BCRgt: a Bayesian cluster regression-based genotyping algorithm for the samples with copy number alterations

Background Accurate genotype calling is a pre-requisite of a successful Genome-Wide Association Study (GWAS). Although most genotyping algorithms can achieve an accuracy rate greater than 99% for genotyping DNA samples without copy number alterations (CNAs), almost all of these algorithms are not de...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 15; no. 1; p. 74
Main Authors Yang, Shengping, Cui, Xiangqin, Fang, Zhide
Format Journal Article
LanguageEnglish
Published London BioMed Central 15.03.2014
BioMed Central Ltd
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1471-2105
1471-2105
DOI10.1186/1471-2105-15-74

Cover

Abstract Background Accurate genotype calling is a pre-requisite of a successful Genome-Wide Association Study (GWAS). Although most genotyping algorithms can achieve an accuracy rate greater than 99% for genotyping DNA samples without copy number alterations (CNAs), almost all of these algorithms are not designed for genotyping tumor samples that are known to have large regions of CNAs. Results This study aims to develop a statistical method that can accurately genotype tumor samples with CNAs. The proposed method adds a Bayesian layer to a cluster regression model and is termed a Bayesian Cluster Regression-based genotyping algorithm (BCRgt). We demonstrate that high concordance rates with HapMap calls can be achieved without using reference/training samples, when CNAs do not exist. By adding a training step, we have obtained higher genotyping concordance rates, without requiring large sample sizes. When CNAs exist in the samples, accuracy can be dramatically improved in regions with DNA copy loss and slightly improved in regions with copy number gain, comparing with the Bayesian Robust Linear Model with Mahalanobis distance classifier (BRLMM). Conclusions In conclusion, we have demonstrated that BCRgt can provide accurate genotyping calls for tumor samples with CNAs.
AbstractList Accurate genotype calling is a pre-requisite of a successful Genome-Wide Association Study (GWAS). Although most genotyping algorithms can achieve an accuracy rate greater than 99% for genotyping DNA samples without copy number alterations (CNAs), almost all of these algorithms are not designed for genotyping tumor samples that are known to have large regions of CNAs. This study aims to develop a statistical method that can accurately genotype tumor samples with CNAs. The proposed method adds a Bayesian layer to a cluster regression model and is termed a Bayesian Cluster Regression-based genotyping algorithm (BCRgt). We demonstrate that high concordance rates with HapMap calls can be achieved without using reference/training samples, when CNAs do not exist. By adding a training step, we have obtained higher genotyping concordance rates, without requiring large sample sizes. When CNAs exist in the samples, accuracy can be dramatically improved in regions with DNA copy loss and slightly improved in regions with copy number gain, comparing with the Bayesian Robust Linear Model with Mahalanobis distance classifier (BRLMM). In conclusion, we have demonstrated that BCRgt can provide accurate genotyping calls for tumor samples with CNAs.
Accurate genotype calling is a pre-requisite of a successful Genome-Wide Association Study (GWAS). Although most genotyping algorithms can achieve an accuracy rate greater than 99% for genotyping DNA samples without copy number alterations (CNAs), almost all of these algorithms are not designed for genotyping tumor samples that are known to have large regions of CNAs.BACKGROUNDAccurate genotype calling is a pre-requisite of a successful Genome-Wide Association Study (GWAS). Although most genotyping algorithms can achieve an accuracy rate greater than 99% for genotyping DNA samples without copy number alterations (CNAs), almost all of these algorithms are not designed for genotyping tumor samples that are known to have large regions of CNAs.This study aims to develop a statistical method that can accurately genotype tumor samples with CNAs. The proposed method adds a Bayesian layer to a cluster regression model and is termed a Bayesian Cluster Regression-based genotyping algorithm (BCRgt). We demonstrate that high concordance rates with HapMap calls can be achieved without using reference/training samples, when CNAs do not exist. By adding a training step, we have obtained higher genotyping concordance rates, without requiring large sample sizes. When CNAs exist in the samples, accuracy can be dramatically improved in regions with DNA copy loss and slightly improved in regions with copy number gain, comparing with the Bayesian Robust Linear Model with Mahalanobis distance classifier (BRLMM).RESULTSThis study aims to develop a statistical method that can accurately genotype tumor samples with CNAs. The proposed method adds a Bayesian layer to a cluster regression model and is termed a Bayesian Cluster Regression-based genotyping algorithm (BCRgt). We demonstrate that high concordance rates with HapMap calls can be achieved without using reference/training samples, when CNAs do not exist. By adding a training step, we have obtained higher genotyping concordance rates, without requiring large sample sizes. When CNAs exist in the samples, accuracy can be dramatically improved in regions with DNA copy loss and slightly improved in regions with copy number gain, comparing with the Bayesian Robust Linear Model with Mahalanobis distance classifier (BRLMM).In conclusion, we have demonstrated that BCRgt can provide accurate genotyping calls for tumor samples with CNAs.CONCLUSIONSIn conclusion, we have demonstrated that BCRgt can provide accurate genotyping calls for tumor samples with CNAs.
Background Accurate genotype calling is a pre-requisite of a successful Genome-Wide Association Study (GWAS). Although most genotyping algorithms can achieve an accuracy rate greater than 99% for genotyping DNA samples without copy number alterations (CNAs), almost all of these algorithms are not designed for genotyping tumor samples that are known to have large regions of CNAs. Results This study aims to develop a statistical method that can accurately genotype tumor samples with CNAs. The proposed method adds a Bayesian layer to a cluster regression model and is termed a Bayesian Cluster Regression-based genotyping algorithm (BCRgt). We demonstrate that high concordance rates with HapMap calls can be achieved without using reference/training samples, when CNAs do not exist. By adding a training step, we have obtained higher genotyping concordance rates, without requiring large sample sizes. When CNAs exist in the samples, accuracy can be dramatically improved in regions with DNA copy loss and slightly improved in regions with copy number gain, comparing with the Bayesian Robust Linear Model with Mahalanobis distance classifier (BRLMM). Conclusions In conclusion, we have demonstrated that BCRgt can provide accurate genotyping calls for tumor samples with CNAs.
Doc number: 74 Abstract Background: Accurate genotype calling is a pre-requisite of a successful Genome-Wide Association Study (GWAS). Although most genotyping algorithms can achieve an accuracy rate greater than 99% for genotyping DNA samples without copy number alterations (CNAs), almost all of these algorithms are not designed for genotyping tumor samples that are known to have large regions of CNAs. Results: This study aims to develop a statistical method that can accurately genotype tumor samples with CNAs. The proposed method adds a Bayesian layer to a cluster regression model and is termed a Bayesian Cluster Regression-based genotyping algorithm (BCRgt). We demonstrate that high concordance rates with HapMap calls can be achieved without using reference/training samples, when CNAs do not exist. By adding a training step, we have obtained higher genotyping concordance rates, without requiring large sample sizes. When CNAs exist in the samples, accuracy can be dramatically improved in regions with DNA copy loss and slightly improved in regions with copy number gain, comparing with the Bayesian Robust Linear Model with Mahalanobis distance classifier (BRLMM). Conclusions: In conclusion, we have demonstrated that BCRgt can provide accurate genotyping calls for tumor samples with CNAs.
Background: Accurate genotype calling is a pre-requisite of a successful Genome-Wide Association Study (GWAS). Although most genotyping algorithms can achieve an accuracy rate greater than 99% for genotyping DNA samples without copy number alterations (CNAs), almost all of these algorithms are not designed for genotyping tumor samples that are known to have large regions of CNAs. Results: This study aims to develop a statistical method that can accurately genotype tumor samples with CNAs. The proposed method adds a Bayesian layer to a cluster regression model and is termed a Bayesian Cluster Regression-based genotyping algorithm (BCRgt). We demonstrate that high concordance rates with HapMap calls can be achieved without using reference/training samples, when CNAs do not exist. By adding a training step, we have obtained higher genotyping concordance rates, without requiring large sample sizes. When CNAs exist in the samples, accuracy can be dramatically improved in regions with DNA copy loss and slightly improved in regions with copy number gain, comparing with the Bayesian Robust Linear Model with Mahalanobis distance classifier (BRLMM). Conclusions: In conclusion, we have demonstrated that BCRgt can provide accurate genotyping calls for tumor samples with CNAs.
Accurate genotype calling is a pre-requisite of a successful Genome-Wide Association Study (GWAS). Although most genotyping algorithms can achieve an accuracy rate greater than 99% for genotyping DNA samples without copy number alterations (CNAs), almost all of these algorithms are not designed for genotyping tumor samples that are known to have large regions of CNAs. This study aims to develop a statistical method that can accurately genotype tumor samples with CNAs. The proposed method adds a Bayesian layer to a cluster regression model and is termed a Bayesian Cluster Regression-based genotyping algorithm (BCRgt). We demonstrate that high concordance rates with HapMap calls can be achieved without using reference/training samples, when CNAs do not exist. By adding a training step, we have obtained higher genotyping concordance rates, without requiring large sample sizes. When CNAs exist in the samples, accuracy can be dramatically improved in regions with DNA copy loss and slightly improved in regions with copy number gain, comparing with the Bayesian Robust Linear Model with Mahalanobis distance classifier (BRLMM). In conclusion, we have demonstrated that BCRgt can provide accurate genotyping calls for tumor samples with CNAs.
Background Accurate genotype calling is a pre-requisite of a successful Genome-Wide Association Study (GWAS). Although most genotyping algorithms can achieve an accuracy rate greater than 99% for genotyping DNA samples without copy number alterations (CNAs), almost all of these algorithms are not designed for genotyping tumor samples that are known to have large regions of CNAs. Results This study aims to develop a statistical method that can accurately genotype tumor samples with CNAs. The proposed method adds a Bayesian layer to a cluster regression model and is termed a Bayesian Cluster Regression-based genotyping algorithm (BCRgt). We demonstrate that high concordance rates with HapMap calls can be achieved without using reference/training samples, when CNAs do not exist. By adding a training step, we have obtained higher genotyping concordance rates, without requiring large sample sizes. When CNAs exist in the samples, accuracy can be dramatically improved in regions with DNA copy loss and slightly improved in regions with copy number gain, comparing with the Bayesian Robust Linear Model with Mahalanobis distance classifier (BRLMM). Conclusions In conclusion, we have demonstrated that BCRgt can provide accurate genotyping calls for tumor samples with CNAs. Keywords: Bayesian cluster regression, Copy number alteration, Genotyping, SNP array
ArticleNumber 74
Audience Academic
Author Cui, Xiangqin
Fang, Zhide
Yang, Shengping
AuthorAffiliation 2 Department of Pathology, School of Medicine, Texas Tech University Health Science Center, Lubbock, Texas, USA
3 Department of Biostatistics, University of Alabama at Birmingham, 1665 University Blvd, Birmingham, AL 35294, USA
1 Biostatistics Program, School of Public Health, LSU Health Sciences Center, 2020 Gravier Street, New Orleans, LA 70115, USA
AuthorAffiliation_xml – name: 2 Department of Pathology, School of Medicine, Texas Tech University Health Science Center, Lubbock, Texas, USA
– name: 1 Biostatistics Program, School of Public Health, LSU Health Sciences Center, 2020 Gravier Street, New Orleans, LA 70115, USA
– name: 3 Department of Biostatistics, University of Alabama at Birmingham, 1665 University Blvd, Birmingham, AL 35294, USA
Author_xml – sequence: 1
  givenname: Shengping
  surname: Yang
  fullname: Yang, Shengping
  organization: Biostatistics Program, School of Public Health, LSU Health Sciences Center, Department of Pathology, School of Medicine, Texas Tech University Health Science Center
– sequence: 2
  givenname: Xiangqin
  surname: Cui
  fullname: Cui, Xiangqin
  organization: Department of Biostatistics, University of Alabama at Birmingham
– sequence: 3
  givenname: Zhide
  surname: Fang
  fullname: Fang, Zhide
  email: zfang@lsuhsc.edu
  organization: Biostatistics Program, School of Public Health, LSU Health Sciences Center
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24629125$$D View this record in MEDLINE/PubMed
BookMark eNqNks1v1DAQxSNURD_gzA1Z4gKHtLbjxBsOldpVgUqVkAqcLa8zybpy7GA7lP3v67BLu1sBqnyINfm9N6PnOcz2rLOQZa8JPiZkVp0QxklOCS5zUuacPcsO7it7W_f97DCEG4wJn-HyRbZPWUVrQsuDzJzPr7v4AUl0LlcQtLRImTFE8MhD5yEE7Wy-kAEa1IF1cTVo2yFpOud1XPaodR7FJaAg-8FAQLepipQbVsiO_SLZSJPMZEw24WX2vJUmwKvN9yj7_vHi2_xzfvXl0-X87CpXJSEsl22Noa14TbEqirZoCQYOtEpTMykLoholOZ81vCkU5rxlwLCqFCso8FlJ6uIow2vf0Q5ydSuNEYPXvfQrQbCYghNTNGKKRpBScJYkp2vJMC56aBTY6OWDzEktdv9YvRSd-ykYxsWM0mTwbmPg3Y8RQhS9DgqMkRbcGFIbyhhJHasnoATjmtJ6Qt8-Qm_c6G0Kb6J4xYqalw9UJw0IbVuXRlSTqTgri5pVhBQ8Ucd_odJpoNcq7VWrU31H8H5HkJgIv2InxxDE5dfrXfbNdn73wf3ZtAScrAHlXQge2ic8SflIoXT8vUhpbm3-o9u8fkgdbAd-K7N_SO4A0IsB1g
CitedBy_id crossref_primary_10_1038_s41598_022_24340_0
Cites_doi 10.1093/nar/gkp493
10.1111/j.2517-6161.1977.tb01600.x
10.1093/nar/gkm076
10.1093/bioinformatics/btn624
10.1093/bioinformatics/btr673
10.1186/1479-7364-5-4-304
10.1101/gr.6861907
10.1093/bioinformatics/bts683
10.1093/bioinformatics/btl536
10.1093/nar/gkr014
10.2307/3315963
10.1186/1471-2105-9-S9-S17
10.1038/ng.237
10.1214/aos/1176346788
10.1038/nature05690
10.1093/bioinformatics/bti741
10.1038/nature05911
10.1093/bioinformatics/bts180
10.1038/nature05329
10.1111/j.1541-0420.2005.00498.x
10.1093/biostatistics/kxh008
10.1182/blood-2010-04-279596
10.1186/gb-2010-11-9-r92
10.1186/1479-7364-1-4-287
10.1093/bioinformatics/btn386
10.1073/pnas.1009843107
10.1186/1471-2105-10-S1-S67
10.1093/bioinformatics/btq533
10.1093/biostatistics/kxl042
ContentType Journal Article
Copyright Yang et al.; licensee BioMed Central Ltd. 2014 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.
COPYRIGHT 2014 BioMed Central Ltd.
2014 Yang et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.
Copyright © 2014 Yang et al.; licensee BioMed Central Ltd. 2014 Yang et al.; licensee BioMed Central Ltd.
Copyright_xml – notice: Yang et al.; licensee BioMed Central Ltd. 2014 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.
– notice: COPYRIGHT 2014 BioMed Central Ltd.
– notice: 2014 Yang et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.
– notice: Copyright © 2014 Yang et al.; licensee BioMed Central Ltd. 2014 Yang et al.; licensee BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOI 10.1186/1471-2105-15-74
DatabaseName Springer Nature OA Free Journals (WRLC)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic


Publicly Available Content Database
Engineering Research Database
MEDLINE

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 74
ExternalDocumentID 10.1186/1471-2105-15-74
PMC4003822
3279612551
A539461137
24629125
10_1186_1471_2105_15_74
Genre Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: U54 GM104940
GroupedDBID ---
0R~
23N
2WC
4.4
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
M0N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
123
2VQ
ADTOC
AFFHD
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c5114-af90ef67920c33f3f10e7e262464aa31cdca778d7d3c077f4e40c6c432e785193
IEDL.DBID M48
ISSN 1471-2105
IngestDate Wed Oct 29 12:16:00 EDT 2025
Tue Sep 30 16:39:04 EDT 2025
Tue Oct 07 09:51:54 EDT 2025
Thu Oct 02 06:09:03 EDT 2025
Tue Oct 07 05:10:46 EDT 2025
Mon Oct 20 22:49:41 EDT 2025
Mon Oct 20 17:02:21 EDT 2025
Thu Oct 16 16:00:18 EDT 2025
Mon Jul 21 06:07:25 EDT 2025
Wed Oct 01 04:15:24 EDT 2025
Thu Apr 24 23:08:33 EDT 2025
Sat Sep 06 07:27:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Copy number alteration
SNP array
Genotyping
Bayesian cluster regression
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5114-af90ef67920c33f3f10e7e262464aa31cdca778d7d3c077f4e40c6c432e785193
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/1471-2105-15-74
PMID 24629125
PQID 1517643975
PQPubID 44065
PageCount 1
ParticipantIDs unpaywall_primary_10_1186_1471_2105_15_74
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4003822
proquest_miscellaneous_1524412106
proquest_miscellaneous_1510092296
proquest_journals_1517643975
gale_infotracmisc_A539461137
gale_infotracacademiconefile_A539461137
gale_incontextgauss_ISR_A539461137
pubmed_primary_24629125
crossref_primary_10_1186_1471_2105_15_74
crossref_citationtrail_10_1186_1471_2105_15_74
springer_journals_10_1186_1471_2105_15_74
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20140315
PublicationDateYYYYMMDD 2014-03-15
PublicationDate_xml – month: 3
  year: 2014
  text: 20140315
  day: 15
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2014
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
References J Rice (6827_CR23) 1984; 12
AP Dempster (6827_CR22) 1977; 39
MH Wright (6827_CR10) 2010; 26
C Yau (6827_CR30) 2010; 11
P Lamy (6827_CR1) 2011; 5
W Li (6827_CR6) 2009; 10
B Carvalho (6827_CR7) 2007; 8
P Van Loo (6827_CR17) 2010; 107
BA Walker (6827_CR26) 2010; 116
W Sun (6827_CR14) 2009; 37
A Li (6827_CR16) 2010; 39
G Li (6827_CR12) 2012; 28
Affymetrix (6827_CR3) 2006
CG Mullighan (6827_CR18) 2007; 446
N Rabbee (6827_CR2) 2006; 22
J Huang (6827_CR24) 2004; 1
E Giannoulatou (6827_CR11) 2008; 24
L Qin (6827_CR21) 2006; 62
S Yang (6827_CR27) 2013; 29
TS Shah (6827_CR13) 2012; 28
F Dominici (6827_CR20) 2000; 28
K Wang (6827_CR28) 2007; 17
Wellcome Trust Case Control Consortium (6827_CR9) 2007; 447
S Colella (6827_CR29) 2007; 35
S Pounds (6827_CR19) 2009; 25
H Hong (6827_CR25) 2008; 9
JM Korn (6827_CR5) 2008; 40
Affymetrix (6827_CR4) 2007
J Hua (6827_CR8) 2007; 23
R Redon (6827_CR31) 2006; 444
AB Olshen (6827_CR15) 2004; 5
17062589 - Bioinformatics. 2007 Jan 1;23(1):57-63
17341461 - Nucleic Acids Res. 2007;35(6):2013-25
17344859 - Nature. 2007 Apr 12;446(7137):758-64
21712191 - Hum Genomics. 2011 May;5(4):304-9
17189563 - Biostatistics. 2007 Apr;8(2):485-99
21398628 - Nucleic Acids Res. 2011 Jul;39(12):4928-41
17554300 - Nature. 2007 Jun 7;447(7145):661-78
20837533 - Proc Natl Acad Sci U S A. 2010 Sep 28;107(39):16910-5
22155947 - Bioinformatics. 2012 Feb 1;28(3):358-65
23196989 - Bioinformatics. 2013 Feb 1;29(3):299-307
16267090 - Bioinformatics. 2006 Jan 1;22(1):7-12
15588488 - Hum Genomics. 2004 May;1(4):287-99
15475419 - Biostatistics. 2004 Oct;5(4):557-72
19581427 - Nucleic Acids Res. 2009 Sep;37(16):5365-77
20616218 - Blood. 2010 Oct 14;116(15):e56-65
18653518 - Bioinformatics. 2008 Oct 1;24(19):2209-14
20926420 - Bioinformatics. 2010 Dec 1;26(23):2952-60
20858232 - Genome Biol. 2010;11(9):R92
16918917 - Biometrics. 2006 Jun;62(2):526-33
18776909 - Nat Genet. 2008 Oct;40(10):1253-60
17921354 - Genome Res. 2007 Nov;17(11):1665-74
18793462 - BMC Bioinformatics. 2008;9 Suppl 9:S17
17122850 - Nature. 2006 Nov 23;444(7118):444-54
19208171 - BMC Bioinformatics. 2009;10 Suppl 1:S67
22500001 - Bioinformatics. 2012 Jun 15;28(12):1598-603
19052058 - Bioinformatics. 2009 Feb 1;25(3):315-21
References_xml – volume: 37
  start-page: 5365
  issue: 16
  year: 2009
  ident: 6827_CR14
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkp493
– volume: 39
  start-page: 1
  issue: 1
  year: 1977
  ident: 6827_CR22
  publication-title: J R Stat Soc Ser B
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– volume-title: BRLMM: An Improved Genotype Calling Method for the GeneChip Human Mapping 500K Array Set. Technical Report, White Paper
  year: 2006
  ident: 6827_CR3
– volume: 35
  start-page: 2013
  issue: 6
  year: 2007
  ident: 6827_CR29
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkm076
– volume: 25
  start-page: 315
  issue: 3
  year: 2009
  ident: 6827_CR19
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn624
– volume-title: BRLMM-P: A Genotype Calling Method for the SNP 5.0 Array. Technical Report, White Paper
  year: 2007
  ident: 6827_CR4
– volume: 28
  start-page: 358
  issue: 3
  year: 2012
  ident: 6827_CR12
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr673
– volume: 5
  start-page: 304
  issue: 4
  year: 2011
  ident: 6827_CR1
  publication-title: Hum Genomics
  doi: 10.1186/1479-7364-5-4-304
– volume: 17
  start-page: 1665
  issue: 11
  year: 2007
  ident: 6827_CR28
  publication-title: Genome Res
  doi: 10.1101/gr.6861907
– volume: 29
  start-page: 299
  issue: 3
  year: 2013
  ident: 6827_CR27
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts683
– volume: 23
  start-page: 57
  issue: 1
  year: 2007
  ident: 6827_CR8
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl536
– volume: 39
  start-page: 4928
  issue: 12
  year: 2010
  ident: 6827_CR16
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr014
– volume: 28
  start-page: 533
  issue: 3
  year: 2000
  ident: 6827_CR20
  publication-title: Can J Stat
  doi: 10.2307/3315963
– volume: 9
  start-page: S17
  issue: Suppl 9
  year: 2008
  ident: 6827_CR25
  publication-title: BMC Bioinformatic
  doi: 10.1186/1471-2105-9-S9-S17
– volume: 40
  start-page: 1253
  issue: 10
  year: 2008
  ident: 6827_CR5
  publication-title: Nat Genet
  doi: 10.1038/ng.237
– volume: 12
  start-page: 1215
  issue: 4
  year: 1984
  ident: 6827_CR23
  publication-title: Annu Stat
  doi: 10.1214/aos/1176346788
– volume: 446
  start-page: 758
  issue: 7137
  year: 2007
  ident: 6827_CR18
  publication-title: Nature
  doi: 10.1038/nature05690
– volume: 22
  start-page: 7
  issue: 1
  year: 2006
  ident: 6827_CR2
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti741
– volume: 447
  start-page: 661
  year: 2007
  ident: 6827_CR9
  publication-title: Nature
  doi: 10.1038/nature05911
– volume: 28
  start-page: 1598
  issue: 12
  year: 2012
  ident: 6827_CR13
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts180
– volume: 444
  start-page: 445
  issue: 7118
  year: 2006
  ident: 6827_CR31
  publication-title: Nature
  doi: 10.1038/nature05329
– volume: 62
  start-page: 526
  issue: 2
  year: 2006
  ident: 6827_CR21
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2005.00498.x
– volume: 5
  start-page: 557
  issue: 4
  year: 2004
  ident: 6827_CR15
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxh008
– volume: 116
  start-page: e56
  issue: 15
  year: 2010
  ident: 6827_CR26
  publication-title: Blood
  doi: 10.1182/blood-2010-04-279596
– volume: 11
  start-page: R92
  issue: 9
  year: 2010
  ident: 6827_CR30
  publication-title: Genome Biol
  doi: 10.1186/gb-2010-11-9-r92
– volume: 1
  start-page: 287
  issue: 4
  year: 2004
  ident: 6827_CR24
  publication-title: Hum Genomics
  doi: 10.1186/1479-7364-1-4-287
– volume: 24
  start-page: 2209
  issue: 19
  year: 2008
  ident: 6827_CR11
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn386
– volume: 107
  start-page: 16910
  issue: 39
  year: 2010
  ident: 6827_CR17
  publication-title: PNAS
  doi: 10.1073/pnas.1009843107
– volume: 10
  start-page: S67
  issue: suppl 1
  year: 2009
  ident: 6827_CR6
  publication-title: BMC Bioinforma
  doi: 10.1186/1471-2105-10-S1-S67
– volume: 26
  start-page: 2952
  issue: 23
  year: 2010
  ident: 6827_CR10
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq533
– volume: 8
  start-page: 485
  issue: 2
  year: 2007
  ident: 6827_CR7
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxl042
– reference: 20858232 - Genome Biol. 2010;11(9):R92
– reference: 22500001 - Bioinformatics. 2012 Jun 15;28(12):1598-603
– reference: 17554300 - Nature. 2007 Jun 7;447(7145):661-78
– reference: 17341461 - Nucleic Acids Res. 2007;35(6):2013-25
– reference: 19208171 - BMC Bioinformatics. 2009;10 Suppl 1:S67
– reference: 20837533 - Proc Natl Acad Sci U S A. 2010 Sep 28;107(39):16910-5
– reference: 17344859 - Nature. 2007 Apr 12;446(7137):758-64
– reference: 17062589 - Bioinformatics. 2007 Jan 1;23(1):57-63
– reference: 21712191 - Hum Genomics. 2011 May;5(4):304-9
– reference: 18653518 - Bioinformatics. 2008 Oct 1;24(19):2209-14
– reference: 16918917 - Biometrics. 2006 Jun;62(2):526-33
– reference: 18776909 - Nat Genet. 2008 Oct;40(10):1253-60
– reference: 22155947 - Bioinformatics. 2012 Feb 1;28(3):358-65
– reference: 20616218 - Blood. 2010 Oct 14;116(15):e56-65
– reference: 19581427 - Nucleic Acids Res. 2009 Sep;37(16):5365-77
– reference: 20926420 - Bioinformatics. 2010 Dec 1;26(23):2952-60
– reference: 21398628 - Nucleic Acids Res. 2011 Jul;39(12):4928-41
– reference: 16267090 - Bioinformatics. 2006 Jan 1;22(1):7-12
– reference: 17122850 - Nature. 2006 Nov 23;444(7118):444-54
– reference: 18793462 - BMC Bioinformatics. 2008;9 Suppl 9:S17
– reference: 15475419 - Biostatistics. 2004 Oct;5(4):557-72
– reference: 19052058 - Bioinformatics. 2009 Feb 1;25(3):315-21
– reference: 17921354 - Genome Res. 2007 Nov;17(11):1665-74
– reference: 23196989 - Bioinformatics. 2013 Feb 1;29(3):299-307
– reference: 15588488 - Hum Genomics. 2004 May;1(4):287-99
– reference: 17189563 - Biostatistics. 2007 Apr;8(2):485-99
SSID ssj0017805
Score 2.1130342
Snippet Background Accurate genotype calling is a pre-requisite of a successful Genome-Wide Association Study (GWAS). Although most genotyping algorithms can achieve...
Accurate genotype calling is a pre-requisite of a successful Genome-Wide Association Study (GWAS). Although most genotyping algorithms can achieve an accuracy...
Background Accurate genotype calling is a pre-requisite of a successful Genome-Wide Association Study (GWAS). Although most genotyping algorithms can achieve...
Doc number: 74 Abstract Background: Accurate genotype calling is a pre-requisite of a successful Genome-Wide Association Study (GWAS). Although most genotyping...
Background: Accurate genotype calling is a pre-requisite of a successful Genome-Wide Association Study (GWAS). Although most genotyping algorithms can achieve...
SourceID unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 74
SubjectTerms Accuracy
Algorithms
Bayes Theorem
Bioinformatics
Biomedical and Life Sciences
Biomedical research
Chromosomes
Cluster Analysis
Comparative genomics
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Deoxyribonucleic acid
DNA
DNA Copy Number Variations - genetics
Genes
Genome-Wide Association Study
Genomes
Genotype
Genotype & phenotype
Genotyping Techniques - methods
Humans
Life Sciences
Microarrays
Neoplasms - genetics
Polymorphism, Single Nucleotide
Regression Analysis
Research Article
Software
Statistical methods
Studies
Training
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3daxQxEA_1iqgP4renVaII2ofYy2422RVE2tJSBQ85LfQtZPNxFda9s3eH3H_vzH55W2h9WFjIhN3NTDK_zUx-Q8gbC06W504wuGImgotZ5oJnKsgQOZHGPMetga9jeXIqvpwlZ1tk3J6FwbTKdk2sFmo3s7hHvgeeSVXeM_k0_82wahRGV9sSGqYpreA-VhRjN8h2hMxYA7J9cDT-NuniCsjg3xD88FTucViaGcgljCdMiZ5vurxCb7ioy-mTXQz1Drm1Kudm_ccUxYabOr5H7jb4ku7XBnGfbPnyAblZV5xcPyTFweFkuvxADT0wa48HKKktVkiWQC_8tM6JLRm6NkeRvnW5xvNU1BRTGIvl-S8KGJcCZqQLg7TCC4r7uNTO5mta1xahVfi93gZ8RE6Pj34cnrCm4AKzgLsEMyEb-SBVFo1sHIc48JFXPpKRkMKYmFtnjVKpUy62I6WC8GJkpRVx5FWKUPAxGZSz0j8l1EED9DfSCMBoechEgNs8zQGQBBVFQ_K-HWptGzZyLIpR6OqvJJUadaNRN5onWokhedd1mNdEHFeLvkbdaaS3KDF_ZmpWi4X-_H2i95M4E5LzWA3J20YozODB1jTHEeD1kRGrJ7nTk4T5Z_vNrYnoZv4v9D9rHZJXXTP2xJy20s9WlQwyXkWZvE4G4BdaMsg8qa2u-3rQSpQBPh0S1bPHTgCZw_st5c_zikFcYEAYlbDbWu7Gq181qLudaf9PAc-uH5Ln5DbAToGZfDzZIYPlxcq_AGi3zF828_UveKdK8w
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals (WRLC)
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fi9QwEA56Ip4P4m9XT4ki6D1EmyZNWt_uFo9T0IfTg3sLaZrsHfTaZbeL7H_vTNst28NTfCgUMmnTzKTzJTP5QshbB06W54VkcAkmQyFYVgTPdFAhLmQqeI5LA9--q-NT-fUsOetJknAvzHb8nqfqI4efJ4NpScJ4wrS8SW6Bh1JtVFZNh3ABEvP3vD1_qDRyOVd_vFue52pW5BAavUvurKq5Xf-yZbnlfY7uk3s9bKQHnZ4fkBu-ekhudwdJrh-R8nB6Mms-UUsP7drjvkjqyhVyINCFn3WprhVDj1VQZGVt1rhNitpyVi8umvNLCtCVAhSkS4tswUuKy7PU1fM17Y4MoW1UvVvde0xOjz7_nB6z_hwF5gBOSWZDFvmgdBZHToggAo-89rGKpZLWCu4KZ7VOC10IF2kdpJeRU06K2OsUEd4TslPVlX9GaAEFUN8qKwF65SGTAW7zNAecEXQcT8iHTVcb15OM41kXpWknG6kyqBuDujE8MVpOyPuhwrzj17he9A3qziBrRYVpMTO7Wi7Nlx8n5iARmVScCz0h73qhUMOLne13GUDzkehqJLk3koRh5cbFGxMx_bBeQju4biFcMiGvh2Ksialqla9XrQwSWcWZ-psMoCqkbgOZp53VDV8PWokzgJ0Tokf2OAggIfi4pLo4b4nBJcZ5UQn7G8vdavp1nbo_mPa_FPD8P577guwCtJSYrceTPbLTLFb-JcC3Jn_VDt3fvyY7fQ
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELZGJwQ88JutMJBBSLCHdHXi2Alv3cQ0kBhoUGl7ihzH7iqypGoTofLXc5ekUVMxEBIPlSL5s-rYPt8X--4zIa81OFkWJ9yBn-dwm3hOmFjjSCusm_DAYzFuDXw6FSdj_vHcP98in1e5MPGVjqd5IxqKQsWD9TT0tM5ywFsUzPxgltja6ANxwGCRdeDzxXeY70h-g2wLH8h5j2yPT7-MLqocowbRCPz8plbHN22u0GsuajN8sj1DvUNuldlMLX-oNF1zU8f3yGz1gnV0yvdBWcQD_XND-_E_9sB9crehtHRUz8EHZMtkD8nN-pLL5SOSHh6dTYp3VNFDtTSYs0l1WqI-A52bSR2GmznoTROKirHFElO4qEon-XxaXF5RaCIFmkoXCpWMFxS3jqnOZ0taX2dCqxP_eufxMRkfv_92dOI0dzw4Gqged5QNh8YKGbpD7XnWs2xopHGFywVXymM60UrKIJGJp4dSWm74UAvNPdfIANnnE9LL8szsEppAAdRXQnGghbENuYXHOIiBA1npun0yWI1upBsBdLyHI42qD6FARNiFEXZhxPxI8j5521aY1dof10Nf4XSJUFEjw5CdiSoXi-jD17No5HshF4x5sk_eNCCbwx9r1WRAQPNRhKuD3OsgweR1t3g1K6NmyVlAO5is6KXfJy_bYqyJYXSZycsKgyJbbij-hAHGh7JygNmpJ3r79jAqbgiUuE9kxwRaAIqVd0uy6WUlWs7xDBoHYX9lLGtNv65T91tr-tsAPP0H7DNyG2gvx0hC5u-RXjEvzXOglkX8olkufgGysnMc
  priority: 102
  providerName: Unpaywall
Title BCRgt: a Bayesian cluster regression-based genotyping algorithm for the samples with copy number alterations
URI https://link.springer.com/article/10.1186/1471-2105-15-74
https://www.ncbi.nlm.nih.gov/pubmed/24629125
https://www.proquest.com/docview/1517643975
https://www.proquest.com/docview/1510092296
https://www.proquest.com/docview/1524412106
https://pubmed.ncbi.nlm.nih.gov/PMC4003822
https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/1471-2105-15-74
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central Open Access Free
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ABDBF
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ADMLS
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RPM
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Complete (ProQuest Database)
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M48
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: AAJSJ
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: C6C
  dateStart: 20000112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfYJgQ8IL4pjMogJNhDRp04doKEUFutjEqrpo5K5SlyHLubFNLSD0H-e-6SNGunDSQemla5s-La59zP9vl3hLzV4GRZnHAHPp7DbeI5YWKNI62wbsIDj8W4NHAyEMcj3h_748t0QFUDLq6d2mE-qdE8Pfz9M_8MA_5TMeAD8YHBC9aBqYvvMN-RfIfsgZsKMY_DCb_cUkDy_orb55pCSArMhRsyzJm94aGuvqc3HNXVIMp6J_UeubPKZir_pdJ0w1n1HpD7Fcqk7dIsHpJbJntEbpd5J_PHJO10h5PlR6poR-UGj1FSna6QMoHOzaSMjM0cdHAJRRLXZY6nqqhKJ9P5xfL8BwWkSwE50oVCcuEFxdVcqqeznJYZRmixCV8uBj4ho97Rt-6xU6VdcDSgL-4oG7aMFTJ0W9rzrGdZy0jjCmgfrpTHdKKVlEEiE0-3pLTc8JYWmnuukQECwqdkN5tm5jmhCQigvBKKA1KLbcgt_IyDGGCJla7bIIfrpo50xUmOqTHSqJibBCLCboqwmyLmR5I3yPu6wKyk47hZ9Q32XYQkFxlG0UzUarGIvp4No7bvhVww5skGeVcp2Sk8WKvqUAJUH3mxtjT3tzRhFOpt8dpEorURQz2YLBCf3yCvazGWxMi2zExXhQ7yXrmh-JsOgDBkegOdZ6XV1f9-bbUNIrfssVZA_vBtSXZxXvCIc9wWxk44WFvuRtVvatSD2rT_1QEv_rtGL8ldwKUcQ_2Yv092l_OVeQXYbxk3yY4cS7gGvS9Nstdu98_68N05GpwO4W5XdJvFqkqzGPsgGQ1O29__AOaNXGU
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemITR4QHxTGGAQCPYQVsdO3CAhtA2mln08jE3qm3Ecu0MKaVlaTfmn-Bu5yxfNpI2nPUSq5LOS-s53P9vn3xHyxkCQZXEiPHi4J1zCvShx1pMudH4iBpzFuDVwcBgOT8S3cTBeIX-auzCYVtn4xNJRJ1ODe-SbEJlkGT2Dz7PfHlaNwtPVpoRGZRZ7tjiHJVv-afQF9PvW93e_Hu8MvbqqgGcAXAhPu6hvXSgjv284d9yxvpXWD30RCq05M4nRUg4SmXDTl9IJK_omNIL7FgvZI_kSuPwbgoMvgfkjx-0Cj2F9gJo-iA3CTQaO34MlVeCxwJOiE_ku-v-lAHgxObM9ob1N1hbZTBfnOk2XguDuXXKnRq90qzK3e2TFZvfJzaqeZfGApNs7R5P5R6rpti4sXs-kJl0gFQM9s5Mq4zbzMHAmFMlh5wXe1qI6ncBIz09_UUDQFBApzTWSFucUd4mpmc4KWlUuoeXhfrXJ-JCcXMvAPyKr2TSzTwhNoAH661ALQICxi4SDn_EgBrjjpO_3yIdmqJWpuc6x5EaqyjXPIFSoG4W6USxQUvTI-7bDrKL5uFz0NepOIXlGhtk5E73IczX6fqS2Ah6JkDEue-RdLeSm8GKj68sO8PnIt9WRXO9Iwuw23ebGRFTtXXL1by70yKu2GXtixlxmp4tSBvm0_Ci8SgbAHTLIgczjyurafw9a8SNAvz0iO_bYCiAvebcl-3la8pMLPG5GJWw0lrv06ZcN6kZr2v9TwNOrh-QlWRseH-yr_dHh3jNyCwCuwJxBFqyT1fnZwj4HEDmPX5Qzl5If1-0q_gJXO4Ao
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdgCAYPiM9RGGAQEuwhrI4dO-FtK1QbHxMam7Q3y3HsblJIqyYV6n_PXZJGzcRAPESK5HPi5M65X3zn3xHyxoKTZWkmAjh4IHzGgyTzLlBe-jATMWcpLg18O5IHp-LzWXTW5uaUq2z3VUiy2dOALE1FtTvLfDPFY7nL4JMawM9KFLAoUOI6uSHAtWEBg5EcdUEEpOtv2Xz-0KnniC5_jtf80eVcyS5geodsLoqZWf4yeb7mk8b3yN0WTNK9Rvv3yTVXPCA3m_KSy4ck3x8dT6oP1NB9s3S4W5LafIHMCHTuJk0CbBGgH8socrVWS9w8RU0-mc4vqvOfFAAtBYBIS4McwiXFRVtqp7MlbQqJ0DrW3qz5PSKn408no4Ogra4QWABZIjA-GTovVRIOLeeeezZ0yoUyFFIYw5nNrFEqzlTG7VApL5wYWmkFD52KEfc9JhvFtHBPCM2gAfobaQQAstQnwsNpGqeAPrwKwwF5v3rV2rbU41gBI9f1L0gsNepGo240i7QSA_Ku6zBrWDeuFn2NutPIZVFgsszELMpSH_441nsRT4RkjKsBedsK-Snc2Jp27wEMH-mvepLbPUmYbLbfvDIR3U72EsbBVA3sogF51TVjT0xgK9x0UcsgvVWYyL_JANZCQjeQ2Wqsrnt60EqYABgdENWzx04AacL7LcXFeU0XLjD6i0rYWVnu2tCveqk7nWn_SwFP_-O6L8mt7x_H-uvh0Zdn5DZgT4HpfCzaJhvVfOGeA76r0hf1LP4NWyZGsw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELZGJwQ88JutMJBBSLCHdHXi2Alv3cQ0kBhoUGl7ihzH7iqypGoTofLXc5ekUVMxEBIPlSL5s-rYPt8X--4zIa81OFkWJ9yBn-dwm3hOmFjjSCusm_DAYzFuDXw6FSdj_vHcP98in1e5MPGVjqd5IxqKQsWD9TT0tM5ywFsUzPxgltja6ANxwGCRdeDzxXeY70h-g2wLH8h5j2yPT7-MLqocowbRCPz8plbHN22u0GsuajN8sj1DvUNuldlMLX-oNF1zU8f3yGz1gnV0yvdBWcQD_XND-_E_9sB9crehtHRUz8EHZMtkD8nN-pLL5SOSHh6dTYp3VNFDtTSYs0l1WqI-A52bSR2GmznoTROKirHFElO4qEon-XxaXF5RaCIFmkoXCpWMFxS3jqnOZ0taX2dCqxP_eufxMRkfv_92dOI0dzw4Gqged5QNh8YKGbpD7XnWs2xopHGFywVXymM60UrKIJGJp4dSWm74UAvNPdfIANnnE9LL8szsEppAAdRXQnGghbENuYXHOIiBA1npun0yWI1upBsBdLyHI42qD6FARNiFEXZhxPxI8j5521aY1dof10Nf4XSJUFEjw5CdiSoXi-jD17No5HshF4x5sk_eNCCbwx9r1WRAQPNRhKuD3OsgweR1t3g1K6NmyVlAO5is6KXfJy_bYqyJYXSZycsKgyJbbij-hAHGh7JygNmpJ3r79jAqbgiUuE9kxwRaAIqVd0uy6WUlWs7xDBoHYX9lLGtNv65T91tr-tsAPP0H7DNyG2gvx0hC5u-RXjEvzXOglkX8olkufgGysnMc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BCRgt%3A+a+Bayesian+cluster+regression-based+genotyping+algorithm+for+the+samples+with+copy+number+alterations&rft.jtitle=BMC+bioinformatics&rft.au=Yang%2C+Shengping&rft.au=Cui%2C+Xiangqin&rft.au=Fang%2C+Zhide&rft.date=2014-03-15&rft.pub=BioMed+Central&rft.eissn=1471-2105&rft.volume=15&rft.spage=74&rft.epage=74&rft_id=info:doi/10.1186%2F1471-2105-15-74&rft_id=info%3Apmid%2F24629125&rft.externalDocID=PMC4003822
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon