Complexity of low-frequency blood oxygen level-dependent fluctuations covaries with local connectivity
Very low‐frequency blood oxygen level‐dependent (BOLD) fluctuations have emerged as a valuable tool for describing brain anatomy, neuropathology, and development. Such fluctuations exhibit power law frequency dynamics, with largest amplitude at lowest frequencies. The biophysical mechanisms generati...
Saved in:
| Published in | Human brain mapping Vol. 35; no. 4; pp. 1273 - 1283 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York, NY
Blackwell Publishing Ltd
01.04.2014
Wiley-Liss John Wiley & Sons, Inc John Wiley and Sons Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1065-9471 1097-0193 1097-0193 |
| DOI | 10.1002/hbm.22251 |
Cover
| Abstract | Very low‐frequency blood oxygen level‐dependent (BOLD) fluctuations have emerged as a valuable tool for describing brain anatomy, neuropathology, and development. Such fluctuations exhibit power law frequency dynamics, with largest amplitude at lowest frequencies. The biophysical mechanisms generating such fluctuations are poorly understood. Using publicly available data from 1,019 subjects of age 7–30, we show that BOLD fluctuations exhibit temporal complexity that is linearly related to local connectivity (regional homogeneity), consistently and significantly covarying across subjects and across gray matter regions. This relationship persisted independently of covariance with gray matter density or standard deviation of BOLD signal. During late neurodevelopment, BOLD fluctuations were unchanged with age in association cortex while becoming more random throughout the rest of the brain. These data suggest that local interconnectivity may play a key role in establishing the complexity of low‐frequency BOLD fluctuations underlying functional magnetic resonance imaging connectivity. Stable low‐frequency power dynamics may emerge through segmentation and integration of connectivity during development of distributed large‐scale brain networks. Hum Brain Mapp 35:1273–1283, 2014. © 2013 Wiley Periodicals, Inc. |
|---|---|
| AbstractList | Very low-frequency blood oxygen level-dependent (BOLD) fluctuations have emerged as a valuable tool for describing brain anatomy, neuropathology, and development. Such fluctuations exhibit power law frequency dynamics, with largest amplitude at lowest frequencies. The biophysical mechanisms generating such fluctuations are poorly understood. Using publicly available data from 1,019 subjects of age 7-30, we show that BOLD fluctuations exhibit temporal complexity that is linearly related to local connectivity (regional homogeneity), consistently and significantly covarying across subjects and across gray matter regions. This relationship persisted independently of covariance with gray matter density or standard deviation of BOLD signal. During late neurodevelopment, BOLD fluctuations were unchanged with age in association cortex while becoming more random throughout the rest of the brain. These data suggest that local interconnectivity may play a key role in establishing the complexity of low-frequency BOLD fluctuations underlying functional magnetic resonance imaging connectivity. Stable low-frequency power dynamics may emerge through segmentation and integration of connectivity during development of distributed large-scale brain networks.Very low-frequency blood oxygen level-dependent (BOLD) fluctuations have emerged as a valuable tool for describing brain anatomy, neuropathology, and development. Such fluctuations exhibit power law frequency dynamics, with largest amplitude at lowest frequencies. The biophysical mechanisms generating such fluctuations are poorly understood. Using publicly available data from 1,019 subjects of age 7-30, we show that BOLD fluctuations exhibit temporal complexity that is linearly related to local connectivity (regional homogeneity), consistently and significantly covarying across subjects and across gray matter regions. This relationship persisted independently of covariance with gray matter density or standard deviation of BOLD signal. During late neurodevelopment, BOLD fluctuations were unchanged with age in association cortex while becoming more random throughout the rest of the brain. These data suggest that local interconnectivity may play a key role in establishing the complexity of low-frequency BOLD fluctuations underlying functional magnetic resonance imaging connectivity. Stable low-frequency power dynamics may emerge through segmentation and integration of connectivity during development of distributed large-scale brain networks. Very low‐frequency blood oxygen level‐dependent (BOLD) fluctuations have emerged as a valuable tool for describing brain anatomy, neuropathology, and development. Such fluctuations exhibit power law frequency dynamics, with largest amplitude at lowest frequencies. The biophysical mechanisms generating such fluctuations are poorly understood. Using publicly available data from 1,019 subjects of age 7–30, we show that BOLD fluctuations exhibit temporal complexity that is linearly related to local connectivity (regional homogeneity), consistently and significantly covarying across subjects and across gray matter regions. This relationship persisted independently of covariance with gray matter density or standard deviation of BOLD signal. During late neurodevelopment, BOLD fluctuations were unchanged with age in association cortex while becoming more random throughout the rest of the brain. These data suggest that local interconnectivity may play a key role in establishing the complexity of low‐frequency BOLD fluctuations underlying functional magnetic resonance imaging connectivity. Stable low‐frequency power dynamics may emerge through segmentation and integration of connectivity during development of distributed large‐scale brain networks. Hum Brain Mapp 35:1273–1283, 2014 . © 2013 Wiley Periodicals, Inc. Very low-frequency blood oxygen level-dependent (BOLD) fluctuations have emerged as a valuable tool for describing brain anatomy, neuropathology, and development. Such fluctuations exhibit power law frequency dynamics, with largest amplitude at lowest frequencies. The biophysical mechanisms generating such fluctuations are poorly understood. Using publicly available data from 1,019 subjects of age 7-30, we show that BOLD fluctuations exhibit temporal complexity that is linearly related to local connectivity (regional homogeneity), consistently and significantly covarying across subjects and across gray matter regions. This relationship persisted independently of covariance with gray matter density or standard deviation of BOLD signal. During late neurodevelopment, BOLD fluctuations were unchanged with age in association cortex while becoming more random throughout the rest of the brain. These data suggest that local interconnectivity may play a key role in establishing the complexity of low-frequency BOLD fluctuations underlying functional magnetic resonance imaging connectivity. Stable low-frequency power dynamics may emerge through segmentation and integration of connectivity during development of distributed large-scale brain networks. Very low-frequency blood oxygen level-dependent (BOLD) fluctuations have emerged as a valuable tool for describing brain anatomy, neuropathology, and development. Such fluctuations exhibit power law frequency dynamics, with largest amplitude at lowest frequencies. The biophysical mechanisms generating such fluctuations are poorly understood. Using publicly available data from 1,019 subjects of age 7-30, we show that BOLD fluctuations exhibit temporal complexity that is linearly related to local connectivity (regional homogeneity), consistently and significantly covarying across subjects and across gray matter regions. This relationship persisted independently of covariance with gray matter density or standard deviation of BOLD