 2019; 1 Chen (ref_44) 2023; 306 Kumar (ref_93) 2022; 29 Gillies (ref_100) 2020; 29 Rajkomar (ref_168) 2018; 169 ref_36 ref_35 ref_33 Fu (ref_9) 2021; 11 Voulodimos (ref_64) 2018; 2018 ref_31 Li (ref_69) 2022; 78 Suman (ref_156) 2021; 21 Lawrence (ref_118) 2022; 5 Sheikhalishahi (ref_108) 2023; 144 Naik (ref_175) 2022; 9 Zhang (ref_94) 2023; 10 Althobaiti (ref_74) 2022; 2022 Jensen (ref_50) 2006; 7 Rajkomar (ref_28) 2019; 380 Kenner (ref_55) 2021; 50 Sohn (ref_62) 2018; 25 Groot (ref_144) 2018; 267 Zhao (ref_21) 2009; 28 Tempero (ref_147) 2023; 41 Overbeek (ref_150) 2016; 30 Roch (ref_56) 2015; 17 Parikh (ref_157) 2019; 322 ref_45 Yin (ref_104) 2021; 23 Tenenbaum (ref_113) 2011; 32 ref_43 ref_41 ref_101 Qureshi (ref_22) 2022; 33 Choudhury (ref_106) 2020; 8 Ke (ref_40) 2022; 2022 ref_49 ref_48 Wei (ref_52) 2013; 41 Huynh (ref_117) 2020; 17 Chen (ref_126) 2022; 40 ref_8 ref_5 ref_4 |
| References_xml | – volume: 4 start-page: e406 year: 2022 ident: ref_158 article-title: AI Recognition of Patient Race in Medical Imaging: A Modelling Study publication-title: Lancet Digit. Health doi: 10.1016/S2589-7500(22)00063-2 – volume: 21 start-page: 1001 year: 2021 ident: ref_156 article-title: Quality Gaps in Public Pancreas Imaging Datasets: Implications & Challenges for AI Applications publication-title: Pancreatology doi: 10.1016/j.pan.2021.03.016 – ident: ref_45 doi: 10.1186/s12859-023-05322-z – ident: ref_80 – volume: 83 start-page: 9 year: 2021 ident: ref_91 article-title: AI Applications to Medical Images: From Machine Learning to Deep Learning publication-title: Phys. Med. doi: 10.1016/j.ejmp.2021.02.006 – volume: 50 start-page: 251 year: 2021 ident: ref_19 article-title: Artificial Intelligence and Early Detection of Pancreatic Cancer: 2020 Summative Review publication-title: Pancreas doi: 10.1097/MPA.0000000000001762 – volume: 8 start-page: 141 year: 2011 ident: ref_151 article-title: Cystic Precursors to Invasive Pancreatic Cancer publication-title: Nat. Rev. Gastroenterol. Hepatol. doi: 10.1038/nrgastro.2011.2 – volume: 12 start-page: S2 year: 2011 ident: ref_53 article-title: The Gene Normalization Task in BioCreative III publication-title: BMC Bioinform. doi: 10.1186/1471-2105-12-S8-S2 – ident: ref_136 doi: 10.3390/jcm10163589 – ident: ref_63 doi: 10.18653/v1/E17-2110 – ident: ref_142 doi: 10.1186/s12913-022-08215-8 – volume: 186 start-page: 1729 year: 2023 ident: ref_155 article-title: Pancreatic Cancer: Advances and Challenges publication-title: Cell doi: 10.1016/j.cell.2023.02.014 – ident: ref_171 doi: 10.1186/s12910-021-00687-3 – volume: 176 start-page: 113844 year: 2021 ident: ref_123 article-title: High-Throughput Proteomics and AI for Cancer Biomarker Discovery publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2021.113844 – volume: 11 start-page: 665929 year: 2021 ident: ref_9 article-title: Automatic Pancreatic Ductal Adenocarcinoma Detection in Whole Slide Images Using Deep Convolutional Neural Networks publication-title: Front. Oncol. doi: 10.3389/fonc.2021.665929 – volume: 380 start-page: 1347 year: 2019 ident: ref_28 article-title: Machine Learning in Medicine publication-title: N. Engl. J. Med. doi: 10.1056/NEJMra1814259 – volume: 86 start-page: 334 year: 2004 ident: ref_26 article-title: Artificial Intelligence in Medicine publication-title: Ann. R. Coll. Surg. Engl. doi: 10.1308/147870804290 – volume: 29 start-page: 2043 year: 2022 ident: ref_93 article-title: A Systematic Review of Artificial Intelligence Techniques in Cancer Prediction and Diagnosis publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-021-09648-w – volume: 1 start-page: e271 year: 2019 ident: ref_13 article-title: A Comparison of Deep Learning Performance against Health-Care Professionals in Detecting Diseases from Medical Imaging: A Systematic Review and Meta-Analysis publication-title: Lancet Digit Health doi: 10.1016/S2589-7500(19)30123-2 – volume: 10 start-page: 22 year: 2023 ident: ref_94 article-title: Artificial Intelligence-Driven Radiomics Study in Cancer: The Role of Feature Engineering and Modeling publication-title: Mil. Med. Res. – ident: ref_33 doi: 10.1186/s12864-015-1717-8 – volume: 182 start-page: 619 year: 2004 ident: ref_71 article-title: Detection of Small Pancreatic Tumors with Multiphasic Helical CT publication-title: AJR Am. J. Roentgenol. doi: 10.2214/ajr.182.3.1820619 – volume: 78 start-page: 102342 year: 2022 ident: ref_69 article-title: A Dual Meta-Learning Framework Based on Idle Data for Enhancing Segmentation of Pancreatic Cancer publication-title: Med. Image Anal. doi: 10.1016/j.media.2021.102342 – ident: ref_179 doi: 10.4324/9780429329067 – volume: 1 start-page: 389 year: 2019 ident: ref_180 article-title: The Global Landscape of AI Ethics Guidelines publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-019-0088-2 – volume: 13 start-page: 972298 year: 2022 ident: ref_38 article-title: Single-Cell Sequencing Reveals Heterogeneity between Pancreatic Adenosquamous Carcinoma and Pancreatic Ductal Adenocarcinoma with Prognostic Value publication-title: Front. Immunol. doi: 