UV 254 nm is more efficient than UV 222 nm in inactivating SARS-CoV-2 present in human saliva

•We tested 222 and 254 nm irradiation for inactivation of SARS-CoV-2.•254 nm was ∼200-fold more effective than 222 nm in saliva.•A 10.4 mJ/cm2 UV 254 nm dose inactivates SARS-CoV-2 in saliva.•UV 254 is better for sterilizing saliva with SARS-CoV-2 on a surface.•Sterilization of airborne respiratory...

Full description

Saved in:
Bibliographic Details
Published inPhotodiagnosis and photodynamic therapy Vol. 39; p. 103015
Main Authors Sesti-Costa, Renata, Negrão, Cyro von Zuben, Shimizu, Jacqueline Farinha, Nagai, Alice, Tavares, Renata Spagolla Napoleão, Adamoski, Douglas, Costa, Wanderley, Fontoura, Marina Alves, da Silva, Thiago Jasso, de Barros, Adriano, Girasole, Alessandra, de Carvalho, Murilo, Teixeira, Veronica de Carvalho, Ambrosio, Andre Luis Berteli, Granja, Fabiana, Proença-Módena, José Luiz, Marques, Rafael Elias, Dias, Sandra Martha Gomes
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.09.2022
Subjects
Online AccessGet full text
ISSN1572-1000
1873-1597
1873-1597
DOI10.1016/j.pdpdt.2022.103015

Cover

Abstract •We tested 222 and 254 nm irradiation for inactivation of SARS-CoV-2.•254 nm was ∼200-fold more effective than 222 nm in saliva.•A 10.4 mJ/cm2 UV 254 nm dose inactivates SARS-CoV-2 in saliva.•UV 254 is better for sterilizing saliva with SARS-CoV-2 on a surface.•Sterilization of airborne respiratory fluids with SARS-CoV-2 needs evaluation. Ultraviolet (UV) light can inactivate SARS-CoV-2. However, the practicality of UV light is limited by the carcinogenic potential of mercury vapor-based UV lamps. Recent advances in the development of krypton chlorine (KrCl) excimer lamps hold promise, as these emit a shorter peak wavelength (222 nm), which is highly absorbed by the skin's stratum corneum and can filter out higher wavelengths. In this sense, UV 222 nm irradiation for the inactivation of virus particles in the air and surfaces is a potentially safer option as a germicidal technology. However, these same physical properties make it harder to reach microbes present in complex solutions, such as saliva, a critical source of SARS-CoV-2 transmission. We provide the first evaluation for using a commercial filtered KrCl excimer light source to inactivate SARS-CoV-2 in saliva spread on a surface. A conventional germicidal lamp (UV 254 nm) was also evaluated under the same condition. Using plaque-forming units (PFU) and Median Tissue Culture Infectious Dose (TCID50) per milliliter we found that 99.99% viral clearance (LD99.99) was obtained with 106.3 mJ/cm2 of UV 222 nm for virus in DMEM and 2417 mJ/cm2 for virus in saliva. Additionally, our results showed that the UV 254 nm had a greater capacity to inactivate the virus in both vehicles. Effective (after discounting light absorption) LD99.99 of UV 222 nm on the virus in saliva was ∼30 times higher than the value obtained with virus in saline solution (PBS), we speculated that saliva might be protecting the virus from surface irradiation in ways other than just by intensity attenuation of UV 222 nm. Due to differences between UV 222/254 nm capacities to interact and be absorbed by molecules in complex solutions, a higher dose of 222 nm will be necessary to reduce viral load in surfaces with contaminated saliva.
AbstractList Ultraviolet (UV) light can inactivate SARS-CoV-2. However, the practicality of UV light is limited by the carcinogenic potential of mercury vapor-based UV lamps. Recent advances in the development of krypton chlorine (KrCl) excimer lamps hold promise, as these emit a shorter peak wavelength (222 nm), which is highly absorbed by the skin's stratum corneum and can filter out higher wavelengths. In this sense, UV 222 nm irradiation for the inactivation of virus particles in the air and surfaces is a potentially safer option as a germicidal technology. However, these same physical properties make it harder to reach microbes present in complex solutions, such as saliva, a critical source of SARS-CoV-2 transmission. We provide the first evaluation for using a commercial filtered KrCl excimer light source to inactivate SARS-CoV-2 in saliva spread on a surface. A conventional germicidal lamp (UV 254 nm) was also evaluated under the same condition. Using plaque-forming units (PFU) and Median Tissue Culture Infectious Dose (TCID ) per milliliter we found that 99.99% viral clearance (LD ) was obtained with 106.3 mJ/cm of UV 222 nm for virus in DMEM and 2417 mJ/cm for virus in saliva. Additionally, our results showed that the UV 254 nm had a greater capacity to inactivate the virus in both vehicles. Effective (after discounting light absorption) LD of UV 222 nm on the virus in saliva was ∼30 times higher than the value obtained with virus in saline solution (PBS), we speculated that saliva might be protecting the virus from surface irradiation in ways other than just by intensity attenuation of UV 222 nm. Due to differences between UV 222/254 nm capacities to interact and be absorbed by molecules in complex solutions, a higher dose of 222 nm will be necessary to reduce viral load in surfaces with contaminated saliva.
Ultraviolet (UV) light can inactivate SARS-CoV-2. However, the practicality of UV light is limited by the carcinogenic potential of mercury vapor-based UV lamps. Recent advances in the development of krypton chlorine (KrCl) excimer lamps hold promise, as these emit a shorter peak wavelength (222 nm), which is highly absorbed by the skin's stratum corneum and can filter out higher wavelengths. In this sense, UV 222 nm irradiation for the inactivation of virus particles in the air and surfaces is a potentially safer option as a germicidal technology. However, these same physical properties make it harder to reach microbes present in complex solutions, such as saliva, a critical source of SARS-CoV-2 transmission. We provide the first evaluation for using a commercial filtered KrCl excimer light source to inactivate SARS-CoV-2 in saliva spread on a surface. A conventional germicidal lamp (UV 254 nm) was also evaluated under the same condition. Using plaque-forming units (PFU) and Median Tissue Culture Infectious Dose (TCID50) per milliliter we found that 99.99% viral clearance (LD99.99) was obtained with 106.3 mJ/cm2 of UV 222 nm for virus in DMEM and 2417 mJ/cm2 for virus in saliva. Additionally, our results showed that the UV 254 nm had a greater capacity to inactivate the virus in both vehicles. Effective (after discounting light absorption) LD99.99 of UV 222 nm on the virus in saliva was ∼30 times higher than the value obtained with virus in saline solution (PBS), we speculated that saliva might be protecting the virus from surface irradiation in ways other than just by intensity attenuation of UV 222 nm. Due to differences between UV 222/254 nm capacities to interact and be absorbed by molecules in complex solutions, a higher dose of 222 nm will be necessary to reduce viral load in surfaces with contaminated saliva.Ultraviolet (UV) light can inactivate SARS-CoV-2. However, the practicality of UV light is limited by the carcinogenic potential of mercury vapor-based UV lamps. Recent advances in the development of krypton chlorine (KrCl) excimer lamps hold promise, as these emit a shorter peak wavelength (222 nm), which is highly absorbed by the skin's stratum corneum and can filter out higher wavelengths. In this sense, UV 222 nm irradiation for the inactivation of virus particles in the air and surfaces is a potentially safer option as a germicidal technology. However, these same physical properties make it harder to reach microbes present in complex solutions, such as saliva, a critical source of SARS-CoV-2 transmission. We provide the first evaluation for using a commercial filtered KrCl excimer light source to inactivate SARS-CoV-2 in saliva spread on a surface. A conventional germicidal lamp (UV 254 nm) was also evaluated under the same condition. Using plaque-forming units (PFU) and Median Tissue Culture Infectious Dose (TCID50) per milliliter we found that 99.99% viral clearance (LD99.99) was obtained with 106.3 mJ/cm2 of UV 222 nm for virus in DMEM and 2417 mJ/cm2 for virus in saliva. Additionally, our results showed that the UV 254 nm had a greater capacity to inactivate the virus in both vehicles. Effective (after discounting light absorption) LD99.99 of UV 222 nm on the virus in saliva was ∼30 times higher than the value obtained with virus in saline solution (PBS), we speculated that saliva might be protecting the virus from surface irradiation in ways other than just by intensity attenuation of UV 222 nm. Due to differences between UV 222/254 nm capacities to interact and be absorbed by molecules in complex solutions, a higher dose of 222 nm will be necessary to reduce viral load in surfaces with contaminated saliva.
•We tested 222 and 254 nm irradiation for inactivation of SARS-CoV-2.•254 nm was ∼200-fold more effective than 222 nm in saliva.•A 10.4 mJ/cm2 UV 254 nm dose inactivates SARS-CoV-2 in saliva.•UV 254 is better for sterilizing saliva with SARS-CoV-2 on a surface.•Sterilization of airborne respiratory fluids with SARS-CoV-2 needs evaluation. Ultraviolet (UV) light can inactivate SARS-CoV-2. However, the practicality of UV light is limited by the carcinogenic potential of mercury vapor-based UV lamps. Recent advances in the development of krypton chlorine (KrCl) excimer lamps hold promise, as these emit a shorter peak wavelength (222 nm), which is highly absorbed by the skin's stratum corneum and can filter out higher wavelengths. In this sense, UV 222 nm irradiation for the inactivation of virus particles in the air and surfaces is a potentially safer option as a germicidal technology. However, these same physical properties make it harder to reach microbes present in complex solutions, such as saliva, a critical source of SARS-CoV-2 transmission. We provide the first evaluation for using a commercial filtered KrCl excimer light source to inactivate SARS-CoV-2 in saliva spread on a surface. A conventional germicidal lamp (UV 254 nm) was also evaluated under the same condition. Using plaque-forming units (PFU) and Median Tissue Culture Infectious Dose (TCID50) per milliliter we found that 99.99% viral clearance (LD99.99) was obtained with 106.3 mJ/cm2 of UV 222 nm for virus in DMEM and 2417 mJ/cm2 for virus in saliva. Additionally, our results showed that the UV 254 nm had a greater capacity to inactivate the virus in both vehicles. Effective (after discounting light absorption) LD99.99 of UV 222 nm on the virus in saliva was ∼30 times higher than the value obtained with virus in saline solution (PBS), we speculated that saliva might be protecting the virus from surface irradiation in ways other than just by intensity attenuation of UV 222 nm. Due to differences between UV 222/254 nm capacities to interact and be absorbed by molecules in complex solutions, a higher dose of 222 nm will be necessary to reduce viral load in surfaces with contaminated saliva.
Ultraviolet (UV) light can inactivate SARS-CoV-2. However, the practicality of UV light is limited by the carcinogenic potential of mercury vapor-based UV lamps. Recent advances in the development of krypton chlorine (KrCl) excimer lamps hold promise, as these emit a shorter peak wavelength (222 nm), which is highly absorbed by the skin's stratum corneum and can filter out higher wavelengths. In this sense, UV 222 nm irradiation for the inactivation of virus particles in the air and surfaces is a potentially safer option as a germicidal technology. However, these same physical properties make it harder to reach microbes present in complex solutions, such as saliva, a critical source of SARS-CoV-2 transmission. We provide the first evaluation for using a commercial filtered KrCl excimer light source to inactivate SARS-CoV-2 in saliva spread on a surface. A conventional germicidal lamp (UV 254 nm) was also evaluated under the same condition. Using plaque-forming units (PFU) and Median Tissue Culture Infectious Dose (TCID 50 ) per milliliter we found that 99.99% viral clearance (LD 99.99 ) was obtained with 106.3 mJ/cm 2 of UV 222 nm for virus in DMEM and 2417 mJ/cm 2 for virus in saliva. Additionally, our results showed that the UV 254 nm had a greater capacity to inactivate the virus in both vehicles. Effective (after discounting light absorption) LD 99.99 of UV 222 nm on the virus in saliva was ∼30 times higher than the value obtained with virus in saline solution (PBS), we speculated that saliva might be protecting the virus from surface irradiation in ways other than just by intensity attenuation of UV 222 nm. Due to differences between UV 222/254 nm capacities to interact and be absorbed by molecules in complex solutions, a higher dose of 222 nm will be necessary to reduce viral load in surfaces with contaminated saliva.
ArticleNumber 103015
Author Adamoski, Douglas
Marques, Rafael Elias
Nagai, Alice
Proença-Módena, José Luiz
Costa, Wanderley
de Carvalho, Murilo
da Silva, Thiago Jasso
Teixeira, Veronica de Carvalho
Girasole, Alessandra
Dias, Sandra Martha Gomes
Fontoura, Marina Alves
Sesti-Costa, Renata
Granja, Fabiana
Ambrosio, Andre Luis Berteli
Tavares, Renata Spagolla Napoleão
Negrão, Cyro von Zuben
Shimizu, Jacqueline Farinha
de Barros, Adriano
Author_xml – sequence: 1
  givenname: Renata
  surname: Sesti-Costa
  fullname: Sesti-Costa, Renata
  organization: Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo 13083-970, Brazil
– sequence: 2
  givenname: Cyro von Zuben
  surname: Negrão
  fullname: Negrão, Cyro von Zuben
  organization: Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo 13083-970, Brazil
– sequence: 3
  givenname: Jacqueline Farinha
  surname: Shimizu
  fullname: Shimizu, Jacqueline Farinha
  organization: Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo 13083-970, Brazil
– sequence: 4
  givenname: Alice
  surname: Nagai
  fullname: Nagai, Alice
  organization: Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo 13083-970, Brazil
– sequence: 5
  givenname: Renata Spagolla Napoleão
  surname: Tavares
  fullname: Tavares, Renata Spagolla Napoleão
  organization: Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo 13083-970, Brazil
– sequence: 6
  givenname: Douglas
  surname: Adamoski
  fullname: Adamoski, Douglas
  organization: Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo 13083-970, Brazil
– sequence: 7
  givenname: Wanderley
  surname: Costa
  fullname: Costa, Wanderley
  organization: Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo 13083-970, Brazil
– sequence: 8
  givenname: Marina Alves
  surname: Fontoura
  fullname: Fontoura, Marina Alves
  organization: Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo 13083-970, Brazil
– sequence: 9
  givenname: Thiago Jasso
  surname: da Silva
  fullname: da Silva, Thiago Jasso
  organization: Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo 13083-970, Brazil
– sequence: 10
  givenname: Adriano
  surname: de Barros
  fullname: de Barros, Adriano
  organization: Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo 13083-970, Brazil
– sequence: 11
  givenname: Alessandra
  surname: Girasole
  fullname: Girasole, Alessandra
  organization: Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo 13083-970, Brazil
– sequence: 12
  givenname: Murilo
  surname: de Carvalho
  fullname: de Carvalho, Murilo
  organization: Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo 13083-970, Brazil
– sequence: 13
  givenname: Veronica de Carvalho
  surname: Teixeira
  fullname: Teixeira, Veronica de Carvalho
  organization: Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo 13083-970, Brazil
– sequence: 14
  givenname: Andre Luis Berteli
  surname: Ambrosio
  fullname: Ambrosio, Andre Luis Berteli
  organization: Sao Carlos Institute of Physics (IFSC), University of Sao Paulo (USP), Sao Carlos, SP 13563-120, Brazil
– sequence: 15
  givenname: Fabiana
  surname: Granja
  fullname: Granja, Fabiana
  organization: Laboratory of Emerging Viruses, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
– sequence: 16
  givenname: José Luiz
  surname: Proença-Módena
  fullname: Proença-Módena, José Luiz
  organization: Laboratory of Emerging Viruses, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
– sequence: 17
  givenname: Rafael Elias
  surname: Marques
  fullname: Marques, Rafael Elias
  email: rafael.marques@lnbio.cnpem.br
  organization: Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo 13083-970, Brazil
– sequence: 18
  givenname: Sandra Martha Gomes
  orcidid: 0000-0002-1589-7856
  surname: Dias
  fullname: Dias, Sandra Martha Gomes
  email: sandra.dias@lnbio.cnpem.br
  organization: Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo 13083-970, Brazil
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35843562$$D View this record in MEDLINE/PubMed
BookMark eNqFkV1rFDEYhYO02A_9BYLMpTezzZuP-UAUyqJtoVCwtncSMpl3ullnkjGZXei_N9NtRXthIZCQnOec8J4jsue8Q0LeAV0AheJkvRjbsZ0WjDKWbjgF-YocQlXyHGRd7qWzLFkOlNIDchTjmlIuaipekwMuK8FlwQ7Jj5vbjEmRuSGzMRt8wAy7zhqLbsqmlXbZLGDsQeDS0mayWz1Zd5ddn367zpf-NmfZGDDORJKsNkOiou6T7A3Z73Qf8e3jfkxuvn75vjzPL6_OLpanl7mRAFPOhWDaNFJz6GooJLKC18h4V-gOmqYynDcUS8o7DU0LutbS1EywykgJhRH8mHze-Y6bZsDWpK8E3asx2EGHe-W1Vf--OLtSd36ralaBkGUy-PBoEPyvDcZJDTYa7Hvt0G-iYkUNopCUQpK-_zvrT8jTTJOg3glM8DEG7JSxU5qYn6Ntr4CquT-1Vg_9qbk_tesvsfwZ-2T_f-rTjsI0463FoOJcoMHWBjSTar19gf_4jDe9ddbo_ifev0j_BilnxsY
CitedBy_id crossref_primary_10_1093_mnras_stae2433
crossref_primary_10_1016_j_ijbiomac_2023_126336
crossref_primary_10_1111_php_14062
crossref_primary_10_7759_cureus_55950
crossref_primary_10_1016_j_foodcont_2025_111132
crossref_primary_10_1016_j_jphotobiol_2023_112755
crossref_primary_10_3390_app13148501
crossref_primary_10_1016_j_infpip_2024_100339
crossref_primary_10_1021_acs_est_3c00824
crossref_primary_10_1177_09544089241242616
crossref_primary_10_1016_j_jphotobiol_2023_112713
crossref_primary_10_1016_j_scitotenv_2023_163007
crossref_primary_10_1016_j_scitotenv_2023_165625
crossref_primary_10_3390_v16121904
crossref_primary_10_1111_php_13742
crossref_primary_10_1063_5_0231390
Cites_doi 10.1111/ene.15217
10.1038/s41598-020-60459-8
10.1016/j.crphar.2022.100086
10.1016/j.watres.2017.11.047
10.1007/s11739-020-02616-5
10.1016/j.jphotobiol.2021.112378
10.1016/j.jphotobiol.2021.112168
10.1016/j.jiph.2021.12.014
10.1089/jam.1997.10.105
10.1093/cid/ciab039
10.1038/s41586-020-2196-x
10.1101/2021.02.19.21252101
10.1007/s12250-020-00230-5
10.3390/v13081436
10.1098/rsif.2017.0939
10.1111/bcp.15089
10.1038/s41598-021-85425-w
10.1038/s41598-018-21058-w
10.1128/AEM.00944-18
10.7754/Clin.Lab.2020.201140
10.1016/j.ajic.2020.08.022
10.1111/php.12080
10.1016/j.biopha.2021.112518
10.1038/s41598-020-67211-2
10.3390/brainsci12020190
10.1056/NEJMoa2001017
10.1061/(ASCE)0733-9372(1997)123:11(1142)
10.1080/21645515.2021.2002083
10.1186/s13052-022-01211-y
10.3389/fmicb.2020.572331
ContentType Journal Article
Copyright 2022
Copyright © 2022. Published by Elsevier B.V.
2022 Elsevier B.V. All rights reserved. 2022
Copyright_xml – notice: 2022
– notice: Copyright © 2022. Published by Elsevier B.V.
– notice: 2022 Elsevier B.V. All rights reserved. 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.pdpdt.2022.103015
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1873-1597
EndPage 103015
ExternalDocumentID PMC9281457
35843562
10_1016_j_pdpdt_2022_103015
S1572100022003015
Genre Journal Article
GroupedDBID ---
--K
--M
-RU
.1-
.FO
.~1
0R~
123
1B1
1P~
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGUBO
AGYEJ
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GROUPED_DOAJ
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OC~
OO-
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SEL
SES
SEW
SPCBC
SSH
SSZ
T5K
Z5R
~G-
0SF
AACTN
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
EFLBG
LCYCR
RIG
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ACLOT
~HD
5PM
ID FETCH-LOGICAL-c511t-3442acb5a31f9165e2639e23f6af1bb8c33b0e703fa1bd1a9a5c92428c5516c43
IEDL.DBID AIKHN
ISSN 1572-1000
1873-1597
IngestDate Thu Aug 21 14:12:18 EDT 2025
Sun Sep 28 00:23:33 EDT 2025
Wed Feb 19 02:25:47 EST 2025
Tue Jul 01 01:18:05 EDT 2025
Thu Apr 24 23:07:01 EDT 2025
Fri Feb 23 02:38:40 EST 2024
Tue Aug 26 20:13:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords UV-C
Disinfection
SARS-CoV-2
222 nm
Krypton chlorine lamp
Language English
License Copyright © 2022. Published by Elsevier B.V.
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c511t-3442acb5a31f9165e2639e23f6af1bb8c33b0e703fa1bd1a9a5c92428c5516c43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to the work.
ORCID 0000-0002-1589-7856
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC9281457
PMID 35843562
PQID 2691465001
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9281457
proquest_miscellaneous_2691465001
pubmed_primary_35843562
crossref_citationtrail_10_1016_j_pdpdt_2022_103015
crossref_primary_10_1016_j_pdpdt_2022_103015
elsevier_sciencedirect_doi_10_1016_j_pdpdt_2022_103015
elsevier_clinicalkey_doi_10_1016_j_pdpdt_2022_103015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Photodiagnosis and photodynamic therapy
PublicationTitleAlternate Photodiagnosis Photodyn Ther
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Krishnan, Hamilton, Alqahtani, A.Woreta (bib0002) 2021; 16
Samet, Prather, Benjamin, Lakdawala, Lowe, Reingold, Volckens, Marr (bib0003) 2021; 73
Scapaticci, Neri, Marseglia, Staiano, Chiarelli, Verduci (bib0008) 2022; 48
Patel, Kaki, Potluri, Kahar, Khanna (bib0013) 2022; 18
Biasin, Bianco, Pareschi, Cavalleri, Cavatorta, Fenizia, Galli, Lessio, Lualdi, Tombetti, Ambrosi, Redaelli, Saulle, Trabattoni, Zanutta, Clerici (bib0035) 2021; 11
Basu, Chavda, Mehta (bib0046) 2022; 3
Corman, Landt, Kaiser, Molenkamp, Meijer, Chu, Bleicker, Brünink, Schneider, Schmidt, Mulders, Haagmans, Van Der Veer, Van Den Brink, Wijsman, Goderski, Romette, Ellis, Zambon, Peiris, Goossens, Reusken, Koopmans, Drosten (bib0030) 2020
Kitagawa, Nomura, Nazmul, Omori, Shigemoto, Sakaguchi, Ohge (bib0039) 2021; 49
Barancheshme, Philibert, Noam-Amar, Gerchman, Barbeau (bib0041) 2021; 217
Basu, Chavda, Mehta (bib0011) 2022; 3
Song, Li, He, Li, Li, Gu, Tang (bib0018) 2020
Enwemeka, Bumah, Castel, Suess (bib0031) 2022; 227
Miller, Linnes, Luongo (bib0019) 2013; 89
Pendyala, Patras, Pokharel, D'Souza (bib0047) 2020; 11
Vejerano, Marr (bib0043) 2018; 15
Krishnan, Hamilton, Alqahtani, A.Woreta (bib0004) 2021; 16
Buonanno, Welch, Shuryak, Brenner (bib0038) 2020; 10
Zhu, Zhang, Wang, Li, Yang, Song, Zhao, Huang, Shi, Lu, Niu, Zhan, Ma, Wang, Xu, Wu, Gao, Tan (bib0001) 2020; 382
CI (bib0027) 1938; 11
Biasin, Bianco, Pareschi, Cavalleri, Cavatorta, Fenizia, Galli, Lessio, Lualdi, Tombetti, Ambrosi, Redaelli, Saulle, Trabattoni, Zanutta, Clerici (bib0036) 2021; 11
Welch, Buonanno, Grilj, Shuryak, Crickmore, Bigelow, Randers-Pehrson, Johnson, Brenner (bib0045) 2018; 8
Robinson, Mahfooz, Rosas-Mejia, Liu, Hull (bib0029) 2021
Chandra, Johri (bib0007) 2022; 12
Akinbolade, Coughlan, Fairbairn, McConkey, Powell, Ogunbayo, Craig (bib0010) 2022; 88
Kim, Kang (bib0020) 2018; 84
Kitagawa, Nomura, Nazmul, Omori, Shigemoto, Sakaguchi, Ohge (bib0023) 2021; 49
Abdi, AlOtaiby, Al Badarin, Khraibi, Hamdan, Nader (bib0009) 2022; 146
Papineni, Rosenthal (bib0044) 1997; 10
WHO Coronavirus (COVID-19) Dashboard, Avaible from
Kim, Kang (bib0016) 2018; 84
Rattanakul, Oguma (bib0014) 2018; 130
Linden, Darby (bib0032) 1997; 123
Hessling, Haag, Sieber, Vatter (bib0021) 2021; 16
Gardner, Ghosh, Dunowska, Brightwell (bib0034) 2021; 13
R.T. Robinson, N. Mahfooz, O. Rosas-Mejia, Y. Liu, N.M. Hull, SARS-CoV-2 disinfection in aqueous solution by UV222 from a krypton chlorine excilamp, MedRxiv. (2021). 10.1126/science.372.6548.1301-a.
Website Accessed in 01rs, April, 2022. (n.d.).
Schneider, Hennig, Martino (bib0006) 2022; 29
Cheng, Chen, Sánchez Basurto, Protasenko, Bharadwaj, Islam, Moraru (bib0015) 2020; 10
D'Orazio, D'Alessandro (bib0017) 2020; 32
Hessling, Haag, Sieber, Vatter (bib0025) 2021; 16
RY (bib0026) 1963; 10
Jung, Park, Lyoo, Park, Park (bib0040) 2021; 67
Wölfel, Corman, Guggemos, Seilmaier, Zange, Müller, Niemeyer, Jones, Vollmar, Rothe, Hoelscher, Bleicker, Brünink, Schneider, Ehmann, Zwirglmaier, Drosten, Wendtner (bib0037) 2020; 581
E. Pretsch, P. (Philippe) Bühlmann, M. Badertscher, Structure determination of organic compounds : tables of spectral data, (2009) 433.
Ahmad, Ahmed, Mir, Shinde, Bender (bib0012) 2022; 15
R.T. Robinson, N. Mahfooz, O. Rosas-Mejia, Y. Liu, N.M. Hull, SARS-CoV-2 disinfection in aqueous solution by UV<sub>222</sub> from a krypton chlorine excilamp, MedRxiv. (2021) 2021.02.19.21252101.
Lei, Yang, Hu, Sun (bib0028) 2021; 36
Jung, Park, Lyoo, Park, Park (bib0024) 2021; 67
Barancheshme (10.1016/j.pdpdt.2022.103015_bib0041) 2021; 217
Schneider (10.1016/j.pdpdt.2022.103015_bib0006) 2022; 29
Kitagawa (10.1016/j.pdpdt.2022.103015_bib0023) 2021; 49
Song (10.1016/j.pdpdt.2022.103015_bib0018) 2020
Abdi (10.1016/j.pdpdt.2022.103015_bib0009) 2022; 146
Corman (10.1016/j.pdpdt.2022.103015_bib0030) 2020
Hessling (10.1016/j.pdpdt.2022.103015_bib0021) 2021; 16
Patel (10.1016/j.pdpdt.2022.103015_bib0013) 2022; 18
Papineni (10.1016/j.pdpdt.2022.103015_bib0044) 1997; 10
Welch (10.1016/j.pdpdt.2022.103015_bib0045) 2018; 8
Buonanno (10.1016/j.pdpdt.2022.103015_bib0038) 2020; 10
Hessling (10.1016/j.pdpdt.2022.103015_bib0025) 2021; 16
Rattanakul (10.1016/j.pdpdt.2022.103015_bib0014) 2018; 130
10.1016/j.pdpdt.2022.103015_bib0033
Wölfel (10.1016/j.pdpdt.2022.103015_bib0037) 2020; 581
CI (10.1016/j.pdpdt.2022.103015_bib0027) 1938; 11
Lei (10.1016/j.pdpdt.2022.103015_bib0028) 2021; 36
Jung (10.1016/j.pdpdt.2022.103015_bib0040) 2021; 67
Ahmad (10.1016/j.pdpdt.2022.103015_bib0012) 2022; 15
D'Orazio (10.1016/j.pdpdt.2022.103015_bib0017) 2020; 32
RY (10.1016/j.pdpdt.2022.103015_bib0026) 1963; 10
Cheng (10.1016/j.pdpdt.2022.103015_bib0015) 2020; 10
Kim (10.1016/j.pdpdt.2022.103015_bib0020) 2018; 84
Linden (10.1016/j.pdpdt.2022.103015_bib0032) 1997; 123
Scapaticci (10.1016/j.pdpdt.2022.103015_bib0008) 2022; 48
Krishnan (10.1016/j.pdpdt.2022.103015_bib0004) 2021; 16
Zhu (10.1016/j.pdpdt.2022.103015_bib0001) 2020; 382
Samet (10.1016/j.pdpdt.2022.103015_bib0003) 2021; 73
Basu (10.1016/j.pdpdt.2022.103015_bib0011) 2022; 3
Vejerano (10.1016/j.pdpdt.2022.103015_bib0043) 2018; 15
Kitagawa (10.1016/j.pdpdt.2022.103015_bib0039) 2021; 49
10.1016/j.pdpdt.2022.103015_bib0005
Krishnan (10.1016/j.pdpdt.2022.103015_bib0002) 2021; 16
Jung (10.1016/j.pdpdt.2022.103015_bib0024) 2021; 67
10.1016/j.pdpdt.2022.103015_bib0042
Pendyala (10.1016/j.pdpdt.2022.103015_bib0047) 2020; 11
10.1016/j.pdpdt.2022.103015_bib0022
Akinbolade (10.1016/j.pdpdt.2022.103015_bib0010) 2022; 88
Biasin (10.1016/j.pdpdt.2022.103015_bib0036) 2021; 11
Enwemeka (10.1016/j.pdpdt.2022.103015_bib0031) 2022; 227
Biasin (10.1016/j.pdpdt.2022.103015_bib0035) 2021; 11
Kim (10.1016/j.pdpdt.2022.103015_bib0016) 2018; 84
Gardner (10.1016/j.pdpdt.2022.103015_bib0034) 2021; 13
Miller (10.1016/j.pdpdt.2022.103015_bib0019) 2013; 89
Basu (10.1016/j.pdpdt.2022.103015_bib0046) 2022; 3
Chandra (10.1016/j.pdpdt.2022.103015_bib0007) 2022; 12
Robinson (10.1016/j.pdpdt.2022.103015_bib0029) 2021
References_xml – reference: WHO Coronavirus (COVID-19) Dashboard, Avaible from
– volume: 13
  start-page: 1436
  year: 2021
  ident: bib0034
  article-title: Virucidal efficacy of blue LED and far-UVC light disinfection against feline infectious peritonitis virus as a model for SARS-CoV-2
  publication-title: Viruses
– volume: 16
  start-page: 815
  year: 2021
  end-page: 830
  ident: bib0002
  article-title: A narrative review of coronavirus disease 2019 (COVID-19): clinical, epidemiological characteristics, and systemic manifestations
  publication-title: Internal Emergency Med.
– volume: 10
  start-page: 3411
  year: 2020
  ident: bib0015
  article-title: Inactivation of listeria and E. coli by Deep-UV LED: effect of substrate conditions on inactivation kinetics
  publication-title: Sci. Rep.
– volume: 67
  start-page: 1955
  year: 2021
  end-page: 1958
  ident: bib0024
  article-title: Demonstration of antiviral activity of far-uvc microplasma lamp irradiation against sars-cov-2
  publication-title: Clin. Lab.
– volume: 10
  start-page: 105
  year: 1997
  end-page: 116
  ident: bib0044
  article-title: The size distribution of droplets in the exhaled breath of healthy human subjects
  publication-title: J. Aerosol Med.
– volume: 382
  start-page: 727
  year: 2020
  end-page: 733
  ident: bib0001
  article-title: A novel coronavirus from patients with pneumonia in China, 2019
  publication-title: N. Engl. J. Med.
– volume: 123
  start-page: 1142
  year: 1997
  end-page: 1149
  ident: bib0032
  article-title: Estimating effective germicidal dose from medium pressure UV lamps
  publication-title: J. Environ. Eng.
– volume: 12
  year: 2022
  ident: bib0007
  article-title: A peek into pandora's box: COVID-19 and neurodegeneration
  publication-title: Brain Sci.
– volume: 18
  start-page: 1
  year: 2022
  end-page: 12
  ident: bib0013
  article-title: A comprehensive review of SARS-CoV-2 vaccines: Pfizer, Moderna & Johnson & Johnson
  publication-title: Hum. Vaccin. Immunother.
– volume: 217
  year: 2021
  ident: bib0041
  article-title: Assessment of saliva interference with UV-based disinfection technologies
  publication-title: J. Photochem. Photobiol. B
– volume: 8
  start-page: 1
  year: 2018
  end-page: 7
  ident: bib0045
  article-title: Far-UVC light: a new tool to control the spread of airborne-mediated microbial diseases
  publication-title: Sci. Rep.
– volume: 84
  start-page: 1
  year: 2018
  end-page: 11
  ident: bib0020
  article-title: UVC LED irradiation effectively inactivates aerosolized viruses
  publication-title: Appl. Environ. Microbiol.
– volume: 11
  start-page: 1
  year: 2021
  end-page: 7
  ident: bib0035
  article-title: UV-C irradiation is highly effective in inactivating SARS-CoV-2 replication
  publication-title: Sci. Rep.
– volume: 49
  start-page: 299
  year: 2021
  end-page: 301
  ident: bib0039
  article-title: Effectiveness of 222-nm ultraviolet light on disinfecting SARS-CoV-2 surface contamination
  publication-title: Am. J. Infect. Control
– volume: 15
  start-page: 1
  year: 2018
  end-page: 10
  ident: bib0043
  article-title: Physico-chemical characteristics of evaporating respiratory fluid droplets
  publication-title: J. R. Soc., Interface
– volume: 10
  start-page: 1
  year: 2020
  end-page: 8
  ident: bib0038
  article-title: Far-UVC light (222 nm) efficiently and safely inactivates airborne human coronaviruses
  publication-title: Sci. Rep.
– volume: 67
  start-page: 1955
  year: 2021
  end-page: 1958
  ident: bib0040
  article-title: Demonstration of antiviral activity of far-uvc microplasma lamp irradiation against sars-cov-2
  publication-title: Clin. Lab.
– year: 2021
  ident: bib0029
  article-title: SARS-CoV-2 disinfection in aqueous solution by UV222 from a krypton chlorine excilamp
  publication-title: MedRxiv
– volume: 48
  start-page: 22
  year: 2022
  ident: bib0008
  article-title: The impact of the COVID-19 pandemic on lifestyle behaviors in children and adolescents: an international overview
  publication-title: Ital. J. Pediatr.
– volume: 16
  year: 2021
  ident: bib0025
  article-title: The impact of far-UVC radiation (200-230 nm) on pathogens, cells, skin, and eyes - a collection and analysis of a hundred years of data
  publication-title: GMS Hyg. Infect. Control
– start-page: 2020
  year: 2020
  ident: bib0018
  article-title: Development of a pulsed xenon ultraviolet disinfection device for real-time air disinfection in ambulances
  publication-title: J. Healthc. Eng.
– reference: R.T. Robinson, N. Mahfooz, O. Rosas-Mejia, Y. Liu, N.M. Hull, SARS-CoV-2 disinfection in aqueous solution by UV<sub>222</sub> from a krypton chlorine excilamp, MedRxiv. (2021) 2021.02.19.21252101.
– reference: E. Pretsch, P. (Philippe) Bühlmann, M. Badertscher, Structure determination of organic compounds : tables of spectral data, (2009) 433.
– volume: 84
  start-page: 1
  year: 2018
  end-page: 11
  ident: bib0016
  article-title: UVC LED irradiation effectively inactivates aerosolized viruses
  publication-title: Appl. Environ. Microbiol.
– volume: 581
  start-page: 465
  year: 2020
  end-page: 469
  ident: bib0037
  article-title: Virological assessment of hospitalized patients with COVID-2019
  publication-title: Nature
– reference: . Website Accessed in 01rs, April, 2022. (n.d.).
– volume: 146
  year: 2022
  ident: bib0009
  article-title: Interaction of SARS-CoV-2 with cardiomyocytes: insight into the underlying molecular mechanisms of cardiac injury and pharmacotherapy
  publication-title: Biomed. Pharmacother.
– volume: 10
  start-page: 65
  year: 1963
  end-page: 74
  ident: bib0026
  article-title: A practical combined method for computing the median lethal dose (LD50)
  publication-title: Acta Pharm. Sin.
– volume: 89
  start-page: 777
  year: 2013
  end-page: 781
  ident: bib0019
  article-title: Ultraviolet germicidal irradiation: future directions for air disinfection and building applications
  publication-title: Photochem. Photobiol.
– volume: 32
  start-page: 449
  year: 2020
  end-page: 461
  ident: bib0017
  article-title: Air bio-contamination control in hospital environment by UV-C rays and HEPA filters in HVAC systems
  publication-title: Annali DiIgiene
– volume: 3
  year: 2022
  ident: bib0046
  article-title: Therapeutics for COVID-19 and post COVID-19 complications: an update
  publication-title: Current Res. Pharmacol. Drug Discovery
– volume: 88
  start-page: 1590
  year: 2022
  end-page: 1597
  ident: bib0010
  article-title: Combination therapies for COVID-19: an overview of the clinical trials landscape
  publication-title: Br. J. Clin. Pharmacol.
– volume: 11
  start-page: 1
  year: 2021
  end-page: 7
  ident: bib0036
  article-title: UV-C irradiation is highly effective in inactivating SARS-CoV-2 replication
  publication-title: Sci. Rep.
– volume: 227
  year: 2022
  ident: bib0031
  article-title: Pulsed blue light, saliva and curcumin significantly inactivate human coronavirus
  publication-title: J. Photochem. Photobiol. B
– volume: 29
  start-page: 1243
  year: 2022
  end-page: 1253
  ident: bib0006
  article-title: Relationship between COVID-19 and movement disorders: a narrative review
  publication-title: Eur. J. Neurol.
– volume: 36
  start-page: 141
  year: 2021
  end-page: 144
  ident: bib0028
  article-title: On the calculation of TCID50 for quantitation of virus infectivity
  publication-title: Virol. Sin.
– volume: 3
  year: 2022
  ident: bib0011
  article-title: Therapeutics for COVID-19 and post COVID-19 complications: an update
  publication-title: Current Res. Pharmacol. Drug Discovery
– volume: 15
  start-page: 228
  year: 2022
  end-page: 240
  ident: bib0012
  article-title: The SARS-CoV-2 mutations versus vaccine effectiveness: new opportunities to new challenges
  publication-title: J. Infect. Public Health
– volume: 16
  start-page: 815
  year: 2021
  end-page: 830
  ident: bib0004
  article-title: A narrative review of coronavirus disease 2019 (COVID-19): clinical, epidemiological characteristics, and systemic manifestations
  publication-title: Internal Emergency Med.
– reference: R.T. Robinson, N. Mahfooz, O. Rosas-Mejia, Y. Liu, N.M. Hull, SARS-CoV-2 disinfection in aqueous solution by UV222 from a krypton chlorine excilamp, MedRxiv. (2021). 10.1126/science.372.6548.1301-a.
– volume: 11
  start-page: 192
  year: 1938
  end-page: 216
  ident: bib0027
  article-title: The determination of the dose-the proportion responding curve from small numbers
  publication-title: Q. J. Pharma Pharmacol.
– volume: 11
  start-page: 1
  year: 2020
  end-page: 9
  ident: bib0047
  article-title: Genomic modeling as an approach to identify surrogates for use in experimental validation of SARS-CoV-2 and HuNoV inactivation by UV-C treatment
  publication-title: Front. Microbiol.
– volume: 73
  start-page: 1924
  year: 2021
  end-page: 1926
  ident: bib0003
  article-title: Airborne transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): what we know
  publication-title: Clin. Infect. Dis.
– start-page: 25
  year: 2020
  ident: bib0030
  article-title: Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR
  publication-title: Eurosurveillance
– volume: 16
  start-page: Doc07
  year: 2021
  ident: bib0021
  article-title: The impact of far-UVC radiation (200-230 nm) on pathogens, cells, skin, and eyes - a collection and analysis of a hundred years of data
  publication-title: GMS Hyg. Infect. Control
– volume: 49
  start-page: 299
  year: 2021
  end-page: 301
  ident: bib0023
  article-title: Effectiveness of 222-nm ultraviolet light on disinfecting SARS-CoV-2 surface contamination
  publication-title: Am. J. Infect. Control
– volume: 130
  start-page: 31
  year: 2018
  end-page: 37
  ident: bib0014
  article-title: Inactivation kinetics and efficiencies of UV-LEDs against Pseudomonas aeruginosa, Legionella pneumophila, and surrogate microorganisms
  publication-title: Water Res.
– volume: 10
  start-page: 65
  year: 1963
  ident: 10.1016/j.pdpdt.2022.103015_bib0026
  article-title: A practical combined method for computing the median lethal dose (LD50)
  publication-title: Acta Pharm. Sin.
– volume: 29
  start-page: 1243
  year: 2022
  ident: 10.1016/j.pdpdt.2022.103015_bib0006
  article-title: Relationship between COVID-19 and movement disorders: a narrative review
  publication-title: Eur. J. Neurol.
  doi: 10.1111/ene.15217
– volume: 10
  start-page: 3411
  year: 2020
  ident: 10.1016/j.pdpdt.2022.103015_bib0015
  article-title: Inactivation of listeria and E. coli by Deep-UV LED: effect of substrate conditions on inactivation kinetics
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-60459-8
– ident: 10.1016/j.pdpdt.2022.103015_bib0042
– volume: 3
  year: 2022
  ident: 10.1016/j.pdpdt.2022.103015_bib0011
  article-title: Therapeutics for COVID-19 and post COVID-19 complications: an update
  publication-title: Current Res. Pharmacol. Drug Discovery
  doi: 10.1016/j.crphar.2022.100086
– volume: 130
  start-page: 31
  year: 2018
  ident: 10.1016/j.pdpdt.2022.103015_bib0014
  article-title: Inactivation kinetics and efficiencies of UV-LEDs against Pseudomonas aeruginosa, Legionella pneumophila, and surrogate microorganisms
  publication-title: Water Res.
  doi: 10.1016/j.watres.2017.11.047
– volume: 16
  year: 2021
  ident: 10.1016/j.pdpdt.2022.103015_bib0025
  article-title: The impact of far-UVC radiation (200-230 nm) on pathogens, cells, skin, and eyes - a collection and analysis of a hundred years of data
  publication-title: GMS Hyg. Infect. Control
– volume: 3
  year: 2022
  ident: 10.1016/j.pdpdt.2022.103015_bib0046
  article-title: Therapeutics for COVID-19 and post COVID-19 complications: an update
  publication-title: Current Res. Pharmacol. Drug Discovery
  doi: 10.1016/j.crphar.2022.100086
– volume: 16
  start-page: 815
  year: 2021
  ident: 10.1016/j.pdpdt.2022.103015_bib0004
  article-title: A narrative review of coronavirus disease 2019 (COVID-19): clinical, epidemiological characteristics, and systemic manifestations
  publication-title: Internal Emergency Med.
  doi: 10.1007/s11739-020-02616-5
– volume: 227
  year: 2022
  ident: 10.1016/j.pdpdt.2022.103015_bib0031
  article-title: Pulsed blue light, saliva and curcumin significantly inactivate human coronavirus
  publication-title: J. Photochem. Photobiol. B
  doi: 10.1016/j.jphotobiol.2021.112378
– volume: 217
  year: 2021
  ident: 10.1016/j.pdpdt.2022.103015_bib0041
  article-title: Assessment of saliva interference with UV-based disinfection technologies
  publication-title: J. Photochem. Photobiol. B
  doi: 10.1016/j.jphotobiol.2021.112168
– volume: 15
  start-page: 228
  year: 2022
  ident: 10.1016/j.pdpdt.2022.103015_bib0012
  article-title: The SARS-CoV-2 mutations versus vaccine effectiveness: new opportunities to new challenges
  publication-title: J. Infect. Public Health
  doi: 10.1016/j.jiph.2021.12.014
– volume: 10
  start-page: 105
  year: 1997
  ident: 10.1016/j.pdpdt.2022.103015_bib0044
  article-title: The size distribution of droplets in the exhaled breath of healthy human subjects
  publication-title: J. Aerosol Med.
  doi: 10.1089/jam.1997.10.105
– volume: 73
  start-page: 1924
  year: 2021
  ident: 10.1016/j.pdpdt.2022.103015_bib0003
  article-title: Airborne transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): what we know
  publication-title: Clin. Infect. Dis.
  doi: 10.1093/cid/ciab039
– volume: 32
  start-page: 449
  year: 2020
  ident: 10.1016/j.pdpdt.2022.103015_bib0017
  article-title: Air bio-contamination control in hospital environment by UV-C rays and HEPA filters in HVAC systems
  publication-title: Annali DiIgiene
– volume: 581
  start-page: 465
  year: 2020
  ident: 10.1016/j.pdpdt.2022.103015_bib0037
  article-title: Virological assessment of hospitalized patients with COVID-2019
  publication-title: Nature
  doi: 10.1038/s41586-020-2196-x
– start-page: 25
  year: 2020
  ident: 10.1016/j.pdpdt.2022.103015_bib0030
  article-title: Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR
  publication-title: Eurosurveillance
– ident: 10.1016/j.pdpdt.2022.103015_bib0033
  doi: 10.1101/2021.02.19.21252101
– volume: 36
  start-page: 141
  year: 2021
  ident: 10.1016/j.pdpdt.2022.103015_bib0028
  article-title: On the calculation of TCID50 for quantitation of virus infectivity
  publication-title: Virol. Sin.
  doi: 10.1007/s12250-020-00230-5
– volume: 13
  start-page: 1436
  year: 2021
  ident: 10.1016/j.pdpdt.2022.103015_bib0034
  article-title: Virucidal efficacy of blue LED and far-UVC light disinfection against feline infectious peritonitis virus as a model for SARS-CoV-2
  publication-title: Viruses
  doi: 10.3390/v13081436
– volume: 15
  start-page: 1
  year: 2018
  ident: 10.1016/j.pdpdt.2022.103015_bib0043
  article-title: Physico-chemical characteristics of evaporating respiratory fluid droplets
  publication-title: J. R. Soc., Interface
  doi: 10.1098/rsif.2017.0939
– volume: 88
  start-page: 1590
  year: 2022
  ident: 10.1016/j.pdpdt.2022.103015_bib0010
  article-title: Combination therapies for COVID-19: an overview of the clinical trials landscape
  publication-title: Br. J. Clin. Pharmacol.
  doi: 10.1111/bcp.15089
– volume: 11
  start-page: 1
  year: 2021
  ident: 10.1016/j.pdpdt.2022.103015_bib0035
  article-title: UV-C irradiation is highly effective in inactivating SARS-CoV-2 replication
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-85425-w
– volume: 8
  start-page: 1
  year: 2018
  ident: 10.1016/j.pdpdt.2022.103015_bib0045
  article-title: Far-UVC light: a new tool to control the spread of airborne-mediated microbial diseases
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-21058-w
– volume: 84
  start-page: 1
  year: 2018
  ident: 10.1016/j.pdpdt.2022.103015_bib0016
  article-title: UVC LED irradiation effectively inactivates aerosolized viruses
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00944-18
– volume: 67
  start-page: 1955
  year: 2021
  ident: 10.1016/j.pdpdt.2022.103015_bib0024
  article-title: Demonstration of antiviral activity of far-uvc microplasma lamp irradiation against sars-cov-2
  publication-title: Clin. Lab.
  doi: 10.7754/Clin.Lab.2020.201140
– ident: 10.1016/j.pdpdt.2022.103015_bib0022
  doi: 10.1101/2021.02.19.21252101
– volume: 49
  start-page: 299
  year: 2021
  ident: 10.1016/j.pdpdt.2022.103015_bib0039
  article-title: Effectiveness of 222-nm ultraviolet light on disinfecting SARS-CoV-2 surface contamination
  publication-title: Am. J. Infect. Control
  doi: 10.1016/j.ajic.2020.08.022
– volume: 16
  start-page: 815
  year: 2021
  ident: 10.1016/j.pdpdt.2022.103015_bib0002
  article-title: A narrative review of coronavirus disease 2019 (COVID-19): clinical, epidemiological characteristics, and systemic manifestations
  publication-title: Internal Emergency Med.
  doi: 10.1007/s11739-020-02616-5
– volume: 49
  start-page: 299
  year: 2021
  ident: 10.1016/j.pdpdt.2022.103015_bib0023
  article-title: Effectiveness of 222-nm ultraviolet light on disinfecting SARS-CoV-2 surface contamination
  publication-title: Am. J. Infect. Control
  doi: 10.1016/j.ajic.2020.08.022
– volume: 11
  start-page: 192
  year: 1938
  ident: 10.1016/j.pdpdt.2022.103015_bib0027
  article-title: The determination of the dose-the proportion responding curve from small numbers
  publication-title: Q. J. Pharma Pharmacol.
– volume: 89
  start-page: 777
  year: 2013
  ident: 10.1016/j.pdpdt.2022.103015_bib0019
  article-title: Ultraviolet germicidal irradiation: future directions for air disinfection and building applications
  publication-title: Photochem. Photobiol.
  doi: 10.1111/php.12080
– year: 2021
  ident: 10.1016/j.pdpdt.2022.103015_bib0029
  article-title: SARS-CoV-2 disinfection in aqueous solution by UV222 from a krypton chlorine excilamp
  publication-title: MedRxiv
– volume: 146
  year: 2022
  ident: 10.1016/j.pdpdt.2022.103015_bib0009
  article-title: Interaction of SARS-CoV-2 with cardiomyocytes: insight into the underlying molecular mechanisms of cardiac injury and pharmacotherapy
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2021.112518
– start-page: 2020
  year: 2020
  ident: 10.1016/j.pdpdt.2022.103015_bib0018
  article-title: Development of a pulsed xenon ultraviolet disinfection device for real-time air disinfection in ambulances
  publication-title: J. Healthc. Eng.
– volume: 84
  start-page: 1
  year: 2018
  ident: 10.1016/j.pdpdt.2022.103015_bib0020
  article-title: UVC LED irradiation effectively inactivates aerosolized viruses
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00944-18
– volume: 11
  start-page: 1
  year: 2021
  ident: 10.1016/j.pdpdt.2022.103015_bib0036
  article-title: UV-C irradiation is highly effective in inactivating SARS-CoV-2 replication
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-85425-w
– volume: 67
  start-page: 1955
  year: 2021
  ident: 10.1016/j.pdpdt.2022.103015_bib0040
  article-title: Demonstration of antiviral activity of far-uvc microplasma lamp irradiation against sars-cov-2
  publication-title: Clin. Lab.
  doi: 10.7754/Clin.Lab.2020.201140
– volume: 10
  start-page: 1
  year: 2020
  ident: 10.1016/j.pdpdt.2022.103015_bib0038
  article-title: Far-UVC light (222 nm) efficiently and safely inactivates airborne human coronaviruses
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-67211-2
– ident: 10.1016/j.pdpdt.2022.103015_bib0005
– volume: 12
  year: 2022
  ident: 10.1016/j.pdpdt.2022.103015_bib0007
  article-title: A peek into pandora's box: COVID-19 and neurodegeneration
  publication-title: Brain Sci.
  doi: 10.3390/brainsci12020190
– volume: 382
  start-page: 727
  year: 2020
  ident: 10.1016/j.pdpdt.2022.103015_bib0001
  article-title: A novel coronavirus from patients with pneumonia in China, 2019
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2001017
– volume: 123
  start-page: 1142
  year: 1997
  ident: 10.1016/j.pdpdt.2022.103015_bib0032
  article-title: Estimating effective germicidal dose from medium pressure UV lamps
  publication-title: J. Environ. Eng.
  doi: 10.1061/(ASCE)0733-9372(1997)123:11(1142)
– volume: 18
  start-page: 1
  year: 2022
  ident: 10.1016/j.pdpdt.2022.103015_bib0013
  article-title: A comprehensive review of SARS-CoV-2 vaccines: Pfizer, Moderna & Johnson & Johnson
  publication-title: Hum. Vaccin. Immunother.
  doi: 10.1080/21645515.2021.2002083
– volume: 16
  start-page: Doc07
  year: 2021
  ident: 10.1016/j.pdpdt.2022.103015_bib0021
  article-title: The impact of far-UVC radiation (200-230 nm) on pathogens, cells, skin, and eyes - a collection and analysis of a hundred years of data
  publication-title: GMS Hyg. Infect. Control
– volume: 48
  start-page: 22
  year: 2022
  ident: 10.1016/j.pdpdt.2022.103015_bib0008
  article-title: The impact of the COVID-19 pandemic on lifestyle behaviors in children and adolescents: an international overview
  publication-title: Ital. J. Pediatr.
  doi: 10.1186/s13052-022-01211-y
– volume: 11
  start-page: 1
  year: 2020
  ident: 10.1016/j.pdpdt.2022.103015_bib0047
  article-title: Genomic modeling as an approach to identify surrogates for use in experimental validation of SARS-CoV-2 and HuNoV inactivation by UV-C treatment
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2020.572331
SSID ssj0034904
Score 2.393674
Snippet •We tested 222 and 254 nm irradiation for inactivation of SARS-CoV-2.•254 nm was ∼200-fold more effective than 222 nm in saliva.•A 10.4 mJ/cm2 UV 254 nm dose...
Ultraviolet (UV) light can inactivate SARS-CoV-2. However, the practicality of UV light is limited by the carcinogenic potential of mercury vapor-based UV...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 103015
SubjectTerms 222 nm
COVID-19
Disinfection
Disinfection - methods
Humans
Krypton chlorine lamp
Photochemotherapy - methods
Saliva
SARS-CoV-2
Ultraviolet Rays
UV-C
Title UV 254 nm is more efficient than UV 222 nm in inactivating SARS-CoV-2 present in human saliva
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1572100022003015
https://dx.doi.org/10.1016/j.pdpdt.2022.103015
https://www.ncbi.nlm.nih.gov/pubmed/35843562
https://www.proquest.com/docview/2691465001
https://pubmed.ncbi.nlm.nih.gov/PMC9281457
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCba9NJLsVfX7FFowNZT1VQvNz4GwYpsA3pomqKXQpBkecuwOcaSXvfbR8p20GxDBwzwxTYJyyZFfrL4AHgbC-NDpko-LIXh2snAnfKKq8ydhgJnl_Ip2uIim8z0xxtzswXjLheGwipb29_Y9GSt2yuD9msO6vl8MBUGVy-pgEvC9WYbdiR6-2EPdkYfPk0uOoOsdJ66CBI9J4au-FAK86qLuqCYSikp__yU2uP-3UH9CUB_j6O855jOH8FeiyjZqBn0Y9iK1RN4d796MLtqSgewI3a5UZj7KdzOrhku3lj1nc2XjIJuWUxFJfBZjP6qMyKQMhFUeFAeBP3FrT6z6ehyyseLay5Z3SQxEUlq-seWjraYnsHs_P3VeMLbjgs8IPBacaW1dMEbp0SJuNFEiQAmSlVmrhTeD4NC0UU0EqUTvhAudybgAk4OA-23Ba32oVctqngAzMjgixBC7gMKIDjncXEis4CIQWifyz7I7jPb0L41dcX4Zru4s682ycaSbGwjmz4cr5nqphrHw-S6k5_tEk3RNFr0Fg-zZWu2DV38N-ObTkkszlLaenFVXNwtrcxydEkGMUEfnjdKs34BhRhQIQztw9mGOq0JqAL45p1q_iVVAkdtF9qcvfjfAb-EXTprYuZeQW_14y6-RpC18oewffJTHLZT6RdMcCUB
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-N7gFeEN90DDAS8ITVxR9Z81hVTN1XH9Z22guybMcZRZBGa_f_785JqhXQJk3KU3KnxDn7_LN99zuAzyHXzqey4P0i0VxZ4bmVTnKZ2j2f4-iSLkZbjNPRTB1d6IstGLa5MBRW2fj-2qdHb93c6TV_s1fN571JonH1EglcIq7Xj2BbUVHrDmwPDo9H49YhS5XFKoIkz0mhJR-KYV5VXuUUUykE5Z_vUXnc_09Q_wLQv-Mob01MB8_gaYMo2aD-6OewFcoX8OU2ezCb1tQB7Cs72yDmfgk_ZucMF2-s_MPmS0ZBtyxEUgl8F6NddUYCQkSBEi_Kg6Bd3PKSTQZnEz5cnHPBqjqJiURi0T-2tHTE9ApmB9-nwxFvKi5wj8BrxaVSwnqnrUwKxI06CAQwQcgitUXiXN9LNF1AJ1HYxOWJzaz2uIATfU_nbV7J19ApF2V4C0wL73LvfeY8GsBb63BxIlKPiCFRLhNdEO1vNr5pNVXF-G3auLNfJtrGkG1MbZsufFsrVTUbx93iqrWfaRNN0TUanC3uVkvXaht98X7FT20nMThK6ejFlmFxvTQizXBK0ogJuvCm7jTrBkjEgBJhaBf2N7rTWoAYwDeflPOfkQk8E_1E6f2dh37wR3g8mp6emJPD8fE7eEJP6vi5Xeisrq7DewRcK_ehGVA3Lz8m5w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=UV+254+nm+is+more+efficient+than+UV+222+nm+in+inactivating+SARS-CoV-2+present+in+human+saliva&rft.jtitle=Photodiagnosis+and+photodynamic+therapy&rft.au=Sesti-Costa%2C+Renata&rft.au=Negr%C3%A3o%2C+Cyro+von+Zuben&rft.au=Shimizu%2C+Jacqueline+Farinha&rft.au=Nagai%2C+Alice&rft.date=2022-09-01&rft.pub=Elsevier+B.V&rft.issn=1572-1000&rft.eissn=1873-1597&rft.volume=39&rft.spage=103015&rft.epage=103015&rft_id=info:doi/10.1016%2Fj.pdpdt.2022.103015&rft_id=info%3Apmid%2F35843562&rft.externalDocID=PMC9281457
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1572-1000&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1572-1000&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1572-1000&client=summon