UV 254 nm is more efficient than UV 222 nm in inactivating SARS-CoV-2 present in human saliva
•We tested 222 and 254 nm irradiation for inactivation of SARS-CoV-2.•254 nm was ∼200-fold more effective than 222 nm in saliva.•A 10.4 mJ/cm2 UV 254 nm dose inactivates SARS-CoV-2 in saliva.•UV 254 is better for sterilizing saliva with SARS-CoV-2 on a surface.•Sterilization of airborne respiratory...
Saved in:
Published in | Photodiagnosis and photodynamic therapy Vol. 39; p. 103015 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.09.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1572-1000 1873-1597 1873-1597 |
DOI | 10.1016/j.pdpdt.2022.103015 |
Cover
Abstract | •We tested 222 and 254 nm irradiation for inactivation of SARS-CoV-2.•254 nm was ∼200-fold more effective than 222 nm in saliva.•A 10.4 mJ/cm2 UV 254 nm dose inactivates SARS-CoV-2 in saliva.•UV 254 is better for sterilizing saliva with SARS-CoV-2 on a surface.•Sterilization of airborne respiratory fluids with SARS-CoV-2 needs evaluation.
Ultraviolet (UV) light can inactivate SARS-CoV-2. However, the practicality of UV light is limited by the carcinogenic potential of mercury vapor-based UV lamps. Recent advances in the development of krypton chlorine (KrCl) excimer lamps hold promise, as these emit a shorter peak wavelength (222 nm), which is highly absorbed by the skin's stratum corneum and can filter out higher wavelengths. In this sense, UV 222 nm irradiation for the inactivation of virus particles in the air and surfaces is a potentially safer option as a germicidal technology. However, these same physical properties make it harder to reach microbes present in complex solutions, such as saliva, a critical source of SARS-CoV-2 transmission. We provide the first evaluation for using a commercial filtered KrCl excimer light source to inactivate SARS-CoV-2 in saliva spread on a surface. A conventional germicidal lamp (UV 254 nm) was also evaluated under the same condition. Using plaque-forming units (PFU) and Median Tissue Culture Infectious Dose (TCID50) per milliliter we found that 99.99% viral clearance (LD99.99) was obtained with 106.3 mJ/cm2 of UV 222 nm for virus in DMEM and 2417 mJ/cm2 for virus in saliva. Additionally, our results showed that the UV 254 nm had a greater capacity to inactivate the virus in both vehicles. Effective (after discounting light absorption) LD99.99 of UV 222 nm on the virus in saliva was ∼30 times higher than the value obtained with virus in saline solution (PBS), we speculated that saliva might be protecting the virus from surface irradiation in ways other than just by intensity attenuation of UV 222 nm. Due to differences between UV 222/254 nm capacities to interact and be absorbed by molecules in complex solutions, a higher dose of 222 nm will be necessary to reduce viral load in surfaces with contaminated saliva. |
---|---|
AbstractList | Ultraviolet (UV) light can inactivate SARS-CoV-2. However, the practicality of UV light is limited by the carcinogenic potential of mercury vapor-based UV lamps. Recent advances in the development of krypton chlorine (KrCl) excimer lamps hold promise, as these emit a shorter peak wavelength (222 nm), which is highly absorbed by the skin's stratum corneum and can filter out higher wavelengths. In this sense, UV 222 nm irradiation for the inactivation of virus particles in the air and surfaces is a potentially safer option as a germicidal technology. However, these same physical properties make it harder to reach microbes present in complex solutions, such as saliva, a critical source of SARS-CoV-2 transmission. We provide the first evaluation for using a commercial filtered KrCl excimer light source to inactivate SARS-CoV-2 in saliva spread on a surface. A conventional germicidal lamp (UV 254 nm) was also evaluated under the same condition. Using plaque-forming units (PFU) and Median Tissue Culture Infectious Dose (TCID
) per milliliter we found that 99.99% viral clearance (LD
) was obtained with 106.3 mJ/cm
of UV 222 nm for virus in DMEM and 2417 mJ/cm
for virus in saliva. Additionally, our results showed that the UV 254 nm had a greater capacity to inactivate the virus in both vehicles. Effective (after discounting light absorption) LD
of UV 222 nm on the virus in saliva was ∼30 times higher than the value obtained with virus in saline solution (PBS), we speculated that saliva might be protecting the virus from surface irradiation in ways other than just by intensity attenuation of UV 222 nm. Due to differences between UV 222/254 nm capacities to interact and be absorbed by molecules in complex solutions, a higher dose of 222 nm will be necessary to reduce viral load in surfaces with contaminated saliva. Ultraviolet (UV) light can inactivate SARS-CoV-2. However, the practicality of UV light is limited by the carcinogenic potential of mercury vapor-based UV lamps. Recent advances in the development of krypton chlorine (KrCl) excimer lamps hold promise, as these emit a shorter peak wavelength (222 nm), which is highly absorbed by the skin's stratum corneum and can filter out higher wavelengths. In this sense, UV 222 nm irradiation for the inactivation of virus particles in the air and surfaces is a potentially safer option as a germicidal technology. However, these same physical properties make it harder to reach microbes present in complex solutions, such as saliva, a critical source of SARS-CoV-2 transmission. We provide the first evaluation for using a commercial filtered KrCl excimer light source to inactivate SARS-CoV-2 in saliva spread on a surface. A conventional germicidal lamp (UV 254 nm) was also evaluated under the same condition. Using plaque-forming units (PFU) and Median Tissue Culture Infectious Dose (TCID50) per milliliter we found that 99.99% viral clearance (LD99.99) was obtained with 106.3 mJ/cm2 of UV 222 nm for virus in DMEM and 2417 mJ/cm2 for virus in saliva. Additionally, our results showed that the UV 254 nm had a greater capacity to inactivate the virus in both vehicles. Effective (after discounting light absorption) LD99.99 of UV 222 nm on the virus in saliva was ∼30 times higher than the value obtained with virus in saline solution (PBS), we speculated that saliva might be protecting the virus from surface irradiation in ways other than just by intensity attenuation of UV 222 nm. Due to differences between UV 222/254 nm capacities to interact and be absorbed by molecules in complex solutions, a higher dose of 222 nm will be necessary to reduce viral load in surfaces with contaminated saliva.Ultraviolet (UV) light can inactivate SARS-CoV-2. However, the practicality of UV light is limited by the carcinogenic potential of mercury vapor-based UV lamps. Recent advances in the development of krypton chlorine (KrCl) excimer lamps hold promise, as these emit a shorter peak wavelength (222 nm), which is highly absorbed by the skin's stratum corneum and can filter out higher wavelengths. In this sense, UV 222 nm irradiation for the inactivation of virus particles in the air and surfaces is a potentially safer option as a germicidal technology. However, these same physical properties make it harder to reach microbes present in complex solutions, such as saliva, a critical source of SARS-CoV-2 transmission. We provide the first evaluation for using a commercial filtered KrCl excimer light source to inactivate SARS-CoV-2 in saliva spread on a surface. A conventional germicidal lamp (UV 254 nm) was also evaluated under the same condition. Using plaque-forming units (PFU) and Median Tissue Culture Infectious Dose (TCID50) per milliliter we found that 99.99% viral clearance (LD99.99) was obtained with 106.3 mJ/cm2 of UV 222 nm for virus in DMEM and 2417 mJ/cm2 for virus in saliva. Additionally, our results showed that the UV 254 nm had a greater capacity to inactivate the virus in both vehicles. Effective (after discounting light absorption) LD99.99 of UV 222 nm on the virus in saliva was ∼30 times higher than the value obtained with virus in saline solution (PBS), we speculated that saliva might be protecting the virus from surface irradiation in ways other than just by intensity attenuation of UV 222 nm. Due to differences between UV 222/254 nm capacities to interact and be absorbed by molecules in complex solutions, a higher dose of 222 nm will be necessary to reduce viral load in surfaces with contaminated saliva. •We tested 222 and 254 nm irradiation for inactivation of SARS-CoV-2.•254 nm was ∼200-fold more effective than 222 nm in saliva.•A 10.4 mJ/cm2 UV 254 nm dose inactivates SARS-CoV-2 in saliva.•UV 254 is better for sterilizing saliva with SARS-CoV-2 on a surface.•Sterilization of airborne respiratory fluids with SARS-CoV-2 needs evaluation. Ultraviolet (UV) light can inactivate SARS-CoV-2. However, the practicality of UV light is limited by the carcinogenic potential of mercury vapor-based UV lamps. Recent advances in the development of krypton chlorine (KrCl) excimer lamps hold promise, as these emit a shorter peak wavelength (222 nm), which is highly absorbed by the skin's stratum corneum and can filter out higher wavelengths. In this sense, UV 222 nm irradiation for the inactivation of virus particles in the air and surfaces is a potentially safer option as a germicidal technology. However, these same physical properties make it harder to reach microbes present in complex solutions, such as saliva, a critical source of SARS-CoV-2 transmission. We provide the first evaluation for using a commercial filtered KrCl excimer light source to inactivate SARS-CoV-2 in saliva spread on a surface. A conventional germicidal lamp (UV 254 nm) was also evaluated under the same condition. Using plaque-forming units (PFU) and Median Tissue Culture Infectious Dose (TCID50) per milliliter we found that 99.99% viral clearance (LD99.99) was obtained with 106.3 mJ/cm2 of UV 222 nm for virus in DMEM and 2417 mJ/cm2 for virus in saliva. Additionally, our results showed that the UV 254 nm had a greater capacity to inactivate the virus in both vehicles. Effective (after discounting light absorption) LD99.99 of UV 222 nm on the virus in saliva was ∼30 times higher than the value obtained with virus in saline solution (PBS), we speculated that saliva might be protecting the virus from surface irradiation in ways other than just by intensity attenuation of UV 222 nm. Due to differences between UV 222/254 nm capacities to interact and be absorbed by molecules in complex solutions, a higher dose of 222 nm will be necessary to reduce viral load in surfaces with contaminated saliva. Ultraviolet (UV) light can inactivate SARS-CoV-2. However, the practicality of UV light is limited by the carcinogenic potential of mercury vapor-based UV lamps. Recent advances in the development of krypton chlorine (KrCl) excimer lamps hold promise, as these emit a shorter peak wavelength (222 nm), which is highly absorbed by the skin's stratum corneum and can filter out higher wavelengths. In this sense, UV 222 nm irradiation for the inactivation of virus particles in the air and surfaces is a potentially safer option as a germicidal technology. However, these same physical properties make it harder to reach microbes present in complex solutions, such as saliva, a critical source of SARS-CoV-2 transmission. We provide the first evaluation for using a commercial filtered KrCl excimer light source to inactivate SARS-CoV-2 in saliva spread on a surface. A conventional germicidal lamp (UV 254 nm) was also evaluated under the same condition. Using plaque-forming units (PFU) and Median Tissue Culture Infectious Dose (TCID 50 ) per milliliter we found that 99.99% viral clearance (LD 99.99 ) was obtained with 106.3 mJ/cm 2 of UV 222 nm for virus in DMEM and 2417 mJ/cm 2 for virus in saliva. Additionally, our results showed that the UV 254 nm had a greater capacity to inactivate the virus in both vehicles. Effective (after discounting light absorption) LD 99.99 of UV 222 nm on the virus in saliva was ∼30 times higher than the value obtained with virus in saline solution (PBS), we speculated that saliva might be protecting the virus from surface irradiation in ways other than just by intensity attenuation of UV 222 nm. Due to differences between UV 222/254 nm capacities to interact and be absorbed by molecules in complex solutions, a higher dose of 222 nm will be necessary to reduce viral load in surfaces with contaminated saliva. |
ArticleNumber | 103015 |
Author | Adamoski, Douglas Marques, Rafael Elias Nagai, Alice Proença-Módena, José Luiz Costa, Wanderley de Carvalho, Murilo da Silva, Thiago Jasso Teixeira, Veronica de Carvalho Girasole, Alessandra Dias, Sandra Martha Gomes Fontoura, Marina Alves Sesti-Costa, Renata Granja, Fabiana Ambrosio, Andre Luis Berteli Tavares, Renata Spagolla Napoleão Negrão, Cyro von Zuben Shimizu, Jacqueline Farinha de Barros, Adriano |
Author_xml | – sequence: 1 givenname: Renata surname: Sesti-Costa fullname: Sesti-Costa, Renata organization: Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo 13083-970, Brazil – sequence: 2 givenname: Cyro von Zuben surname: Negrão fullname: Negrão, Cyro von Zuben organization: Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo 13083-970, Brazil – sequence: 3 givenname: Jacqueline Farinha surname: Shimizu fullname: Shimizu, Jacqueline Farinha organization: Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo 13083-970, Brazil – sequence: 4 givenname: Alice surname: Nagai fullname: Nagai, Alice organization: Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo 13083-970, Brazil – sequence: 5 givenname: Renata Spagolla Napoleão surname: Tavares fullname: Tavares, Renata Spagolla Napoleão organization: Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo 13083-970, Brazil – sequence: 6 givenname: Douglas surname: Adamoski fullname: Adamoski, Douglas organization: Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo 13083-970, Brazil – sequence: 7 givenname: Wanderley surname: Costa fullname: Costa, Wanderley organization: Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo 13083-970, Brazil – sequence: 8 givenname: Marina Alves surname: Fontoura fullname: Fontoura, Marina Alves organization: Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo 13083-970, Brazil – sequence: 9 givenname: Thiago Jasso surname: da Silva fullname: da Silva, Thiago Jasso organization: Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo 13083-970, Brazil – sequence: 10 givenname: Adriano surname: de Barros fullname: de Barros, Adriano organization: Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo 13083-970, Brazil – sequence: 11 givenname: Alessandra surname: Girasole fullname: Girasole, Alessandra organization: Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo 13083-970, Brazil – sequence: 12 givenname: Murilo surname: de Carvalho fullname: de Carvalho, Murilo organization: Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo 13083-970, Brazil – sequence: 13 givenname: Veronica de Carvalho surname: Teixeira fullname: Teixeira, Veronica de Carvalho organization: Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo 13083-970, Brazil – sequence: 14 givenname: Andre Luis Berteli surname: Ambrosio fullname: Ambrosio, Andre Luis Berteli organization: Sao Carlos Institute of Physics (IFSC), University of Sao Paulo (USP), Sao Carlos, SP 13563-120, Brazil – sequence: 15 givenname: Fabiana surname: Granja fullname: Granja, Fabiana organization: Laboratory of Emerging Viruses, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil – sequence: 16 givenname: José Luiz surname: Proença-Módena fullname: Proença-Módena, José Luiz organization: Laboratory of Emerging Viruses, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil – sequence: 17 givenname: Rafael Elias surname: Marques fullname: Marques, Rafael Elias email: rafael.marques@lnbio.cnpem.br organization: Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo 13083-970, Brazil – sequence: 18 givenname: Sandra Martha Gomes orcidid: 0000-0002-1589-7856 surname: Dias fullname: Dias, Sandra Martha Gomes email: sandra.dias@lnbio.cnpem.br organization: Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo 13083-970, Brazil |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35843562$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkV1rFDEYhYO02A_9BYLMpTezzZuP-UAUyqJtoVCwtncSMpl3ullnkjGZXei_N9NtRXthIZCQnOec8J4jsue8Q0LeAV0AheJkvRjbsZ0WjDKWbjgF-YocQlXyHGRd7qWzLFkOlNIDchTjmlIuaipekwMuK8FlwQ7Jj5vbjEmRuSGzMRt8wAy7zhqLbsqmlXbZLGDsQeDS0mayWz1Zd5ddn367zpf-NmfZGDDORJKsNkOiou6T7A3Z73Qf8e3jfkxuvn75vjzPL6_OLpanl7mRAFPOhWDaNFJz6GooJLKC18h4V-gOmqYynDcUS8o7DU0LutbS1EywykgJhRH8mHze-Y6bZsDWpK8E3asx2EGHe-W1Vf--OLtSd36ralaBkGUy-PBoEPyvDcZJDTYa7Hvt0G-iYkUNopCUQpK-_zvrT8jTTJOg3glM8DEG7JSxU5qYn6Ntr4CquT-1Vg_9qbk_tesvsfwZ-2T_f-rTjsI0463FoOJcoMHWBjSTar19gf_4jDe9ddbo_ifev0j_BilnxsY |
CitedBy_id | crossref_primary_10_1093_mnras_stae2433 crossref_primary_10_1016_j_ijbiomac_2023_126336 crossref_primary_10_1111_php_14062 crossref_primary_10_7759_cureus_55950 crossref_primary_10_1016_j_foodcont_2025_111132 crossref_primary_10_1016_j_jphotobiol_2023_112755 crossref_primary_10_3390_app13148501 crossref_primary_10_1016_j_infpip_2024_100339 crossref_primary_10_1021_acs_est_3c00824 crossref_primary_10_1177_09544089241242616 crossref_primary_10_1016_j_jphotobiol_2023_112713 crossref_primary_10_1016_j_scitotenv_2023_163007 crossref_primary_10_1016_j_scitotenv_2023_165625 crossref_primary_10_3390_v16121904 crossref_primary_10_1111_php_13742 crossref_primary_10_1063_5_0231390 |
Cites_doi | 10.1111/ene.15217 10.1038/s41598-020-60459-8 10.1016/j.crphar.2022.100086 10.1016/j.watres.2017.11.047 10.1007/s11739-020-02616-5 10.1016/j.jphotobiol.2021.112378 10.1016/j.jphotobiol.2021.112168 10.1016/j.jiph.2021.12.014 10.1089/jam.1997.10.105 10.1093/cid/ciab039 10.1038/s41586-020-2196-x 10.1101/2021.02.19.21252101 10.1007/s12250-020-00230-5 10.3390/v13081436 10.1098/rsif.2017.0939 10.1111/bcp.15089 10.1038/s41598-021-85425-w 10.1038/s41598-018-21058-w 10.1128/AEM.00944-18 10.7754/Clin.Lab.2020.201140 10.1016/j.ajic.2020.08.022 10.1111/php.12080 10.1016/j.biopha.2021.112518 10.1038/s41598-020-67211-2 10.3390/brainsci12020190 10.1056/NEJMoa2001017 10.1061/(ASCE)0733-9372(1997)123:11(1142) 10.1080/21645515.2021.2002083 10.1186/s13052-022-01211-y 10.3389/fmicb.2020.572331 |
ContentType | Journal Article |
Copyright | 2022 Copyright © 2022. Published by Elsevier B.V. 2022 Elsevier B.V. All rights reserved. 2022 |
Copyright_xml | – notice: 2022 – notice: Copyright © 2022. Published by Elsevier B.V. – notice: 2022 Elsevier B.V. All rights reserved. 2022 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.pdpdt.2022.103015 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Occupational Therapy & Rehabilitation |
EISSN | 1873-1597 |
EndPage | 103015 |
ExternalDocumentID | PMC9281457 35843562 10_1016_j_pdpdt_2022_103015 S1572100022003015 |
Genre | Journal Article |
GroupedDBID | --- --K --M -RU .1- .FO .~1 0R~ 123 1B1 1P~ 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABBQC ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADVLN AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGUBO AGYEJ AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA GROUPED_DOAJ HVGLF HZ~ IHE J1W KOM M41 MO0 N9A O-L O9- OAUVE OC~ OO- OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SEL SES SEW SPCBC SSH SSZ T5K Z5R ~G- 0SF AACTN AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW EFLBG LCYCR RIG AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 ACLOT ~HD 5PM |
ID | FETCH-LOGICAL-c511t-3442acb5a31f9165e2639e23f6af1bb8c33b0e703fa1bd1a9a5c92428c5516c43 |
IEDL.DBID | AIKHN |
ISSN | 1572-1000 1873-1597 |
IngestDate | Thu Aug 21 14:12:18 EDT 2025 Sun Sep 28 00:23:33 EDT 2025 Wed Feb 19 02:25:47 EST 2025 Tue Jul 01 01:18:05 EDT 2025 Thu Apr 24 23:07:01 EDT 2025 Fri Feb 23 02:38:40 EST 2024 Tue Aug 26 20:13:58 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | UV-C Disinfection SARS-CoV-2 222 nm Krypton chlorine lamp |
Language | English |
License | Copyright © 2022. Published by Elsevier B.V. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c511t-3442acb5a31f9165e2639e23f6af1bb8c33b0e703fa1bd1a9a5c92428c5516c43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to the work. |
ORCID | 0000-0002-1589-7856 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC9281457 |
PMID | 35843562 |
PQID | 2691465001 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9281457 proquest_miscellaneous_2691465001 pubmed_primary_35843562 crossref_citationtrail_10_1016_j_pdpdt_2022_103015 crossref_primary_10_1016_j_pdpdt_2022_103015 elsevier_sciencedirect_doi_10_1016_j_pdpdt_2022_103015 elsevier_clinicalkey_doi_10_1016_j_pdpdt_2022_103015 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-01 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Photodiagnosis and photodynamic therapy |
PublicationTitleAlternate | Photodiagnosis Photodyn Ther |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Krishnan, Hamilton, Alqahtani, A.Woreta (bib0002) 2021; 16 Samet, Prather, Benjamin, Lakdawala, Lowe, Reingold, Volckens, Marr (bib0003) 2021; 73 Scapaticci, Neri, Marseglia, Staiano, Chiarelli, Verduci (bib0008) 2022; 48 Patel, Kaki, Potluri, Kahar, Khanna (bib0013) 2022; 18 Biasin, Bianco, Pareschi, Cavalleri, Cavatorta, Fenizia, Galli, Lessio, Lualdi, Tombetti, Ambrosi, Redaelli, Saulle, Trabattoni, Zanutta, Clerici (bib0035) 2021; 11 Basu, Chavda, Mehta (bib0046) 2022; 3 Corman, Landt, Kaiser, Molenkamp, Meijer, Chu, Bleicker, Brünink, Schneider, Schmidt, Mulders, Haagmans, Van Der Veer, Van Den Brink, Wijsman, Goderski, Romette, Ellis, Zambon, Peiris, Goossens, Reusken, Koopmans, Drosten (bib0030) 2020 Kitagawa, Nomura, Nazmul, Omori, Shigemoto, Sakaguchi, Ohge (bib0039) 2021; 49 Barancheshme, Philibert, Noam-Amar, Gerchman, Barbeau (bib0041) 2021; 217 Basu, Chavda, Mehta (bib0011) 2022; 3 Song, Li, He, Li, Li, Gu, Tang (bib0018) 2020 Enwemeka, Bumah, Castel, Suess (bib0031) 2022; 227 Miller, Linnes, Luongo (bib0019) 2013; 89 Pendyala, Patras, Pokharel, D'Souza (bib0047) 2020; 11 Vejerano, Marr (bib0043) 2018; 15 Krishnan, Hamilton, Alqahtani, A.Woreta (bib0004) 2021; 16 Buonanno, Welch, Shuryak, Brenner (bib0038) 2020; 10 Zhu, Zhang, Wang, Li, Yang, Song, Zhao, Huang, Shi, Lu, Niu, Zhan, Ma, Wang, Xu, Wu, Gao, Tan (bib0001) 2020; 382 CI (bib0027) 1938; 11 Biasin, Bianco, Pareschi, Cavalleri, Cavatorta, Fenizia, Galli, Lessio, Lualdi, Tombetti, Ambrosi, Redaelli, Saulle, Trabattoni, Zanutta, Clerici (bib0036) 2021; 11 Welch, Buonanno, Grilj, Shuryak, Crickmore, Bigelow, Randers-Pehrson, Johnson, Brenner (bib0045) 2018; 8 Robinson, Mahfooz, Rosas-Mejia, Liu, Hull (bib0029) 2021 Chandra, Johri (bib0007) 2022; 12 Akinbolade, Coughlan, Fairbairn, McConkey, Powell, Ogunbayo, Craig (bib0010) 2022; 88 Kim, Kang (bib0020) 2018; 84 Kitagawa, Nomura, Nazmul, Omori, Shigemoto, Sakaguchi, Ohge (bib0023) 2021; 49 Abdi, AlOtaiby, Al Badarin, Khraibi, Hamdan, Nader (bib0009) 2022; 146 Papineni, Rosenthal (bib0044) 1997; 10 WHO Coronavirus (COVID-19) Dashboard, Avaible from Kim, Kang (bib0016) 2018; 84 Rattanakul, Oguma (bib0014) 2018; 130 Linden, Darby (bib0032) 1997; 123 Hessling, Haag, Sieber, Vatter (bib0021) 2021; 16 Gardner, Ghosh, Dunowska, Brightwell (bib0034) 2021; 13 R.T. Robinson, N. Mahfooz, O. Rosas-Mejia, Y. Liu, N.M. Hull, SARS-CoV-2 disinfection in aqueous solution by UV222 from a krypton chlorine excilamp, MedRxiv. (2021). 10.1126/science.372.6548.1301-a. Website Accessed in 01rs, April, 2022. (n.d.). Schneider, Hennig, Martino (bib0006) 2022; 29 Cheng, Chen, Sánchez Basurto, Protasenko, Bharadwaj, Islam, Moraru (bib0015) 2020; 10 D'Orazio, D'Alessandro (bib0017) 2020; 32 Hessling, Haag, Sieber, Vatter (bib0025) 2021; 16 RY (bib0026) 1963; 10 Jung, Park, Lyoo, Park, Park (bib0040) 2021; 67 Wölfel, Corman, Guggemos, Seilmaier, Zange, Müller, Niemeyer, Jones, Vollmar, Rothe, Hoelscher, Bleicker, Brünink, Schneider, Ehmann, Zwirglmaier, Drosten, Wendtner (bib0037) 2020; 581 E. Pretsch, P. (Philippe) Bühlmann, M. Badertscher, Structure determination of organic compounds : tables of spectral data, (2009) 433. Ahmad, Ahmed, Mir, Shinde, Bender (bib0012) 2022; 15 R.T. Robinson, N. Mahfooz, O. Rosas-Mejia, Y. Liu, N.M. Hull, SARS-CoV-2 disinfection in aqueous solution by UV<sub>222</sub> from a krypton chlorine excilamp, MedRxiv. (2021) 2021.02.19.21252101. Lei, Yang, Hu, Sun (bib0028) 2021; 36 Jung, Park, Lyoo, Park, Park (bib0024) 2021; 67 Barancheshme (10.1016/j.pdpdt.2022.103015_bib0041) 2021; 217 Schneider (10.1016/j.pdpdt.2022.103015_bib0006) 2022; 29 Kitagawa (10.1016/j.pdpdt.2022.103015_bib0023) 2021; 49 Song (10.1016/j.pdpdt.2022.103015_bib0018) 2020 Abdi (10.1016/j.pdpdt.2022.103015_bib0009) 2022; 146 Corman (10.1016/j.pdpdt.2022.103015_bib0030) 2020 Hessling (10.1016/j.pdpdt.2022.103015_bib0021) 2021; 16 Patel (10.1016/j.pdpdt.2022.103015_bib0013) 2022; 18 Papineni (10.1016/j.pdpdt.2022.103015_bib0044) 1997; 10 Welch (10.1016/j.pdpdt.2022.103015_bib0045) 2018; 8 Buonanno (10.1016/j.pdpdt.2022.103015_bib0038) 2020; 10 Hessling (10.1016/j.pdpdt.2022.103015_bib0025) 2021; 16 Rattanakul (10.1016/j.pdpdt.2022.103015_bib0014) 2018; 130 10.1016/j.pdpdt.2022.103015_bib0033 Wölfel (10.1016/j.pdpdt.2022.103015_bib0037) 2020; 581 CI (10.1016/j.pdpdt.2022.103015_bib0027) 1938; 11 Lei (10.1016/j.pdpdt.2022.103015_bib0028) 2021; 36 Jung (10.1016/j.pdpdt.2022.103015_bib0040) 2021; 67 Ahmad (10.1016/j.pdpdt.2022.103015_bib0012) 2022; 15 D'Orazio (10.1016/j.pdpdt.2022.103015_bib0017) 2020; 32 RY (10.1016/j.pdpdt.2022.103015_bib0026) 1963; 10 Cheng (10.1016/j.pdpdt.2022.103015_bib0015) 2020; 10 Kim (10.1016/j.pdpdt.2022.103015_bib0020) 2018; 84 Linden (10.1016/j.pdpdt.2022.103015_bib0032) 1997; 123 Scapaticci (10.1016/j.pdpdt.2022.103015_bib0008) 2022; 48 Krishnan (10.1016/j.pdpdt.2022.103015_bib0004) 2021; 16 Zhu (10.1016/j.pdpdt.2022.103015_bib0001) 2020; 382 Samet (10.1016/j.pdpdt.2022.103015_bib0003) 2021; 73 Basu (10.1016/j.pdpdt.2022.103015_bib0011) 2022; 3 Vejerano (10.1016/j.pdpdt.2022.103015_bib0043) 2018; 15 Kitagawa (10.1016/j.pdpdt.2022.103015_bib0039) 2021; 49 10.1016/j.pdpdt.2022.103015_bib0005 Krishnan (10.1016/j.pdpdt.2022.103015_bib0002) 2021; 16 Jung (10.1016/j.pdpdt.2022.103015_bib0024) 2021; 67 10.1016/j.pdpdt.2022.103015_bib0042 Pendyala (10.1016/j.pdpdt.2022.103015_bib0047) 2020; 11 10.1016/j.pdpdt.2022.103015_bib0022 Akinbolade (10.1016/j.pdpdt.2022.103015_bib0010) 2022; 88 Biasin (10.1016/j.pdpdt.2022.103015_bib0036) 2021; 11 Enwemeka (10.1016/j.pdpdt.2022.103015_bib0031) 2022; 227 Biasin (10.1016/j.pdpdt.2022.103015_bib0035) 2021; 11 Kim (10.1016/j.pdpdt.2022.103015_bib0016) 2018; 84 Gardner (10.1016/j.pdpdt.2022.103015_bib0034) 2021; 13 Miller (10.1016/j.pdpdt.2022.103015_bib0019) 2013; 89 Basu (10.1016/j.pdpdt.2022.103015_bib0046) 2022; 3 Chandra (10.1016/j.pdpdt.2022.103015_bib0007) 2022; 12 Robinson (10.1016/j.pdpdt.2022.103015_bib0029) 2021 |
References_xml | – reference: WHO Coronavirus (COVID-19) Dashboard, Avaible from – volume: 13 start-page: 1436 year: 2021 ident: bib0034 article-title: Virucidal efficacy of blue LED and far-UVC light disinfection against feline infectious peritonitis virus as a model for SARS-CoV-2 publication-title: Viruses – volume: 16 start-page: 815 year: 2021 end-page: 830 ident: bib0002 article-title: A narrative review of coronavirus disease 2019 (COVID-19): clinical, epidemiological characteristics, and systemic manifestations publication-title: Internal Emergency Med. – volume: 10 start-page: 3411 year: 2020 ident: bib0015 article-title: Inactivation of listeria and E. coli by Deep-UV LED: effect of substrate conditions on inactivation kinetics publication-title: Sci. Rep. – volume: 67 start-page: 1955 year: 2021 end-page: 1958 ident: bib0024 article-title: Demonstration of antiviral activity of far-uvc microplasma lamp irradiation against sars-cov-2 publication-title: Clin. Lab. – volume: 10 start-page: 105 year: 1997 end-page: 116 ident: bib0044 article-title: The size distribution of droplets in the exhaled breath of healthy human subjects publication-title: J. Aerosol Med. – volume: 382 start-page: 727 year: 2020 end-page: 733 ident: bib0001 article-title: A novel coronavirus from patients with pneumonia in China, 2019 publication-title: N. Engl. J. Med. – volume: 123 start-page: 1142 year: 1997 end-page: 1149 ident: bib0032 article-title: Estimating effective germicidal dose from medium pressure UV lamps publication-title: J. Environ. Eng. – volume: 12 year: 2022 ident: bib0007 article-title: A peek into pandora's box: COVID-19 and neurodegeneration publication-title: Brain Sci. – volume: 18 start-page: 1 year: 2022 end-page: 12 ident: bib0013 article-title: A comprehensive review of SARS-CoV-2 vaccines: Pfizer, Moderna & Johnson & Johnson publication-title: Hum. Vaccin. Immunother. – volume: 217 year: 2021 ident: bib0041 article-title: Assessment of saliva interference with UV-based disinfection technologies publication-title: J. Photochem. Photobiol. B – volume: 8 start-page: 1 year: 2018 end-page: 7 ident: bib0045 article-title: Far-UVC light: a new tool to control the spread of airborne-mediated microbial diseases publication-title: Sci. Rep. – volume: 84 start-page: 1 year: 2018 end-page: 11 ident: bib0020 article-title: UVC LED irradiation effectively inactivates aerosolized viruses publication-title: Appl. Environ. Microbiol. – volume: 11 start-page: 1 year: 2021 end-page: 7 ident: bib0035 article-title: UV-C irradiation is highly effective in inactivating SARS-CoV-2 replication publication-title: Sci. Rep. – volume: 49 start-page: 299 year: 2021 end-page: 301 ident: bib0039 article-title: Effectiveness of 222-nm ultraviolet light on disinfecting SARS-CoV-2 surface contamination publication-title: Am. J. Infect. Control – volume: 15 start-page: 1 year: 2018 end-page: 10 ident: bib0043 article-title: Physico-chemical characteristics of evaporating respiratory fluid droplets publication-title: J. R. Soc., Interface – volume: 10 start-page: 1 year: 2020 end-page: 8 ident: bib0038 article-title: Far-UVC light (222 nm) efficiently and safely inactivates airborne human coronaviruses publication-title: Sci. Rep. – volume: 67 start-page: 1955 year: 2021 end-page: 1958 ident: bib0040 article-title: Demonstration of antiviral activity of far-uvc microplasma lamp irradiation against sars-cov-2 publication-title: Clin. Lab. – year: 2021 ident: bib0029 article-title: SARS-CoV-2 disinfection in aqueous solution by UV222 from a krypton chlorine excilamp publication-title: MedRxiv – volume: 48 start-page: 22 year: 2022 ident: bib0008 article-title: The impact of the COVID-19 pandemic on lifestyle behaviors in children and adolescents: an international overview publication-title: Ital. J. Pediatr. – volume: 16 year: 2021 ident: bib0025 article-title: The impact of far-UVC radiation (200-230 nm) on pathogens, cells, skin, and eyes - a collection and analysis of a hundred years of data publication-title: GMS Hyg. Infect. Control – start-page: 2020 year: 2020 ident: bib0018 article-title: Development of a pulsed xenon ultraviolet disinfection device for real-time air disinfection in ambulances publication-title: J. Healthc. Eng. – reference: R.T. Robinson, N. Mahfooz, O. Rosas-Mejia, Y. Liu, N.M. Hull, SARS-CoV-2 disinfection in aqueous solution by UV<sub>222</sub> from a krypton chlorine excilamp, MedRxiv. (2021) 2021.02.19.21252101. – reference: E. Pretsch, P. (Philippe) Bühlmann, M. Badertscher, Structure determination of organic compounds : tables of spectral data, (2009) 433. – volume: 84 start-page: 1 year: 2018 end-page: 11 ident: bib0016 article-title: UVC LED irradiation effectively inactivates aerosolized viruses publication-title: Appl. Environ. Microbiol. – volume: 581 start-page: 465 year: 2020 end-page: 469 ident: bib0037 article-title: Virological assessment of hospitalized patients with COVID-2019 publication-title: Nature – reference: . Website Accessed in 01rs, April, 2022. (n.d.). – volume: 146 year: 2022 ident: bib0009 article-title: Interaction of SARS-CoV-2 with cardiomyocytes: insight into the underlying molecular mechanisms of cardiac injury and pharmacotherapy publication-title: Biomed. Pharmacother. – volume: 10 start-page: 65 year: 1963 end-page: 74 ident: bib0026 article-title: A practical combined method for computing the median lethal dose (LD50) publication-title: Acta Pharm. Sin. – volume: 89 start-page: 777 year: 2013 end-page: 781 ident: bib0019 article-title: Ultraviolet germicidal irradiation: future directions for air disinfection and building applications publication-title: Photochem. Photobiol. – volume: 32 start-page: 449 year: 2020 end-page: 461 ident: bib0017 article-title: Air bio-contamination control in hospital environment by UV-C rays and HEPA filters in HVAC systems publication-title: Annali DiIgiene – volume: 3 year: 2022 ident: bib0046 article-title: Therapeutics for COVID-19 and post COVID-19 complications: an update publication-title: Current Res. Pharmacol. Drug Discovery – volume: 88 start-page: 1590 year: 2022 end-page: 1597 ident: bib0010 article-title: Combination therapies for COVID-19: an overview of the clinical trials landscape publication-title: Br. J. Clin. Pharmacol. – volume: 11 start-page: 1 year: 2021 end-page: 7 ident: bib0036 article-title: UV-C irradiation is highly effective in inactivating SARS-CoV-2 replication publication-title: Sci. Rep. – volume: 227 year: 2022 ident: bib0031 article-title: Pulsed blue light, saliva and curcumin significantly inactivate human coronavirus publication-title: J. Photochem. Photobiol. B – volume: 29 start-page: 1243 year: 2022 end-page: 1253 ident: bib0006 article-title: Relationship between COVID-19 and movement disorders: a narrative review publication-title: Eur. J. Neurol. – volume: 36 start-page: 141 year: 2021 end-page: 144 ident: bib0028 article-title: On the calculation of TCID50 for quantitation of virus infectivity publication-title: Virol. Sin. – volume: 3 year: 2022 ident: bib0011 article-title: Therapeutics for COVID-19 and post COVID-19 complications: an update publication-title: Current Res. Pharmacol. Drug Discovery – volume: 15 start-page: 228 year: 2022 end-page: 240 ident: bib0012 article-title: The SARS-CoV-2 mutations versus vaccine effectiveness: new opportunities to new challenges publication-title: J. Infect. Public Health – volume: 16 start-page: 815 year: 2021 end-page: 830 ident: bib0004 article-title: A narrative review of coronavirus disease 2019 (COVID-19): clinical, epidemiological characteristics, and systemic manifestations publication-title: Internal Emergency Med. – reference: R.T. Robinson, N. Mahfooz, O. Rosas-Mejia, Y. Liu, N.M. Hull, SARS-CoV-2 disinfection in aqueous solution by UV222 from a krypton chlorine excilamp, MedRxiv. (2021). 10.1126/science.372.6548.1301-a. – volume: 11 start-page: 192 year: 1938 end-page: 216 ident: bib0027 article-title: The determination of the dose-the proportion responding curve from small numbers publication-title: Q. J. Pharma Pharmacol. – volume: 11 start-page: 1 year: 2020 end-page: 9 ident: bib0047 article-title: Genomic modeling as an approach to identify surrogates for use in experimental validation of SARS-CoV-2 and HuNoV inactivation by UV-C treatment publication-title: Front. Microbiol. – volume: 73 start-page: 1924 year: 2021 end-page: 1926 ident: bib0003 article-title: Airborne transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): what we know publication-title: Clin. Infect. Dis. – start-page: 25 year: 2020 ident: bib0030 article-title: Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR publication-title: Eurosurveillance – volume: 16 start-page: Doc07 year: 2021 ident: bib0021 article-title: The impact of far-UVC radiation (200-230 nm) on pathogens, cells, skin, and eyes - a collection and analysis of a hundred years of data publication-title: GMS Hyg. Infect. Control – volume: 49 start-page: 299 year: 2021 end-page: 301 ident: bib0023 article-title: Effectiveness of 222-nm ultraviolet light on disinfecting SARS-CoV-2 surface contamination publication-title: Am. J. Infect. Control – volume: 130 start-page: 31 year: 2018 end-page: 37 ident: bib0014 article-title: Inactivation kinetics and efficiencies of UV-LEDs against Pseudomonas aeruginosa, Legionella pneumophila, and surrogate microorganisms publication-title: Water Res. – volume: 10 start-page: 65 year: 1963 ident: 10.1016/j.pdpdt.2022.103015_bib0026 article-title: A practical combined method for computing the median lethal dose (LD50) publication-title: Acta Pharm. Sin. – volume: 29 start-page: 1243 year: 2022 ident: 10.1016/j.pdpdt.2022.103015_bib0006 article-title: Relationship between COVID-19 and movement disorders: a narrative review publication-title: Eur. J. Neurol. doi: 10.1111/ene.15217 – volume: 10 start-page: 3411 year: 2020 ident: 10.1016/j.pdpdt.2022.103015_bib0015 article-title: Inactivation of listeria and E. coli by Deep-UV LED: effect of substrate conditions on inactivation kinetics publication-title: Sci. Rep. doi: 10.1038/s41598-020-60459-8 – ident: 10.1016/j.pdpdt.2022.103015_bib0042 – volume: 3 year: 2022 ident: 10.1016/j.pdpdt.2022.103015_bib0011 article-title: Therapeutics for COVID-19 and post COVID-19 complications: an update publication-title: Current Res. Pharmacol. Drug Discovery doi: 10.1016/j.crphar.2022.100086 – volume: 130 start-page: 31 year: 2018 ident: 10.1016/j.pdpdt.2022.103015_bib0014 article-title: Inactivation kinetics and efficiencies of UV-LEDs against Pseudomonas aeruginosa, Legionella pneumophila, and surrogate microorganisms publication-title: Water Res. doi: 10.1016/j.watres.2017.11.047 – volume: 16 year: 2021 ident: 10.1016/j.pdpdt.2022.103015_bib0025 article-title: The impact of far-UVC radiation (200-230 nm) on pathogens, cells, skin, and eyes - a collection and analysis of a hundred years of data publication-title: GMS Hyg. Infect. Control – volume: 3 year: 2022 ident: 10.1016/j.pdpdt.2022.103015_bib0046 article-title: Therapeutics for COVID-19 and post COVID-19 complications: an update publication-title: Current Res. Pharmacol. Drug Discovery doi: 10.1016/j.crphar.2022.100086 – volume: 16 start-page: 815 year: 2021 ident: 10.1016/j.pdpdt.2022.103015_bib0004 article-title: A narrative review of coronavirus disease 2019 (COVID-19): clinical, epidemiological characteristics, and systemic manifestations publication-title: Internal Emergency Med. doi: 10.1007/s11739-020-02616-5 – volume: 227 year: 2022 ident: 10.1016/j.pdpdt.2022.103015_bib0031 article-title: Pulsed blue light, saliva and curcumin significantly inactivate human coronavirus publication-title: J. Photochem. Photobiol. B doi: 10.1016/j.jphotobiol.2021.112378 – volume: 217 year: 2021 ident: 10.1016/j.pdpdt.2022.103015_bib0041 article-title: Assessment of saliva interference with UV-based disinfection technologies publication-title: J. Photochem. Photobiol. B doi: 10.1016/j.jphotobiol.2021.112168 – volume: 15 start-page: 228 year: 2022 ident: 10.1016/j.pdpdt.2022.103015_bib0012 article-title: The SARS-CoV-2 mutations versus vaccine effectiveness: new opportunities to new challenges publication-title: J. Infect. Public Health doi: 10.1016/j.jiph.2021.12.014 – volume: 10 start-page: 105 year: 1997 ident: 10.1016/j.pdpdt.2022.103015_bib0044 article-title: The size distribution of droplets in the exhaled breath of healthy human subjects publication-title: J. Aerosol Med. doi: 10.1089/jam.1997.10.105 – volume: 73 start-page: 1924 year: 2021 ident: 10.1016/j.pdpdt.2022.103015_bib0003 article-title: Airborne transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): what we know publication-title: Clin. Infect. Dis. doi: 10.1093/cid/ciab039 – volume: 32 start-page: 449 year: 2020 ident: 10.1016/j.pdpdt.2022.103015_bib0017 article-title: Air bio-contamination control in hospital environment by UV-C rays and HEPA filters in HVAC systems publication-title: Annali DiIgiene – volume: 581 start-page: 465 year: 2020 ident: 10.1016/j.pdpdt.2022.103015_bib0037 article-title: Virological assessment of hospitalized patients with COVID-2019 publication-title: Nature doi: 10.1038/s41586-020-2196-x – start-page: 25 year: 2020 ident: 10.1016/j.pdpdt.2022.103015_bib0030 article-title: Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR publication-title: Eurosurveillance – ident: 10.1016/j.pdpdt.2022.103015_bib0033 doi: 10.1101/2021.02.19.21252101 – volume: 36 start-page: 141 year: 2021 ident: 10.1016/j.pdpdt.2022.103015_bib0028 article-title: On the calculation of TCID50 for quantitation of virus infectivity publication-title: Virol. Sin. doi: 10.1007/s12250-020-00230-5 – volume: 13 start-page: 1436 year: 2021 ident: 10.1016/j.pdpdt.2022.103015_bib0034 article-title: Virucidal efficacy of blue LED and far-UVC light disinfection against feline infectious peritonitis virus as a model for SARS-CoV-2 publication-title: Viruses doi: 10.3390/v13081436 – volume: 15 start-page: 1 year: 2018 ident: 10.1016/j.pdpdt.2022.103015_bib0043 article-title: Physico-chemical characteristics of evaporating respiratory fluid droplets publication-title: J. R. Soc., Interface doi: 10.1098/rsif.2017.0939 – volume: 88 start-page: 1590 year: 2022 ident: 10.1016/j.pdpdt.2022.103015_bib0010 article-title: Combination therapies for COVID-19: an overview of the clinical trials landscape publication-title: Br. J. Clin. Pharmacol. doi: 10.1111/bcp.15089 – volume: 11 start-page: 1 year: 2021 ident: 10.1016/j.pdpdt.2022.103015_bib0035 article-title: UV-C irradiation is highly effective in inactivating SARS-CoV-2 replication publication-title: Sci. Rep. doi: 10.1038/s41598-021-85425-w – volume: 8 start-page: 1 year: 2018 ident: 10.1016/j.pdpdt.2022.103015_bib0045 article-title: Far-UVC light: a new tool to control the spread of airborne-mediated microbial diseases publication-title: Sci. Rep. doi: 10.1038/s41598-018-21058-w – volume: 84 start-page: 1 year: 2018 ident: 10.1016/j.pdpdt.2022.103015_bib0016 article-title: UVC LED irradiation effectively inactivates aerosolized viruses publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00944-18 – volume: 67 start-page: 1955 year: 2021 ident: 10.1016/j.pdpdt.2022.103015_bib0024 article-title: Demonstration of antiviral activity of far-uvc microplasma lamp irradiation against sars-cov-2 publication-title: Clin. Lab. doi: 10.7754/Clin.Lab.2020.201140 – ident: 10.1016/j.pdpdt.2022.103015_bib0022 doi: 10.1101/2021.02.19.21252101 – volume: 49 start-page: 299 year: 2021 ident: 10.1016/j.pdpdt.2022.103015_bib0039 article-title: Effectiveness of 222-nm ultraviolet light on disinfecting SARS-CoV-2 surface contamination publication-title: Am. J. Infect. Control doi: 10.1016/j.ajic.2020.08.022 – volume: 16 start-page: 815 year: 2021 ident: 10.1016/j.pdpdt.2022.103015_bib0002 article-title: A narrative review of coronavirus disease 2019 (COVID-19): clinical, epidemiological characteristics, and systemic manifestations publication-title: Internal Emergency Med. doi: 10.1007/s11739-020-02616-5 – volume: 49 start-page: 299 year: 2021 ident: 10.1016/j.pdpdt.2022.103015_bib0023 article-title: Effectiveness of 222-nm ultraviolet light on disinfecting SARS-CoV-2 surface contamination publication-title: Am. J. Infect. Control doi: 10.1016/j.ajic.2020.08.022 – volume: 11 start-page: 192 year: 1938 ident: 10.1016/j.pdpdt.2022.103015_bib0027 article-title: The determination of the dose-the proportion responding curve from small numbers publication-title: Q. J. Pharma Pharmacol. – volume: 89 start-page: 777 year: 2013 ident: 10.1016/j.pdpdt.2022.103015_bib0019 article-title: Ultraviolet germicidal irradiation: future directions for air disinfection and building applications publication-title: Photochem. Photobiol. doi: 10.1111/php.12080 – year: 2021 ident: 10.1016/j.pdpdt.2022.103015_bib0029 article-title: SARS-CoV-2 disinfection in aqueous solution by UV222 from a krypton chlorine excilamp publication-title: MedRxiv – volume: 146 year: 2022 ident: 10.1016/j.pdpdt.2022.103015_bib0009 article-title: Interaction of SARS-CoV-2 with cardiomyocytes: insight into the underlying molecular mechanisms of cardiac injury and pharmacotherapy publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2021.112518 – start-page: 2020 year: 2020 ident: 10.1016/j.pdpdt.2022.103015_bib0018 article-title: Development of a pulsed xenon ultraviolet disinfection device for real-time air disinfection in ambulances publication-title: J. Healthc. Eng. – volume: 84 start-page: 1 year: 2018 ident: 10.1016/j.pdpdt.2022.103015_bib0020 article-title: UVC LED irradiation effectively inactivates aerosolized viruses publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00944-18 – volume: 11 start-page: 1 year: 2021 ident: 10.1016/j.pdpdt.2022.103015_bib0036 article-title: UV-C irradiation is highly effective in inactivating SARS-CoV-2 replication publication-title: Sci. Rep. doi: 10.1038/s41598-021-85425-w – volume: 67 start-page: 1955 year: 2021 ident: 10.1016/j.pdpdt.2022.103015_bib0040 article-title: Demonstration of antiviral activity of far-uvc microplasma lamp irradiation against sars-cov-2 publication-title: Clin. Lab. doi: 10.7754/Clin.Lab.2020.201140 – volume: 10 start-page: 1 year: 2020 ident: 10.1016/j.pdpdt.2022.103015_bib0038 article-title: Far-UVC light (222 nm) efficiently and safely inactivates airborne human coronaviruses publication-title: Sci. Rep. doi: 10.1038/s41598-020-67211-2 – ident: 10.1016/j.pdpdt.2022.103015_bib0005 – volume: 12 year: 2022 ident: 10.1016/j.pdpdt.2022.103015_bib0007 article-title: A peek into pandora's box: COVID-19 and neurodegeneration publication-title: Brain Sci. doi: 10.3390/brainsci12020190 – volume: 382 start-page: 727 year: 2020 ident: 10.1016/j.pdpdt.2022.103015_bib0001 article-title: A novel coronavirus from patients with pneumonia in China, 2019 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2001017 – volume: 123 start-page: 1142 year: 1997 ident: 10.1016/j.pdpdt.2022.103015_bib0032 article-title: Estimating effective germicidal dose from medium pressure UV lamps publication-title: J. Environ. Eng. doi: 10.1061/(ASCE)0733-9372(1997)123:11(1142) – volume: 18 start-page: 1 year: 2022 ident: 10.1016/j.pdpdt.2022.103015_bib0013 article-title: A comprehensive review of SARS-CoV-2 vaccines: Pfizer, Moderna & Johnson & Johnson publication-title: Hum. Vaccin. Immunother. doi: 10.1080/21645515.2021.2002083 – volume: 16 start-page: Doc07 year: 2021 ident: 10.1016/j.pdpdt.2022.103015_bib0021 article-title: The impact of far-UVC radiation (200-230 nm) on pathogens, cells, skin, and eyes - a collection and analysis of a hundred years of data publication-title: GMS Hyg. Infect. Control – volume: 48 start-page: 22 year: 2022 ident: 10.1016/j.pdpdt.2022.103015_bib0008 article-title: The impact of the COVID-19 pandemic on lifestyle behaviors in children and adolescents: an international overview publication-title: Ital. J. Pediatr. doi: 10.1186/s13052-022-01211-y – volume: 11 start-page: 1 year: 2020 ident: 10.1016/j.pdpdt.2022.103015_bib0047 article-title: Genomic modeling as an approach to identify surrogates for use in experimental validation of SARS-CoV-2 and HuNoV inactivation by UV-C treatment publication-title: Front. Microbiol. doi: 10.3389/fmicb.2020.572331 |
SSID | ssj0034904 |
Score | 2.393674 |
Snippet | •We tested 222 and 254 nm irradiation for inactivation of SARS-CoV-2.•254 nm was ∼200-fold more effective than 222 nm in saliva.•A 10.4 mJ/cm2 UV 254 nm dose... Ultraviolet (UV) light can inactivate SARS-CoV-2. However, the practicality of UV light is limited by the carcinogenic potential of mercury vapor-based UV... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 103015 |
SubjectTerms | 222 nm COVID-19 Disinfection Disinfection - methods Humans Krypton chlorine lamp Photochemotherapy - methods Saliva SARS-CoV-2 Ultraviolet Rays UV-C |
Title | UV 254 nm is more efficient than UV 222 nm in inactivating SARS-CoV-2 present in human saliva |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1572100022003015 https://dx.doi.org/10.1016/j.pdpdt.2022.103015 https://www.ncbi.nlm.nih.gov/pubmed/35843562 https://www.proquest.com/docview/2691465001 https://pubmed.ncbi.nlm.nih.gov/PMC9281457 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCba9NJLsVfX7FFowNZT1VQvNz4GwYpsA3pomqKXQpBkecuwOcaSXvfbR8p20GxDBwzwxTYJyyZFfrL4AHgbC-NDpko-LIXh2snAnfKKq8ydhgJnl_Ip2uIim8z0xxtzswXjLheGwipb29_Y9GSt2yuD9msO6vl8MBUGVy-pgEvC9WYbdiR6-2EPdkYfPk0uOoOsdJ66CBI9J4au-FAK86qLuqCYSikp__yU2uP-3UH9CUB_j6O855jOH8FeiyjZqBn0Y9iK1RN4d796MLtqSgewI3a5UZj7KdzOrhku3lj1nc2XjIJuWUxFJfBZjP6qMyKQMhFUeFAeBP3FrT6z6ehyyseLay5Z3SQxEUlq-seWjraYnsHs_P3VeMLbjgs8IPBacaW1dMEbp0SJuNFEiQAmSlVmrhTeD4NC0UU0EqUTvhAudybgAk4OA-23Ba32oVctqngAzMjgixBC7gMKIDjncXEis4CIQWifyz7I7jPb0L41dcX4Zru4s682ycaSbGwjmz4cr5nqphrHw-S6k5_tEk3RNFr0Fg-zZWu2DV38N-ObTkkszlLaenFVXNwtrcxydEkGMUEfnjdKs34BhRhQIQztw9mGOq0JqAL45p1q_iVVAkdtF9qcvfjfAb-EXTprYuZeQW_14y6-RpC18oewffJTHLZT6RdMcCUB |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-N7gFeEN90DDAS8ITVxR9Z81hVTN1XH9Z22guybMcZRZBGa_f_785JqhXQJk3KU3KnxDn7_LN99zuAzyHXzqey4P0i0VxZ4bmVTnKZ2j2f4-iSLkZbjNPRTB1d6IstGLa5MBRW2fj-2qdHb93c6TV_s1fN571JonH1EglcIq7Xj2BbUVHrDmwPDo9H49YhS5XFKoIkz0mhJR-KYV5VXuUUUykE5Z_vUXnc_09Q_wLQv-Mob01MB8_gaYMo2aD-6OewFcoX8OU2ezCb1tQB7Cs72yDmfgk_ZucMF2-s_MPmS0ZBtyxEUgl8F6NddUYCQkSBEi_Kg6Bd3PKSTQZnEz5cnHPBqjqJiURi0T-2tHTE9ApmB9-nwxFvKi5wj8BrxaVSwnqnrUwKxI06CAQwQcgitUXiXN9LNF1AJ1HYxOWJzaz2uIATfU_nbV7J19ApF2V4C0wL73LvfeY8GsBb63BxIlKPiCFRLhNdEO1vNr5pNVXF-G3auLNfJtrGkG1MbZsufFsrVTUbx93iqrWfaRNN0TUanC3uVkvXaht98X7FT20nMThK6ejFlmFxvTQizXBK0ogJuvCm7jTrBkjEgBJhaBf2N7rTWoAYwDeflPOfkQk8E_1E6f2dh37wR3g8mp6emJPD8fE7eEJP6vi5Xeisrq7DewRcK_ehGVA3Lz8m5w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=UV+254+nm+is+more+efficient+than+UV+222+nm+in+inactivating+SARS-CoV-2+present+in+human+saliva&rft.jtitle=Photodiagnosis+and+photodynamic+therapy&rft.au=Sesti-Costa%2C+Renata&rft.au=Negr%C3%A3o%2C+Cyro+von+Zuben&rft.au=Shimizu%2C+Jacqueline+Farinha&rft.au=Nagai%2C+Alice&rft.date=2022-09-01&rft.pub=Elsevier+B.V&rft.issn=1572-1000&rft.eissn=1873-1597&rft.volume=39&rft.spage=103015&rft.epage=103015&rft_id=info:doi/10.1016%2Fj.pdpdt.2022.103015&rft_id=info%3Apmid%2F35843562&rft.externalDocID=PMC9281457 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1572-1000&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1572-1000&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1572-1000&client=summon |