10.3389/fimmu.2022.972298 – volume: 29 start-page: 1113 year: 2023 ident: ref_46 article-title: A Deep Learning Algorithm to Predict Risk of Pancreatic Cancer from Disease Trajectories publication-title: Nat. Med. doi: 10.1038/s41591-023-02332-5 – ident: ref_48 – volume: 17 start-page: 771 year: 2020 ident: ref_117 article-title: Artificial Intelligence in Radiation Oncology publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/s41571-020-0417-8 – volume: 8 start-page: 13 year: 2022 ident: ref_37 article-title: Integrated Single-Cell Multiomics Analysis Reveals Novel Candidate Markers for Prognosis in Human Pancreatic Ductal Adenocarcinoma publication-title: Cell Discov. doi: 10.1038/s41421-021-00366-y – volume: 11 start-page: 58 year: 2020 ident: ref_6 article-title: Imaging Diagnosis and Staging of Pancreatic Ductal Adenocarcinoma: A Comprehensive Review publication-title: Insights Imaging doi: 10.1186/s13244-020-00861-y – ident: ref_99 doi: 10.1093/bib/bbab454 – volume: 14 start-page: 4317 year: 2023 ident: ref_97 article-title: Adipose Tissue and Skeletal Muscle Wasting Precede Clinical Diagnosis of Pancreatic Cancer publication-title: Nat. Commun. doi: 10.1038/s41467-023-40024-3 – volume: 8 start-page: e18599 year: 2020 ident: ref_106 article-title: Role of Artificial Intelligence in Patient Safety Outcomes: Systematic Literature Review publication-title: JMIR Med. Inform. doi: 10.2196/18599 – volume: 38 start-page: 497 year: 2020 ident: ref_122 article-title: Enabling Technologies for Personalized and Precision Medicine publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2019.12.021 – ident: ref_35 doi: 10.1145/3173574.3174209 – volume: 531 start-page: 47 year: 2016 ident: ref_39 article-title: Genomic Analyses Identify Molecular Subtypes of Pancreatic Cancer publication-title: Nature doi: 10.1038/nature16965 – volume: 49 start-page: 1535 year: 2022 ident: ref_119 article-title: Deep Learning-Based AI Model for Signet-Ring Cell Carcinoma Diagnosis and Chemotherapy Response Prediction in Gastric Cancer publication-title: Med. Phys. doi: 10.1002/mp.15437 – volume: 25 start-page: 1248 year: 2018 ident: ref_15 article-title: Conversational Agents in Healthcare: A Systematic Review publication-title: J. Am. Med. Inform. Assoc. doi: 10.1093/jamia/ocy072 – volume: 5 start-page: 698 year: 2020 ident: ref_130 article-title: Early Detection of Pancreatic Cancer publication-title: Lancet Gastroenterol. Hepatol. doi: 10.1016/S2468-1253(19)30416-9 – volume: 93 start-page: 20190580 year: 2020 ident: ref_111 article-title: CAD and AI for Breast Cancer—Recent Development and Challenges publication-title: BJR Suppl. doi: 10.1259/bjr.20190580 – volume: 3 start-page: 272 year: 2022 ident: ref_153 article-title: Translational Advances in Pancreatic Ductal Adenocarcinoma Therapy publication-title: Nat. Cancer doi: 10.1038/s43018-022-00349-2 – volume: 7 start-page: 119 year: 2006 ident: ref_50 article-title: Literature Mining for the Biologist: From Information Retrieval to Biological Discovery publication-title: Nat. Rev. Genet. doi: 10.1038/nrg1768 – volume: 33 start-page: 211 year: 2022 ident: ref_22 article-title: Predicting Pancreatic Ductal Adenocarcinoma Using Artificial Intelligence Analysis of Pre-Diagnostic Computed Tomography Images publication-title: Cancer Biomark. doi: 10.3233/CBM-210273 – volume: 9 start-page: 246 year: 2019 ident: ref_103 article-title: Pancreatic Cancer Heterogeneity Can Be Explained Beyond the Genome publication-title: Front. Oncol. doi: 10.3389/fonc.2019.00246 – ident: ref_121 doi: 10.1201/9781003129783 – volume: 28 start-page: 31 year: 2022 ident: ref_27 article-title: AI in Health and Medicine publication-title: Nat. Med. doi: 10.1038/s41591-021-01614-0 – ident: ref_135 doi: 10.3390/diagnostics13132183 – ident: ref_11 – volume: 152 start-page: 1048 year: 2017 ident: ref_148 article-title: Association of Clinical Factors With a Major Pathologic Response Following Preoperative Therapy for Pancreatic Ductal Adenocarcinoma publication-title: JAMA Surg. doi: 10.1001/jamasurg.2017.2227 – ident: ref_139 doi: 10.3390/jpm13060951 – ident: ref_177 – volume: 306 start-page: 172 year: 2023 ident: ref_44 article-title: Pancreatic Cancer Detection on CT Scans with Deep Learning: A Nationwide Population-Based Study publication-title: Radiology doi: 10.1148/radiol.220152 – volume: 28 start-page: 6512 year: 2021 ident: ref_124 article-title: Advancements within Modern Machine Learning Methodology: Impacts and Prospects in Biomarker Discovery publication-title: Curr. Med. Chem. doi: 10.2174/0929867328666210208111821 – volume: 18 start-page: 457 year: 2021 ident: ref_129 article-title: Early Detection of Pancreatic Cancer Using DNA-Based Molecular Approaches publication-title: Nat. Rev. Gastroenterol. Hepatol. doi: 10.1038/s41575-021-00470-0 – volume: 25 start-page: 44 year: 2019 ident: ref_14 article-title: High-Performance Medicine: The Convergence of Human and Artificial Intelligence publication-title: Nat. Med. doi: 10.1038/s41591-018-0300-7 – volume: 12 start-page: 3092 year: 2022 ident: ref_68 article-title: Segmentation of Pancreatic Ductal Adenocarcinoma (PDAC) and Surrounding Vessels in CT Images Using Deep Convolutional Neural Networks and Texture Descriptors publication-title: Sci. Rep. doi: 10.1038/s41598-022-07111-9 – volume: 35 start-page: 1285 year: 2016 ident: ref_82 article-title: Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2528162 – volume: 3 start-page: e486 year: 2021 ident: ref_105 article-title: Application of Comprehensive Artificial Intelligence Retinal Expert (CARE) System: A National Real-World Evidence Study publication-title: Lancet Digit Health doi: 10.1016/S2589-7500(21)00086-8 – volume: 21 start-page: 121 year: 2019 ident: ref_174 article-title: Ethical Dimensions of Using Artificial Intelligence in Health Care publication-title: AMA J. Ethics doi: 10.1001/amajethics.2019.121 – volume: 28 start-page: 3294 year: 2009 ident: ref_21 article-title: Reinforcement Learning Design for Cancer Clinical Trials publication-title: Stat. Med. doi: 10.1002/sim.3720 – ident: ref_60 doi: 10.1016/j.jbi.2019.103301 – volume: 71 start-page: 209 year: 2021 ident: ref_2 article-title: Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries publication-title: CA Cancer J. Clin. doi: 10.3322/caac.21660 – volume: 21 start-page: 1350 year: 2015 ident: ref_30 article-title: The Consensus Molecular Subtypes of Colorectal Cancer publication-title: Nat. Med. doi: 10.1038/nm.3967 – volume: 33 start-page: 3501 year: 2023 ident: ref_109 article-title: Multicentre External Validation of a Commercial Artificial Intelligence Software to Analyse Chest Radiographs in Health Screening Environments with Low Disease Prevalence publication-title: Eur. Radiol. doi: 10.1007/s00330-022-09315-z – volume: 74 start-page: 2913 year: 2014 ident: ref_1 article-title: Projecting Cancer Incidence and Deaths to 2030: The Unexpected Burden of Thyroid, Liver, and Pancreas Cancers in the United States publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-14-0155 – volume: 12 start-page: 973999 year: 2022 ident: ref_25 article-title: Research Trends of Artificial Intelligence in Pancreatic Cancer: A Bibliometric Analysis publication-title: Front. Oncol. doi: 10.3389/fonc.2022.973999 – volume: 110 start-page: 101965 year: 2020 ident: ref_178 article-title: The Automation of Bias in Medical Artificial Intelligence (AI): Decoding the Past to Create a Better Future publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2020.101965 – ident: ref_86 doi: 10.1109/BRACIS.2016.027 – volume: 9 start-page: 024002 year: 2022 ident: ref_96 article-title: Morphology-Guided Deep Learning Framework for Segmentation of Pancreas in Computed Tomography Images publication-title: J. Med. Imaging doi: 10.1117/1.JMI.9.2.024002 – volume: 109 start-page: 43 year: 2021 ident: ref_77 article-title: A Comprehensive Survey on Transfer Learning publication-title: Proc. IEEE doi: 10.1109/JPROC.2020.3004555 – volume: 322 start-page: 2377 year: 2019 ident: ref_157 article-title: Addressing Bias in Artificial Intelligence in Health Care publication-title: JAMA doi: 10.1001/jama.2019.18058 – volume: 33 start-page: 173 year: 2022 ident: ref_128 article-title: Applications of Artificial Intelligence (AI) in Ovarian Cancer, Pancreatic Cancer, and Image Biomarker Discovery publication-title: Cancer Biomark. doi: 10.3233/CBM-210301 – ident: ref_20 doi: 10.3390/cancers12030603 – ident: ref_81 – ident: ref_5 doi: 10.3390/cancers14143498 – volume: 13 start-page: 278 year: 2023 ident: ref_152 article-title: Context-Specific Determinants of the Immunosuppressive Tumor Microenvironment in Pancreatic Cancer publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-22-0876 – volume: 10 start-page: e005292 year: 2022 ident: ref_120 article-title: Artificial Intelligence and Radiomics: Fundamentals, Applications, and Challenges in Immunotherapy publication-title: J. Immunother. Cancer doi: 10.1136/jitc-2022-005292 – volume: 41 start-page: 2007 year: 2023 ident: ref_147 article-title: Adjuvant Nab-Paclitaxel + Gemcitabine in Resected Pancreatic Ductal Adenocarcinoma: Results From a Randomized, Open-Label, Phase III Trial publication-title: J. Clin. Oncol. doi: 10.1200/JCO.22.01134 – volume: 297 start-page: 6 year: 2020 ident: ref_161 article-title: Continuous Learning AI in Radiology: Implementation Principles and Early Applications publication-title: Radiology doi: 10.1148/radiol.2020200038 – volume: 2018 start-page: 7068349 year: 2018 ident: ref_64 article-title: Deep Learning for Computer Vision: A Brief Review publication-title: Comput. Intell. Neurosci. doi: 10.1155/2018/7068349 – volume: 47 start-page: 1168 year: 2015 ident: ref_32 article-title: Virtual Microdissection Identifies Distinct Tumor- and Stroma-Specific Subtypes of Pancreatic Ductal Adenocarcinoma publication-title: Nat. Genet. doi: 10.1038/ng.3398 – volume: 109 start-page: 820 year: 2021 ident: ref_66 article-title: A Review of Deep Learning in Medical Imaging: Imaging Traits, Technology Trends, Case Studies With Progress Highlights, and Future Promises publication-title: Proc. IEEE doi: 10.1109/JPROC.2021.3054390 – volume: 87 start-page: 111 year: 2018 ident: ref_110 article-title: The Application of Artificial Intelligence in the IMRT Planning Process for Head and Neck Cancer publication-title: Oral Oncol. doi: 10.1016/j.oraloncology.2018.10.026 – volume: 14 start-page: 1233 year: 2020 ident: ref_29 article-title: Support Vector Machine Combined with Magnetic Resonance Imaging for Accurate Diagnosis of Paediatric Pancreatic Cancer publication-title: IET Image Proc. doi: 10.1049/iet-ipr.2019.1041 – volume: 40 start-page: 865 year: 2022 ident: ref_126 article-title: Pan-Cancer Integrative Histology-Genomic Analysis via Multimodal Deep Learning publication-title: Cancer Cell doi: 10.1016/j.ccell.2022.07.004 – volume: 2022 start-page: 2872461 year: 2022 ident: ref_74 article-title: Design of Optimal Deep Learning-Based Pancreatic Tumor and Nontumor Classification Model Using Computed Tomography Scans publication-title: J. Healthc. Eng. doi: 10.1155/2022/2872461 – ident: ref_79 doi: 10.1007/978-3-030-01424-7_27 – ident: ref_101 – volume: 2 start-page: 539 year: 2022 ident: ref_16 article-title: The Ethical Issues of the Application of Artificial Intelligence in Healthcare: A Systematic Scoping Review publication-title: AI Ethics doi: 10.1007/s43681-021-00131-7 – volume: 35 start-page: i446 year: 2019 ident: ref_133 article-title: Deep Learning with Multimodal Representation for Pancancer Prognosis Prediction publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz342 – ident: ref_41 doi: 10.3390/diagnostics11050901 – volume: 144 start-page: 102659 year: 2023 ident: ref_108 article-title: An Interpretable Deep Learning Model for Time-Series Electronic Health Records: Case Study of Delirium Prediction in Critical Care publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2023.102659 – ident: ref_134 doi: 10.1186/s12916-022-02258-8 – volume: 30 start-page: 971 year: 2016 ident: ref_150 article-title: Surveillance for Neoplasia in the Pancreas publication-title: Best Pract. Res. Clin. Gastroenterol. doi: 10.1016/j.bpg.2016.10.013 – volume: 219 start-page: 869 year: 2022 ident: ref_107 article-title: Artificial Intelligence (AI) for Fracture Diagnosis: An Overview of Current Products and Considerations for Clinical Adoption, From the AJR Special Series on AI Applications publication-title: AJR Am. J. Roentgenol. doi: 10.2214/AJR.22.27873 – ident: ref_88 doi: 10.1007/978-3-030-45529-3 – ident: ref_4 doi: 10.3390/cancers14215382 – volume: 8 start-page: 100333 year: 2023 ident: ref_138 article-title: A Systematic Literature Review of Artificial Intelligence in the Healthcare Sector: Benefits, Challenges, Methodologies, and Functionalities publication-title: J. Innov. Knowl. doi: 10.1016/j.jik.2023.100333 – ident: ref_78 – ident: ref_166 doi: 10.3390/s23020634 – volume: 586 start-page: E14 year: 2020 ident: ref_160 article-title: Transparency and Reproducibility in Artificial Intelligence publication-title: Nature doi: 10.1038/s41586-020-2766-y – volume: 49 start-page: 413 year: 2020 ident: ref_98 article-title: Prediction of Pancreatic Cancer Based on Imaging Features in Patients With Duct Abnormalities publication-title: Pancreas doi: 10.1097/MPA.0000000000001499 – ident: ref_84 – ident: ref_76 doi: 10.1017/9781139061773 – ident: ref_8 doi: 10.3390/cancers13040895 – volume: 24 start-page: 4846 year: 2018 ident: ref_3 article-title: Pancreatic Cancer: A Review of Clinical Diagnosis, Epidemiology, Treatment and Outcomes publication-title: World J. Gastroenterol. doi: 10.3748/wjg.v24.i43.4846 – volume: 256 start-page: 450 year: 2010 ident: ref_73 article-title: Detection of Pancreatic Tumors, Image Quality, and Radiation Dose during the Pancreatic Parenchymal Phase: Effect of a Low-Tube-Voltage, High-Tube-Current CT Technique--Preliminary Results publication-title: Radiology doi: 10.1148/radiol.10091819 – ident: ref_31 doi: 10.3390/cancers12113309 – volume: 11 start-page: 85812 year: 2023 ident: ref_87 article-title: Evaluating Knowledge Transfer in the Neural Network for Medical Images publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3283216 – volume: 9 start-page: 410 year: 2002 ident: ref_24 article-title: Outcome Analysis of Patients with Acute Pancreatitis by Using an Artificial Neural Network publication-title: Acad. Radiol. doi: 10.1016/S1076-6332(03)80186-1 – volume: 50 start-page: 916 year: 2021 ident: ref_55 article-title: Early Detection of Pancreatic Cancer: Applying Artificial Intelligence to Electronic Health Records publication-title: Pancreas doi: 10.1097/MPA.0000000000001882 – volume: 3 start-page: 81 year: 2020 ident: ref_169 article-title: Sex and Gender Differences and Biases in Artificial Intelligence for Biomedicine and Healthcare publication-title: NPJ Digit. Med. doi: 10.1038/s41746-020-0288-5 – volume: 9 start-page: 862322 year: 2022 ident: ref_175 article-title: Legal and Ethical Consideration in Artificial Intelligence in Healthcare: Who Takes Responsibility? publication-title: Front. Surg. doi: 10.3389/fsurg.2022.862322 – volume: 2022 start-page: 8979404 year: 2022 ident: ref_23 article-title: Artificial Intelligence Algorithm-Based Computerized Tomography Image Features Combined with Serum Tumor Markers for Diagnosis of Pancreatic Cancer publication-title: Comput. Math. Methods Med. doi: 10.1155/2022/8979404 – ident: ref_58 – volume: 13 start-page: 9725 year: 2023 ident: ref_42 article-title: Diagnostic Ability of Deep Learning in Detection of Pancreatic Tumour publication-title: Sci. Rep. doi: 10.1038/s41598-023-36886-8 – volume: 18 start-page: 1533033819873922 year: 2019 ident: ref_112 article-title: Artificial Intelligence in Radiotherapy Treatment Planning: Present and Future publication-title: Technol. Cancer Res. Treat. doi: 10.1177/1533033819873922 – volume: 2022 start-page: 3124122 year: 2022 ident: ref_40 article-title: Systematic Analysis of Molecular Subtypes Based on the Expression Profile of Immune-Related Genes in Pancreatic Cancer publication-title: Oxid. Med. Cell. Longev. doi: 10.1155/2022/3124122 – volume: 49 start-page: 11 year: 2015 ident: ref_72 article-title: Pancreatic Tumor Detection Using Image Processing publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2015.04.221 – volume: 169 start-page: 866 year: 2018 ident: ref_168 article-title: Ensuring Fairness in Machine Learning to Advance Health Equity publication-title: Ann. Intern. Med. doi: 10.7326/M18-1990 – volume: 43 start-page: 548 year: 2016 ident: ref_149 article-title: Familial Pancreatic Cancer publication-title: Semin. Oncol. doi: 10.1053/j.seminoncol.2016.09.002 – volume: 17 start-page: 447 year: 2015 ident: ref_56 article-title: Automated Pancreatic Cyst Screening Using Natural Language Processing: A New Tool in the Early Detection of Pancreatic Cancer publication-title: HPB doi: 10.1111/hpb.12375 – ident: ref_173 doi: 10.1186/s12911-023-02103-9 – volume: 11 start-page: 16328 year: 2021 ident: ref_70 article-title: Effects of Interobserver and Interdisciplinary Segmentation Variabilities on CT-Based Radiomics for Pancreatic Cancer publication-title: Sci. Rep. doi: 10.1038/s41598-021-95152-x – volume: 6 start-page: 158 year: 2022 ident: ref_116 article-title: Artificial Intelligence in Radiation Therapy publication-title: IEEE Trans. Radiat. Plasma Med. Sci. doi: 10.1109/TRPMS.2021.3107454 – volume: 27 start-page: 5306 year: 2021 ident: ref_115 article-title: Radiomics and Machine Learning Applications in Rectal Cancer: Current Update and Future Perspectives publication-title: World J. Gastroenterol. doi: 10.3748/wjg.v27.i32.5306 – volume: 5 start-page: e2216199 year: 2022 ident: ref_118 article-title: Comparison of FOLFIRINOX vs Gemcitabine Plus Nab-Paclitaxel as First-Line Chemotherapy for Metastatic Pancreatic Ductal Adenocarcinoma publication-title: JAMA Netw. Open doi: 10.1001/jamanetworkopen.2022.16199 – ident: ref_17 – volume: 58 start-page: 104 year: 2019 ident: ref_102 article-title: A Systematic Assessment of Statistics, Risk Factors, and Underlying Features Involved in Pancreatic Cancer publication-title: Cancer Epidemiol. doi: 10.1016/j.canep.2018.12.001 – ident: ref_114 doi: 10.3390/cancers14153803 – volume: 38 start-page: 4 year: 2021 ident: ref_47 article-title: Natural Language Processing in Medicine: A Review publication-title: Trends Anaesth. Crit. Care doi: 10.1016/j.tacc.2021.02.007 – ident: ref_164 doi: 10.1016/j.jbi.2020.103655 – volume: 42 start-page: 60 year: 2017 ident: ref_65 article-title: A Survey on Deep Learning in Medical Image Analysis publication-title: Med. Image Anal. doi: 10.1016/j.media.2017.07.005 – volume: 278 start-page: e68 year: 2023 ident: ref_131 article-title: Deep Learning for Fully Automated Prediction of Overall Survival in Patients Undergoing Resection for Pancreatic Cancer: A Retrospective Multicenter Study publication-title: Ann. Surg. doi: 10.1097/SLA.0000000000005465 – ident: ref_12 doi: 10.1007/978-981-19-5272-2 – volume: 32 start-page: 14 year: 2011 ident: ref_113 article-title: Cancer: A Computational Disease That AI Can Cure publication-title: AI Mag. – volume: 11 start-page: 900 year: 2021 ident: ref_95 article-title: Artificial Intelligence in Cancer Research and Precision Medicine publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-21-0090 – ident: ref_83 doi: 10.1007/978-3-319-97982-3_16 – volume: 7 start-page: 719 year: 2023 ident: ref_92 article-title: Algorithmic Fairness in Artificial Intelligence for Medicine and Healthcare publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-023-01056-8 – volume: 12 start-page: 7962 year: 2023 ident: ref_137 article-title: Contrast-Enhanced Harmonic Endoscopic Ultrasound (CH-EUS) MASTER: A Novel Deep Learning-Based System in Pancreatic Mass Diagnosis publication-title: Cancer Med. doi: 10.1002/cam4.5578 – volume: 25 start-page: 353 year: 2018 ident: ref_62 article-title: Clinical Documentation Variations and NLP System Portability: A Case Study in Asthma Birth Cohorts across Institutions publication-title: J. Am. Med. Inform. Assoc. doi: 10.1093/jamia/ocx138 – volume: 2 start-page: 16022 year: 2016 ident: ref_143 article-title: Pancreatic Cancer publication-title: Nat. Rev. Dis. Primers doi: 10.1038/nrdp.2016.22 – volume: 79 start-page: 5463 year: 2019 ident: ref_61 article-title: Use of Natural Language Processing to Extract Clinical Cancer Phenotypes from Electronic Medical Records publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-19-0579 – volume: 31 start-page: 167 year: 2023 ident: ref_75 article-title: CT Classification Model of Pancreatic Serous Cystic Neoplasm and Mucinous Cystic Neoplasm Based on Deep Transfer Learning publication-title: J. X-ray Sci. Technol. – ident: ref_90 doi: 10.1201/9780367229184 – volume: 3 start-page: 100493 year: 2022 ident: ref_167 article-title: Human-Centered Explainability for Life Sciences, Healthcare, and Medical Informatics publication-title: Patterns doi: 10.1016/j.patter.2022.100493 – volume: 27 start-page: 491 year: 2019 ident: ref_172 article-title: A Governance Model for the Application of AI in Health Care publication-title: J. Am. Med. Inform. Assoc. doi: 10.1093/jamia/ocz192 – ident: ref_85 doi: 10.1007/978-3-030-01252-6_17 – volume: 34 start-page: 4 year: 2021 ident: ref_10 article-title: Amsterdam International Consensus Meeting: Tumor Response Scoring in the Pathology Assessment of Resected Pancreatic Cancer after Neoadjuvant Therapy publication-title: Mod. Pathol. doi: 10.1038/s41379-020-00683-9 – volume: 27 start-page: 2020 year: 2020 ident: ref_176 article-title: Latent Bias and the Implementation of Artificial Intelligence in Medicine publication-title: J. Am. Med. Inform. Assoc. doi: 10.1093/jamia/ocaa094 – volume: 389 start-page: 1011 year: 2017 ident: ref_146 article-title: Comparison of Adjuvant Gemcitabine and Capecitabine with Gemcitabine Monotherapy in Patients with Resected Pancreatic Cancer (ESPAC-4): A Multicentre, Open-Label, Randomised, Phase 3 Trial publication-title: Lancet doi: 10.1016/S0140-6736(16)32409-6 – volume: 16 start-page: 247 year: 2009 ident: ref_51 article-title: BioTagger-GM: A Gene/protein Name Recognition System publication-title: J. Am. Med. Inform. Assoc. doi: 10.1197/jamia.M2844 – volume: 39 start-page: 436 year: 2023 ident: ref_132 article-title: A Review of Deep Learning and Radiomics Approaches for Pancreatic Cancer Diagnosis from Medical Imaging publication-title: Curr. Opin. Gastroenterol. doi: 10.1097/MOG.0000000000000966 – ident: ref_127 doi: 10.1186/s13036-023-00340-0 – volume: 18 start-page: 500 year: 2018 ident: ref_67 article-title: Artificial Intelligence in Radiology publication-title: Nat. Rev. Cancer doi: 10.1038/s41568-018-0016-5 – volume: 23 start-page: e25759 year: 2021 ident: ref_104 article-title: Role of Artificial Intelligence Applications in Real-Life Clinical Practice: Systematic Review publication-title: J. Med. Internet Res. doi: 10.2196/25759 – volume: 6 start-page: 147 year: 2017 ident: ref_34 article-title: Extraction of Process-Structure Evolution Linkages from X-ray Scattering Measurements Using Dimensionality Reduction and Time Series Analysis publication-title: Integr. Mater. Manuf. Innov. doi: 10.1007/s40192-017-0093-4 – ident: ref_36 doi: 10.1186/s12885-023-10675-y – ident: ref_140 doi: 10.1186/s12916-019-1426-2 – volume: 3 start-page: 1193 year: 2022 ident: ref_162 article-title: Turing Test-Inspired Method for Analysis of Biases Prevalent in Artificial Intelligence-Based Medical Imaging publication-title: AI Ethics doi: 10.1007/s43681-022-00227-8 – volume: 20 start-page: 836 year: 2023 ident: ref_170 article-title: Dataset Development Review publication-title: J. Am. Coll. Radiol. doi: 10.1016/j.jacr.2023.06.015 – volume: 12 start-page: 6931 year: 2022 ident: ref_18 article-title: Artificial Intelligence in Pancreatic Cancer publication-title: Theranostics doi: 10.7150/thno.77949 – ident: ref_43 doi: 10.3390/cancers15133392 – ident: ref_163 doi: 10.3390/diagnostics10040231 – volume: 35 start-page: 23 year: 2022 ident: ref_7 article-title: Digital Pathology and Artificial Intelligence in Translational Medicine and Clinical Practice publication-title: Mod. Pathol. doi: 10.1038/s41379-021-00919-2 – volume: 163 start-page: 1435 year: 2022 ident: ref_181 article-title: Radiomics-Based Machine-Learning Models Can Detect Pancreatic Cancer on Prediagnostic Computed Tomography Scans at a Substantial Lead Time Before Clinical Diagnosis publication-title: Gastroenterology doi: 10.1053/j.gastro.2022.06.066 – volume: 145 start-page: 463 year: 2020 ident: ref_54 article-title: Artificial Intelligence Approaches Using Natural Language Processing to Advance EHR-Based Clinical Research publication-title: J. Allergy Clin. Immunol. doi: 10.1016/j.jaci.2019.12.897 – volume: 29 start-page: 2556 year: 2020 ident: ref_100 article-title: Radiomics Improves Cancer Screening and Early Detection publication-title: Cancer Epidemiol. Biomark. Prev. doi: 10.1158/1055-9965.EPI-20-0075 – volume: 364 start-page: 1817 year: 2011 ident: ref_145 article-title: FOLFIRINOX versus Gemcitabine for Metastatic Pancreatic Cancer publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1011923 – ident: ref_57 doi: 10.3390/diagnostics13020286 – ident: ref_89 doi: 10.1109/ISBI.2019.8759268 – volume: 27 start-page: 2176 year: 2021 ident: ref_159 article-title: Underdiagnosis Bias of Artificial Intelligence Algorithms Applied to Chest Radiographs in under-Served Patient Populations publication-title: Nat. Med. doi: 10.1038/s41591-021-01595-0 – volume: 267 start-page: 936 year: 2018 ident: ref_144 article-title: Patterns, Timing, and Predictors of Recurrence Following Pancreatectomy for Pancreatic Ductal Adenocarcinoma publication-title: Ann. Surg. doi: 10.1097/SLA.0000000000002234 – ident: ref_59 doi: 10.1007/978-3-030-40850-3 – volume: 15 start-page: 41 year: 2018 ident: ref_125 article-title: Applications of Support Vector Machine (SVM) Learning in Cancer Genomics publication-title: Cancer Genom. Proteom. – ident: ref_49 doi: 10.1016/B978-0-12-818438-7.00002-2 – volume: 99 start-page: 101805 year: 2023 ident: ref_165 article-title: Explainable Artificial Intelligence (XAI): What We Know and What Is Left to Attain Trustworthy Artificial Intelligence publication-title: Inf. Fusion doi: 10.1016/j.inffus.2023.101805 – volume: 132 start-page: e148550 year: 2022 ident: ref_154 article-title: Clinical Development of Metabolic Inhibitors for Oncology publication-title: J. Clin. Investig. doi: 10.1172/JCI148550 – volume: 2 start-page: 133 year: 2022 ident: ref_141 article-title: Artificial Intelligence and Machine Learning in Cancer Imaging publication-title: Commun. Med. doi: 10.1038/s43856-022-00199-0 – volume: 41 start-page: W518 year: 2013 ident: ref_52 article-title: PubTator: A Web-Based Text Mining Tool for Assisting Biocuration publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt441 |
| SSID | ssj0000913825 |
| Score | 2.3821266 |
| SecondaryResourceType | review_article |
| Snippet | Pancreatic cancer is a highly aggressive and difficult-to-detect cancer with a poor prognosis. Late diagnosis is common due to a lack of early symptoms,... |
| SourceID | doaj unpaywall proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 174 |
| SubjectTerms | Algorithms Artificial intelligence artificial intelligence (AI) artificial neural network (ANN) Cancer Cancer research Care and treatment Clinical outcomes Clustering Computational linguistics Datasets Deep learning Diagnosis Disease Electronic health records Forecasts and trends future perspectives Health care reform Language processing Machine learning machine learning (ML) Medical coding Medical imaging Medical imaging equipment Medical personnel Medical prognosis Medical research Natural language interfaces Natural language processing Neural networks pancreatic adenocarcinoma (PAC) Pancreatic cancer Patient outcomes Patients Precision medicine Prognosis review Support vector machines Tomography Tumors |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9QwEA_nHqgv4udZPSWC4Ivl0jbphyCyd9xyCrse4sE9CGWaJqewtmuvi_jfO9Nk6y3K4UNe2gkkk8l8JJPfMPbSKpvpShUhNgglmpgQCpChsJCaPAOVD5D580V6ciY_nKvzHbbYvIWhtMqNThwUdd1qOiM_iAsCdkeDqt6tfoRUNYpuVzclNMCXVqjfDhBjN9huTMhYE7Z7eLw4_TSeuhAKJsZEDn4owXj_oHYZbYSJHFEsFWVyy0QNSP5_6-srBuvWulnBr5-wXF6xTLO77I53KfnUycA9tmOa--zm3F-aP2BfZl37nc-HrEnDPaDqBe9bfupAVfnHdY9MMJdv-JSTgujMV5fXzt3VAW8tn77n3xrs0Tg3U_MjkpfuITubHX8-Ogl9UYVQo2_Vh0rXGZgYrKqtTLJaaMCGUVmlVF7pKEuiGDRIKHRqK11FdSXQ5TBxIUyeRDp5xCZN25jHjFdo2xK6xcEQSgIYQNcDRF0RpF5aSBWweMPHUnvEcSp8sSwx8iDml_9gfsBej51WDnDjevJDWqCRlNCyhw9td1H6zVcmEFlRCSuVjCVIm2cSdG20MKmq89gG7BUtb0l7GgeowT9NwGkSOlY5zXKRZ-i5iYDtb1HiXtTbvzcCUnpdcFn-kdyAvRh_U0_Kb2tMux5oMoztBNHsOcEap4QCK3PUnQELR0n7H9Y8uX4wT9ntGB00d5y0zyZ9tzbP0MHqq-d-1_wGNfsk8A priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fi9QwEA7nCeqL-NvqKREEX6ymbdKmgsh6uJzCqg8u3INQJmlyCmt79rro_ffONN1yi6f44ENfmgm0ky-Zb5r0G8Yee-ULa1QZ4wWxxBATQwkyFh5ypwtQepDMX7zPD5by3aE63GGbqqijA0_OTe2ontSyWz37-f30FU74l5RxYsr-vA6H0kjWOKF0CEn2BXYRQ1VJtRwWI98fluaSJPdUUB_6U9-tCDUI-f--XJ-JV5fXzTGc_oDV6kxgml9jV0dGyWcBAtfZjmtusEuLcc_8Jvs879pvfDEcmnR81FM94n3LPwZNVf5h3SPu3MkLPuO0PnTuSzjWzsPOAW89n73lXxvs0QSWafk-waW7xZbzN5_2D-KxpkJskVr1sbJ1AS4Fr2ovs6IWFvDCpMwopY1NiixJwYKE0ubeWJPURiDjcGkpnM4Sm91mu03buLuMGwxtGW3iYAYlARwg8wBRG1LUy0upIpZu_FjZUXCc6l6sKkw8yPnVOc6P2NOp03HQ2_i7-WsaoMmUxLKHG213VI1zr8og8cIIL5VMJUivCwm2dla4XNU69RF7QsNbEcjwAS2Mfybga5I4VjUrtNAFEjcRsb0tS5yKdrt5A5Bqg-QqLakiATJBdMijqZl60vG2xrXrwabA1E6QzZ0ArOmVELBS49IZsXhC2r-45t7_cM19diVFFhe-Oe2x3b5buwfIwnrzcJhZvwB4djFO priority: 102 providerName: Scholars Portal – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA-6B-qL3x-rp0QQfLG3aZq0qS-yHh6nsOc9uHCCUCZpch6u7bLbVfSvd9Jkl1sVUR_60kxoPiYzv0mmvxDyxElXGC3LBB9IBLqYBEoQCXOQW1WAVD1l_uQoP5yKNyfyJG64LWNaJYbiZ72R5ujPEvTXapSKER8heB7Na_fiS9xJ8kwwzHvs_CLZySVi8QHZmR4dj9_7G-XWdQPVUIax_agO2Wue_zj1cVNaiC131LP2_2qbzzmny6tmDt--wmx2zgsdXCPVuv0h-eTT3qrTe-b7T9SO_9_B6-RqBKh0HDTqBrlgm5vk0iQewd8iHw4W7Wc66XMwLY30rKe0a-lxoGilb1cdftUun9Mx9eZmYT-GLHkaDiJo6-j4NT1rsEYTQKuh-177FrfJ9ODVu_3DJF7RkBhEal0iTV2A5eBk7URW1MwAPhjjaSmVNmmRpRwMCChN7rTRaa0ZAhjLS2ZVlprsDhk0bWPvEarRU2b-TAgDMgFgAYEMsFp7gr68FHJI-HqmKhP5y_01GrMK4xg_vdVvpndInm0qzQN9x5_FX3oV2Ih67u3-Rbs4reJSrjJIHdPMCSm4AOFUIcDU1jCby1pxNyRPvQJV3kJgAw3EHx2wm55rqxoXiqkCcSAbkt0tSVzZZrt4rYJVtCzLipf-ggMEljggjzfFvqbPlmtsu-plCowUmZe5G1R306VMcaHQEg9JstHlvxma-_8o_4Bc4Yj_wm7VLhl0i5V9iPit04_iIv0BLqQ_LA priority: 102 providerName: Unpaywall |
| Title | From Machine Learning to Patient Outcomes: A Comprehensive Review of AI in Pancreatic Cancer |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/38248051 https://www.proquest.com/docview/2918680635 https://www.proquest.com/docview/2917559035 https://www.mdpi.com/2075-4418/14/2/174/pdf?version=1705056006 https://doaj.org/article/3a1f0b0f45424a4f874acdec0e65d82f |
| UnpaywallVersion | publishedVersion |
| Volume | 14 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2075-4418 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 2075-4418 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2075-4418 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: ABDBF dateStart: 20120901 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2075-4418 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2075-4418 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: RPM dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2075-4418 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2075-4418 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: M48 dateStart: 20110501 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fi9QwEA5ygvoi_rbneUQQfLFc2iZN6lvvuOUUdl3EhROEMk0TFdb22Oty-N870_SWXRT1wYfuQzuBdvpl5ptm9gtjL73y2taqiPGAWGKKiaEAGQsPuTMalBkk86ez_Gwh352r862tvqgnLMgDB8cdZZB4UQsvlUwlSG-0BNs4K1yuGpN6ir7CFFvF1BCDC9LWU0FmKMO6_qgJnWukfZxQzZRouZOKBsX-X-PyVmK6vW4v4McVLJdbGWhyj90dqSMvwy3fZzdc-4Ddmo6L4w_Z58mq-86nQ3ek46Nw6hfed3wexFP5-3WPAHOXb3jJKRCs3NfQv87DEgHvPC_f8m8tjmgDnbT8hHCxesQWk9OPJ2fxuHlCbJFD9bGyjQaXgleNl5luhAU8sPqqlTK1TXSWpGBBQmFzX9s6aWqB1MKlhXAmS2z2mO21XeueMl5jDstotQZLJQngACkGiKYm6by8kCpi6bUfKzsqi9MGF8sKKwxyfvUb50fs9WbQRRDW-LP5Mb2gjSmpYg8nECvViJXqb1iJ2Ct6vRXNXbxBC-NfEPAxSQWrKrURRiNDExE72LHEOWd3L18DpBrn_GWVFrT1AFI-dMiLzWUaSX1srevWg43GGk6QzZMArM0jIWClwRgZsXiDtH9xzf7_cM0zdidFuhY-Lh2wvX61ds-RbvX1Ibt5fDqbfzgcZhj-TqXBc4vZvPz0Ex1YK8s |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEF9qC9YX8dto1RUUXwzdJLuXRChyrT3ubO8s0kIfhDjZ7FbhTM77oPSf829zJtmLPZTiSx_yksyGZHY-d2d_w9grq2ysc5X6eIEv0cX4kIL0hYWOSWJQSQ2ZPxx1-ify46k6XWO_lmdhqKxyaRNrQ11UmtbIt8OUgN3Roar3k58-dY2i3dVlCw1wrRWKnRpizB3sODAX55jCzXYGH3C-X4dhb_94r--7LgO-xmBj7itdxGBCsKqwMooLoQEvTFNypZJcB3EUhKBBQqo7Ntd5UOQCfbAJU2GSKNARvvcG25CRTDH529jdHx19bld5CHUTc7AG7iiKUrFdNBV0hMEcUO4WxHLFJdadA_72D5cc5OainMDFOYzHlzxh7w677UJY3m1k7i5bM-U9dnPoNunvsy-9afWDD-sqTcMdgOsZn1f8qAFx5Z8Wc2S6mb3jXU4GaWq-NXX0vNmq4JXl3QH_XuKIsglrNd8j-Zw-YCfXwt6HbL2sSvOY8Rx9aUS7RpiySQADGOqAKHKC8OukUnksXPIx0w7hnBptjDPMdIj52T-Y77G37aBJA_BxNfkuTVBLSujc9Y1qepY5Zc8iCKzIhZVKhhKkTWIJujBamI4qktB67A1Nb0Y2BD9QgzsKgb9JaFxZN05EEmOkKDy2tUKJuq9XHy8FJHO2Z5b90RSPvWwf00iqpytNtahpYswlBdE8agSr_SUUWJmgrfaY30ra_7DmydUf84Jt9o-Hh9nhYHTwlN0KMThslrK22Pp8ujDPMLib58-dBnH29bqV9jcrkGOK |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKKxUuiDeBAkYCcSFaJ7E3CVKFto9Vl7JLhajUQ6UwceyCtCTLPlT1L_KrmEm8oStQxaWHXJJxlIzH8_CMv2HslVU21rlKfbzAl2hifEhB-sJC1yQxqKSGzB-OugfH8sOJOlljv5ZnYaiscqkTa0VdVJr2yDthSsDuaFBVx7qyiKO9_vvJT586SFGmddlOA1ybhWK7hhtzhzwOzcU5hnOz7cEezv3rMOzvf9k98F3HAV-j4zH3lS5iMCFYVVgZxYXQgBeGLLlSSa6DOApC0CAh1V2b6zwocoH22ISpMEkU6Ajfe4NtUPILlcTGzv7o6HO740MInBiPNdBHUZSKTtFU0xEec0BxXBDLFfNYdxH421ZcMpY3F-UELs5hPL5kFft32G3nzvJeI3932Zop77HNoUvY32en_Wn1gw_rik3DHZjrGZ9X_KgBdOWfFnOcADN7x3uclNPUfGtq6nmTtuCV5b0B_17iiLJxcTXfJVmdPmDH18Leh2y9rErzmPEc7WpEGSQM3ySAAXR7QBQ5wfl1U6k8Fi75mGmHdk5NN8YZRj3E_OwfzPfY23bQpAH7uJp8hyaoJSWk7vpGNT3L3MLPIgisyIWVSoYSpE1iCbowWpiuKpLQeuwNTW9G-gQ_UIM7FoG_SchcWS9ORIICFQuPba1Qoh7Qq4-XApI5PTTL_qwaj71sH9NIqq0rTbWoaWKMKwXRPGoEq_0lFFiZoN72mN9K2v-w5snVH_OCbeLizT4ORodP2a0Q_cRmV2uLrc-nC_MM_bx5_twtIM6-Xvea_Q2aHme5 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA-6B-qL3x-rp0QQfLG3aZq0qS-yHh6nsOc9uHCCUCZpch6u7bLbVfSvd9Jkl1sVUR_60kxoPiYzv0mmvxDyxElXGC3LBB9IBLqYBEoQCXOQW1WAVD1l_uQoP5yKNyfyJG64LWNaJYbiZ72R5ujPEvTXapSKER8heB7Na_fiS9xJ8kwwzHvs_CLZySVi8QHZmR4dj9_7G-XWdQPVUIax_agO2Wue_zj1cVNaiC131LP2_2qbzzmny6tmDt--wmx2zgsdXCPVuv0h-eTT3qrTe-b7T9SO_9_B6-RqBKh0HDTqBrlgm5vk0iQewd8iHw4W7Wc66XMwLY30rKe0a-lxoGilb1cdftUun9Mx9eZmYT-GLHkaDiJo6-j4NT1rsEYTQKuh-177FrfJ9ODVu_3DJF7RkBhEal0iTV2A5eBk7URW1MwAPhjjaSmVNmmRpRwMCChN7rTRaa0ZAhjLS2ZVlprsDhk0bWPvEarRU2b-TAgDMgFgAYEMsFp7gr68FHJI-HqmKhP5y_01GrMK4xg_vdVvpndInm0qzQN9x5_FX3oV2Ih67u3-Rbs4reJSrjJIHdPMCSm4AOFUIcDU1jCby1pxNyRPvQJV3kJgAw3EHx2wm55rqxoXiqkCcSAbkt0tSVzZZrt4rYJVtCzLipf-ggMEljggjzfFvqbPlmtsu-plCowUmZe5G1R306VMcaHQEg9JstHlvxma-_8o_4Bc4Yj_wm7VLhl0i5V9iPit04_iIv0BLqQ_LA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+Machine+Learning+to+Patient+Outcomes%3A+A+Comprehensive+Review+of+AI+in+Pancreatic+Cancer&rft.jtitle=Diagnostics+%28Basel%29&rft.au=Satvik+Tripathi&rft.au=Azadeh+Tabari&rft.au=Arian+Mansur&rft.au=Harika+Dabbara&rft.date=2024-01-01&rft.pub=MDPI+AG&rft.eissn=2075-4418&rft.volume=14&rft.issue=2&rft.spage=174&rft_id=info:doi/10.3390%2Fdiagnostics14020174&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_3a1f0b0f45424a4f874acdec0e65d82f |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4418&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4418&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4418&client=summon |