signal. During late neurodevelopment, BOLD fluctuations were unchanged with age in association cortex while becoming more random throughout the rest of the brain. These data suggest that local interconnectivity may play a key role in establishing the complexity of low-frequency BOLD fluctuations underlying functional magnetic resonance imaging connectivity. Stable low-frequency power dynamics may emerge through segmentation and integration of connectivity during development of distributed large-scale brain networks. Hum Brain Mapp 35:1273-1283, 2014. © 2013 Wiley Periodicals, Inc. [PUBLICATION ABSTRACT] Very low‐frequency blood oxygen level‐dependent (BOLD) fluctuations have emerged as a valuable tool for describing brain anatomy, neuropathology, and development. Such fluctuations exhibit power law frequency dynamics, with largest amplitude at lowest frequencies. The biophysical mechanisms generating such fluctuations are poorly understood. Using publicly available data from 1,019 subjects of age 7–30, we show that BOLD fluctuations exhibit temporal complexity that is linearly related to local connectivity (regional homogeneity), consistently and significantly covarying across subjects and across gray matter regions. This relationship persisted independently of covariance with gray matter density or standard deviation of BOLD signal. During late neurodevelopment, BOLD fluctuations were unchanged with age in association cortex while becoming more random throughout the rest of the brain. These data suggest that local interconnectivity may play a key role in establishing the complexity of low‐frequency BOLD fluctuations underlying functional magnetic resonance imaging connectivity. Stable low‐frequency power dynamics may emerge through segmentation and integration of connectivity during development of distributed large‐scale brain networks. Hum Brain Mapp 35:1273–1283, 2014. © 2013 Wiley Periodicals, Inc. |
| Author | Zielinski, Brandon A. Nielsen, Jared A. Anderson, Jeffrey S. Ferguson, Michael A. |
| AuthorAffiliation | 3 The Brain Institute at the University of Utah, Salt Lake City, Utah 2 Program in Neuroscience, University of Utah, Salt Lake City, Utah 5 Departments of Pediatrics and Neurology, University of Utah, Salt Lake City, Utah 6 Division of Child Neurology, University of Utah, Salt Lake City, Utah 4 Department of Bioengineering, University of Utah, Salt Lake City, Utah 1 Division of Neuroradiology, University of Utah, Salt Lake City, Utah |
| AuthorAffiliation_xml | – name: 5 Departments of Pediatrics and Neurology, University of Utah, Salt Lake City, Utah – name: 6 Division of Child Neurology, University of Utah, Salt Lake City, Utah – name: 4 Department of Bioengineering, University of Utah, Salt Lake City, Utah – name: 3 The Brain Institute at the University of Utah, Salt Lake City, Utah – name: 2 Program in Neuroscience, University of Utah, Salt Lake City, Utah – name: 1 Division of Neuroradiology, University of Utah, Salt Lake City, Utah |
| Author_xml | – sequence: 1 givenname: Jeffrey S. surname: Anderson fullname: Anderson, Jeffrey S. email: andersonjeffs@gmail.com organization: Division of Neuroradiology, University of Utah, Salt Lake City, Utah – sequence: 2 givenname: Brandon A. surname: Zielinski fullname: Zielinski, Brandon A. organization: Departments of Pediatrics and Neurology, University of Utah, Salt Lake City, Utah – sequence: 3 givenname: Jared A. surname: Nielsen fullname: Nielsen, Jared A. organization: Program in Neuroscience, University of Utah, Salt Lake City, Utah – sequence: 4 givenname: Michael A. surname: Ferguson fullname: Ferguson, Michael A. organization: Department of Bioengineering, University of Utah, Salt Lake City, Utah |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28293547$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23417795$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kV1rFDEUhgep2A-98A_IgAgqTJtMkpnkpqCL2wqtgh_oXchkznRTs8mazOx2_r3Z7rbVol4lJM_7kvNkP9tx3kGWPcXoECNUHs2a-WFZlgw_yPYwEnWBsCA7633FCkFrvJvtx3iJEMYM4UfZbkkormvB9rJu4ucLC1emH3Pf5davii7AzwGcHvPGet_m_mq8AJdbWIItWliAa8H1eWcH3Q-qN97FXPulCgZivjL9LLVoZdOZc6B7s0zdj7OHnbIRnmzXg-zr9N2XyWlx9vHk_eTNWaEZxrgQiLYIcV13vKLAeSOgYqCoUE1JGt4i3WqRZtOibGmn26rimPJKUVW1ilFGDrLXm97BLdS4UtbKRTBzFUaJkVzLkkmWvJaV4OMNvBiaObQ6TRXUXcArI_-8cWYmL_xSUlSzkq8LXm4Lgk_KYi_nJmqwVjnwQ5TJtqCYlEQk9Pk99NIPwSUXa4pzxCpMEvXs9xfdPuXmvxLwYguomBx3QTlt4h3HS0EYrRN3tOF08DEG6KQ2_fVfpUGM_auMV_cS_xO3bV8ZC-O_QXn69vwmUWwSJvZwdZtQ4YesalIz-e3DiST0-_n00_SzFOQXwIDiEw |
| CitedBy_id | crossref_primary_10_1016_j_neubiorev_2017_10_007 crossref_primary_10_1016_j_nicl_2016_03_004 crossref_primary_10_1038_tp_2015_59 crossref_primary_10_1080_13554794_2017_1316410 crossref_primary_10_1002_brb3_2047 crossref_primary_10_1007_s00213_022_06268_5 crossref_primary_10_1186_s12883_015_0514_y crossref_primary_10_3389_fnhum_2021_739175 crossref_primary_10_3390_life13071587 crossref_primary_10_1155_2015_174371 crossref_primary_10_1007_s12035_016_0050_9 crossref_primary_10_1016_j_pscychresns_2020_111235 crossref_primary_10_1093_cercor_bhaa217 crossref_primary_10_1007_s00415_023_12060_y crossref_primary_10_1007_s11655_024_4205_7 crossref_primary_10_1016_j_neuroimage_2017_12_023 crossref_primary_10_1016_j_neuroscience_2023_07_032 crossref_primary_10_1016_j_neubiorev_2014_05_009 crossref_primary_10_1155_2015_141950 crossref_primary_10_1371_journal_pone_0144963 crossref_primary_10_1007_s11682_020_00271_0 crossref_primary_10_1002_hbm_22805 crossref_primary_10_1007_s11682_017_9678_y crossref_primary_10_1089_thy_2015_0452 crossref_primary_10_1038_s41598_019_45463_x crossref_primary_10_1371_journal_pone_0071275 |
| Cites_doi | 10.1111/j.1467-7687.2010.01020.x 10.1177/0269881111408966 10.1016/j.neuroimage.2004.07.012 10.1126/science.286.5439.509 10.3389/fnsys.2010.00021 10.1371/journal.pcbi.1000381 10.1073/pnas.1011616107 10.1103/PhysRevLett.68.2417 10.1016/j.neuroimage.2010.04.009 10.1016/j.neuroimage.2005.03.022 10.1002/hbm.20517 10.1016/j.neuroimage.2003.12.030 10.1016/j.brainres.2009.12.081 10.1016/j.neuron.2010.08.017 10.1371/journal.pone.0006626 10.1016/0165-0270(94)00115-W 10.1073/pnas.0911855107 10.3389/fphys.2012.00186 10.1016/j.neuroimage.2012.02.060 10.1016/S1053-8119(03)00380-X 10.1016/j.biopsych.2010.06.027 10.1016/j.neuroimage.2006.11.042 10.1017/S0033291700027926 10.1016/j.neuroimage.2004.10.044 10.1016/j.neuroimage.2011.10.018 10.1126/science.1194144 10.1006/nimg.1997.0263 10.1006/nimg.2001.0931 10.1191/0962280203sm339ra 10.1002/hbm.20590 10.1002/hbm.20593 10.1523/JNEUROSCI.23-35-11167.2003 10.1016/j.dcn.2010.10.001 10.1002/mrm.1910340409 10.1007/s11065-010-9145-7 10.1089/brain.2011.0007 10.1371/journal.pcbi.1000519 10.1371/journal.pcbi.1000314 10.1523/JNEUROSCI.2111-11.2011 10.1073/pnas.0800376105 10.1016/j.neuroimage.2008.09.036 10.1016/j.braindev.2006.07.002 10.1073/pnas.0705843104 10.1016/j.neuroimage.2009.09.037 10.1016/j.jneumeth.2005.09.020 10.1038/nrn2201 10.1016/j.neuroimage.2009.05.032 10.3174/ajnr.A1220 10.1002/hbm.21079 10.1523/JNEUROSCI.0540-04.2004 10.1016/j.neuroimage.2011.10.062 10.1371/journal.pbio.1000157 10.1093/brain/awr263 |
| ContentType | Journal Article |
| Copyright | Copyright © 2013 Wiley Periodicals, Inc. 2015 INIST-CNRS |
| Copyright_xml | – notice: Copyright © 2013 Wiley Periodicals, Inc. – notice: 2015 INIST-CNRS |
| DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM ADTOC UNPAY |
| DOI | 10.1002/hbm.22251 |
| DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE Technology Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Anatomy & Physiology |
| DocumentTitleAlternate | Complexity and Local Connectivity |
| EISSN | 1097-0193 |
| EndPage | 1283 |
| ExternalDocumentID | oai:pubmedcentral.nih.gov:4075281 PMC4075281 3251401421 23417795 28293547 10_1002_hbm_22251 HBM22251 ark_67375_WNG_34XMFRFS_9 |
| Genre | article Multicenter Study Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: National Institute of Health funderid: K08MH092697; T32DC008553 – fundername: Primary Children's Foundation Early Career Development Award – fundername: Ben B. and Iris M. Margolis Foundation – fundername: NIMH NIH HHS grantid: K08MH092697 – fundername: NIDCD NIH HHS grantid: T32 DC008553 – fundername: NIDCD NIH HHS grantid: T32DC008553 – fundername: NIMH NIH HHS grantid: K08 MH092697 – fundername: NIMH NIH HHS grantid: K08 MH100609 – fundername: National Institute of Health grantid: K08MH092697; T32DC008553 |
| GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 8FI 8FJ 8UM 930 A03 AAESR AAEVG AAFWJ AAMMB AANHP AAONW AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABPVW ABUWG ACBWZ ACCMX ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXQS ACYXJ ADBBV ADEOM ADIZJ ADMGS ADNMO ADPDF ADXAS AEFGJ AEIMD AENEX AFBPY AFGKR AFKRA AFPKN AFRAH AFZJQ AGQPQ AGXDD AHMBA AIDQK AIDYY AIQQE AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CCPQU CS3 D-E D-F DCZOG DPXWK DR1 DR2 DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FYUFA G-S G.N GAKWD GNP GODZA GROUPED_DOAJ H.T H.X HBH HF~ HHY HHZ HMCUK HVGLF HZ~ IAO IHR ITC IX1 J0M JPC KQQ L7B LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P4D PALCI PHGZM PHGZT PIMPY PQQKQ PUEGO Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RPM RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 UKHRP V2E W8V W99 WBKPD WIB WIH WIK WIN WJL WNSPC WOHZO WQJ WXSBR WYISQ XG1 XSW XV2 ZZTAW ~IA ~WT 33P AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE ALIPV C45 RWD RWI WRC WUP AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c5111-904d008c7f864e88b9e65ea49ab23b8d0cdc9193c92d4fcd6681486a4a6da5453 |
| IEDL.DBID | UNPAY |
| ISSN | 1065-9471 1097-0193 |
| IngestDate | Sun Oct 26 04:14:56 EDT 2025 Tue Sep 30 16:41:29 EDT 2025 Thu Oct 02 11:20:29 EDT 2025 Tue Oct 07 06:06:19 EDT 2025 Thu Apr 03 07:03:49 EDT 2025 Wed Apr 02 07:24:03 EDT 2025 Wed Oct 01 05:04:37 EDT 2025 Thu Apr 24 22:57:22 EDT 2025 Wed Jan 22 16:46:47 EST 2025 Sun Sep 21 06:20:37 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Chaos brain development chaos theory Fluctuations Oxygen Nervous system diseases Radiodiagnosis Theory Memory Central nervous system 1/f avalanche dynamics fcMRI resting state fMRI Low frequency Nuclear magnetic resonance imaging Complexity Encephalon power law fMRI long memory regional homogeneity complexity |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 Copyright © 2013 Wiley Periodicals, Inc. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5111-904d008c7f864e88b9e65ea49ab23b8d0cdc9193c92d4fcd6681486a4a6da5453 |
| Notes | ark:/67375/WNG-34XMFRFS-9 istex:80F0362CBD7F20D261B4CCB1D1521256DF293F59 Ben B. and Iris M. Margolis Foundation ArticleID:HBM22251 Primary Children's Foundation Early Career Development Award National Institute of Health - No. K08MH092697; No. T32DC008553 http://fcon_1000.projects.nitrc.org/ The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Mental Health or other funding institutions. Investigators and funding sources who contributed to the 1000 Functional Connectome Dataset and ADHD 200 Dataset are available at . ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Mental Health or other funding institutions. Investigators and funding sources who contributed to the 1000 Functional Connectome Dataset and ADHD 200 Dataset are available at http://fcon_1000.projects.nitrc.org/. |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/4075281 |
| PMID | 23417795 |
| PQID | 1508805613 |
| PQPubID | 996345 |
| PageCount | 11 |
| ParticipantIDs | unpaywall_primary_10_1002_hbm_22251 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4075281 proquest_miscellaneous_1509413239 proquest_journals_1508805613 pubmed_primary_23417795 pascalfrancis_primary_28293547 crossref_citationtrail_10_1002_hbm_22251 crossref_primary_10_1002_hbm_22251 wiley_primary_10_1002_hbm_22251_HBM22251 istex_primary_ark_67375_WNG_34XMFRFS_9 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | April 2014 |
| PublicationDateYYYYMMDD | 2014-04-01 |
| PublicationDate_xml | – month: 04 year: 2014 text: April 2014 |
| PublicationDecade | 2010 |
| PublicationPlace | New York, NY |
| PublicationPlace_xml | – name: New York, NY – name: United States – name: San Antonio – name: Hoboken |
| PublicationTitle | Human brain mapping |
| PublicationTitleAlternate | Hum. Brain Mapp |
| PublicationYear | 2014 |
| Publisher | Blackwell Publishing Ltd Wiley-Liss John Wiley & Sons, Inc John Wiley and Sons Inc |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley-Liss – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc |
| References | Anderson JS (2008): Origin of synchronized low-frequency blood oxygen level-dependent fluctuations in the primary visual cortex. AJNR Am J Neuroradiol 29:1722-1729. Barabasi AL, Albert R (1999): Emergence of scaling in random networks. Science 286:509-512. El Boustani S, Marre O, Behuret S, Baudot P, Yger P, Bal T, Destexhe A, Fregnac Y (2009): Network-state modulation of power-law frequency-scaling in visual cortical neurons. PLoS Comput Biol 5:e1000519. Fox MD, Greicius M (2010): Clinical applications of resting state functional connectivity. Front Syst Neurosci 4:1-13. Fox MD, Raichle ME (2007): Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8:700-711. Murphy K, Birn RM, Handwerker DA, Jones TB, Bandettini PA (2009): The impact of global signal regression on resting state correlations: Are anti-correlated networks introduced?Neuroimage 44:893-905. Woolrich MW, Ripley BD, Brady M, Smith SM (2001): Temporal autocorrelation in univariate linear modeling of FMRI data. Neuroimage 14:1370-1386. Zang Y-F, Yong H, Chao-Zhe Z, Qing-Jiu C, Man-Qiu S, Meng L, Li-Xia T, Tian-Zi J, Yu-Feng W (2007): Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev 29:83-91. Bullmore E, Barnes A, Bassett DS, Fornito A, Kitzbichler M, Meunier D, Suckling J (2009): Generic aspects of complexity in brain imaging data and other biological systems. Neuroimage 47:1125-1134. Caserta F, Eldred WD, Fernandez E, Hausman RE, Stanford LR, Bulderev SV, Schwarzer S, Stanley HE (1995): Determination of fractal dimension of physiologically characterized neurons in two and three dimensions. J Neurosci Methods 56:133-144. Bullmore E, Brammer M, Harvey I, Persaud R, Murray R, Ron M (1994): Fractal analysis of the boundary between white matter and cerebral cortex in magnetic resonance images: A controlled study of schizophrenic and manic-depressive patients. Psychol Med 24:771-781. Kiselev VG, Hahn KR, Auer DP (2003): Is the brain cortex a fractal?Neuroimage 20:1765-1774. Anderson JS, Nielsen JA, Froehlich AL, DuBray MB, Druzgal TJ, Cariello AN, Cooperrider JR, Zielinski BA, Ravichandran C, Fletcher PT, Alexander AL, Bigler ED, Lange N, Lainhart JE (2011c): Functional connectivity magnetic resonance imaging classification of autism. Brain 134:3742-3754. Bullmore E, Fadili J, Maxim V, Sendur L, Whitcher B, Suckling J, Brammer M, Breakspear M (2004): Wavelets and functional magnetic resonance imaging of the human brain. Neuroimage 23(Suppl 1):S234-S249. Dosenbach NU, Nardos B, Cohen AL, Fair DA, Power JD, Church JA, Nelson SM, Wig GS, Vogel AC, Lessov-Schlaggar CN, Barnes KA, Dubis JW, Feczko E, Coalson RS, Pruett JR Jr, Barch DM, Petersen SE, Schlaggar BL (2010): Prediction of individual brain maturity using fMRI. Science 329:1358-1361. Maxim V, Sendur L, Fadili J, Suckling J, Gould R, Howard R, Bullmore E (2005): Fractional Gaussian noise, functional MRI and Alzheimer's disease. Neuroimage 25:141-158. Supekar K, Uddin LQ, Prater K, Amin H, Greicius MD, Menon V (2010): Development of functional and structural connectivity within the default mode network in young children. Neuroimage 52:290-301. Mendez MA, Zuluaga P, Hornero R, Gomez C, Escudero J, Rodriguez-Palancas A, Ortiz T, Fernandez A (2011): Complexity analysis of spontaneous brain activity: Effects of depression and antidepressant treatment. J Psychopharmacol 26:636-643. Anderson JS, Druzgal TJ, Lopez-Larson M, Jeong EK, Desai K, Yurgelun-Todd D (2011a): Network anticorrelations, global regression, and phase-shifted soft tissue correction. Hum Brain Mapp 32:919-934. Zang Y, Jiang T, Lu Y, He Y, Tian L (2004): Regional homogeneity approach to fMRI data analysis. Neuroimage 22:394-400. Beggs JM, Plenz D (2004): Neuronal avalanches are diverse and precise activity patterns that are stable for many hours in cortical slice cultures. J Neurosci 24:5216-5229. Poil SS, van Ooyen A, Linkenkaer-Hansen K (2008): Avalanche dynamics of human brain oscillations: Relation to critical branching processes and temporal correlations. Hum Brain Mapp 29:770-777. Power JD, Fair DA, Schlaggar BL, Petersen SE (2010): The development of human functional brain networks. Neuron 67:735-748. Christensen K, Olami Z, Bak P (1992): Deterministic 1/f noise in nonconserative models of self-organized criticality. Phys Rev Lett 68:2417-2420. Uddin LQ, Supekar K, Menon V (2010): Typical and atypical development of functional human brain networks: Insights from resting-state FMRI. Front Syst Neurosci 4:21. Ciuciu P, Varoquaux G, Abry P, Sadaghiani S, Kleinschmidt A (2012): Scale-free and multifractal time dynamics of fmri signals during rest and task. Front Physiol 3:186. Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995): Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537-541. Gordon EM, Lee PS, Maisog JM, Foss-Feig J, Billington ME, Vanmeter J, Vaidya CJ (2011): Strength of default mode resting-state connectivity relates to white matter integrity in children. Dev Sci 14:738-751. Vogel AC, Power JD, Petersen SE, Schlaggar BL (2011): Development of the brain's functional network architecture. Neuropsychol Rev 20:362-375. Zarahn E, Aguirre GK, D'Esposito M (1997): Empirical analyses of BOLD fMRI statistics. I. Spatially unsmoothed data collected under null-hypothesis conditions. Neuroimage 5:179-197. Rubinov M, Knock SA, Stam CJ, Micheloyannis S, Harris AW, Williams LM, Breakspear M (2009): Small-world properties of nonlinear brain activity in schizophrenia. Hum Brain Mapp 30:403-416. He Y, Wang L, Zang Y, Tian L, Zhang X, Li K, Jiang T (2007): Regional coherence changes in the early stages of Alzheimer's disease: A combined structural and resting-state functional MRI study. Neuroimage 35:488-500. Kitzbichler MG, Smith ML, Christensen SR, Bullmore E (2009): Broadband criticality of human brain network synchronization. PLoS Comput Biol 5:e1000314. Fair DA, Cohen AL, Dosenbach NU, Church JA, Miezin FM, Barch DM, Raichle ME, Petersen SE, Schlaggar BL (2008): The maturing architecture of the brain's default network. Proc Natl Acad Sci USA 105:4028-4032. Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE (2012): Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59:2142-2154. Zuo XN, Di Martino A, Kelly C, Shehzad ZE, Gee DG, Klein DF, Castellanos FX, Biswal BB, Milham MP (2010): The oscillating brain: Complex and reliable. Neuroimage 49:1432-1445. Anderson CM, Lowen SB, Renshaw PF (2006): Emotional task-dependent low-frequency fluctuations and methylphenidate: Wavelet scaling analysis of 1/f-type fluctuations in fMRI of the cerebellar vermis. J Neurosci Methods,151:52-61. ADHD-200_Consortium (2012): The ADHD-200 Consortium: A model to advance the translational potential of neuroimaging in clinical neuroscience. Front Syst Neurosci 6:62. Biswal BB, Mennes M, Zuo XN, Gohel S, Kelly C, Smith SM, Beckmann CF, Adelstein JS, Buckner RL, Colcombe S, Dogonowski AM, Ernst M, Fair D, Hampson M, Hoptman MJ, Hyde JS, Kiviniemi VJ, Kotter R, Li SJ, Lin CP, Lowe MJ, Mackay C, Madden DJ, Madsen KH, Margulies DS, Mayberg HS, McMahon K, Monk CS, Mostofsky SH, Nagel BJ, Pekar JJ, Peltier SJ, Petersen SE, Riedl V, Rombouts SA, Rypma B, Schlaggar BL, Schmidt S, Seidler RD, Siegle GJ, Sorg C, Teng GJ, Veijola J, Villringer A, Walter M, Wang L, Weng XC, Whitfield-Gabrieli S, Williamson P, Windischberger C, Zang YF, Zhang HY, Castellanos FX, Milham MP (2010): Toward discovery science of human brain function. Proc Natl Acad Sci USA 107:4734-4739. Wink AM, Bullmore E, Barnes A, Bernard F, Suckling J (2008): Monofractal and multifractal dynamics of low frequency endogenous brain oscillations in functional MRI. Hum Brain Mapp 29:791-801. Lopez-Larson MP, Anderson JS, Ferguson MA, Yurgelun-Todd D (2011): Local brain connectivity and associations with gender and age. Dev Cogn Neurosci 1:187-197. Bullmore E, Fadili J, Breakspear M, Salvador R, Suckling J, Brammer M (2003): Wavelets and statistical analysis of functional magnetic resonance images of the human brain. Stat Methods Med Res 12:375-399. Beggs JM, Plenz D (2003): Neuronal avalanches in neocortical circuits. J Neurosci 23:11167-11177. Paakki JJ, Rahko J, Long X, Moilanen I, Tervonen O, Nikkinen J, Starck T, Remes J, Hurtig T, Haapsamo H, Jussila K, Kuusikko-Gauffin S, Mattila ML, Zang Y, Kiviniemi V (2010): Alterations in regional homogeneity of resting-state brain activity in autism spectrum disorders. Brain Res 1321:169-179. Supekar K, Musen M, Menon V (2009): Development of large-scale functional brain networks in children. PLoS Biol 7:e1000157. Rombouts SA, Goekoop R, Stam CJ, Barkhof F, Scheltens P (2005): Delayed rather than decreased BOLD response as a marker for early Alzheimer's disease. Neuroimage 26:1078-1085. Cordes D, Haughton VM, Arfanakis K, Carew JD, Turski PA, Moritz CH, Quigley MA, Meyerand ME (2001): Frequencies contributing to functional connectivity in the cerebral cortex in "resting-state" data. AJNR Am J Neuroradiol 22:1326-1333. Barnes A, Bullmore ET, Suckling J (2009): Endogenous human brain dynamics recover slowly following cognitive effort. PloS One 4:e6626. Fair DA, Dosenbach NU, Church JA, Cohen AL, Brahmbhatt S, Miezin FM, Barch DM, Raichle ME, Petersen SE, Schlaggar BL (2007): Development of distinct control networks through segregation and integration. Proc Natl Acad Sci USA 104:13507-13512. Anderson JS, Ferguson MA, Lopez-Larson M, Yurgelun-Todd D (2010): Topographic maps of multisensory attention. Proc Natl Acad Sci USA 107:20110-20114. Fair DA, Cohen AL, Power JD, Dosenbach NU, Church JA, Miezin FM, Schlaggar BL, Petersen SE (2009): Functional brain networks develop from a "local to distributed" organization. PLoS Comput Biol 5:e1000381. Ferguson MA, Anderson JS (2012): Dynamical stability of intrinsic connectivity networks. Neuroimage 59:4022-4031. He BJ (2011): Scale-free propert 2007; 104 2009; 44 2004; 22 2009; 47 2010; 107 1995; 34 2004; 23 2004; 24 2011a; 32 1999; 286 1994; 24 2008; 105 2012; 59 2011; 14 2005; 26 1997; 5 2007; 35 2003; 12 2005; 25 2010; 67 2007; 29 2010; 68 1990 2008; 29 2007; 8 2011; 20 2011; 26 2010; 1321 2010; 4 2001; 14 2012; 62 2010; 329 2011; 1 1995; 56 2011; 31 2006; 151 2001; 22 2011c; 134 2009; 30 2010; 49 2012; 3 2011b; 1 1992; 68 2009; 7 2009; 5 2009; 4 2012; 6 2003; 20 2010; 52 2003; 23 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 Fox MD (e_1_2_6_29_1) 2010; 4 e_1_2_6_30_1 e_1_2_6_19_1 Cordes D (e_1_2_6_22_1) 2001; 22 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 ADHD‐200_Consortium (e_1_2_6_2_1) 2012; 6 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
| References_xml | – reference: Biswal BB, Mennes M, Zuo XN, Gohel S, Kelly C, Smith SM, Beckmann CF, Adelstein JS, Buckner RL, Colcombe S, Dogonowski AM, Ernst M, Fair D, Hampson M, Hoptman MJ, Hyde JS, Kiviniemi VJ, Kotter R, Li SJ, Lin CP, Lowe MJ, Mackay C, Madden DJ, Madsen KH, Margulies DS, Mayberg HS, McMahon K, Monk CS, Mostofsky SH, Nagel BJ, Pekar JJ, Peltier SJ, Petersen SE, Riedl V, Rombouts SA, Rypma B, Schlaggar BL, Schmidt S, Seidler RD, Siegle GJ, Sorg C, Teng GJ, Veijola J, Villringer A, Walter M, Wang L, Weng XC, Whitfield-Gabrieli S, Williamson P, Windischberger C, Zang YF, Zhang HY, Castellanos FX, Milham MP (2010): Toward discovery science of human brain function. Proc Natl Acad Sci USA 107:4734-4739. – reference: Fox MD, Greicius M (2010): Clinical applications of resting state functional connectivity. Front Syst Neurosci 4:1-13. – reference: Uddin LQ, Supekar K, Menon V (2010): Typical and atypical development of functional human brain networks: Insights from resting-state FMRI. Front Syst Neurosci 4:21. – reference: Maxim V, Sendur L, Fadili J, Suckling J, Gould R, Howard R, Bullmore E (2005): Fractional Gaussian noise, functional MRI and Alzheimer's disease. Neuroimage 25:141-158. – reference: Rombouts SA, Goekoop R, Stam CJ, Barkhof F, Scheltens P (2005): Delayed rather than decreased BOLD response as a marker for early Alzheimer's disease. Neuroimage 26:1078-1085. – reference: Ferguson MA, Anderson JS (2012): Dynamical stability of intrinsic connectivity networks. Neuroimage 59:4022-4031. – reference: He Y, Wang L, Zang Y, Tian L, Zhang X, Li K, Jiang T (2007): Regional coherence changes in the early stages of Alzheimer's disease: A combined structural and resting-state functional MRI study. Neuroimage 35:488-500. – reference: Supekar K, Musen M, Menon V (2009): Development of large-scale functional brain networks in children. PLoS Biol 7:e1000157. – reference: Paakki JJ, Rahko J, Long X, Moilanen I, Tervonen O, Nikkinen J, Starck T, Remes J, Hurtig T, Haapsamo H, Jussila K, Kuusikko-Gauffin S, Mattila ML, Zang Y, Kiviniemi V (2010): Alterations in regional homogeneity of resting-state brain activity in autism spectrum disorders. Brain Res 1321:169-179. – reference: Bullmore E, Fadili J, Maxim V, Sendur L, Whitcher B, Suckling J, Brammer M, Breakspear M (2004): Wavelets and functional magnetic resonance imaging of the human brain. Neuroimage 23(Suppl 1):S234-S249. – reference: Vogel AC, Power JD, Petersen SE, Schlaggar BL (2011): Development of the brain's functional network architecture. Neuropsychol Rev 20:362-375. – reference: Supekar K, Uddin LQ, Prater K, Amin H, Greicius MD, Menon V (2010): Development of functional and structural connectivity within the default mode network in young children. Neuroimage 52:290-301. – reference: Zang Y, Jiang T, Lu Y, He Y, Tian L (2004): Regional homogeneity approach to fMRI data analysis. Neuroimage 22:394-400. – reference: Fair DA, Dosenbach NU, Church JA, Cohen AL, Brahmbhatt S, Miezin FM, Barch DM, Raichle ME, Petersen SE, Schlaggar BL (2007): Development of distinct control networks through segregation and integration. Proc Natl Acad Sci USA 104:13507-13512. – reference: Rubinov M, Knock SA, Stam CJ, Micheloyannis S, Harris AW, Williams LM, Breakspear M (2009): Small-world properties of nonlinear brain activity in schizophrenia. Hum Brain Mapp 30:403-416. – reference: Beggs JM, Plenz D (2003): Neuronal avalanches in neocortical circuits. J Neurosci 23:11167-11177. – reference: Gordon EM, Lee PS, Maisog JM, Foss-Feig J, Billington ME, Vanmeter J, Vaidya CJ (2011): Strength of default mode resting-state connectivity relates to white matter integrity in children. Dev Sci 14:738-751. – reference: Ciuciu P, Varoquaux G, Abry P, Sadaghiani S, Kleinschmidt A (2012): Scale-free and multifractal time dynamics of fmri signals during rest and task. Front Physiol 3:186. – reference: Dosenbach NU, Nardos B, Cohen AL, Fair DA, Power JD, Church JA, Nelson SM, Wig GS, Vogel AC, Lessov-Schlaggar CN, Barnes KA, Dubis JW, Feczko E, Coalson RS, Pruett JR Jr, Barch DM, Petersen SE, Schlaggar BL (2010): Prediction of individual brain maturity using fMRI. Science 329:1358-1361. – reference: Bullmore E, Fadili J, Breakspear M, Salvador R, Suckling J, Brammer M (2003): Wavelets and statistical analysis of functional magnetic resonance images of the human brain. Stat Methods Med Res 12:375-399. – reference: Anderson JS, Ferguson MA, Lopez-Larson M, Yurgelun-Todd D (2011b): Connectivity gradients between the default mode and attention control networks. Brain Connect 1:147-157. – reference: Fair DA, Cohen AL, Power JD, Dosenbach NU, Church JA, Miezin FM, Schlaggar BL, Petersen SE (2009): Functional brain networks develop from a "local to distributed" organization. PLoS Comput Biol 5:e1000381. – reference: Lai MC, Lombardo MV, Chakrabarti B, Sadek SA, Pasco G, Wheelwright SJ, Bullmore ET, Baron-Cohen S, Suckling J (2010): A shift to randomness of brain oscillations in people with autism. Biol Psychiatry 68:1092-1099. – reference: Anderson CM, Lowen SB, Renshaw PF (2006): Emotional task-dependent low-frequency fluctuations and methylphenidate: Wavelet scaling analysis of 1/f-type fluctuations in fMRI of the cerebellar vermis. J Neurosci Methods,151:52-61. – reference: Zarahn E, Aguirre GK, D'Esposito M (1997): Empirical analyses of BOLD fMRI statistics. I. Spatially unsmoothed data collected under null-hypothesis conditions. Neuroimage 5:179-197. – reference: Kitzbichler MG, Smith ML, Christensen SR, Bullmore E (2009): Broadband criticality of human brain network synchronization. PLoS Comput Biol 5:e1000314. – reference: Wink AM, Bullmore E, Barnes A, Bernard F, Suckling J (2008): Monofractal and multifractal dynamics of low frequency endogenous brain oscillations in functional MRI. Hum Brain Mapp 29:791-801. – reference: Fair DA, Cohen AL, Dosenbach NU, Church JA, Miezin FM, Barch DM, Raichle ME, Petersen SE, Schlaggar BL (2008): The maturing architecture of the brain's default network. Proc Natl Acad Sci USA 105:4028-4032. – reference: Cordes D, Haughton VM, Arfanakis K, Carew JD, Turski PA, Moritz CH, Quigley MA, Meyerand ME (2001): Frequencies contributing to functional connectivity in the cerebral cortex in "resting-state" data. AJNR Am J Neuroradiol 22:1326-1333. – reference: Anderson JS (2008): Origin of synchronized low-frequency blood oxygen level-dependent fluctuations in the primary visual cortex. AJNR Am J Neuroradiol 29:1722-1729. – reference: Beggs JM, Plenz D (2004): Neuronal avalanches are diverse and precise activity patterns that are stable for many hours in cortical slice cultures. J Neurosci 24:5216-5229. – reference: Fox MD, Raichle ME (2007): Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8:700-711. – reference: ADHD-200_Consortium (2012): The ADHD-200 Consortium: A model to advance the translational potential of neuroimaging in clinical neuroscience. Front Syst Neurosci 6:62. – reference: Zang Y-F, Yong H, Chao-Zhe Z, Qing-Jiu C, Man-Qiu S, Meng L, Li-Xia T, Tian-Zi J, Yu-Feng W (2007): Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev 29:83-91. – reference: He BJ (2011): Scale-free properties of the functional magnetic resonance imaging signal during rest and task. J Neurosci 31:13786-13795. – reference: Bullmore E, Brammer M, Harvey I, Persaud R, Murray R, Ron M (1994): Fractal analysis of the boundary between white matter and cerebral cortex in magnetic resonance images: A controlled study of schizophrenic and manic-depressive patients. Psychol Med 24:771-781. – reference: Barabasi AL, Albert R (1999): Emergence of scaling in random networks. Science 286:509-512. – reference: Christensen K, Olami Z, Bak P (1992): Deterministic 1/f noise in nonconserative models of self-organized criticality. Phys Rev Lett 68:2417-2420. – reference: Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995): Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537-541. – reference: Lopez-Larson MP, Anderson JS, Ferguson MA, Yurgelun-Todd D (2011): Local brain connectivity and associations with gender and age. Dev Cogn Neurosci 1:187-197. – reference: Woolrich MW, Ripley BD, Brady M, Smith SM (2001): Temporal autocorrelation in univariate linear modeling of FMRI data. Neuroimage 14:1370-1386. – reference: Kiselev VG, Hahn KR, Auer DP (2003): Is the brain cortex a fractal?Neuroimage 20:1765-1774. – reference: Mendez MA, Zuluaga P, Hornero R, Gomez C, Escudero J, Rodriguez-Palancas A, Ortiz T, Fernandez A (2011): Complexity analysis of spontaneous brain activity: Effects of depression and antidepressant treatment. J Psychopharmacol 26:636-643. – reference: Bullmore E, Barnes A, Bassett DS, Fornito A, Kitzbichler M, Meunier D, Suckling J (2009): Generic aspects of complexity in brain imaging data and other biological systems. Neuroimage 47:1125-1134. – reference: Anderson JS, Nielsen JA, Froehlich AL, DuBray MB, Druzgal TJ, Cariello AN, Cooperrider JR, Zielinski BA, Ravichandran C, Fletcher PT, Alexander AL, Bigler ED, Lange N, Lainhart JE (2011c): Functional connectivity magnetic resonance imaging classification of autism. Brain 134:3742-3754. – reference: Anderson JS, Druzgal TJ, Lopez-Larson M, Jeong EK, Desai K, Yurgelun-Todd D (2011a): Network anticorrelations, global regression, and phase-shifted soft tissue correction. Hum Brain Mapp 32:919-934. – reference: Murphy K, Birn RM, Handwerker DA, Jones TB, Bandettini PA (2009): The impact of global signal regression on resting state correlations: Are anti-correlated networks introduced?Neuroimage 44:893-905. – reference: Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE (2012): Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59:2142-2154. – reference: Caserta F, Eldred WD, Fernandez E, Hausman RE, Stanford LR, Bulderev SV, Schwarzer S, Stanley HE (1995): Determination of fractal dimension of physiologically characterized neurons in two and three dimensions. J Neurosci Methods 56:133-144. – reference: Anderson JS, Ferguson MA, Lopez-Larson M, Yurgelun-Todd D (2010): Topographic maps of multisensory attention. Proc Natl Acad Sci USA 107:20110-20114. – reference: El Boustani S, Marre O, Behuret S, Baudot P, Yger P, Bal T, Destexhe A, Fregnac Y (2009): Network-state modulation of power-law frequency-scaling in visual cortical neurons. PLoS Comput Biol 5:e1000519. – reference: Power JD, Fair DA, Schlaggar BL, Petersen SE (2010): The development of human functional brain networks. Neuron 67:735-748. – reference: Zuo XN, Di Martino A, Kelly C, Shehzad ZE, Gee DG, Klein DF, Castellanos FX, Biswal BB, Milham MP (2010): The oscillating brain: Complex and reliable. Neuroimage 49:1432-1445. – reference: Barnes A, Bullmore ET, Suckling J (2009): Endogenous human brain dynamics recover slowly following cognitive effort. PloS One 4:e6626. – reference: Poil SS, van Ooyen A, Linkenkaer-Hansen K (2008): Avalanche dynamics of human brain oscillations: Relation to critical branching processes and temporal correlations. Hum Brain Mapp 29:770-777. – reference: Palva JM, Palva S (2012): Infra-slow fluctuations in electrophysiological recordings, blood-oxygenation-level-dependent signals, and psychophysical time series. Neuroimage 62:2201-2211. – volume: 52 start-page: 290 year: 2010 end-page: 301 article-title: Development of functional and structural connectivity within the default mode network in young children publication-title: Neuroimage – volume: 107 start-page: 20110 year: 2010 end-page: 20114 article-title: Topographic maps of multisensory attention publication-title: Proc Natl Acad Sci USA – volume: 1 start-page: 147 year: 2011b end-page: 157 article-title: Connectivity gradients between the default mode and attention control networks publication-title: Brain Connect – volume: 24 start-page: 5216 year: 2004 end-page: 5229 article-title: Neuronal avalanches are diverse and precise activity patterns that are stable for many hours in cortical slice cultures publication-title: J Neurosci – volume: 29 start-page: 791 year: 2008 end-page: 801 article-title: Monofractal and multifractal dynamics of low frequency endogenous brain oscillations in functional MRI publication-title: Hum Brain Mapp – volume: 286 start-page: 509 year: 1999 end-page: 512 article-title: Emergence of scaling in random networks publication-title: Science – volume: 8 start-page: 700 year: 2007 end-page: 711 article-title: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging publication-title: Nat Rev Neurosci – volume: 29 start-page: 770 year: 2008 end-page: 777 article-title: Avalanche dynamics of human brain oscillations: Relation to critical branching processes and temporal correlations publication-title: Hum Brain Mapp – volume: 31 start-page: 13786 year: 2011 end-page: 13795 article-title: Scale‐free properties of the functional magnetic resonance imaging signal during rest and task publication-title: J Neurosci – year: 1990 – volume: 22 start-page: 1326 year: 2001 end-page: 1333 article-title: Frequencies contributing to functional connectivity in the cerebral cortex in “resting‐state” data publication-title: AJNR Am J Neuroradiol – volume: 29 start-page: 83 year: 2007 end-page: 91 article-title: Altered baseline brain activity in children with ADHD revealed by resting‐state functional MRI publication-title: Brain Dev – volume: 104 start-page: 13507 year: 2007 end-page: 13512 article-title: Development of distinct control networks through segregation and integration publication-title: Proc Natl Acad Sci USA – volume: 329 start-page: 1358 year: 2010 end-page: 1361 article-title: Prediction of individual brain maturity using fMRI publication-title: Science – volume: 56 start-page: 133 year: 1995 end-page: 144 article-title: Determination of fractal dimension of physiologically characterized neurons in two and three dimensions publication-title: J Neurosci Methods – volume: 12 start-page: 375 year: 2003 end-page: 399 article-title: Wavelets and statistical analysis of functional magnetic resonance images of the human brain publication-title: Stat Methods Med Res – volume: 34 start-page: 537 year: 1995 end-page: 541 article-title: Functional connectivity in the motor cortex of resting human brain using echo‐planar MRI publication-title: Magn Reson Med – volume: 49 start-page: 1432 year: 2010 end-page: 1445 article-title: The oscillating brain: Complex and reliable publication-title: Neuroimage – volume: 44 start-page: 893 year: 2009 end-page: 905 article-title: The impact of global signal regression on resting state correlations: Are anti‐correlated networks introduced? publication-title: Neuroimage – volume: 5 start-page: e1000381 year: 2009 article-title: Functional brain networks develop from a “local to distributed” organization publication-title: PLoS Comput Biol – volume: 1321 start-page: 169 year: 2010 end-page: 179 article-title: Alterations in regional homogeneity of resting‐state brain activity in autism spectrum disorders publication-title: Brain Res – volume: 23 start-page: S234 issue: Suppl 1 year: 2004 end-page: S249 article-title: Wavelets and functional magnetic resonance imaging of the human brain publication-title: Neuroimage – volume: 20 start-page: 1765 year: 2003 end-page: 1774 article-title: Is the brain cortex a fractal? publication-title: Neuroimage – volume: 24 start-page: 771 year: 1994 end-page: 781 article-title: Fractal analysis of the boundary between white matter and cerebral cortex in magnetic resonance images: A controlled study of schizophrenic and manic‐depressive patients publication-title: Psychol Med – volume: 107 start-page: 4734 year: 2010 end-page: 4739 article-title: Toward discovery science of human brain function publication-title: Proc Natl Acad Sci USA – volume: 20 start-page: 362 year: 2011 end-page: 375 article-title: Development of the brain's functional network architecture publication-title: Neuropsychol Rev – volume: 5 start-page: e1000519 year: 2009 article-title: Network‐state modulation of power‐law frequency‐scaling in visual cortical neurons publication-title: PLoS Comput Biol – volume: 68 start-page: 2417 year: 1992 end-page: 2420 article-title: Deterministic 1/ noise in nonconserative models of self‐organized criticality publication-title: Phys Rev Lett – volume: 59 start-page: 2142 year: 2012 end-page: 2154 article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion publication-title: Neuroimage – volume: 151 start-page: 52 year: 2006 end-page: 61 article-title: Emotional task‐dependent low‐frequency fluctuations and methylphenidate: Wavelet scaling analysis of 1/ ‐type fluctuations in fMRI of the cerebellar vermis publication-title: J Neurosci Methods – volume: 25 start-page: 141 year: 2005 end-page: 158 article-title: Fractional Gaussian noise, functional MRI and Alzheimer's disease publication-title: Neuroimage – volume: 47 start-page: 1125 year: 2009 end-page: 1134 article-title: Generic aspects of complexity in brain imaging data and other biological systems publication-title: Neuroimage – volume: 7 start-page: e1000157 year: 2009 article-title: Development of large‐scale functional brain networks in children publication-title: PLoS Biol – volume: 4 start-page: e6626 year: 2009 article-title: Endogenous human brain dynamics recover slowly following cognitive effort publication-title: PloS One – volume: 4 start-page: 1 year: 2010 end-page: 13 article-title: Clinical applications of resting state functional connectivity publication-title: Front Syst Neurosci – volume: 26 start-page: 636 year: 2011 end-page: 643 article-title: Complexity analysis of spontaneous brain activity: Effects of depression and antidepressant treatment publication-title: J Psychopharmacol – volume: 32 start-page: 919 year: 2011a end-page: 934 article-title: Network anticorrelations, global regression, and phase‐shifted soft tissue correction publication-title: Hum Brain Mapp – volume: 62 start-page: 2201 year: 2012 end-page: 2211 article-title: Infra‐slow fluctuations in electrophysiological recordings, blood‐oxygenation‐level‐dependent signals, and psychophysical time series publication-title: Neuroimage – volume: 105 start-page: 4028 year: 2008 end-page: 4032 article-title: The maturing architecture of the brain's default network publication-title: Proc Natl Acad Sci USA – volume: 5 start-page: e1000314 year: 2009 article-title: Broadband criticality of human brain network synchronization publication-title: PLoS Comput Biol – volume: 68 start-page: 1092 year: 2010 end-page: 1099 article-title: A shift to randomness of brain oscillations in people with autism publication-title: Biol Psychiatry – volume: 3 start-page: 186 year: 2012 article-title: Scale‐free and multifractal time dynamics of fmri signals during rest and task publication-title: Front Physiol – volume: 26 start-page: 1078 year: 2005 end-page: 1085 article-title: Delayed rather than decreased BOLD response as a marker for early Alzheimer's disease publication-title: Neuroimage – volume: 5 start-page: 179 year: 1997 end-page: 197 article-title: Empirical analyses of BOLD fMRI statistics. I. Spatially unsmoothed data collected under null‐hypothesis conditions publication-title: Neuroimage – volume: 59 start-page: 4022 year: 2012 end-page: 4031 article-title: Dynamical stability of intrinsic connectivity networks publication-title: Neuroimage – volume: 6 start-page: 62 year: 2012 article-title: The ADHD‐200 Consortium: A model to advance the translational potential of neuroimaging in clinical neuroscience publication-title: Front Syst Neurosci – volume: 14 start-page: 738 year: 2011 end-page: 751 article-title: Strength of default mode resting‐state connectivity relates to white matter integrity in children publication-title: Dev Sci – volume: 22 start-page: 394 year: 2004 end-page: 400 article-title: Regional homogeneity approach to fMRI data analysis publication-title: Neuroimage – volume: 23 start-page: 11167 year: 2003 end-page: 11177 article-title: Neuronal avalanches in neocortical circuits publication-title: J Neurosci – volume: 1 start-page: 187 year: 2011 end-page: 197 article-title: Local brain connectivity and associations with gender and age publication-title: Dev Cogn Neurosci – volume: 29 start-page: 1722 year: 2008 end-page: 1729 article-title: Origin of synchronized low‐frequency blood oxygen level‐dependent fluctuations in the primary visual cortex publication-title: AJNR Am J Neuroradiol – volume: 35 start-page: 488 year: 2007 end-page: 500 article-title: Regional coherence changes in the early stages of Alzheimer's disease: A combined structural and resting‐state functional MRI study publication-title: Neuroimage – volume: 134 start-page: 3742 year: 2011c end-page: 3754 article-title: Functional connectivity magnetic resonance imaging classification of autism publication-title: Brain – volume: 4 start-page: 21 year: 2010 article-title: Typical and atypical development of functional human brain networks: Insights from resting‐state FMRI publication-title: Front Syst Neurosci – volume: 67 start-page: 735 year: 2010 end-page: 748 article-title: The development of human functional brain networks publication-title: Neuron – volume: 30 start-page: 403 year: 2009 end-page: 416 article-title: Small‐world properties of nonlinear brain activity in schizophrenia publication-title: Hum Brain Mapp – volume: 14 start-page: 1370 year: 2001 end-page: 1386 article-title: Temporal autocorrelation in univariate linear modeling of FMRI data publication-title: Neuroimage – ident: e_1_2_6_31_1 doi: 10.1111/j.1467-7687.2010.01020.x – ident: e_1_2_6_40_1 doi: 10.1177/0269881111408966 – ident: e_1_2_6_18_1 doi: 10.1016/j.neuroimage.2004.07.012 – ident: e_1_2_6_9_1 doi: 10.1126/science.286.5439.509 – ident: e_1_2_6_51_1 doi: 10.3389/fnsys.2010.00021 – ident: e_1_2_6_26_1 doi: 10.1371/journal.pcbi.1000381 – ident: e_1_2_6_6_1 doi: 10.1073/pnas.1011616107 – ident: e_1_2_6_20_1 doi: 10.1103/PhysRevLett.68.2417 – ident: e_1_2_6_50_1 doi: 10.1016/j.neuroimage.2010.04.009 – ident: e_1_2_6_47_1 doi: 10.1016/j.neuroimage.2005.03.022 – ident: e_1_2_6_48_1 doi: 10.1002/hbm.20517 – ident: e_1_2_6_56_1 doi: 10.1016/j.neuroimage.2003.12.030 – ident: e_1_2_6_42_1 doi: 10.1016/j.brainres.2009.12.081 – ident: e_1_2_6_46_1 doi: 10.1016/j.neuron.2010.08.017 – ident: e_1_2_6_10_1 doi: 10.1371/journal.pone.0006626 – ident: e_1_2_6_19_1 doi: 10.1016/0165-0270(94)00115-W – ident: e_1_2_6_14_1 doi: 10.1073/pnas.0911855107 – volume: 6 start-page: 62 year: 2012 ident: e_1_2_6_2_1 article-title: The ADHD‐200 Consortium: A model to advance the translational potential of neuroimaging in clinical neuroscience publication-title: Front Syst Neurosci – ident: e_1_2_6_21_1 doi: 10.3389/fphys.2012.00186 – ident: e_1_2_6_43_1 doi: 10.1016/j.neuroimage.2012.02.060 – ident: e_1_2_6_35_1 doi: 10.1016/S1053-8119(03)00380-X – ident: e_1_2_6_37_1 doi: 10.1016/j.biopsych.2010.06.027 – ident: e_1_2_6_33_1 doi: 10.1016/j.neuroimage.2006.11.042 – ident: e_1_2_6_16_1 doi: 10.1017/S0033291700027926 – ident: e_1_2_6_39_1 doi: 10.1016/j.neuroimage.2004.10.044 – ident: e_1_2_6_45_1 doi: 10.1016/j.neuroimage.2011.10.018 – ident: e_1_2_6_23_1 doi: 10.1126/science.1194144 – ident: e_1_2_6_57_1 doi: 10.1006/nimg.1997.0263 – ident: e_1_2_6_54_1 doi: 10.1006/nimg.2001.0931 – ident: e_1_2_6_17_1 doi: 10.1191/0962280203sm339ra – ident: e_1_2_6_44_1 doi: 10.1002/hbm.20590 – ident: e_1_2_6_53_1 doi: 10.1002/hbm.20593 – ident: e_1_2_6_34_1 – ident: e_1_2_6_11_1 doi: 10.1523/JNEUROSCI.23-35-11167.2003 – ident: e_1_2_6_38_1 doi: 10.1016/j.dcn.2010.10.001 – ident: e_1_2_6_13_1 doi: 10.1002/mrm.1910340409 – ident: e_1_2_6_52_1 doi: 10.1007/s11065-010-9145-7 – ident: e_1_2_6_7_1 doi: 10.1089/brain.2011.0007 – volume: 4 start-page: 1 year: 2010 ident: e_1_2_6_29_1 article-title: Clinical applications of resting state functional connectivity publication-title: Front Syst Neurosci – ident: e_1_2_6_24_1 doi: 10.1371/journal.pcbi.1000519 – ident: e_1_2_6_36_1 doi: 10.1371/journal.pcbi.1000314 – ident: e_1_2_6_32_1 doi: 10.1523/JNEUROSCI.2111-11.2011 – ident: e_1_2_6_25_1 doi: 10.1073/pnas.0800376105 – ident: e_1_2_6_41_1 doi: 10.1016/j.neuroimage.2008.09.036 – ident: e_1_2_6_55_1 doi: 10.1016/j.braindev.2006.07.002 – ident: e_1_2_6_27_1 doi: 10.1073/pnas.0705843104 – ident: e_1_2_6_58_1 doi: 10.1016/j.neuroimage.2009.09.037 – ident: e_1_2_6_3_1 doi: 10.1016/j.jneumeth.2005.09.020 – ident: e_1_2_6_30_1 doi: 10.1038/nrn2201 – ident: e_1_2_6_15_1 doi: 10.1016/j.neuroimage.2009.05.032 – ident: e_1_2_6_4_1 doi: 10.3174/ajnr.A1220 – ident: e_1_2_6_5_1 doi: 10.1002/hbm.21079 – volume: 22 start-page: 1326 year: 2001 ident: e_1_2_6_22_1 article-title: Frequencies contributing to functional connectivity in the cerebral cortex in “resting‐state” data publication-title: AJNR Am J Neuroradiol – ident: e_1_2_6_12_1 doi: 10.1523/JNEUROSCI.0540-04.2004 – ident: e_1_2_6_28_1 doi: 10.1016/j.neuroimage.2011.10.062 – ident: e_1_2_6_49_1 doi: 10.1371/journal.pbio.1000157 – ident: e_1_2_6_8_1 doi: 10.1093/brain/awr263 |
| SSID | ssj0011501 |
| Score | 2.2658203 |
| Snippet | Very low‐frequency blood oxygen level‐dependent (BOLD) fluctuations have emerged as a valuable tool for describing brain anatomy, neuropathology, and... Very low-frequency blood oxygen level-dependent (BOLD) fluctuations have emerged as a valuable tool for describing brain anatomy, neuropathology, and... |
| SourceID | unpaywall pubmedcentral proquest pubmed pascalfrancis crossref wiley istex |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1273 |
| SubjectTerms | 1/f Adolescent Adult avalanche dynamics Biological and medical sciences Brain - anatomy & histology Brain - growth & development Brain - physiology brain development Brain Mapping - methods Cardiovascular system Cerebrovascular Circulation - physiology chaos theory Child complexity Databases, Factual fcMRI Female fMRI Head Humans Investigative techniques, diagnostic techniques (general aspects) long memory Magnetic Resonance Imaging - methods Male Medical sciences Motion Nerve Fibers, Unmyelinated - physiology Nervous system Neural Pathways - anatomy & histology Neural Pathways - growth & development Neural Pathways - physiology Oxygen - blood power law Radiodiagnosis. Nmr imagery. Nmr spectrometry regional homogeneity resting state fMRI Signal Processing, Computer-Assisted Young Adult |
| SummonAdditionalLinks | – databaseName: Wiley Online Library - Core collection (SURFmarket) dbid: DR2 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLamIQEvXDYYgTGZi6a9pCuJc7H2NBClQuoeBhN9QLJ8iTVYlkxtwyhP_AR-I79k5ziXKTAQ4q2qj5vYPcf-jv35MyHPM4UgNxz6gQYPZkkkfSUt8wMZpDFy2myEZ4cnB_H4iL2dRtMVsteehan1IboFN4wMN15jgEs1370UDT1WpwNMVjD1eRHGLp067KSjEOi4ZAumWJ_DCNyqCg2D3a5mby66ht36FbmRcg7dY-t7La4Cnr_zJ29UxZlcnss872NcN0mNbpOPbfNqbsrJoFqogf72i_Ljf7b_DrnVgFe6X3vbXbKSFWtkfb-AxP10Sbepo5O6dfo1cn3S7Nqvk8846KDw5mJJS0vz8vzn9x92VpO4l9Rx5ym8MfgyzZHEBMXt5bwLavMKD7m4-KC6_OKSe4rrx9RNxPAdzBW6vgXjHjkavX7_auw3dzz4GqAeskOYARiiE5vGLEtTxbM4yiTjUgWhSs1QG80BZGoeGGa1ieMUErhYMhkbCegvvE9Wi7LIHhBqpVGGp2BmGFPaKmOs5KGUw8BCTe6RnfbfFroRQMd7OHJRSzcHArpUuC71yNPO9KxW_bjKaNu5TGchZydIk0si8eHgjQjZdDI6HL0T8OCtnk91FXAXO4xY4pHN1slEM4TMBQr1py6_88iTrhiCH3d0ZJGVlbPhgEKCEJ6xUfvk5Y8DPkkSHnkk6XlrZ4DC4v2S4tOxExiHJD8KUmjgs86v_9YNO85N_2whxi8n7sPDfzd9RG4CNG04UptkdTGrsscA_xZqy8X5BWsiWxo priority: 102 providerName: Wiley-Blackwell |
| Title | Complexity of low-frequency blood oxygen level-dependent fluctuations covaries with local connectivity |
| URI | https://api.istex.fr/ark:/67375/WNG-34XMFRFS-9/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.22251 https://www.ncbi.nlm.nih.gov/pubmed/23417795 https://www.proquest.com/docview/1508805613 https://www.proquest.com/docview/1509413239 https://pubmed.ncbi.nlm.nih.gov/PMC4075281 https://www.ncbi.nlm.nih.gov/pmc/articles/4075281 |
| UnpaywallVersion | submittedVersion |
| Volume | 35 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1097-0193 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011501 issn: 1097-0193 databaseCode: RPM dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVOVD databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling customDbUrl: eissn: 1097-0193 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011501 issn: 1097-0193 databaseCode: OVEED dateStart: 19930101 isFulltext: true titleUrlDefault: http://ovidsp.ovid.com/ providerName: Ovid – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1097-0193 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1097-0193 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011501 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwGP00tRLwwmCDERiVuWjaS9rOcW6PBVEqpFaoUFGeIl9ibSxNq67dKE_8BH4jv4TPzgUVBoK3KP5yc47j88XHxwDPU2FIrtd1qUQEs9DnruCauZTTKDCaNu2bucPDUTCYsDdTf7oDJ9VcGCval-KsnWezdn52arWVi5nsVDqxDmYgPjWTrZuBj_S7Ac3J6G3vox3VDHw3LpOsrnEZRXZSuQl1aedUzNomvTnZ6oOapjo_G00kv8Bq0cV6FtcRzt91kzfX-YJvrniWbXNb2zn1d2FcPVahSTlvr1eiLb_84vj4X899B26XVJX0iqK7sJPme7DfyzFNn23IEbHiUftXfg9uDMsx-n34ZD4xxmZztSFzTbL51fev3_SykGxviFXKE7xPRC7JjGQJi6uleFdEZ2szpcW2BiLnlzaVJ-ZvMbHdLu7DnkEWa17cg0n_1fuXA7dc0cGVSOyMFoQpJB0y1FHA0igScRr4KWcxF9QTkepKJWN8aTKmimmpgiDCdC3gjAeKI9fz7kMjn-fpAyCaK6HiCMMUY0JqoZTmscd5l2o8MnbguHrHiSztzs2qG1lSGDXTBOGQWDg48LQOXRQeH9cFHVmg1BF8eW5EcaGffBi9Tjw2HfbH_XcJXri1haT6ADNm7fksdOCwglZSfjAuEmPLH9lszoEndTE2dTN-w_N0vrYxMXIO6uE1Dgok_jw5spEwjH0Hwi2M1gHGRny7BFFm7cRLYDnwrEbz36rh2OL8zxHJ4MXQbjz8pxM-glvIQUsx1CE0Vst1-hh53kq0MMMZ01bZvn8A9ExXcg |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLWqVqJseLQ8AqWYh6puMh0lzktiUxDDAJ1ZlFbMBll-xCo0TappQhlWfALfyJdwr_OoAgUhdqP4epLcXNvn2sfHhDxNJYJcf-h6CiKYRYFwpTDM9YQXh8hpMwHuHZ5Mw_EhezMLZkvkWbsXptaH6CbcsGXY_hobOE5I71yohh7JkwFmK5D7rLAQ8hSERPudeBRCHZtuwSDrJtAHt7pCQ2-nq9objVbQsV-QHSnOwEGmPtniMuj5O4NytcpPxeJcZFkf5dphanSdfGhfsGanHA-qUg7U11-0H__XAzfItQa_0t064G6SpTRfI-u7OeTuJwu6RS2j1E7Vr5Erk2bhfp18wn4HtTfLBS0MzYrzH9--m3nN415QS5-n8MgQzjRDHhMUt-fzltRkFe5zsU2EquKzze8pTiFTOxbDNRguVH0Qxi1yOHp58GLsNsc8uArQHhJEmAYkoiIThyyNY5mkYZAKlgjp-TLWQ6VVAjhTJZ5mRukwjCGHCwUToRYAAP3bZDkv8vQuoUZoqZMYzDRjUhmptRGJL8TQM1Azcch2-7m5ajTQ8SiOjNfqzR4Hl3LrUoc87kxPa-GPy4y2bMx0FmJ-jEy5KODvp6-4z2aT0f7oHYcbb_aCqquAC9l-wCKHbLRRxpte5IyjVn9sUzyHPOqKof3joo7I06KyNgkAEc-He9ypg_LizwGiRFESOCTqhWtngNri_ZL845HVGIc8P_BieMEnXWD_zQ3bNk7_bMHHzyf2x71_N31IVscHkz2-93r69j65Cki1oUxtkOVyXqUPAA2WctM2-p_mOl87 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLamTRq8cNm4FMYwF017SVclzsUSL4NRyqUVGkzrC7J8iTVYllZdwihP_AR-I7-Ec5zLVBgI8VbFx01ycmx_x_78mZDHqUKQG_Q8X0MEsziUnpKWeb70kwg5bTbEvcPDUTQ4YK_G4XiJPGn2wlT6EO2EG7YM119jA0-nxu6cq4YeqZMuZiuQ-6ywkCdI6Nvbb8WjEOq4dAsGWY9DH9zoCvX8nbbqwmi0go79guxIeQoOstXJFhdBz98ZlJfKfCrnZzLLFlGuG6b6V8mH5gUrdspxtyxUV3_9Rfvxfz1wjVyp8SvdrQLuOllK8zWyvptD7n4yp1vUMUrdVP0aWR3WC_fr5BP2O6i9WczpxNJscvbj23c7q3jcc-ro8xQeGcKZZshjguLmfN6C2qzEfS6uiVA9-ezye4pTyNSNxXANhgtdHYRxgxz0n79_NvDqYx48DWgPCSLMABLRsU0iliaJ4mkUppJxqfxAJaanjeaAMzX3DbPaRFECOVwkmYyMBAAY3CTL-SRPbxNqpVGGJ2BmGFPaKmOs5IGUPd9CTd4h283nFrrWQMejODJRqTf7AlwqnEs75GFrOq2EPy4y2nIx01rI2TEy5eJQHI5eiICNh_39_jsBN95cCKq2Ai5kByGLO2SjiTJR9yKnArX6E5fidciDthjaPy7qyDydlM6GAxDxA7jHrSooz_8cIEoc87BD4oVwbQ1QW3yxJP945DTGIc8P_QRe8FEb2H9zw7aL0z9biMHToftx599N75PVt3t98ebl6PVdchmAas2Y2iDLxaxM7wEYLNSma_M_ARG5Xr8 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtNAFL2qEgnYUGihGEo1PFR1Yye1x69lQIQIKREqRISVNQ-PWuo4URq3hBWfwDfyJdwZP5ChINhZnuvX-IznXM-ZMwDPU65Jrte3XYEIpqHPbM4UtV3mRoHWtClfzx0eT4LRlL6Z-bMtOK7nwhjRvuBnTp7Nnfzs1Ggrl3PRq3ViPcxAfFdPtu4GPtLvDnSnk7eDj2ZUM_DtuEqy-tplFNlJ7SbUd3unfO7o9Oa41Qd1dXV-1ppIdoHVosr1LK4jnL_rJm8W-ZJtrliWtbmt6ZyG23BSP1apSTl3ijV3xJdfHB__67nvwO2KqpJBWXQXttJ8B3YHOabp8w05JEY8av7K78CNcTVGvwuf9CdG22yuN2ShSLa4-v71m1qVku0NMUp5gveJyCWZlixhcb0U75qorNBTWkxrIGJxaVJ5ov8WE9Pt4j7sGUS55sU9mA5fvX85sqsVHWyBxE5rQahE0iFCFQU0jSIep4GfMhoz7no8kn0hRYwvTcSupErIIIgwXQsYZYFkyPW8-9DJF3n6AIhikss4wjBJKReKS6lY7DHWdxUeGVtwVL_jRFR253rVjSwpjZrdBOGQGDhY8LQJXZYeH9cFHRqgNBFsda5FcaGffJi8Tjw6Gw9Phu8SvPBBC0nNAXrM2vNpaMF-Da2k-mBcJNqWPzLZnAVPmmJs6nr8huXpojAxMXIO18Nr7JVI_HlyZCNhGPsWhC2MNgHaRrxdgigzduIVsCx41qD5b9VwZHD-54hk9GJsNh7-0wkfwS3koJUYah8661WRPkaet-YHVcv-Ae1uVok |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Complexity+of+low%E2%80%90frequency+blood+oxygen+level%E2%80%90dependent+fluctuations+covaries+with+local+connectivity&rft.jtitle=Human+brain+mapping&rft.au=Anderson%2C+Jeffrey+S.&rft.au=Zielinski%2C+Brandon+A.&rft.au=Nielsen%2C+Jared+A.&rft.au=Ferguson%2C+Michael+A.&rft.date=2014-04-01&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=35&rft.issue=4&rft.spage=1273&rft.epage=1283&rft_id=info:doi/10.1002%2Fhbm.22251&rft_id=info%3Apmid%2F23417795&rft.externalDocID=PMC4075281 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon |