Column-generation kernel nonlocal joint collaborative representation for hyperspectral image classification
We propose a kernel nonlocal joint collaborative representation classification method based on column generation for hyperspectral imagery. The proposed approach first maps the original spectral space to a higher implicit kernel space by directly taking the similarity measures between spectral pixel...
        Saved in:
      
    
          | Published in | ISPRS journal of photogrammetry and remote sensing Vol. 94; pp. 25 - 36 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Amsterdam
          Elsevier B.V
    
        01.08.2014
     Elsevier  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0924-2716 1872-8235  | 
| DOI | 10.1016/j.isprsjprs.2014.04.014 | 
Cover
| Abstract | We propose a kernel nonlocal joint collaborative representation classification method based on column generation for hyperspectral imagery. The proposed approach first maps the original spectral space to a higher implicit kernel space by directly taking the similarity measures between spectral pixels as a feature, and then utilizes a nonlocal joint collaborative regression model for kernel signal reconstruction and the subsequent pixel classification. We also develop two kinds of specific radial basis function kernels for measuring the similarities. The experimental results indicate that the proposed algorithms obtain a competitive performance and outperform other state-of-the-art regression-based classifiers and the classical support vector machines classifier. | 
    
|---|---|
| AbstractList | We propose a kernel nonlocal joint collaborative representation classification method based on column generation for hyperspectral imagery. The proposed approach first maps the original spectral space to a higher implicit kernel space by directly taking the similarity measures between spectral pixels as a feature, and then utilizes a nonlocal joint collaborative regression model for kernel signal reconstruction and the subsequent pixel classification. We also develop two kinds of specific radial basis function kernels for measuring the similarities. The experimental results indicate that the proposed algorithms obtain a competitive performance and outperform other state-of-the-art regression-based classifiers and the classical support vector machines classifier. | 
    
| Author | Zhang, Hongyan Li, Jiayi Zhang, Liangpei  | 
    
| Author_xml | – sequence: 1 givenname: Jiayi surname: Li fullname: Li, Jiayi – sequence: 2 givenname: Hongyan surname: Zhang fullname: Zhang, Hongyan – sequence: 3 givenname: Liangpei surname: Zhang fullname: Zhang, Liangpei email: zlp62@whu.edu.cn  | 
    
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28565623$$DView record in Pascal Francis | 
    
| BookMark | eNqFkU9v1DAQxS1UJLaFz0AuSFyy2I7_JAcO1YpCpUpc4Gw5k0lx6rWDna3Ub1-HFA5cVhrLl9-bN3rvklyEGJCQ94zuGWXq07R3eU55Km_PKRN7WoaJV2THWs3rljfyguxox0XNNVNvyGXOE6WUSdXuyMMh-tMx1PcYMNnFxVA9YAroq2LjI1hfTdGFpYLove3jyjxilXBOmDEsm2SMqfr1NGPKM8KSisgd7T1W4G3ObnTwB3tLXo_WZ3z38l-Rnzdffhy-1Xffv94eru9qkIwu9SAZwDCqHlSrQHa9lpILFG0z9l0raKv6fhA9jthYwXspqBq4HmhjJSgtmuaKfNz2zin-PmFezNFlwHJ_wHjKhpfcGqU1686iTGkmu04Kfh6Vsiv2lK4HfHhBbS4JjskGcNnMqaSSngxvpZKKr9znjYMUc044GnBboiVD5w2jZq3YTOZfxWat2NAyTBS9_k__1-K88npTYunh0WEyGRwGwMGl0qAZoju74xm2IstK | 
    
| CitedBy_id | crossref_primary_10_3390_ijgi6110344 crossref_primary_10_1016_j_isprsjprs_2015_04_005 crossref_primary_10_1117_1_JRS_16_036514 crossref_primary_10_3390_rs9040335 crossref_primary_10_1007_s11432_020_3084_1 crossref_primary_10_1109_LGRS_2015_2504449 crossref_primary_10_1109_TGRS_2015_2421638 crossref_primary_10_1109_TGRS_2017_2781805 crossref_primary_10_1109_LGRS_2018_2800080 crossref_primary_10_1109_JSTARS_2015_2400634 crossref_primary_10_1109_TGRS_2019_2944989 crossref_primary_10_1109_JSTARS_2019_2915588 crossref_primary_10_1109_LGRS_2017_2776113 crossref_primary_10_1109_TGRS_2018_2814781 crossref_primary_10_1080_01431161_2025_2467294 crossref_primary_10_1109_TGRS_2016_2613931 crossref_primary_10_1109_TGRS_2020_3014286 crossref_primary_10_1080_2150704X_2016_1230279 crossref_primary_10_3390_electronics12183777 crossref_primary_10_1109_TGRS_2018_2833882 crossref_primary_10_1109_TGRS_2016_2535458 crossref_primary_10_1016_j_isprsjprs_2018_10_006 crossref_primary_10_1109_LGRS_2017_2671852 crossref_primary_10_1007_s10994_024_06643_7 crossref_primary_10_1016_j_rse_2018_08_017 crossref_primary_10_1109_JSTARS_2017_2757475 crossref_primary_10_1109_TGRS_2019_2912507 crossref_primary_10_1109_TGRS_2015_2392755 crossref_primary_10_1007_s11042_017_4403_9 crossref_primary_10_1109_LGRS_2016_2578038 crossref_primary_10_1016_j_isprsjprs_2023_07_013 crossref_primary_10_1109_TGRS_2015_2500680 crossref_primary_10_1109_TGRS_2017_2729882 crossref_primary_10_1016_j_neucom_2015_11_062 crossref_primary_10_1109_JSTARS_2015_2437073 crossref_primary_10_1016_j_neucom_2018_06_006 crossref_primary_10_1016_j_inffus_2020_01_007 crossref_primary_10_1109_JSTARS_2016_2530850 crossref_primary_10_1109_LGRS_2019_2898913 crossref_primary_10_1109_LGRS_2022_3159280 crossref_primary_10_1109_JSTARS_2018_2789401 crossref_primary_10_1007_s12652_017_0586_1 crossref_primary_10_1109_ACCESS_2017_2758168 crossref_primary_10_1080_2150704X_2016_1196836 crossref_primary_10_1109_JSTARS_2016_2526604 crossref_primary_10_1109_TGRS_2018_2866190 crossref_primary_10_1109_ACCESS_2020_3010519 crossref_primary_10_1016_j_patrec_2015_09_010 crossref_primary_10_1109_JSTARS_2020_3014493 crossref_primary_10_1016_j_patcog_2015_04_014 crossref_primary_10_1080_22797254_2018_1529543  | 
    
| Cites_doi | 10.1109/JSTARS.2011.2176721 10.1109/TGRS.2011.2129595 10.1109/TGRS.2008.922034 10.1109/TIP.2012.2205006 10.1109/LGRS.2013.2294241 10.1080/01431161.2011.552923 10.1145/1014052.1014113 10.1016/j.isprsjprs.2011.05.001 10.1109/TGRS.2012.2201730 10.1109/TGRS.2013.2274875 10.1023/A:1018628609742 10.1016/j.sigpro.2012.01.020 10.1109/ICCV.2009.5459169 10.1109/TGRS.2012.2230268 10.1109/TGRS.2011.2162649 10.1016/j.jag.2010.03.004 10.1016/j.rse.2007.07.028 10.1145/130385.130401 10.1109/TPAMI.2006.39 10.1109/TGRS.2004.831865 10.1109/TGRS.2012.2209657 10.1007/s11263-006-9794-4 10.14358/PERS.70.5.627 10.1111/j.1467-9868.2011.00771.x 10.1109/TPAMI.2008.79 10.1109/CVPR.2012.6247931 10.1016/j.patrec.2012.09.024 10.1109/JSTARS.2013.2264720 10.1117/12.339824 10.1109/TSMC.1985.6313426 10.1109/TIP.2010.2045034 10.1109/LGRS.2012.2216499  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2014 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) 2015 INIST-CNRS  | 
    
| Copyright_xml | – notice: 2014 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) – notice: 2015 INIST-CNRS  | 
    
| DBID | AAYXX CITATION IQODW 8FD FR3 H8D KR7 L7M 7S9 L.6  | 
    
| DOI | 10.1016/j.isprsjprs.2014.04.014 | 
    
| DatabaseName | CrossRef Pascal-Francis Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | Aerospace Database Aerospace Database AGRICOLA  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Geography Engineering  | 
    
| EISSN | 1872-8235 | 
    
| EndPage | 36 | 
    
| ExternalDocumentID | 28565623 10_1016_j_isprsjprs_2014_04_014 S0924271614001099  | 
    
| GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACNNM ACRLP ACSBN ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HMA HVGLF HZ~ H~9 IHE IMUCA J1W KOM LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SEP SES SEW SPC SPCBC SSE SSV SSZ T5K T9H WUQ ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD BNPGV IQODW SSH 8FD FR3 H8D KR7 L7M 7S9 L.6  | 
    
| ID | FETCH-LOGICAL-c510t-d51ccdf6bc686c59b75524e483fb984086bbd4befe3a42b5406d27d03a5c67433 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0924-2716 | 
    
| IngestDate | Sun Sep 28 03:08:14 EDT 2025 Sun Sep 28 07:43:30 EDT 2025 Thu Oct 02 06:10:39 EDT 2025 Wed Apr 02 07:24:02 EDT 2025 Wed Oct 01 06:30:36 EDT 2025 Thu Apr 24 23:05:16 EDT 2025 Fri Feb 23 02:28:02 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Joint collaboration model Column generation Kernel method Hyperspectral image classification experimental studies algorithms models maps joints classification Image signals regression imagery performances Pixel  | 
    
| Language | English | 
    
| License | CC BY 4.0 | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c510t-d51ccdf6bc686c59b75524e483fb984086bbd4befe3a42b5406d27d03a5c67433 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| PQID | 1559674003 | 
    
| PQPubID | 23500 | 
    
| PageCount | 12 | 
    
| ParticipantIDs | proquest_miscellaneous_2101367719 proquest_miscellaneous_1671599542 proquest_miscellaneous_1559674003 pascalfrancis_primary_28565623 crossref_citationtrail_10_1016_j_isprsjprs_2014_04_014 crossref_primary_10_1016_j_isprsjprs_2014_04_014 elsevier_sciencedirect_doi_10_1016_j_isprsjprs_2014_04_014  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2014-08-01 | 
    
| PublicationDateYYYYMMDD | 2014-08-01 | 
    
| PublicationDate_xml | – month: 08 year: 2014 text: 2014-08-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Amsterdam | 
    
| PublicationPlace_xml | – name: Amsterdam | 
    
| PublicationTitle | ISPRS journal of photogrammetry and remote sensing | 
    
| PublicationYear | 2014 | 
    
| Publisher | Elsevier B.V Elsevier  | 
    
| Publisher_xml | – name: Elsevier B.V – name: Elsevier  | 
    
| References | Dópido, Villa, Plaza, Gamba (b0030) 2012; 5 Kwon, Nasrabadi (b0065) 2006; 28 Senthil, Keerthi, Manjunath, Werff, Meer (b0145) 2010; 12 Li, Marpu, Plaza, Bioucas-Dias, Benediktsson (b0100) 2013; 51 Murphy (b0110) 2012 Zhang, Shen, Zhang (b0205) 2012; 92 Zheng, Sun, Fu, Wang (b0220) 2013; 10 Pontius, Millones (b0135) 2011; 32 Waqas, Yi, Zhang (b0175) 2012; 34 Yuan, Liu, Yan (b0195) 2012; 21 Li, Zhang, Huang, Zhang (b0085) 2013; 52 Chen, Nasrabadi, Tran (b0020) 2013; 51 Bi, J., Zhang, T., Bennett, K.P., 2004. Column-generation boosting methods for mixture of kernels. In: Proc. 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 22–25 August, Seattle, WA, pp. 521–526. Vapnik (b0170) 1999 Yang, M., Zhang, L., Zhang, D., Wang, S., 2012. Relaxed collaborative representation for pattern classification. In: Proc. 25th IEEE Conference on Computer Vision and Pattern Recognition, Providence, 16–21 June, Rhode Island, pp. 2224–2231. Boser, B.E., Guyon, I.M., Vapnik, V.N., 1992. A training algorithm for optimal margin classifiers. In: Proc. 5th Annual Workshop on Computational Learning Theory, 27–29 July, Pittsburgh, PA, pp. 144–152. Qian, Ye, Zhou (b0140) 2012; 51 Philippe, Koji, Bernhard (b0125) 2004 Li, Bioucas-Dias, Plaza (b0080) 2012; 50 Li, Zhang, Zhang, Huang, Zhang (b0095) 2013 Gualtieri, J.A., Cromp, R.F., 1999. Support vector machines for hyperspectral remote sensing classification. In: Proc. 27th AIPR Workshop on Advances in Computer-Assisted Recognition, 14–16 October, Washington, DC, pp. 221–232. Nidamanuri, Zbell (b0120) 2011; 66 Tsang, Kwok, Cheung (b0165) 2006; 6 Tropp, Gilbert, Strauss (b0160) 2006; 86 Nash, Sofer (b0115) 1996 Leslie, C., Eskin, E., Noble, W.S., 2002. The spectrum kernel: A string kernel for SVM protein classification. In: Proc. 7th Pacific Symposium on Biocomputing, 3–7 January, Lihue, Hawaii, pp. 566–575. Zhong, Wang (b0225) 2010; 19 Yang, J., Yu, K., Gong, Y., T. Huang, T., 2009. Linear spatial pyramid matching using sparse coding for image classification. In: Proc. 22nd IEEE Conference on Computer Vision and Pattern Recognition, 20–25 June, Miami, pp. 1794–1801. Duarte, M.F., Sarvotham, S., Baron, D., Wakin, M.B., Baraniuk, R.G., 2005. Distributed compressed sensing of jointly sparse signals. In: Proc. 39th Asilomar Conference on Signals, Systems and Computers, 30 October–2 November, Pacific Grove, CA, pp. 1537–1541. Melgani, Bruzzone (b0105) 2004; 42 Zhang, Yang, Feng, Ma, Zhang (b0210) 2012; 1204 Suykens, Vandewalle (b0150) 1999; 9 Lafferty, J., McCallum, A., Pereira, F.C., 2001. Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: Proc. 18th International Conference on Machine Learning, 28 June–1 July, Williams College, Williamstown, pp. 282–289. Fauvel, Benediktsson, Chanussot, Sveinsson (b0040) 2008; 46 Plaza, Benediktsson, Boardman, Brazile, Bruzzone, Camps-Valls, Chanussot, Fauvel, Gamba, Gualtieri (b0130) 2009; 113 Foody (b0045) 2004; 70 Demir, Erturk (b0025) 2010; 48 Zhang, Marszałek, Lazebnik, Schmid (b0200) 2007; 73 Zhang, Li, Huang, Zhang (b0215) 2013 Tibshirani (b0155) 2011; 73 Li, Zhang, Zhang (b0090) 2013; 11 Chen, Nasrabadi, Tran (b0015) 2011; 49 Wright, Yang, Ganesh, Sastry, Ma (b0180) 2009; 31 Gehler, P., Nowozin, S., 2009. On feature combination for multiclass object classification. In: Proc. 12th International Conference on Computer Vision, 27 September–4 October, Kyoto, pp. 221–228. Keller, Gray, Givens (b0060) 1985; 15 10.1016/j.isprsjprs.2014.04.014_b0010 Kwon (10.1016/j.isprsjprs.2014.04.014_b0065) 2006; 28 Dópido (10.1016/j.isprsjprs.2014.04.014_b0030) 2012; 5 10.1016/j.isprsjprs.2014.04.014_b0055 10.1016/j.isprsjprs.2014.04.014_b0035 Fauvel (10.1016/j.isprsjprs.2014.04.014_b0040) 2008; 46 Nidamanuri (10.1016/j.isprsjprs.2014.04.014_b0120) 2011; 66 Philippe (10.1016/j.isprsjprs.2014.04.014_b0125) 2004 Senthil (10.1016/j.isprsjprs.2014.04.014_b0145) 2010; 12 Li (10.1016/j.isprsjprs.2014.04.014_b0085) 2013; 52 10.1016/j.isprsjprs.2014.04.014_b0190 10.1016/j.isprsjprs.2014.04.014_b0070 10.1016/j.isprsjprs.2014.04.014_b0050 Li (10.1016/j.isprsjprs.2014.04.014_b0100) 2013; 51 10.1016/j.isprsjprs.2014.04.014_b0075 Pontius (10.1016/j.isprsjprs.2014.04.014_b0135) 2011; 32 Foody (10.1016/j.isprsjprs.2014.04.014_b0045) 2004; 70 Waqas (10.1016/j.isprsjprs.2014.04.014_b0175) 2012; 34 Zhang (10.1016/j.isprsjprs.2014.04.014_b0210) 2012; 1204 Suykens (10.1016/j.isprsjprs.2014.04.014_b0150) 1999; 9 Li (10.1016/j.isprsjprs.2014.04.014_b0090) 2013; 11 Melgani (10.1016/j.isprsjprs.2014.04.014_b0105) 2004; 42 Qian (10.1016/j.isprsjprs.2014.04.014_b0140) 2012; 51 Li (10.1016/j.isprsjprs.2014.04.014_b0095) 2013 Keller (10.1016/j.isprsjprs.2014.04.014_b0060) 1985; 15 Tsang (10.1016/j.isprsjprs.2014.04.014_b0165) 2006; 6 10.1016/j.isprsjprs.2014.04.014_b0005 Nash (10.1016/j.isprsjprs.2014.04.014_b0115) 1996 Zhang (10.1016/j.isprsjprs.2014.04.014_b0200) 2007; 73 Murphy (10.1016/j.isprsjprs.2014.04.014_b0110) 2012 Zhang (10.1016/j.isprsjprs.2014.04.014_b0205) 2012; 92 Wright (10.1016/j.isprsjprs.2014.04.014_b0180) 2009; 31 Demir (10.1016/j.isprsjprs.2014.04.014_b0025) 2010; 48 Chen (10.1016/j.isprsjprs.2014.04.014_b0015) 2011; 49 10.1016/j.isprsjprs.2014.04.014_b0185 Tibshirani (10.1016/j.isprsjprs.2014.04.014_b0155) 2011; 73 Vapnik (10.1016/j.isprsjprs.2014.04.014_b0170) 1999 Zhong (10.1016/j.isprsjprs.2014.04.014_b0225) 2010; 19 Yuan (10.1016/j.isprsjprs.2014.04.014_b0195) 2012; 21 Zhang (10.1016/j.isprsjprs.2014.04.014_b0215) 2013 Zheng (10.1016/j.isprsjprs.2014.04.014_b0220) 2013; 10 Plaza (10.1016/j.isprsjprs.2014.04.014_b0130) 2009; 113 Chen (10.1016/j.isprsjprs.2014.04.014_b0020) 2013; 51 Li (10.1016/j.isprsjprs.2014.04.014_b0080) 2012; 50 Tropp (10.1016/j.isprsjprs.2014.04.014_b0160) 2006; 86  | 
    
| References_xml | – volume: 52 start-page: 3707 year: 2013 end-page: 3719 ident: b0085 article-title: Hyperspectral image classification by nonlocal joint collaborative representation with locality-adaptive dictionary publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 10 start-page: 652 year: 2013 end-page: 656 ident: b0220 article-title: Automatic annotation of satellite images via multifeature joint sparse coding with spatial relation constraint publication-title: IEEE Geosci. Remote Sens. Lett. – start-page: 35 year: 2004 end-page: 70 ident: b0125 article-title: A primer on kernel methods publication-title: Kernel Methods Comput. Biol. – volume: 19 start-page: 1890 year: 2010 end-page: 1907 ident: b0225 article-title: Learning conditional random fields for classification of hyperspectral images publication-title: IEEE Trans. Image Process. – reference: Duarte, M.F., Sarvotham, S., Baron, D., Wakin, M.B., Baraniuk, R.G., 2005. Distributed compressed sensing of jointly sparse signals. In: Proc. 39th Asilomar Conference on Signals, Systems and Computers, 30 October–2 November, Pacific Grove, CA, pp. 1537–1541. – volume: 28 start-page: 178 year: 2006 end-page: 194 ident: b0065 article-title: Kernel matched subspace detectors for hyperspectral target detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 1996 ident: b0115 article-title: Linear and Nonlinear Programming – volume: 1204 start-page: 2358 year: 2012 ident: b0210 article-title: Collaborative representation based classification for face recognition publication-title: Arxiv Preprint – volume: 51 start-page: 4816 year: 2013 end-page: 4829 ident: b0100 article-title: Generalized composite kernel framework for hyperspectral image classification publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 51 start-page: 2276 year: 2012 end-page: 2291 ident: b0140 article-title: Hyperspectral image classification based on structured sparse logistic regression and three-dimensional wavelet texture features publication-title: IEEE Trans. Geosci. Remote Sens. – reference: Boser, B.E., Guyon, I.M., Vapnik, V.N., 1992. A training algorithm for optimal margin classifiers. In: Proc. 5th Annual Workshop on Computational Learning Theory, 27–29 July, Pittsburgh, PA, pp. 144–152. – volume: 48 start-page: 4071 year: 2010 end-page: 4084 ident: b0025 article-title: Empirical mode decomposition of hyperspectral images for support vector machine classification publication-title: IEEE Trans. Geosci. Remote Sens. – reference: Bi, J., Zhang, T., Bennett, K.P., 2004. Column-generation boosting methods for mixture of kernels. In: Proc. 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 22–25 August, Seattle, WA, pp. 521–526. – year: 2013 ident: b0095 article-title: Joint collaborative representation with multi-task learning for hyperspectral image classification publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 49 start-page: 3973 year: 2011 end-page: 3985 ident: b0015 article-title: Hyperspectral image classification using dictionary-based sparse representation publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 113 start-page: S110 year: 2009 end-page: S122 ident: b0130 article-title: Recent advances in techniques for hyperspectral image processing publication-title: Remote Sens. Environ. – reference: Gehler, P., Nowozin, S., 2009. On feature combination for multiclass object classification. In: Proc. 12th International Conference on Computer Vision, 27 September–4 October, Kyoto, pp. 221–228. – volume: 31 start-page: 210 year: 2009 end-page: 227 ident: b0180 article-title: Robust face recognition via sparse representation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 73 start-page: 213 year: 2007 end-page: 238 ident: b0200 article-title: Local features and kernels for classification of texture and object categories: a comprehensive study publication-title: Int. J. Comput. Vision – volume: 42 start-page: 1778 year: 2004 end-page: 1790 ident: b0105 article-title: Classification of hyperspectral remote sensing images with support vector machines publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 32 start-page: 4407 year: 2011 end-page: 4429 ident: b0135 article-title: Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment publication-title: Int. J. Remote Sens. – volume: 12 start-page: 261 year: 2010 end-page: 269 ident: b0145 article-title: Hyperspectral image classification by a variable interval spectral average and spectral curve matching combined algorithm publication-title: Int. J. Appl. Earth Obs. Geoinf. – year: 1999 ident: b0170 article-title: The Nature of Statistical Learning Theory – volume: 34 start-page: 201 year: 2012 end-page: 208 ident: b0175 article-title: Collaborative neighbor representation based classification using l2-minimization approach publication-title: Pattern Recogn. Lett. – volume: 11 start-page: 1409 year: 2013 end-page: 1413 ident: b0090 article-title: Supervised segmentation of very high resolution images by the use of extended morphological attribute profiles and a sparse transform publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 9 start-page: 293 year: 1999 end-page: 300 ident: b0150 article-title: Least squares support vector machine classifiers publication-title: Neural Process. Lett. – volume: 50 start-page: 809 year: 2012 end-page: 823 ident: b0080 article-title: Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields publication-title: IEEE Trans. Geosci. Remote Sens. – reference: Yang, M., Zhang, L., Zhang, D., Wang, S., 2012. Relaxed collaborative representation for pattern classification. In: Proc. 25th IEEE Conference on Computer Vision and Pattern Recognition, Providence, 16–21 June, Rhode Island, pp. 2224–2231. – volume: 86 start-page: 572 year: 2006 end-page: 588 ident: b0160 article-title: Algorithms for simultaneous sparse approximation publication-title: Part I: Greedy pursuit. Signal Process. – volume: 6 start-page: 363 year: 2006 end-page: 392 ident: b0165 article-title: Core vector machines: fast SVM training on very large data sets publication-title: J. Mach. Learn. Res. – volume: 92 start-page: 2082 year: 2012 end-page: 2096 ident: b0205 article-title: A super-resolution reconstruction algorithm for hyperspectral images publication-title: Signal Process. – volume: 73 start-page: 273 year: 2011 end-page: 282 ident: b0155 article-title: Regression shrinkage and selection via the lasso: a retrospective publication-title: J. R. Stat. Soc.: Ser. B (Stat. Method.) – volume: 51 start-page: 217 year: 2013 end-page: 231 ident: b0020 article-title: Hyperspectral image classification via kernel sparse representation publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 21 start-page: 4349 year: 2012 end-page: 4360 ident: b0195 article-title: Visual classification with multi-task joint sparse representation publication-title: IEEE Trans. Image Process. – volume: 46 start-page: 3804 year: 2008 end-page: 3814 ident: b0040 article-title: Spectral and spatial classification of hyperspectral data using SVMS and morphological profiles publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 66 start-page: 683 year: 2011 end-page: 691 ident: b0120 article-title: Use of field reflectance data for crop mapping using airborne hyperspectral image publication-title: ISPRS J. Photogr. Remote Sens. – volume: 70 start-page: 627 year: 2004 end-page: 634 ident: b0045 article-title: Thematic map comparison: evaluating the statistical significance of differences in classification accuracy publication-title: Photogr. Eng. Remote Sens. – reference: Leslie, C., Eskin, E., Noble, W.S., 2002. The spectrum kernel: A string kernel for SVM protein classification. In: Proc. 7th Pacific Symposium on Biocomputing, 3–7 January, Lihue, Hawaii, pp. 566–575. – volume: 5 start-page: 421 year: 2012 end-page: 435 ident: b0030 article-title: A quantitative and comparative assessment of unmixing-based feature extraction techniques for hyperspectral image classification publication-title: IEEE J. Selected Topics Appl. Earth Observations Remote Sens. – volume: 15 start-page: 580 year: 1985 end-page: 585 ident: b0060 article-title: A fuzzy publication-title: IEEE Trans. Syst. Man Cyber. – reference: Yang, J., Yu, K., Gong, Y., T. Huang, T., 2009. Linear spatial pyramid matching using sparse coding for image classification. In: Proc. 22nd IEEE Conference on Computer Vision and Pattern Recognition, 20–25 June, Miami, pp. 1794–1801. – reference: Gualtieri, J.A., Cromp, R.F., 1999. Support vector machines for hyperspectral remote sensing classification. In: Proc. 27th AIPR Workshop on Advances in Computer-Assisted Recognition, 14–16 October, Washington, DC, pp. 221–232. – year: 2013 ident: b0215 article-title: A nonlocal weighted joint sparse representation classification method for hyperspectral imagery publication-title: IEEE J. Selected Topics Appl. Earth Observations Remote Sens. – reference: Lafferty, J., McCallum, A., Pereira, F.C., 2001. Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: Proc. 18th International Conference on Machine Learning, 28 June–1 July, Williams College, Williamstown, pp. 282–289. – year: 2012 ident: b0110 article-title: Machine Learning: A Probabilistic Perspective – volume: 5 start-page: 421 issue: 2 year: 2012 ident: 10.1016/j.isprsjprs.2014.04.014_b0030 article-title: A quantitative and comparative assessment of unmixing-based feature extraction techniques for hyperspectral image classification publication-title: IEEE J. Selected Topics Appl. Earth Observations Remote Sens. doi: 10.1109/JSTARS.2011.2176721 – volume: 49 start-page: 3973 issue: 10 year: 2011 ident: 10.1016/j.isprsjprs.2014.04.014_b0015 article-title: Hyperspectral image classification using dictionary-based sparse representation publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2011.2129595 – volume: 46 start-page: 3804 issue: 11 year: 2008 ident: 10.1016/j.isprsjprs.2014.04.014_b0040 article-title: Spectral and spatial classification of hyperspectral data using SVMS and morphological profiles publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2008.922034 – ident: 10.1016/j.isprsjprs.2014.04.014_b0185 – volume: 21 start-page: 4349 issue: 10 year: 2012 ident: 10.1016/j.isprsjprs.2014.04.014_b0195 article-title: Visual classification with multi-task joint sparse representation publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2012.2205006 – volume: 11 start-page: 1409 issue: 8 year: 2013 ident: 10.1016/j.isprsjprs.2014.04.014_b0090 article-title: Supervised segmentation of very high resolution images by the use of extended morphological attribute profiles and a sparse transform publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2013.2294241 – volume: 32 start-page: 4407 issue: 15 year: 2011 ident: 10.1016/j.isprsjprs.2014.04.014_b0135 article-title: Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2011.552923 – ident: 10.1016/j.isprsjprs.2014.04.014_b0005 doi: 10.1145/1014052.1014113 – start-page: 35 year: 2004 ident: 10.1016/j.isprsjprs.2014.04.014_b0125 article-title: A primer on kernel methods publication-title: Kernel Methods Comput. Biol. – volume: 66 start-page: 683 issue: 5 year: 2011 ident: 10.1016/j.isprsjprs.2014.04.014_b0120 article-title: Use of field reflectance data for crop mapping using airborne hyperspectral image publication-title: ISPRS J. Photogr. Remote Sens. doi: 10.1016/j.isprsjprs.2011.05.001 – volume: 51 start-page: 217 issue: 1 year: 2013 ident: 10.1016/j.isprsjprs.2014.04.014_b0020 article-title: Hyperspectral image classification via kernel sparse representation publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2012.2201730 – volume: 48 start-page: 4071 issue: 11 year: 2010 ident: 10.1016/j.isprsjprs.2014.04.014_b0025 article-title: Empirical mode decomposition of hyperspectral images for support vector machine classification publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 52 start-page: 3707 issue: 6 year: 2013 ident: 10.1016/j.isprsjprs.2014.04.014_b0085 article-title: Hyperspectral image classification by nonlocal joint collaborative representation with locality-adaptive dictionary publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/TGRS.2013.2274875 – volume: 9 start-page: 293 issue: 3 year: 1999 ident: 10.1016/j.isprsjprs.2014.04.014_b0150 article-title: Least squares support vector machine classifiers publication-title: Neural Process. Lett. doi: 10.1023/A:1018628609742 – volume: 92 start-page: 2082 issue: 9 year: 2012 ident: 10.1016/j.isprsjprs.2014.04.014_b0205 article-title: A super-resolution reconstruction algorithm for hyperspectral images publication-title: Signal Process. doi: 10.1016/j.sigpro.2012.01.020 – ident: 10.1016/j.isprsjprs.2014.04.014_b0050 doi: 10.1109/ICCV.2009.5459169 – volume: 1204 start-page: 2358 year: 2012 ident: 10.1016/j.isprsjprs.2014.04.014_b0210 article-title: Collaborative representation based classification for face recognition publication-title: Arxiv Preprint – volume: 51 start-page: 4816 issue: 9 year: 2013 ident: 10.1016/j.isprsjprs.2014.04.014_b0100 article-title: Generalized composite kernel framework for hyperspectral image classification publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2012.2230268 – volume: 50 start-page: 809 issue: 3 year: 2012 ident: 10.1016/j.isprsjprs.2014.04.014_b0080 article-title: Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2011.2162649 – volume: 12 start-page: 261 year: 2010 ident: 10.1016/j.isprsjprs.2014.04.014_b0145 article-title: Hyperspectral image classification by a variable interval spectral average and spectral curve matching combined algorithm publication-title: Int. J. Appl. Earth Obs. Geoinf. doi: 10.1016/j.jag.2010.03.004 – year: 1996 ident: 10.1016/j.isprsjprs.2014.04.014_b0115 – volume: 86 start-page: 572 issue: 3 year: 2006 ident: 10.1016/j.isprsjprs.2014.04.014_b0160 article-title: Algorithms for simultaneous sparse approximation publication-title: Part I: Greedy pursuit. Signal Process. – ident: 10.1016/j.isprsjprs.2014.04.014_b0035 – volume: 113 start-page: S110 year: 2009 ident: 10.1016/j.isprsjprs.2014.04.014_b0130 article-title: Recent advances in techniques for hyperspectral image processing publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.07.028 – ident: 10.1016/j.isprsjprs.2014.04.014_b0010 doi: 10.1145/130385.130401 – volume: 28 start-page: 178 issue: 2 year: 2006 ident: 10.1016/j.isprsjprs.2014.04.014_b0065 article-title: Kernel matched subspace detectors for hyperspectral target detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2006.39 – volume: 42 start-page: 1778 issue: 8 year: 2004 ident: 10.1016/j.isprsjprs.2014.04.014_b0105 article-title: Classification of hyperspectral remote sensing images with support vector machines publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2004.831865 – volume: 51 start-page: 2276 issue: 4 year: 2012 ident: 10.1016/j.isprsjprs.2014.04.014_b0140 article-title: Hyperspectral image classification based on structured sparse logistic regression and three-dimensional wavelet texture features publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2012.2209657 – volume: 73 start-page: 213 issue: 2 year: 2007 ident: 10.1016/j.isprsjprs.2014.04.014_b0200 article-title: Local features and kernels for classification of texture and object categories: a comprehensive study publication-title: Int. J. Comput. Vision doi: 10.1007/s11263-006-9794-4 – ident: 10.1016/j.isprsjprs.2014.04.014_b0075 – year: 2012 ident: 10.1016/j.isprsjprs.2014.04.014_b0110 – volume: 6 start-page: 363 issue: 4 year: 2006 ident: 10.1016/j.isprsjprs.2014.04.014_b0165 article-title: Core vector machines: fast SVM training on very large data sets publication-title: J. Mach. Learn. Res. – year: 1999 ident: 10.1016/j.isprsjprs.2014.04.014_b0170 – volume: 70 start-page: 627 issue: 5 year: 2004 ident: 10.1016/j.isprsjprs.2014.04.014_b0045 article-title: Thematic map comparison: evaluating the statistical significance of differences in classification accuracy publication-title: Photogr. Eng. Remote Sens. doi: 10.14358/PERS.70.5.627 – ident: 10.1016/j.isprsjprs.2014.04.014_b0070 – volume: 73 start-page: 273 issue: 3 year: 2011 ident: 10.1016/j.isprsjprs.2014.04.014_b0155 article-title: Regression shrinkage and selection via the lasso: a retrospective publication-title: J. R. Stat. Soc.: Ser. B (Stat. Method.) doi: 10.1111/j.1467-9868.2011.00771.x – volume: 31 start-page: 210 issue: 2 year: 2009 ident: 10.1016/j.isprsjprs.2014.04.014_b0180 article-title: Robust face recognition via sparse representation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2008.79 – ident: 10.1016/j.isprsjprs.2014.04.014_b0190 doi: 10.1109/CVPR.2012.6247931 – year: 2013 ident: 10.1016/j.isprsjprs.2014.04.014_b0095 article-title: Joint collaborative representation with multi-task learning for hyperspectral image classification publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 34 start-page: 201 issue: 2 year: 2012 ident: 10.1016/j.isprsjprs.2014.04.014_b0175 article-title: Collaborative neighbor representation based classification using l2-minimization approach publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2012.09.024 – year: 2013 ident: 10.1016/j.isprsjprs.2014.04.014_b0215 article-title: A nonlocal weighted joint sparse representation classification method for hyperspectral imagery publication-title: IEEE J. Selected Topics Appl. Earth Observations Remote Sens. doi: 10.1109/JSTARS.2013.2264720 – ident: 10.1016/j.isprsjprs.2014.04.014_b0055 doi: 10.1117/12.339824 – volume: 15 start-page: 580 issue: 4 year: 1985 ident: 10.1016/j.isprsjprs.2014.04.014_b0060 article-title: A fuzzy k-nearest neighbor algorithm publication-title: IEEE Trans. Syst. Man Cyber. doi: 10.1109/TSMC.1985.6313426 – volume: 19 start-page: 1890 issue: 7 year: 2010 ident: 10.1016/j.isprsjprs.2014.04.014_b0225 article-title: Learning conditional random fields for classification of hyperspectral images publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2010.2045034 – volume: 10 start-page: 652 issue: 4 year: 2013 ident: 10.1016/j.isprsjprs.2014.04.014_b0220 article-title: Automatic annotation of satellite images via multifeature joint sparse coding with spatial relation constraint publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2012.2216499  | 
    
| SSID | ssj0001568 | 
    
| Score | 2.3296711 | 
    
| Snippet | We propose a kernel nonlocal joint collaborative representation classification method based on column generation for hyperspectral imagery. The proposed... | 
    
| SourceID | proquest pascalfrancis crossref elsevier  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 25 | 
    
| SubjectTerms | Algorithms Animal, plant and microbial ecology Applied geophysics Biological and medical sciences Classification Classifiers Column generation Earth sciences Earth, ocean, space Exact sciences and technology Fundamental and applied biological sciences. Psychology General aspects. Techniques Hyperspectral image classification hyperspectral imagery Internal geophysics Joint collaboration model Kernel method Kernels Pixels regression analysis Representations Similarity Spectra support vector machines Teledetection and vegetation maps  | 
    
| Title | Column-generation kernel nonlocal joint collaborative representation for hyperspectral image classification | 
    
| URI | https://dx.doi.org/10.1016/j.isprsjprs.2014.04.014 https://www.proquest.com/docview/1559674003 https://www.proquest.com/docview/1671599542 https://www.proquest.com/docview/2101367719  | 
    
| Volume | 94 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-8235 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001568 issn: 0924-2716 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier Science Direct Journals customDbUrl: eissn: 1872-8235 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001568 issn: 0924-2716 databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-8235 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001568 issn: 0924-2716 databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1872-8235 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001568 issn: 0924-2716 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-8235 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001568 issn: 0924-2716 databaseCode: AKRWK dateStart: 19930201 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9N4wEQQjBAdEBlJF5N49hxHN6miqmAtBeYtDcrjh2WbqRV2yHthb-dOycpq9DYA1LykOisOHf2fch3vwN4573zMtOKS53UXDmheJlJzbUOaM9dbYou2-JEz07V57PsbA-mQy0MpVX2ur_T6VFb928mPTcny6aZfE0wdEjR3ccQIZ7vUAW7yqmLwftff9I8RFcOR8ScqHdyvJr1crWe4005Xipingp1m4V6tCzXyLe6a3jxl-6OBun4CTzuPUl21E32KeyF9gAe3sAXPID7fYvz8-tncDElPdTy7xFnmsTBLsKqDZesXbTRorH5omk37MbK-BlYBL0cCpRahi4uO8fQtavQXOGg5gdqJFaRE05ZR5HsOZwef_w2nfG-0wKvcE9uuM9EVflau0obXWWFy7MsVUEZWbsCQ0CjnfPKhTrIUqUOvTzt09wnsswqqmKQL2AfJxteAjOhNGXhQykw3kX_zhmMuHyug5R1oo0YgR64a6sehpy6YVzaId9sbrdisSQWm-Al1AiS7cBlh8Rx95APg_jszqKyaC_uHjzeEfj2o6khJziVI3g7rACLe5IOWso2LK7Wlo56kS2oMP9Bo3NBYG8qvZ0Gw3FC1MtFcfg_f_IKHtBTl7b4GvY3q6vwBl2pjRvHvTKGe0efvsxOfgN6fSLT | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VcigVQlBAXR7FSFzNxvEjTm9oRbVA6YVW6s2KY4dm22ZXu9tKXPjtHTvJ0hUqPSAll2SsODP2zHzyPAA-OGcdl0pQrpKKCssELSRXVCmP9txWOm-jLY7U-ER8PZWnGzDqc2FCWGWn-1udHrV192TYcXM4q-vhjwShQ4ruPkKEeL7zAB4KmWYBgX38_SfOg7X5cIGaBvK1IK96MZsvJniHIC8Ri54ycZeJejwrFsi4qu148Zfyjhbp4Ck86VxJ8qmd7TPY8M0ObN8qMLgDW12P87Nfz-F8FBRRQ3_GQtNBHuTczxt_QZppE00amUzrZkluLY1rT2LVyz5DqSHo45IzxK5tiuYcB9WXqJJIGbzwEHYUyV7AycHn49GYdq0WaImbckmdZGXpKmVLpVUpc5tJmQovNK9sjhhQK2udsL7yvBCpRTdPuTRzCS9kGdIY-EvYxMn6XSDaF7rInS8YAl508KxGyOUy5TmvEqXZAFTPXVN2dchDO4wL0wecTcxKLCaIxSR4MTGAZDVw1pbiuH_Ifi8-s7aqDBqM-wfvrQl89dFUBy845QN4368Ag5synLQUjZ9eLUw460W2oMb8B43KWKj2JtK7aRCPh5J6Gctf_c-fvIOt8fH3Q3P45ejba3gU3rQxjG9gczm_8m_Rr1ravbhvbgD32yRo | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Column-generation+kernel+nonlocal+joint+collaborative+representation+for+hyperspectral+image+classification&rft.jtitle=ISPRS+journal+of+photogrammetry+and+remote+sensing&rft.au=Li%2C+Jiayi&rft.au=Zhang%2C+Hongyan&rft.au=Zhang%2C+Liangpei&rft.date=2014-08-01&rft.issn=0924-2716&rft.volume=94&rft.spage=25&rft.epage=36&rft_id=info:doi/10.1016%2Fj.isprsjprs.2014.04.014&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2716&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2716&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2716&client=summon |