Detecting Anatomical Landmarks for Fast Alzheimer's Disease Diagnosis
Structural magnetic resonance imaging (MRI) is a very popular and effective technique used to diagnose Alzheimer's disease (AD). The success of computer-aided diagnosis methods using structural MRI data is largely dependent on the two time-consuming steps: 1) nonlinear registration across subje...
Saved in:
| Published in | IEEE transactions on medical imaging Vol. 35; no. 12; pp. 2524 - 2533 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.12.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0278-0062 1558-254X 1558-254X |
| DOI | 10.1109/TMI.2016.2582386 |
Cover
| Abstract | Structural magnetic resonance imaging (MRI) is a very popular and effective technique used to diagnose Alzheimer's disease (AD). The success of computer-aided diagnosis methods using structural MRI data is largely dependent on the two time-consuming steps: 1) nonlinear registration across subjects, and 2) brain tissue segmentation. To overcome this limitation, we propose a landmark-based feature extraction method that does not require nonlinear registration and tissue segmentation. In the training stage, in order to distinguish AD subjects from healthy controls (HCs), group comparisons, based on local morphological features, are first performed to identify brain regions that have significant group differences. In general, the centers of the identified regions become landmark locations (or AD landmarks for short) capable of differentiating AD subjects from HCs. In the testing stage, using the learned AD landmarks, the corresponding landmarks are detected in a testing image using an efficient technique based on a shape-constrained regression-forest algorithm. To improve detection accuracy, an additional set of salient and consistent landmarks are also identified to guide the AD landmark detection. Based on the identified AD landmarks, morphological features are extracted to train a support vector machine (SVM) classifier that is capable of predicting the AD condition. In the experiments, our method is evaluated on landmark detection and AD classification sequentially. Specifically, the landmark detection error (manually annotated versus automatically detected) of the proposed landmark detector is 2.41 mm, and our landmark-based AD classification accuracy is 83.7%. Lastly, the AD classification performance of our method is comparable to, or even better than, that achieved by existing region-based and voxel-based methods, while the proposed method is approximately 50 times faster. |
|---|---|
| AbstractList | Structural magnetic resonance imaging (MRI) is a very popular and effective technique used to diagnose Alzheimer's disease (AD). The success of computer-aided diagnosis methods using structural MRI data is largely dependent on the two time-consuming steps: 1) nonlinear registration across subjects, and 2) brain tissue segmentation. To overcome this limitation, we propose a landmark-based feature extraction method that does not require nonlinear registration and tissue segmentation. In the training stage, in order to distinguish AD subjects from healthy controls (HCs), group comparisons, based on local morphological features, are first performed to identify brain regions that have significant group differences. In general, the centers of the identified regions become landmark locations (or AD landmarks for short) capable of differentiating AD subjects from HCs. In the testing stage, using the learned AD landmarks, the corresponding landmarks are detected in a testing image using an efficient technique based on a shape-constrained regression-forest algorithm. To improve detection accuracy, an additional set of salient and consistent landmarks are also identified to guide the AD landmark detection. Based on the identified AD landmarks, morphological features are extracted to train a support vector machine (SVM) classifier that is capable of predicting the AD condition. In the experiments, our method is evaluated on landmark detection and AD classification sequentially. Specifically, the landmark detection error (manually annotated versus automatically detected) of the proposed landmark detector is 2.41 mm , and our landmark-based AD classification accuracy is 83.7%. Lastly, the AD classification performance of our method is comparable to, or even better than, that achieved by existing region-based and voxel-based methods, while the proposed method is approximately 50 times faster. Structural magnetic resonance imaging (MRI) is a very popular and effective technique used to diagnose Alzheimer’s disease (AD). The success of computer-aided diagnosis methods using structural MRI data is largely dependent on the two time-consuming steps: 1) nonlinear registration across subjects, and 2) brain tissue segmentation. To overcome this limitation, we propose a landmark-based feature extraction method that does not require nonlinear registration and tissue segmentation. In the training stage, in order to distinguish AD subjects from healthy controls (HCs), group comparisons, based on local morphological features, are first performed to identify brain regions that have significant group differences. In general, the centers of the identified regions become landmark locations (or AD landmarks for short) capable of differentiating AD subjects from HCs. In the testing stage, using the learned AD landmarks, the corresponding landmarks are detected in a testing image using an efficient technique based on a shape-constrained regression-forest algorithm. To improve detection accuracy, an additional set of salient and consistent landmarks are also identified to guide the AD landmark detection. Based on the identified AD landmarks, morphological features are extracted to train a support vector machine (SVM) classifier that is capable of predicting the AD condition. In the experiments, our method is evaluated on landmark detection and AD classification sequentially. Specifically, the landmark detection error (manually annotated versus automatically detected) of the proposed landmark detector is [Formula Omitted], and our landmark-based AD classification accuracy is 83.7%. Lastly, the AD classification performance of our method is comparable to, or even better than, that achieved by existing region-based and voxel-based methods, while the proposed method is approximately 50 times faster. Structural magnetic resonance imaging (MRI) is a very popular and effective technique used to diagnose Alzheimer’s disease (AD). The success of computer-aided diagnosis methods using structural MRI data is largely dependent on the two time-consuming steps: 1) nonlinear registration across subjects, and 2) brain tissue segmentation. To overcome this limitation, we propose a landmark-based feature extraction method that does not require nonlinear registration and tissue segmentation. In the training stage, in order to distinguish AD subjects from healthy controls (HCs), group comparisons, based on local morphological features, are first performed to identify brain regions that have significant group differences. In general, the centers of the identified regions become landmark locations (or AD landmarks for short) capable of differentiating AD subjects from HCs. In the testing stage, using the learned AD landmarks, the corresponding landmarks are detected in a testing image using an efficient technique based on a shape-constrained regression-forest algorithm. To improve detection accuracy, an additional set of salient and consistent landmarks are also identified to guide the AD landmark detection. Based on the identified AD landmarks, morphological features are extracted to train a support vector machine (SVM) classifier that is capable of predicting the AD condition. In the experiments, our method is evaluated on landmark detection and AD classification sequentially. Specifically, the landmark detection error (manually annotated versus automatically detected) of the proposed landmark detector is 2.41mm, and our landmark-based AD classification accuracy is 83.7%. Lastly, the AD classification performance of our method is comparable to, or even better than, that achieved by existing region-based and voxel-based methods, while the proposed method is approximately 50 times faster. |
| Author | Shen, Dinggang Munsell, Brent C. Gao, Yue Zhang, Jun Gao, Yaozong |
| Author_xml | – sequence: 1 givenname: Jun surname: Zhang fullname: Zhang, Jun organization: Department of Radiology and BRIC, University of North Carolina, Chapel Hill, NC, USA – sequence: 2 givenname: Yue surname: Gao fullname: Gao, Yue organization: Department of Radiology and BRIC, University of North Carolina, Chapel Hill, NC, USA – sequence: 3 givenname: Yaozong surname: Gao fullname: Gao, Yaozong organization: Department of Radiology and BRIC, University of North Carolina, Chapel Hill, NC, USA – sequence: 4 givenname: Brent C. surname: Munsell fullname: Munsell, Brent C. organization: Department of Computer Science, College of Charleston, Charleston, SC, USA – sequence: 5 givenname: Dinggang surname: Shen fullname: Shen, Dinggang email: dgshen@med.unc.edu organization: Department of Radiology and BRIC, University of North Carolina, Chapel Hill, NC, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27333602$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9UU1vEzEUtFArmgbuSEhoJQ5w2eCPtXf3ghT1g1YK4lIkbtaz8zZ12bXTtQMqvx5HCQWCxOk9yTPjmXmn5MgHj4S8YHTGGG3f3Xy8nnHK1IzLhotGPSETJmVTcll9OSITyuumpFTxE3Ia4x2lrJK0fUpOeC2EUJRPyMU5JrTJ-VUx95DC4Cz0xQL8coDxayy6MBaXEFMx73_cohtwfBOLcxcRIuYJKx-ii8_IcQd9xOf7OSWfLy9uzq7KxacP12fzRWklo6mUnTXcKGU60RrkLdR549IsGVWGNaztqDGt4oY3FjrVIQXLQCxFp6wFwcSUsJ3uxq_h4Tv0vV6PLjt90IzqbSU6DU5vK9H7SjLn_Y6z3pgBlxZ9GuE3L4DTf794d6tX4ZuWTAqRNabk7V5gDPcbjEkPLlrse_AYNlGzhquaMlnVGfr6AHoXNqPPlWRUJQVTSlYZ9epPR49Wfl0lA-gOYMcQ44jdPynz4Q9TqgOKdQmSC9tMrv8f8eWO6BDx8Z-6aivFWvET36y5Ug |
| CODEN | ITMID4 |
| CitedBy_id | crossref_primary_10_1016_j_bspc_2023_105482 crossref_primary_10_1016_j_bspc_2024_106572 crossref_primary_10_1109_TMI_2022_3180343 crossref_primary_10_1016_j_media_2020_101729 crossref_primary_10_1002_ima_22656 crossref_primary_10_1109_TCYB_2019_2903591 crossref_primary_10_1007_s13198_022_01680_8 crossref_primary_10_26599_BDMA_2022_9020049 crossref_primary_10_1016_j_imu_2018_12_001 crossref_primary_10_1109_TMI_2018_2867837 crossref_primary_10_2139_ssrn_4017382 crossref_primary_10_1007_s42600_024_00394_z crossref_primary_10_1109_ACCESS_2019_2903332 crossref_primary_10_1016_j_cmpb_2021_106503 crossref_primary_10_1016_j_media_2020_101953 crossref_primary_10_1109_JAS_2023_123591 crossref_primary_10_1080_00207454_2020_1835900 crossref_primary_10_1016_j_compmedimag_2018_09_009 crossref_primary_10_1016_j_bspc_2023_104787 crossref_primary_10_1016_j_media_2016_11_002 crossref_primary_10_1088_1361_6560_accac8 crossref_primary_10_1016_j_eswa_2020_113372 crossref_primary_10_1007_s11277_024_11464_x crossref_primary_10_1049_iet_ipr_2019_0617 crossref_primary_10_1016_j_cmpb_2021_106581 crossref_primary_10_1007_s00530_017_0582_5 crossref_primary_10_1109_ACCESS_2019_2926288 crossref_primary_10_1109_TPAMI_2018_2889096 crossref_primary_10_1142_S0219467821500297 crossref_primary_10_1109_TBME_2019_2939419 crossref_primary_10_1016_j_neuri_2025_100196 crossref_primary_10_1109_ACCESS_2024_3426085 crossref_primary_10_1109_JBHI_2017_2704614 crossref_primary_10_1038_s41598_024_78712_9 crossref_primary_10_3233_JAD_230705 crossref_primary_10_1016_j_compmedimag_2022_102057 crossref_primary_10_1088_1361_6560_ac5ed5 crossref_primary_10_1109_TMI_2022_3149281 crossref_primary_10_1016_j_patcog_2021_107944 crossref_primary_10_1109_TCYB_2019_2904186 crossref_primary_10_1109_TPAMI_2021_3091214 crossref_primary_10_1016_j_neucom_2020_07_102 crossref_primary_10_1016_j_jneumeth_2018_03_008 crossref_primary_10_1016_j_asoc_2022_108660 crossref_primary_10_1109_ACCESS_2020_3037107 crossref_primary_10_1016_j_measurement_2020_108838 crossref_primary_10_1016_j_media_2020_101659 crossref_primary_10_1002_hbm_25685 crossref_primary_10_1109_ACCESS_2018_2879158 crossref_primary_10_1002_mp_12116 crossref_primary_10_1016_j_compbiomed_2024_108979 crossref_primary_10_4103_mgmj_mgmj_53_23 crossref_primary_10_1016_j_compbiomed_2023_106700 crossref_primary_10_1109_ACCESS_2019_2912467 crossref_primary_10_1016_j_media_2024_103272 crossref_primary_10_1007_s11042_016_4019_5 crossref_primary_10_1016_j_media_2017_10_005 crossref_primary_10_1109_ACCESS_2020_3040340 crossref_primary_10_1016_j_compbiomed_2023_107110 crossref_primary_10_3389_fradi_2021_781868 crossref_primary_10_1109_JBHI_2017_2732287 crossref_primary_10_1109_JBHI_2023_3270937 crossref_primary_10_1587_transinf_2018EDP7393 crossref_primary_10_1016_j_bspc_2025_107583 crossref_primary_10_32604_csse_2022_018520 crossref_primary_10_1016_j_compbiomed_2024_109039 crossref_primary_10_1016_j_jbi_2022_104030 crossref_primary_10_1080_00207454_2021_1901696 crossref_primary_10_1109_ACCESS_2023_3321220 crossref_primary_10_1109_TBME_2018_2869989 crossref_primary_10_1016_j_compbiomed_2022_105901 crossref_primary_10_1016_j_media_2019_101621 crossref_primary_10_2174_1573405614666181012102626 crossref_primary_10_1186_s12880_021_00681_6 crossref_primary_10_33851_JMIS_2022_9_1_21 crossref_primary_10_1016_j_dscb_2024_100168 crossref_primary_10_1007_s11682_017_9705_z crossref_primary_10_1109_TNNLS_2021_3055772 crossref_primary_10_1109_TBME_2023_3256042 crossref_primary_10_1109_TIP_2017_2721106 crossref_primary_10_1016_j_cmpb_2023_107910 crossref_primary_10_1109_TMI_2021_3077079 crossref_primary_10_1186_s12859_019_3210_x crossref_primary_10_1016_j_irbm_2020_06_006 crossref_primary_10_1016_j_cmpb_2022_107177 crossref_primary_10_1002_ima_22967 crossref_primary_10_1109_TMI_2020_3008382 crossref_primary_10_3389_fnagi_2022_871706 crossref_primary_10_1016_j_imu_2019_100227 crossref_primary_10_1007_s11042_016_4018_6 crossref_primary_10_1016_j_bspc_2023_105709 crossref_primary_10_1109_TMI_2023_3344384 crossref_primary_10_1007_s12021_016_9318_5 crossref_primary_10_1109_TCBB_2021_3051177 crossref_primary_10_1016_j_neuroimage_2019_116459 crossref_primary_10_1016_j_chemolab_2021_104316 crossref_primary_10_1166_jmihi_2021_3891 crossref_primary_10_3389_fpubh_2023_1277995 crossref_primary_10_3390_s21227634 crossref_primary_10_1109_TMI_2020_2983085 crossref_primary_10_1007_s00530_017_0573_6 crossref_primary_10_1016_j_optcom_2025_131615 crossref_primary_10_1109_ACCESS_2020_3035809 crossref_primary_10_1186_s40708_025_00252_3 crossref_primary_10_1016_j_matpr_2021_06_012 crossref_primary_10_1109_TNNLS_2021_3063516 crossref_primary_10_1002_aur_2626 crossref_primary_10_1007_s10115_023_01890_x crossref_primary_10_1002_ima_22267 crossref_primary_10_1016_j_patcog_2018_09_002 crossref_primary_10_1109_TNNLS_2023_3243000 crossref_primary_10_1016_j_eswa_2019_06_038 crossref_primary_10_1109_TCYB_2020_3005859 crossref_primary_10_1016_j_cmpb_2021_106282 crossref_primary_10_1016_j_neucom_2024_127325 crossref_primary_10_1109_JBHI_2018_2791863 crossref_primary_10_1007_s42979_024_02743_2 crossref_primary_10_1016_j_media_2017_05_004 |
| Cites_doi | 10.1016/j.pscychresns.2012.11.005 10.1016/j.media.2014.01.002 10.1371/journal.pone.0025446 10.1016/j.jalz.2011.03.003 10.1007/978-3-642-33786-4_21 10.1093/brain/awm016 10.1093/brain/awm319 10.1016/j.patcog.2005.01.012 10.1109/TMI.2011.2162634 10.1016/j.neurobiolaging.2010.11.008 10.1176/ajp.155.8.1049 10.1109/TMI.2016.2515021 10.1016/j.neuroimage.2005.05.015 10.1016/j.media.2014.04.006 10.1093/brain/awl256 10.1016/j.neuroimage.2009.05.056 10.1109/TIP.2012.2214045 10.1109/TMI.2006.879320 10.1016/j.neuroimage.2010.06.013 10.1023/A:1012460413855 10.1109/TPAMI.2002.1017623 10.1109/TPAMI.2009.186 10.1006/nimg.2001.0961 10.1109/TMI.2002.803111 10.1097/00004728-199803000-00032 10.1109/CVPR.2000.855835 10.1016/j.neuroimage.2012.01.055 10.1093/brain/awn146 10.1023/B:VISI.0000029664.99615.94 10.1016/j.neurobiolaging.2007.07.022 10.1006/cviu.1995.1004 10.1109/CVPR.2005.177 10.1109/ICIP.2002.1038171 10.1016/j.neuroimage.2009.05.036 10.1016/j.neuroimage.2011.09.069 10.1097/00004728-199707000-00008 10.1023/A:1011126920638 10.1109/TMI.2014.2308999 10.1016/j.neuroimage.2008.01.027 10.1007/978-3-540-85988-8_38 10.1097/WAD.0b013e3182163b62 10.1109/34.868688 10.1109/TMI.2013.2258030 10.1016/j.neuroimage.2006.05.048 10.1006/nimg.2000.0582 10.1016/S0140-6736(06)69113-7 10.1377/hlthaff.12.2.164 10.1002/hbm.22741 10.1038/nrneurol.2009.215 10.1007/s11263-013-0667-3 10.1016/j.media.2013.01.001 10.2174/156720501209151019111448 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 5PM ADTOC UNPAY |
| DOI | 10.1109/TMI.2016.2582386 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Materials Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1558-254X |
| EndPage | 2533 |
| ExternalDocumentID | oai:pubmedcentral.nih.gov:5153382 PMC5153382 27333602 10_1109_TMI_2016_2582386 7494619 |
| Genre | orig-research Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: National Institutes of Health grantid: EB006733; EB008374; EB009634; MH100217; AG041721; AG049371; AG042599 funderid: 10.13039/100000002 – fundername: NIBIB NIH HHS grantid: R01 EB006733 – fundername: NIBIB NIH HHS grantid: R01 EB009634 – fundername: NIA NIH HHS grantid: R01 AG042599 – fundername: NIA NIH HHS grantid: R01 AG049371 – fundername: NIBIB NIH HHS grantid: R01 EB008374 – fundername: NIA NIH HHS grantid: R01 AG041721 – fundername: NIMH NIH HHS grantid: R01 MH100217 – fundername: NIA NIH HHS grantid: RF1 AG053867 |
| GroupedDBID | --- -DZ -~X .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION CGR CUY CVF ECM EIF NPM RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c510t-5fcb2b66bf39be29a7bf325bd106b1819f0bb962b28caf6fe0ac1a3d3f6cca313 |
| IEDL.DBID | RIE |
| ISSN | 0278-0062 1558-254X |
| IngestDate | Wed Oct 29 11:38:08 EDT 2025 Tue Sep 30 16:59:20 EDT 2025 Sat Sep 27 22:36:40 EDT 2025 Sun Sep 07 03:33:21 EDT 2025 Mon Jul 21 05:51:53 EDT 2025 Thu Apr 24 22:58:33 EDT 2025 Wed Oct 01 03:55:26 EDT 2025 Wed Aug 27 02:30:46 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c510t-5fcb2b66bf39be29a7bf325bd106b1819f0bb962b28caf6fe0ac1a3d3f6cca313 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/5153382 |
| PMID | 27333602 |
| PQID | 1845316654 |
| PQPubID | 85460 |
| PageCount | 10 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5153382 crossref_primary_10_1109_TMI_2016_2582386 proquest_journals_1845316654 ieee_primary_7494619 unpaywall_primary_10_1109_tmi_2016_2582386 proquest_miscellaneous_1826701547 pubmed_primary_27333602 crossref_citationtrail_10_1109_TMI_2016_2582386 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2016-12-01 |
| PublicationDateYYYYMMDD | 2016-12-01 |
| PublicationDate_xml | – month: 12 year: 2016 text: 2016-12-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on medical imaging |
| PublicationTitleAbbrev | TMI |
| PublicationTitleAlternate | IEEE Trans Med Imaging |
| PublicationYear | 2016 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref56 ref12 ref15 ref14 ref53 ref52 ref55 ref11 ref54 ref10 ref17 ref16 ref19 ref18 tu (ref47) 2010; 32 ref51 ref50 chu (ref33) 2014 ref46 ref45 ref48 ref42 ref41 ref44 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref34 ref37 ref36 ref31 ref30 ref32 ref2 ref1 ref39 ref38 ref23 ref26 ref25 criminisi (ref35) 2009 ref20 ref22 ref21 jolliffe (ref43) 2002 ref28 ref27 ref29 mardia (ref24) 1975; 24 |
| References_xml | – ident: ref11 doi: 10.1016/j.pscychresns.2012.11.005 – ident: ref46 doi: 10.1016/j.media.2014.01.002 – ident: ref55 doi: 10.1371/journal.pone.0025446 – ident: ref3 doi: 10.1016/j.jalz.2011.03.003 – ident: ref30 doi: 10.1007/978-3-642-33786-4_21 – ident: ref14 doi: 10.1093/brain/awm016 – ident: ref4 doi: 10.1093/brain/awm319 – ident: ref49 doi: 10.1016/j.patcog.2005.01.012 – ident: ref36 doi: 10.1109/TMI.2011.2162634 – ident: ref17 doi: 10.1016/j.neurobiolaging.2010.11.008 – ident: ref8 doi: 10.1176/ajp.155.8.1049 – ident: ref20 doi: 10.1109/TMI.2016.2515021 – ident: ref12 doi: 10.1016/j.neuroimage.2005.05.015 – ident: ref54 doi: 10.1016/j.media.2014.04.006 – ident: ref13 doi: 10.1093/brain/awl256 – ident: ref18 doi: 10.1016/j.neuroimage.2009.05.056 – ident: ref26 doi: 10.1109/TIP.2012.2214045 – ident: ref29 doi: 10.1109/TMI.2006.879320 – ident: ref19 doi: 10.1016/j.neuroimage.2010.06.013 – ident: ref28 doi: 10.1023/A:1012460413855 – ident: ref40 doi: 10.1109/TPAMI.2002.1017623 – volume: 32 start-page: 1744 year: 2010 ident: ref47 article-title: Auto-context and its application to high-level vision tasks and 3D brain image segmentation publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2009.186 – ident: ref21 doi: 10.1006/nimg.2001.0961 – ident: ref56 doi: 10.1109/TMI.2002.803111 – volume: 24 start-page: 163 year: 1975 ident: ref24 article-title: Assessment of multinormality and the robustness of Hotelling's T2 test publication-title: J Roy Statist Soc Ser C (Appl Statist ) – ident: ref25 doi: 10.1097/00004728-199803000-00032 – ident: ref42 doi: 10.1109/CVPR.2000.855835 – ident: ref53 doi: 10.1016/j.neuroimage.2012.01.055 – ident: ref51 doi: 10.1093/brain/awn146 – ident: ref38 doi: 10.1023/B:VISI.0000029664.99615.94 – ident: ref15 doi: 10.1016/j.neurobiolaging.2007.07.022 – ident: ref41 doi: 10.1006/cviu.1995.1004 – ident: ref39 doi: 10.1109/CVPR.2005.177 – ident: ref37 doi: 10.1109/ICIP.2002.1038171 – start-page: 1 year: 2014 ident: ref33 article-title: Fully automatic cephalometric X-ray landmark detection using random forest regression and sparse shape composition publication-title: Proc IEEE Int Symp Biomed Imag ISBI – ident: ref10 doi: 10.1016/j.neuroimage.2009.05.036 – ident: ref9 doi: 10.1016/j.neuroimage.2011.09.069 – ident: ref7 doi: 10.1097/00004728-199707000-00008 – ident: ref27 doi: 10.1023/A:1011126920638 – ident: ref23 doi: 10.1109/TMI.2014.2308999 – ident: ref16 doi: 10.1016/j.neuroimage.2008.01.027 – ident: ref34 doi: 10.1007/978-3-540-85988-8_38 – ident: ref52 doi: 10.1097/WAD.0b013e3182163b62 – ident: ref44 doi: 10.1109/34.868688 – ident: ref32 doi: 10.1109/TMI.2013.2258030 – start-page: 69 year: 2009 ident: ref35 article-title: Decision forests with long-range spatial context for organ localization CT volumes publication-title: Proc MICCAI – ident: ref50 doi: 10.1016/j.neuroimage.2006.05.048 – ident: ref22 doi: 10.1006/nimg.2000.0582 – year: 2002 ident: ref43 publication-title: Principal Component Analysis – ident: ref5 doi: 10.1016/S0140-6736(06)69113-7 – ident: ref1 doi: 10.1377/hlthaff.12.2.164 – ident: ref48 doi: 10.1002/hbm.22741 – ident: ref6 doi: 10.1038/nrneurol.2009.215 – ident: ref45 doi: 10.1007/s11263-013-0667-3 – ident: ref31 doi: 10.1016/j.media.2013.01.001 – ident: ref2 doi: 10.2174/156720501209151019111448 |
| SSID | ssj0014509 |
| Score | 2.6055307 |
| Snippet | Structural magnetic resonance imaging (MRI) is a very popular and effective technique used to diagnose Alzheimer's disease (AD). The success of computer-aided... Structural magnetic resonance imaging (MRI) is a very popular and effective technique used to diagnose Alzheimer’s disease (AD). The success of computer-aided... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref ieee |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2524 |
| SubjectTerms | Accuracy Algorithms Alzheimer Disease - diagnostic imaging Alzheimer's disease Alzheimer’s disease (AD) Anatomic Landmarks - diagnostic imaging Approximation Brain Brain - diagnostic imaging Classification Diagnosis Error detection Feature extraction Humans Image classification Image Interpretation, Computer-Assisted - methods Image processing Image registration Image segmentation landmark detection Magnetic resonance imaging magnetic resonance imaging (MRI) Magnetic Resonance Imaging - methods Medical diagnosis Morphology Neurodegenerative diseases Neuroimaging NMR Nuclear magnetic resonance Regression Analysis regression forest Shape Support vector machines Testing Training |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB_KFfx4qNr6Ea0SwReF5HLZZJN9PKxnFa-I9OB8CrubXRqapMclR7FP_hv-e_4lzuaLnhWhT_nYSWCZ32Z-k5mdAXhDuGaaCYVuSeo5AVoUJ46V53iEh5FAWGthNgrPT-jxIvi8DJc7MOn3wjRJ-1JkbpkXbpmdNbmVq0KO-zyxcWgYSoxf3V0aIv0ewe7i5Ov0e_MvxVSL9ZomomgmEQFhsOxDkx4b10Vmcrmo64cxWiq6ZYqa3ir_opk3syXvbsoV_3HJ8_yaKZo9gG_9JNoMlHN3UwtXXv1V3_FWs3wIex0xtaft0CPYUeU-3L9WrnAf7sy7QPwBfDxSJvqAt-1piX57U3TA_sLLtODr88pGKmzPeFXb0_zqTGWFWv_--auyj9pwEB6bBL-segyL2YfT98dO15PBkbh6ayfUUviCUqEJathnPMIzPxQpupYC2QLTnhCM-sKPJddUK4_LCScp0RSxQibkCYzKi1I9AztOFSOKUplyGlDJmUB6GaYTLZDGxJGwYNyrJ5FdwXLTNyNPGsfFY8np_FNiFJp0CrXg7fDEqi3W8R_ZA6PxQS4KWIDOpAWHPQKSbjVXCXrB-KkyfZoteD0M4zo0wRVeqouNkfFpZAhpZMHTFjDDu5EiEkI934JoC0qDgKnxvT2CoGhqfXc4sODdALobU0Ncb03t-W2EX8A9c9lm6BzCqF5v1EvkWbV41a2sP8jhJSY priority: 102 providerName: Unpaywall |
| Title | Detecting Anatomical Landmarks for Fast Alzheimer's Disease Diagnosis |
| URI | https://ieeexplore.ieee.org/document/7494619 https://www.ncbi.nlm.nih.gov/pubmed/27333602 https://www.proquest.com/docview/1845316654 https://www.proquest.com/docview/1826701547 https://pubmed.ncbi.nlm.nih.gov/PMC5153382 https://www.ncbi.nlm.nih.gov/pmc/articles/5153382 |
| UnpaywallVersion | submittedVersion |
| Volume | 35 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-254X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014509 issn: 0278-0062 databaseCode: RIE dateStart: 19820101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEB9qBbUPfrRqo7VEEERp7nLZZJN9PGyPKl7xoQf1KexudunRu1y5JIj9653JFz1bxKeEZHIwmdmb32RmfwPwgUkrrFAG05LM90KMKF6SGN_zmYxihW5tFW0Unp7x01n47SK62IKjfi-MMaZuPjMDOq1r-dlKV_SpbBiHIuTE8fkgTnizV6uvGIRR084REGOsz4OuJOmL4fn0K_Vw8UEQJRihaGoRBm3GePstpYtG9XiV-5Dm3YbJx1V-LX__kovFrWg0eQbTTo-mCeVqUJVqoG_-onj8X0Wfw9MWlrrjxo9ewJbJd2HnFlnhLjyatmX4PTg5NlR7wMvuOMesvaYccL_LPFvK9VXhIhB2J7Io3fHi5tLMl2b9sXCPm1IQHuvmvnnxEmaTk_Mvp147j8HTuHJLL7JaBYpzZRlaNxAyxrMgUhmmlQqRgrC-UoIHKki0tNwaX-qRZBmzHP2Ejdgr2M5XudkHN8mMYIZznUkeci2FQmgZZSOrEMIksXJg2Nkl1S1ZOc3MWKR10uKLFI2aklHT1qgOfOqfuG6IOv4hu0fvvJdrX7cDB53p03YlFylmwPg3RTOaHXjf38Y1SIUVmZtVRTIBjwmMxg68bjyl_-3O0xyIN3yoFyB-7807-fyy5vmOCIsn-OTn3tvuqFYu5xuqvblftbfwhKSaPpwD2C7XlXmHaKpUh_UyOoSHs7Mf459_ALHqGz8 |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED5NQ2LwMGADFhgQJCQEIm0ax078WLFVHTR76qS9RbZja9XadGoSIfbXc84vrWxCPCVK7EiXO-e-y52_A_hEhOGGS41hSeZ7IXoUL4617_lE0EiiWRtpNwon52x6Ef64pJc78K3fC6O1rovP9MCe1rn8bK0q-6tsGIU8ZJbj8xENw5A2u7X6nEFIm4KOwHLG-izokpI-H86TM1vFxQYBjdFH2b5F6LYJYe3flM4f1Q1WHsKa90sm96r8Rvz-JZbLO_5o8gySTpKmDOV6UJVyoG7_Inn8X1Gfw34LTN1xY0kvYEfnB_D0Dl3hATxO2kT8IZyeaJt9wMvuOMe4vSYdcGciz1Zic124CIXdiShKd7y8vdKLld58LtyTJhmEx7q8b1G8hIvJ6fz71Gs7MngK127pUaNkIBmThqB-Ay4iPAuozDCwlIgVuPGl5CyQQayEYUb7Qo0EyYhhaClkRF7Bbr7O9RG4caY50YypTLCQKcElgkuajYxEEBNH0oFhp5dUtXTltmvGMq3DFp-nqNTUKjVtlerAl37GTUPV8Y-xh_ad9-Pa1-3Acaf6tF3LRYoxMH6obJdmBz72t3EV2tSKyPW6smMCFlk4GjnwurGU_tmdpTkQbdlQP8AyfG_fyRdXNdM3tWg8xplfe2u7J1q5WmyJ9uZh0T7A3nSezNLZ2fnPt_DEzmiqco5ht9xU-h1iq1K-r5fUH7jMHNw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB_KFfx4qNr6Ea0SwReF5HLZZJN9PKxnFa-I9OB8CrubXRqapMclR7FP_hv-e_4lzuaLnhWhT_nYSWCZ32Z-k5mdAXhDuGaaCYVuSeo5AVoUJ46V53iEh5FAWGthNgrPT-jxIvi8DJc7MOn3wjRJ-1JkbpkXbpmdNbmVq0KO-zyxcWgYSoxf3V0aIv0ewe7i5Ov0e_MvxVSL9ZomomgmEQFhsOxDkx4b10Vmcrmo64cxWiq6ZYqa3ir_opk3syXvbsoV_3HJ8_yaKZo9gG_9JNoMlHN3UwtXXv1V3_FWs3wIex0xtaft0CPYUeU-3L9WrnAf7sy7QPwBfDxSJvqAt-1piX57U3TA_sLLtODr88pGKmzPeFXb0_zqTGWFWv_--auyj9pwEB6bBL-segyL2YfT98dO15PBkbh6ayfUUviCUqEJathnPMIzPxQpupYC2QLTnhCM-sKPJddUK4_LCScp0RSxQibkCYzKi1I9AztOFSOKUplyGlDJmUB6GaYTLZDGxJGwYNyrJ5FdwXLTNyNPGsfFY8np_FNiFJp0CrXg7fDEqi3W8R_ZA6PxQS4KWIDOpAWHPQKSbjVXCXrB-KkyfZoteD0M4zo0wRVeqouNkfFpZAhpZMHTFjDDu5EiEkI934JoC0qDgKnxvT2CoGhqfXc4sODdALobU0Ncb03t-W2EX8A9c9lm6BzCqF5v1EvkWbV41a2sP8jhJSY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detecting+Anatomical+Landmarks+for+Fast+Alzheimer%27s+Disease+Diagnosis&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Zhang%2C+Jun&rft.au=Gao%2C+Yue&rft.au=Gao%2C+Yaozong&rft.au=Munsell%2C+Brent+C&rft.date=2016-12-01&rft.eissn=1558-254X&rft.volume=35&rft.issue=12&rft.spage=2524&rft_id=info:doi/10.1109%2Ftmi.2016.2582386&rft_id=info%3Apmid%2F27333602&rft.externalDocID=27333602 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon |