BCRgt: a Bayesian cluster regression-based genotyping algorithm for the samples with copy number alterations
Background Accurate genotype calling is a pre-requisite of a successful Genome-Wide Association Study (GWAS). Although most genotyping algorithms can achieve an accuracy rate greater than 99% for genotyping DNA samples without copy number alterations (CNAs), almost all of these algorithms are not de...
Saved in:
| Published in | BMC bioinformatics Vol. 15; no. 1; p. 74 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
London
BioMed Central
15.03.2014
BioMed Central Ltd Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1471-2105 1471-2105 |
| DOI | 10.1186/1471-2105-15-74 |
Cover
| Abstract | Background
Accurate genotype calling is a pre-requisite of a successful Genome-Wide Association Study (GWAS). Although most genotyping algorithms can achieve an accuracy rate greater than 99% for genotyping DNA samples without copy number alterations (CNAs), almost all of these algorithms are not designed for genotyping tumor samples that are known to have large regions of CNAs.
Results
This study aims to develop a statistical method that can accurately genotype tumor samples with CNAs. The proposed method adds a Bayesian layer to a cluster regression model and is termed a Bayesian Cluster Regression-based genotyping algorithm (BCRgt). We demonstrate that high concordance rates with HapMap calls can be achieved without using reference/training samples, when CNAs do not exist. By adding a training step, we have obtained higher genotyping concordance rates, without requiring large sample sizes. When CNAs exist in the samples, accuracy can be dramatically improved in regions with DNA copy loss and slightly improved in regions with copy number gain, comparing with the Bayesian Robust Linear Model with Mahalanobis distance classifier (BRLMM).
Conclusions
In conclusion, we have demonstrated that BCRgt can provide accurate genotyping calls for tumor samples with CNAs. |
|---|---|
| AbstractList | Accurate genotype calling is a pre-requisite of a successful Genome-Wide Association Study (GWAS). Although most genotyping algorithms can achieve an accuracy rate greater than 99% for genotyping DNA samples without copy number alterations (CNAs), almost all of these algorithms are not designed for genotyping tumor samples that are known to have large regions of CNAs. This study aims to develop a statistical method that can accurately genotype tumor samples with CNAs. The proposed method adds a Bayesian layer to a cluster regression model and is termed a Bayesian Cluster Regression-based genotyping algorithm (BCRgt). We demonstrate that high concordance rates with HapMap calls can be achieved without using reference/training samples, when CNAs do not exist. By adding a training step, we have obtained higher genotyping concordance rates, without requiring large sample sizes. When CNAs exist in the samples, accuracy can be dramatically improved in regions with DNA copy loss and slightly improved in regions with copy number gain, comparing with the Bayesian Robust Linear Model with Mahalanobis distance classifier (BRLMM). In conclusion, we have demonstrated that BCRgt can provide accurate genotyping calls for tumor samples with CNAs. Accurate genotype calling is a pre-requisite of a successful Genome-Wide Association Study (GWAS). Although most genotyping algorithms can achieve an accuracy rate greater than 99% for genotyping DNA samples without copy number alterations (CNAs), almost all of these algorithms are not designed for genotyping tumor samples that are known to have large regions of CNAs.BACKGROUNDAccurate genotype calling is a pre-requisite of a successful Genome-Wide Association Study (GWAS). Although most genotyping algorithms can achieve an accuracy rate greater than 99% for genotyping DNA samples without copy number alterations (CNAs), almost all of these algorithms are not designed for genotyping tumor samples that are known to have large regions of CNAs.This study aims to develop a statistical method that can accurately genotype tumor samples with CNAs. The proposed method adds a Bayesian layer to a cluster regression model and is termed a Bayesian Cluster Regression-based genotyping algorithm (BCRgt). We demonstrate that high concordance rates with HapMap calls can be achieved without using reference/training samples, when CNAs do not exist. By adding a training step, we have obtained higher genotyping concordance rates, without requiring large sample sizes. When CNAs exist in the samples, accuracy can be dramatically improved in regions with DNA copy loss and slightly improved in regions with copy number gain, comparing with the Bayesian Robust Linear Model with Mahalanobis distance classifier (BRLMM).RESULTSThis study aims to develop a statistical method that can accurately genotype tumor samples with CNAs. The proposed method adds a Bayesian layer to a cluster regression model and is termed a Bayesian Cluster Regression-based genotyping algorithm (BCRgt). We demonstrate that high concordance rates with HapMap calls can be achieved without using reference/training samples, when CNAs do not exist. By adding a training step, we have obtained higher genotyping concordance rates, without requiring large sample sizes. When CNAs exist in the samples, accuracy can be dramatically improved in regions with DNA copy loss and slightly improved in regions with copy number gain, comparing with the Bayesian Robust Linear Model with Mahalanobis distance classifier (BRLMM).In conclusion, we have demonstrated that BCRgt can provide accurate genotyping calls for tumor samples with CNAs.CONCLUSIONSIn conclusion, we have demonstrated that BCRgt can provide accurate genotyping calls for tumor samples with CNAs. Background Accurate genotype calling is a pre-requisite of a successful Genome-Wide Association Study (GWAS). Although most genotyping algorithms can achieve an accuracy rate greater than 99% for genotyping DNA samples without copy number alterations (CNAs), almost all of these algorithms are not designed for genotyping tumor samples that are known to have large regions of CNAs. Results This study aims to develop a statistical method that can accurately genotype tumor samples with CNAs. The proposed method adds a Bayesian layer to a cluster regression model and is termed a Bayesian Cluster Regression-based genotyping algorithm (BCRgt). We demonstrate that high concordance rates with HapMap calls can be achieved without using reference/training samples, when CNAs do not exist. By adding a training step, we have obtained higher genotyping concordance rates, without requiring large sample sizes. When CNAs exist in the samples, accuracy can be dramatically improved in regions with DNA copy loss and slightly improved in regions with copy number gain, comparing with the Bayesian Robust Linear Model with Mahalanobis distance classifier (BRLMM). Conclusions In conclusion, we have demonstrated that BCRgt can provide accurate genotyping calls for tumor samples with CNAs. Doc number: 74 Abstract Background: Accurate genotype calling is a pre-requisite of a successful Genome-Wide Association Study (GWAS). Although most genotyping algorithms can achieve an accuracy rate greater than 99% for genotyping DNA samples without copy number alterations (CNAs), almost all of these algorithms are not designed for genotyping tumor samples that are known to have large regions of CNAs. Results: This study aims to develop a statistical method that can accurately genotype tumor samples with CNAs. The proposed method adds a Bayesian layer to a cluster regression model and is termed a Bayesian Cluster Regression-based genotyping algorithm (BCRgt). We demonstrate that high concordance rates with HapMap calls can be achieved without using reference/training samples, when CNAs do not exist. By adding a training step, we have obtained higher genotyping concordance rates, without requiring large sample sizes. When CNAs exist in the samples, accuracy can be dramatically improved in regions with DNA copy loss and slightly improved in regions with copy number gain, comparing with the Bayesian Robust Linear Model with Mahalanobis distance classifier (BRLMM). Conclusions: In conclusion, we have demonstrated that BCRgt can provide accurate genotyping calls for tumor samples with CNAs. Background: Accurate genotype calling is a pre-requisite of a successful Genome-Wide Association Study (GWAS). Although most genotyping algorithms can achieve an accuracy rate greater than 99% for genotyping DNA samples without copy number alterations (CNAs), almost all of these algorithms are not designed for genotyping tumor samples that are known to have large regions of CNAs. Results: This study aims to develop a statistical method that can accurately genotype tumor samples with CNAs. The proposed method adds a Bayesian layer to a cluster regression model and is termed a Bayesian Cluster Regression-based genotyping algorithm (BCRgt). We demonstrate that high concordance rates with HapMap calls can be achieved without using reference/training samples, when CNAs do not exist. By adding a training step, we have obtained higher genotyping concordance rates, without requiring large sample sizes. When CNAs exist in the samples, accuracy can be dramatically improved in regions with DNA copy loss and slightly improved in regions with copy number gain, comparing with the Bayesian Robust Linear Model with Mahalanobis distance classifier (BRLMM). Conclusions: In conclusion, we have demonstrated that BCRgt can provide accurate genotyping calls for tumor samples with CNAs. Accurate genotype calling is a pre-requisite of a successful Genome-Wide Association Study (GWAS). Although most genotyping algorithms can achieve an accuracy rate greater than 99% for genotyping DNA samples without copy number alterations (CNAs), almost all of these algorithms are not designed for genotyping tumor samples that are known to have large regions of CNAs. This study aims to develop a statistical method that can accurately genotype tumor samples with CNAs. The proposed method adds a Bayesian layer to a cluster regression model and is termed a Bayesian Cluster Regression-based genotyping algorithm (BCRgt). We demonstrate that high concordance rates with HapMap calls can be achieved without using reference/training samples, when CNAs do not exist. By adding a training step, we have obtained higher genotyping concordance rates, without requiring large sample sizes. When CNAs exist in the samples, accuracy can be dramatically improved in regions with DNA copy loss and slightly improved in regions with copy number gain, comparing with the Bayesian Robust Linear Model with Mahalanobis distance classifier (BRLMM). In conclusion, we have demonstrated that BCRgt can provide accurate genotyping calls for tumor samples with CNAs. Background Accurate genotype calling is a pre-requisite of a successful Genome-Wide Association Study (GWAS). Although most genotyping algorithms can achieve an accuracy rate greater than 99% for genotyping DNA samples without copy number alterations (CNAs), almost all of these algorithms are not designed for genotyping tumor samples that are known to have large regions of CNAs. Results This study aims to develop a statistical method that can accurately genotype tumor samples with CNAs. The proposed method adds a Bayesian layer to a cluster regression model and is termed a Bayesian Cluster Regression-based genotyping algorithm (BCRgt). We demonstrate that high concordance rates with HapMap calls can be achieved without using reference/training samples, when CNAs do not exist. By adding a training step, we have obtained higher genotyping concordance rates, without requiring large sample sizes. When CNAs exist in the samples, accuracy can be dramatically improved in regions with DNA copy loss and slightly improved in regions with copy number gain, comparing with the Bayesian Robust Linear Model with Mahalanobis distance classifier (BRLMM). Conclusions In conclusion, we have demonstrated that BCRgt can provide accurate genotyping calls for tumor samples with CNAs. Keywords: Bayesian cluster regression, Copy number alteration, Genotyping, SNP array |
| ArticleNumber | 74 |
| Audience | Academic |
| Author | Cui, Xiangqin Fang, Zhide Yang, Shengping |
| AuthorAffiliation | 2 Department of Pathology, School of Medicine, Texas Tech University Health Science Center, Lubbock, Texas, USA 3 Department of Biostatistics, University of Alabama at Birmingham, 1665 University Blvd, Birmingham, AL 35294, USA 1 Biostatistics Program, School of Public Health, LSU Health Sciences Center, 2020 Gravier Street, New Orleans, LA 70115, USA |
| AuthorAffiliation_xml | – name: 2 Department of Pathology, School of Medicine, Texas Tech University Health Science Center, Lubbock, Texas, USA – name: 1 Biostatistics Program, School of Public Health, LSU Health Sciences Center, 2020 Gravier Street, New Orleans, LA 70115, USA – name: 3 Department of Biostatistics, University of Alabama at Birmingham, 1665 University Blvd, Birmingham, AL 35294, USA |
| Author_xml | – sequence: 1 givenname: Shengping surname: Yang fullname: Yang, Shengping organization: Biostatistics Program, School of Public Health, LSU Health Sciences Center, Department of Pathology, School of Medicine, Texas Tech University Health Science Center – sequence: 2 givenname: Xiangqin surname: Cui fullname: Cui, Xiangqin organization: Department of Biostatistics, University of Alabama at Birmingham – sequence: 3 givenname: Zhide surname: Fang fullname: Fang, Zhide email: zfang@lsuhsc.edu organization: Biostatistics Program, School of Public Health, LSU Health Sciences Center |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24629125$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNks1v1DAQxSNURD_gzA1Z4gKHtLbjxBsOldpVgUqVkAqcLa8zybpy7GA7lP3v67BLu1sBqnyINfm9N6PnOcz2rLOQZa8JPiZkVp0QxklOCS5zUuacPcsO7it7W_f97DCEG4wJn-HyRbZPWUVrQsuDzJzPr7v4AUl0LlcQtLRImTFE8MhD5yEE7Wy-kAEa1IF1cTVo2yFpOud1XPaodR7FJaAg-8FAQLepipQbVsiO_SLZSJPMZEw24WX2vJUmwKvN9yj7_vHi2_xzfvXl0-X87CpXJSEsl22Noa14TbEqirZoCQYOtEpTMykLoholOZ81vCkU5rxlwLCqFCso8FlJ6uIow2vf0Q5ydSuNEYPXvfQrQbCYghNTNGKKRpBScJYkp2vJMC56aBTY6OWDzEktdv9YvRSd-ykYxsWM0mTwbmPg3Y8RQhS9DgqMkRbcGFIbyhhJHasnoATjmtJ6Qt8-Qm_c6G0Kb6J4xYqalw9UJw0IbVuXRlSTqTgri5pVhBQ8Ucd_odJpoNcq7VWrU31H8H5HkJgIv2InxxDE5dfrXfbNdn73wf3ZtAScrAHlXQge2ic8SflIoXT8vUhpbm3-o9u8fkgdbAd-K7N_SO4A0IsB1g |
| CitedBy_id | crossref_primary_10_1038_s41598_022_24340_0 |
| Cites_doi | 10.1093/nar/gkp493 10.1111/j.2517-6161.1977.tb01600.x 10.1093/nar/gkm076 10.1093/bioinformatics/btn624 10.1093/bioinformatics/btr673 10.1186/1479-7364-5-4-304 10.1101/gr.6861907 10.1093/bioinformatics/bts683 10.1093/bioinformatics/btl536 10.1093/nar/gkr014 10.2307/3315963 10.1186/1471-2105-9-S9-S17 10.1038/ng.237 10.1214/aos/1176346788 10.1038/nature05690 10.1093/bioinformatics/bti741 10.1038/nature05911 10.1093/bioinformatics/bts180 10.1038/nature05329 10.1111/j.1541-0420.2005.00498.x 10.1093/biostatistics/kxh008 10.1182/blood-2010-04-279596 10.1186/gb-2010-11-9-r92 10.1186/1479-7364-1-4-287 10.1093/bioinformatics/btn386 10.1073/pnas.1009843107 10.1186/1471-2105-10-S1-S67 10.1093/bioinformatics/btq533 10.1093/biostatistics/kxl042 |
| ContentType | Journal Article |
| Copyright | Yang et al.; licensee BioMed Central Ltd. 2014 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. COPYRIGHT 2014 BioMed Central Ltd. 2014 Yang et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. Copyright © 2014 Yang et al.; licensee BioMed Central Ltd. 2014 Yang et al.; licensee BioMed Central Ltd. |
| Copyright_xml | – notice: Yang et al.; licensee BioMed Central Ltd. 2014 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. – notice: COPYRIGHT 2014 BioMed Central Ltd. – notice: 2014 Yang et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. – notice: Copyright © 2014 Yang et al.; licensee BioMed Central Ltd. 2014 Yang et al.; licensee BioMed Central Ltd. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QO 7SC 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L7M LK8 L~C L~D M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY |
| DOI | 10.1186/1471-2105-15-74 |
| DatabaseName | Springer Nature OA Free Journals (WRLC) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Computer and Information Systems Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database ProQuest Health & Medical Collection Medical Database Biological Science Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database Engineering Research Database MEDLINE |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1471-2105 |
| EndPage | 74 |
| ExternalDocumentID | 10.1186/1471-2105-15-74 PMC4003822 3279612551 A539461137 24629125 10_1186_1471_2105_15_74 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: U54 GM104940 |
| GroupedDBID | --- 0R~ 23N 2WC 4.4 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO ICD IHR INH INR ISR ITC K6V K7- KQ8 LK8 M1P M48 M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB AAYXX CITATION ALIPV CGR CUY CVF ECM EIF NPM 3V. 7QO 7SC 7XB 8AL 8FD 8FK FR3 JQ2 K9. L7M L~C L~D M0N P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM 123 2VQ ADTOC AFFHD C1A IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c5114-af90ef67920c33f3f10e7e262464aa31cdca778d7d3c077f4e40c6c432e785193 |
| IEDL.DBID | M48 |
| ISSN | 1471-2105 |
| IngestDate | Wed Oct 29 12:16:00 EDT 2025 Tue Sep 30 16:39:04 EDT 2025 Tue Oct 07 09:51:54 EDT 2025 Thu Oct 02 06:09:03 EDT 2025 Tue Oct 07 05:10:46 EDT 2025 Mon Oct 20 22:49:41 EDT 2025 Mon Oct 20 17:02:21 EDT 2025 Thu Oct 16 16:00:18 EDT 2025 Mon Jul 21 06:07:25 EDT 2025 Wed Oct 01 04:15:24 EDT 2025 Thu Apr 24 23:08:33 EDT 2025 Sat Sep 06 07:27:11 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Copy number alteration SNP array Genotyping Bayesian cluster regression |
| Language | English |
| License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5114-af90ef67920c33f3f10e7e262464aa31cdca778d7d3c077f4e40c6c432e785193 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/1471-2105-15-74 |
| PMID | 24629125 |
| PQID | 1517643975 |
| PQPubID | 44065 |
| PageCount | 1 |
| ParticipantIDs | unpaywall_primary_10_1186_1471_2105_15_74 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4003822 proquest_miscellaneous_1524412106 proquest_miscellaneous_1510092296 proquest_journals_1517643975 gale_infotracmisc_A539461137 gale_infotracacademiconefile_A539461137 gale_incontextgauss_ISR_A539461137 pubmed_primary_24629125 crossref_primary_10_1186_1471_2105_15_74 crossref_citationtrail_10_1186_1471_2105_15_74 springer_journals_10_1186_1471_2105_15_74 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20140315 |
| PublicationDateYYYYMMDD | 2014-03-15 |
| PublicationDate_xml | – month: 3 year: 2014 text: 20140315 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | BMC bioinformatics |
| PublicationTitleAbbrev | BMC Bioinformatics |
| PublicationTitleAlternate | BMC Bioinformatics |
| PublicationYear | 2014 |
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V |
| References | J Rice (6827_CR23) 1984; 12 AP Dempster (6827_CR22) 1977; 39 MH Wright (6827_CR10) 2010; 26 C Yau (6827_CR30) 2010; 11 P Lamy (6827_CR1) 2011; 5 W Li (6827_CR6) 2009; 10 B Carvalho (6827_CR7) 2007; 8 P Van Loo (6827_CR17) 2010; 107 BA Walker (6827_CR26) 2010; 116 W Sun (6827_CR14) 2009; 37 A Li (6827_CR16) 2010; 39 G Li (6827_CR12) 2012; 28 Affymetrix (6827_CR3) 2006 CG Mullighan (6827_CR18) 2007; 446 N Rabbee (6827_CR2) 2006; 22 J Huang (6827_CR24) 2004; 1 E Giannoulatou (6827_CR11) 2008; 24 L Qin (6827_CR21) 2006; 62 S Yang (6827_CR27) 2013; 29 TS Shah (6827_CR13) 2012; 28 F Dominici (6827_CR20) 2000; 28 K Wang (6827_CR28) 2007; 17 Wellcome Trust Case Control Consortium (6827_CR9) 2007; 447 S Colella (6827_CR29) 2007; 35 S Pounds (6827_CR19) 2009; 25 H Hong (6827_CR25) 2008; 9 JM Korn (6827_CR5) 2008; 40 Affymetrix (6827_CR4) 2007 J Hua (6827_CR8) 2007; 23 R Redon (6827_CR31) 2006; 444 AB Olshen (6827_CR15) 2004; 5 17062589 - Bioinformatics. 2007 Jan 1;23(1):57-63 17341461 - Nucleic Acids Res. 2007;35(6):2013-25 17344859 - Nature. 2007 Apr 12;446(7137):758-64 21712191 - Hum Genomics. 2011 May;5(4):304-9 17189563 - Biostatistics. 2007 Apr;8(2):485-99 21398628 - Nucleic Acids Res. 2011 Jul;39(12):4928-41 17554300 - Nature. 2007 Jun 7;447(7145):661-78 20837533 - Proc Natl Acad Sci U S A. 2010 Sep 28;107(39):16910-5 22155947 - Bioinformatics. 2012 Feb 1;28(3):358-65 23196989 - Bioinformatics. 2013 Feb 1;29(3):299-307 16267090 - Bioinformatics. 2006 Jan 1;22(1):7-12 15588488 - Hum Genomics. 2004 May;1(4):287-99 15475419 - Biostatistics. 2004 Oct;5(4):557-72 19581427 - Nucleic Acids Res. 2009 Sep;37(16):5365-77 20616218 - Blood. 2010 Oct 14;116(15):e56-65 18653518 - Bioinformatics. 2008 Oct 1;24(19):2209-14 20926420 - Bioinformatics. 2010 Dec 1;26(23):2952-60 20858232 - Genome Biol. 2010;11(9):R92 16918917 - Biometrics. 2006 Jun;62(2):526-33 18776909 - Nat Genet. 2008 Oct;40(10):1253-60 17921354 - Genome Res. 2007 Nov;17(11):1665-74 18793462 - BMC Bioinformatics. 2008;9 Suppl 9:S17 17122850 - Nature. 2006 Nov 23;444(7118):444-54 19208171 - BMC Bioinformatics. 2009;10 Suppl 1:S67 22500001 - Bioinformatics. 2012 Jun 15;28(12):1598-603 19052058 - Bioinformatics. 2009 Feb 1;25(3):315-21 |
| References_xml | – volume: 37 start-page: 5365 issue: 16 year: 2009 ident: 6827_CR14 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkp493 – volume: 39 start-page: 1 issue: 1 year: 1977 ident: 6827_CR22 publication-title: J R Stat Soc Ser B doi: 10.1111/j.2517-6161.1977.tb01600.x – volume-title: BRLMM: An Improved Genotype Calling Method for the GeneChip Human Mapping 500K Array Set. Technical Report, White Paper year: 2006 ident: 6827_CR3 – volume: 35 start-page: 2013 issue: 6 year: 2007 ident: 6827_CR29 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkm076 – volume: 25 start-page: 315 issue: 3 year: 2009 ident: 6827_CR19 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn624 – volume-title: BRLMM-P: A Genotype Calling Method for the SNP 5.0 Array. Technical Report, White Paper year: 2007 ident: 6827_CR4 – volume: 28 start-page: 358 issue: 3 year: 2012 ident: 6827_CR12 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr673 – volume: 5 start-page: 304 issue: 4 year: 2011 ident: 6827_CR1 publication-title: Hum Genomics doi: 10.1186/1479-7364-5-4-304 – volume: 17 start-page: 1665 issue: 11 year: 2007 ident: 6827_CR28 publication-title: Genome Res doi: 10.1101/gr.6861907 – volume: 29 start-page: 299 issue: 3 year: 2013 ident: 6827_CR27 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts683 – volume: 23 start-page: 57 issue: 1 year: 2007 ident: 6827_CR8 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl536 – volume: 39 start-page: 4928 issue: 12 year: 2010 ident: 6827_CR16 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkr014 – volume: 28 start-page: 533 issue: 3 year: 2000 ident: 6827_CR20 publication-title: Can J Stat doi: 10.2307/3315963 – volume: 9 start-page: S17 issue: Suppl 9 year: 2008 ident: 6827_CR25 publication-title: BMC Bioinformatic doi: 10.1186/1471-2105-9-S9-S17 – volume: 40 start-page: 1253 issue: 10 year: 2008 ident: 6827_CR5 publication-title: Nat Genet doi: 10.1038/ng.237 – volume: 12 start-page: 1215 issue: 4 year: 1984 ident: 6827_CR23 publication-title: Annu Stat doi: 10.1214/aos/1176346788 – volume: 446 start-page: 758 issue: 7137 year: 2007 ident: 6827_CR18 publication-title: Nature doi: 10.1038/nature05690 – volume: 22 start-page: 7 issue: 1 year: 2006 ident: 6827_CR2 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti741 – volume: 447 start-page: 661 year: 2007 ident: 6827_CR9 publication-title: Nature doi: 10.1038/nature05911 – volume: 28 start-page: 1598 issue: 12 year: 2012 ident: 6827_CR13 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts180 – volume: 444 start-page: 445 issue: 7118 year: 2006 ident: 6827_CR31 publication-title: Nature doi: 10.1038/nature05329 – volume: 62 start-page: 526 issue: 2 year: 2006 ident: 6827_CR21 publication-title: Biometrics doi: 10.1111/j.1541-0420.2005.00498.x – volume: 5 start-page: 557 issue: 4 year: 2004 ident: 6827_CR15 publication-title: Biostatistics doi: 10.1093/biostatistics/kxh008 – volume: 116 start-page: e56 issue: 15 year: 2010 ident: 6827_CR26 publication-title: Blood doi: 10.1182/blood-2010-04-279596 – volume: 11 start-page: R92 issue: 9 year: 2010 ident: 6827_CR30 publication-title: Genome Biol doi: 10.1186/gb-2010-11-9-r92 – volume: 1 start-page: 287 issue: 4 year: 2004 ident: 6827_CR24 publication-title: Hum Genomics doi: 10.1186/1479-7364-1-4-287 – volume: 24 start-page: 2209 issue: 19 year: 2008 ident: 6827_CR11 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn386 – volume: 107 start-page: 16910 issue: 39 year: 2010 ident: 6827_CR17 publication-title: PNAS doi: 10.1073/pnas.1009843107 – volume: 10 start-page: S67 issue: suppl 1 year: 2009 ident: 6827_CR6 publication-title: BMC Bioinforma doi: 10.1186/1471-2105-10-S1-S67 – volume: 26 start-page: 2952 issue: 23 year: 2010 ident: 6827_CR10 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq533 – volume: 8 start-page: 485 issue: 2 year: 2007 ident: 6827_CR7 publication-title: Biostatistics doi: 10.1093/biostatistics/kxl042 – reference: 20858232 - Genome Biol. 2010;11(9):R92 – reference: 22500001 - Bioinformatics. 2012 Jun 15;28(12):1598-603 – reference: 17554300 - Nature. 2007 Jun 7;447(7145):661-78 – reference: 17341461 - Nucleic Acids Res. 2007;35(6):2013-25 – reference: 19208171 - BMC Bioinformatics. 2009;10 Suppl 1:S67 – reference: 20837533 - Proc Natl Acad Sci U S A. 2010 Sep 28;107(39):16910-5 – reference: 17344859 - Nature. 2007 Apr 12;446(7137):758-64 – reference: 17062589 - Bioinformatics. 2007 Jan 1;23(1):57-63 – reference: 21712191 - Hum Genomics. 2011 May;5(4):304-9 – reference: 18653518 - Bioinformatics. 2008 Oct 1;24(19):2209-14 – reference: 16918917 - Biometrics. 2006 Jun;62(2):526-33 – reference: 18776909 - Nat Genet. 2008 Oct;40(10):1253-60 – reference: 22155947 - Bioinformatics. 2012 Feb 1;28(3):358-65 – reference: 20616218 - Blood. 2010 Oct 14;116(15):e56-65 – reference: 19581427 - Nucleic Acids Res. 2009 Sep;37(16):5365-77 – reference: 20926420 - Bioinformatics. 2010 Dec 1;26(23):2952-60 – reference: 21398628 - Nucleic Acids Res. 2011 Jul;39(12):4928-41 – reference: 16267090 - Bioinformatics. 2006 Jan 1;22(1):7-12 – reference: 17122850 - Nature. 2006 Nov 23;444(7118):444-54 – reference: 18793462 - BMC Bioinformatics. 2008;9 Suppl 9:S17 – reference: 15475419 - Biostatistics. 2004 Oct;5(4):557-72 – reference: 19052058 - Bioinformatics. 2009 Feb 1;25(3):315-21 – reference: 17921354 - Genome Res. 2007 Nov;17(11):1665-74 – reference: 23196989 - Bioinformatics. 2013 Feb 1;29(3):299-307 – reference: 15588488 - Hum Genomics. 2004 May;1(4):287-99 – reference: 17189563 - Biostatistics. 2007 Apr;8(2):485-99 |
| SSID | ssj0017805 |
| Score | 2.1130342 |
| Snippet | Background
Accurate genotype calling is a pre-requisite of a successful Genome-Wide Association Study (GWAS). Although most genotyping algorithms can achieve... Accurate genotype calling is a pre-requisite of a successful Genome-Wide Association Study (GWAS). Although most genotyping algorithms can achieve an accuracy... Background Accurate genotype calling is a pre-requisite of a successful Genome-Wide Association Study (GWAS). Although most genotyping algorithms can achieve... Doc number: 74 Abstract Background: Accurate genotype calling is a pre-requisite of a successful Genome-Wide Association Study (GWAS). Although most genotyping... Background: Accurate genotype calling is a pre-requisite of a successful Genome-Wide Association Study (GWAS). Although most genotyping algorithms can achieve... |
| SourceID | unpaywall pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 74 |
| SubjectTerms | Accuracy Algorithms Bayes Theorem Bioinformatics Biomedical and Life Sciences Biomedical research Chromosomes Cluster Analysis Comparative genomics Computational Biology/Bioinformatics Computer Appl. in Life Sciences Deoxyribonucleic acid DNA DNA Copy Number Variations - genetics Genes Genome-Wide Association Study Genomes Genotype Genotype & phenotype Genotyping Techniques - methods Humans Life Sciences Microarrays Neoplasms - genetics Polymorphism, Single Nucleotide Regression Analysis Research Article Software Statistical methods Studies Training |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3daxQxEA_1iqgP4renVaII2ofYy2422RVE2tJSBQ85LfQtZPNxFda9s3eH3H_vzH55W2h9WFjIhN3NTDK_zUx-Q8gbC06W504wuGImgotZ5oJnKsgQOZHGPMetga9jeXIqvpwlZ1tk3J6FwbTKdk2sFmo3s7hHvgeeSVXeM_k0_82wahRGV9sSGqYpreA-VhRjN8h2hMxYA7J9cDT-NuniCsjg3xD88FTucViaGcgljCdMiZ5vurxCb7ioy-mTXQz1Drm1Kudm_ccUxYabOr5H7jb4ku7XBnGfbPnyAblZV5xcPyTFweFkuvxADT0wa48HKKktVkiWQC_8tM6JLRm6NkeRvnW5xvNU1BRTGIvl-S8KGJcCZqQLg7TCC4r7uNTO5mta1xahVfi93gZ8RE6Pj34cnrCm4AKzgLsEMyEb-SBVFo1sHIc48JFXPpKRkMKYmFtnjVKpUy62I6WC8GJkpRVx5FWKUPAxGZSz0j8l1EED9DfSCMBoechEgNs8zQGQBBVFQ_K-HWptGzZyLIpR6OqvJJUadaNRN5onWokhedd1mNdEHFeLvkbdaaS3KDF_ZmpWi4X-_H2i95M4E5LzWA3J20YozODB1jTHEeD1kRGrJ7nTk4T5Z_vNrYnoZv4v9D9rHZJXXTP2xJy20s9WlQwyXkWZvE4G4BdaMsg8qa2u-3rQSpQBPh0S1bPHTgCZw_st5c_zikFcYEAYlbDbWu7Gq181qLudaf9PAc-uH5Ln5DbAToGZfDzZIYPlxcq_AGi3zF828_UveKdK8w priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals (WRLC) dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fi9QwEA56Ip4P4m9XT4ki6D1EmyZNWt_uFo9T0IfTg3sLaZrsHfTaZbeL7H_vTNst28NTfCgUMmnTzKTzJTP5QshbB06W54VkcAkmQyFYVgTPdFAhLmQqeI5LA9--q-NT-fUsOetJknAvzHb8nqfqI4efJ4NpScJ4wrS8SW6Bh1JtVFZNh3ABEvP3vD1_qDRyOVd_vFue52pW5BAavUvurKq5Xf-yZbnlfY7uk3s9bKQHnZ4fkBu-ekhudwdJrh-R8nB6Mms-UUsP7drjvkjqyhVyINCFn3WprhVDj1VQZGVt1rhNitpyVi8umvNLCtCVAhSkS4tswUuKy7PU1fM17Y4MoW1UvVvde0xOjz7_nB6z_hwF5gBOSWZDFvmgdBZHToggAo-89rGKpZLWCu4KZ7VOC10IF2kdpJeRU06K2OsUEd4TslPVlX9GaAEFUN8qKwF65SGTAW7zNAecEXQcT8iHTVcb15OM41kXpWknG6kyqBuDujE8MVpOyPuhwrzj17he9A3qziBrRYVpMTO7Wi7Nlx8n5iARmVScCz0h73qhUMOLne13GUDzkehqJLk3koRh5cbFGxMx_bBeQju4biFcMiGvh2Ksialqla9XrQwSWcWZ-psMoCqkbgOZp53VDV8PWokzgJ0Tokf2OAggIfi4pLo4b4nBJcZ5UQn7G8vdavp1nbo_mPa_FPD8P577guwCtJSYrceTPbLTLFb-JcC3Jn_VDt3fvyY7fQ priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELZGJwQ88JutMJBBSLCHdHXi2Alv3cQ0kBhoUGl7ihzH7iqypGoTofLXc5ekUVMxEBIPlSL5s-rYPt8X--4zIa81OFkWJ9yBn-dwm3hOmFjjSCusm_DAYzFuDXw6FSdj_vHcP98in1e5MPGVjqd5IxqKQsWD9TT0tM5ywFsUzPxgltja6ANxwGCRdeDzxXeY70h-g2wLH8h5j2yPT7-MLqocowbRCPz8plbHN22u0GsuajN8sj1DvUNuldlMLX-oNF1zU8f3yGz1gnV0yvdBWcQD_XND-_E_9sB9crehtHRUz8EHZMtkD8nN-pLL5SOSHh6dTYp3VNFDtTSYs0l1WqI-A52bSR2GmznoTROKirHFElO4qEon-XxaXF5RaCIFmkoXCpWMFxS3jqnOZ0taX2dCqxP_eufxMRkfv_92dOI0dzw4Gqged5QNh8YKGbpD7XnWs2xopHGFywVXymM60UrKIJGJp4dSWm74UAvNPdfIANnnE9LL8szsEppAAdRXQnGghbENuYXHOIiBA1npun0yWI1upBsBdLyHI42qD6FARNiFEXZhxPxI8j5521aY1dof10Nf4XSJUFEjw5CdiSoXi-jD17No5HshF4x5sk_eNCCbwx9r1WRAQPNRhKuD3OsgweR1t3g1K6NmyVlAO5is6KXfJy_bYqyJYXSZycsKgyJbbij-hAHGh7JygNmpJ3r79jAqbgiUuE9kxwRaAIqVd0uy6WUlWs7xDBoHYX9lLGtNv65T91tr-tsAPP0H7DNyG2gvx0hC5u-RXjEvzXOglkX8olkufgGysnMc priority: 102 providerName: Unpaywall |
| Title | BCRgt: a Bayesian cluster regression-based genotyping algorithm for the samples with copy number alterations |
| URI | https://link.springer.com/article/10.1186/1471-2105-15-74 https://www.ncbi.nlm.nih.gov/pubmed/24629125 https://www.proquest.com/docview/1517643975 https://www.proquest.com/docview/1510092296 https://www.proquest.com/docview/1524412106 https://pubmed.ncbi.nlm.nih.gov/PMC4003822 https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/1471-2105-15-74 |
| UnpaywallVersion | publishedVersion |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central Open Access Free customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ABDBF dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ADMLS dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RPM dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Complete (ProQuest Database) customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 8FG dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1471-2105 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M48 dateStart: 20000701 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: AAJSJ dateStart: 20001201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: C6C dateStart: 20000112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfYJgQ8IL4pjMogJNhDRp04doKEUFutjEqrpo5K5SlyHLubFNLSD0H-e-6SNGunDSQemla5s-La59zP9vl3hLzV4GRZnHAHPp7DbeI5YWKNI62wbsIDj8W4NHAyEMcj3h_748t0QFUDLq6d2mE-qdE8Pfz9M_8MA_5TMeAD8YHBC9aBqYvvMN-RfIfsgZsKMY_DCb_cUkDy_orb55pCSArMhRsyzJm94aGuvqc3HNXVIMp6J_UeubPKZir_pdJ0w1n1HpD7Fcqk7dIsHpJbJntEbpd5J_PHJO10h5PlR6poR-UGj1FSna6QMoHOzaSMjM0cdHAJRRLXZY6nqqhKJ9P5xfL8BwWkSwE50oVCcuEFxdVcqqeznJYZRmixCV8uBj4ho97Rt-6xU6VdcDSgL-4oG7aMFTJ0W9rzrGdZy0jjCmgfrpTHdKKVlEEiE0-3pLTc8JYWmnuukQECwqdkN5tm5jmhCQigvBKKA1KLbcgt_IyDGGCJla7bIIfrpo50xUmOqTHSqJibBCLCboqwmyLmR5I3yPu6wKyk47hZ9Q32XYQkFxlG0UzUarGIvp4No7bvhVww5skGeVcp2Sk8WKvqUAJUH3mxtjT3tzRhFOpt8dpEorURQz2YLBCf3yCvazGWxMi2zExXhQ7yXrmh-JsOgDBkegOdZ6XV1f9-bbUNIrfssVZA_vBtSXZxXvCIc9wWxk44WFvuRtVvatSD2rT_1QEv_rtGL8ldwKUcQ_2Yv092l_OVeQXYbxk3yY4cS7gGvS9Nstdu98_68N05GpwO4W5XdJvFqkqzGPsgGQ1O29__AOaNXGU |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemITR4QHxTGGAQCPYQVsdO3CAhtA2mln08jE3qm3Ecu0MKaVlaTfmn-Bu5yxfNpI2nPUSq5LOS-s53P9vn3xHyxkCQZXEiPHi4J1zCvShx1pMudH4iBpzFuDVwcBgOT8S3cTBeIX-auzCYVtn4xNJRJ1ODe-SbEJlkGT2Dz7PfHlaNwtPVpoRGZRZ7tjiHJVv-afQF9PvW93e_Hu8MvbqqgGcAXAhPu6hvXSgjv284d9yxvpXWD30RCq05M4nRUg4SmXDTl9IJK_omNIL7FgvZI_kSuPwbgoMvgfkjx-0Cj2F9gJo-iA3CTQaO34MlVeCxwJOiE_ku-v-lAHgxObM9ob1N1hbZTBfnOk2XguDuXXKnRq90qzK3e2TFZvfJzaqeZfGApNs7R5P5R6rpti4sXs-kJl0gFQM9s5Mq4zbzMHAmFMlh5wXe1qI6ncBIz09_UUDQFBApzTWSFucUd4mpmc4KWlUuoeXhfrXJ-JCcXMvAPyKr2TSzTwhNoAH661ALQICxi4SDn_EgBrjjpO_3yIdmqJWpuc6x5EaqyjXPIFSoG4W6USxQUvTI-7bDrKL5uFz0NepOIXlGhtk5E73IczX6fqS2Ah6JkDEue-RdLeSm8GKj68sO8PnIt9WRXO9Iwuw23ebGRFTtXXL1by70yKu2GXtixlxmp4tSBvm0_Ci8SgbAHTLIgczjyurafw9a8SNAvz0iO_bYCiAvebcl-3la8pMLPG5GJWw0lrv06ZcN6kZr2v9TwNOrh-QlWRseH-yr_dHh3jNyCwCuwJxBFqyT1fnZwj4HEDmPX5Qzl5If1-0q_gJXO4Ao |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdgCAYPiM9RGGAQEuwhrI4dO-FtK1QbHxMam7Q3y3HsblJIqyYV6n_PXZJGzcRAPESK5HPi5M65X3zn3xHyxoKTZWkmAjh4IHzGgyTzLlBe-jATMWcpLg18O5IHp-LzWXTW5uaUq2z3VUiy2dOALE1FtTvLfDPFY7nL4JMawM9KFLAoUOI6uSHAtWEBg5EcdUEEpOtv2Xz-0KnniC5_jtf80eVcyS5geodsLoqZWf4yeb7mk8b3yN0WTNK9Rvv3yTVXPCA3m_KSy4ck3x8dT6oP1NB9s3S4W5LafIHMCHTuJk0CbBGgH8socrVWS9w8RU0-mc4vqvOfFAAtBYBIS4McwiXFRVtqp7MlbQqJ0DrW3qz5PSKn408no4Ogra4QWABZIjA-GTovVRIOLeeeezZ0yoUyFFIYw5nNrFEqzlTG7VApL5wYWmkFD52KEfc9JhvFtHBPCM2gAfobaQQAstQnwsNpGqeAPrwKwwF5v3rV2rbU41gBI9f1L0gsNepGo240i7QSA_Ku6zBrWDeuFn2NutPIZVFgsszELMpSH_441nsRT4RkjKsBedsK-Snc2Jp27wEMH-mvepLbPUmYbLbfvDIR3U72EsbBVA3sogF51TVjT0xgK9x0UcsgvVWYyL_JANZCQjeQ2Wqsrnt60EqYABgdENWzx04AacL7LcXFeU0XLjD6i0rYWVnu2tCveqk7nWn_SwFP_-O6L8mt7x_H-uvh0Zdn5DZgT4HpfCzaJhvVfOGeA76r0hf1LP4NWyZGsw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELZGJwQ88JutMJBBSLCHdHXi2Alv3cQ0kBhoUGl7ihzH7iqypGoTofLXc5ekUVMxEBIPlSL5s-rYPt8X--4zIa81OFkWJ9yBn-dwm3hOmFjjSCusm_DAYzFuDXw6FSdj_vHcP98in1e5MPGVjqd5IxqKQsWD9TT0tM5ywFsUzPxgltja6ANxwGCRdeDzxXeY70h-g2wLH8h5j2yPT7-MLqocowbRCPz8plbHN22u0GsuajN8sj1DvUNuldlMLX-oNF1zU8f3yGz1gnV0yvdBWcQD_XND-_E_9sB9crehtHRUz8EHZMtkD8nN-pLL5SOSHh6dTYp3VNFDtTSYs0l1WqI-A52bSR2GmznoTROKirHFElO4qEon-XxaXF5RaCIFmkoXCpWMFxS3jqnOZ0taX2dCqxP_eufxMRkfv_92dOI0dzw4Gqged5QNh8YKGbpD7XnWs2xopHGFywVXymM60UrKIJGJp4dSWm74UAvNPdfIANnnE9LL8szsEppAAdRXQnGghbENuYXHOIiBA1npun0yWI1upBsBdLyHI42qD6FARNiFEXZhxPxI8j5521aY1dof10Nf4XSJUFEjw5CdiSoXi-jD17No5HshF4x5sk_eNCCbwx9r1WRAQPNRhKuD3OsgweR1t3g1K6NmyVlAO5is6KXfJy_bYqyJYXSZycsKgyJbbij-hAHGh7JygNmpJ3r79jAqbgiUuE9kxwRaAIqVd0uy6WUlWs7xDBoHYX9lLGtNv65T91tr-tsAPP0H7DNyG2gvx0hC5u-RXjEvzXOglkX8olkufgGysnMc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BCRgt%3A+a+Bayesian+cluster+regression-based+genotyping+algorithm+for+the+samples+with+copy+number+alterations&rft.jtitle=BMC+bioinformatics&rft.au=Yang%2C+Shengping&rft.au=Cui%2C+Xiangqin&rft.au=Fang%2C+Zhide&rft.date=2014-03-15&rft.pub=BioMed+Central&rft.eissn=1471-2105&rft.volume=15&rft.spage=74&rft.epage=74&rft_id=info:doi/10.1186%2F1471-2105-15-74&rft_id=info%3Apmid%2F24629125&rft.externalDocID=PMC4003822 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |