Detecting Anatomical Landmarks for Fast Alzheimer's Disease Diagnosis

Structural magnetic resonance imaging (MRI) is a very popular and effective technique used to diagnose Alzheimer's disease (AD). The success of computer-aided diagnosis methods using structural MRI data is largely dependent on the two time-consuming steps: 1) nonlinear registration across subje...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 35; no. 12; pp. 2524 - 2533
Main Authors Zhang, Jun, Gao, Yue, Gao, Yaozong, Munsell, Brent C., Shen, Dinggang
Format Journal Article
LanguageEnglish
Published United States IEEE 01.12.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0278-0062
1558-254X
1558-254X
DOI10.1109/TMI.2016.2582386

Cover

Abstract Structural magnetic resonance imaging (MRI) is a very popular and effective technique used to diagnose Alzheimer's disease (AD). The success of computer-aided diagnosis methods using structural MRI data is largely dependent on the two time-consuming steps: 1) nonlinear registration across subjects, and 2) brain tissue segmentation. To overcome this limitation, we propose a landmark-based feature extraction method that does not require nonlinear registration and tissue segmentation. In the training stage, in order to distinguish AD subjects from healthy controls (HCs), group comparisons, based on local morphological features, are first performed to identify brain regions that have significant group differences. In general, the centers of the identified regions become landmark locations (or AD landmarks for short) capable of differentiating AD subjects from HCs. In the testing stage, using the learned AD landmarks, the corresponding landmarks are detected in a testing image using an efficient technique based on a shape-constrained regression-forest algorithm. To improve detection accuracy, an additional set of salient and consistent landmarks are also identified to guide the AD landmark detection. Based on the identified AD landmarks, morphological features are extracted to train a support vector machine (SVM) classifier that is capable of predicting the AD condition. In the experiments, our method is evaluated on landmark detection and AD classification sequentially. Specifically, the landmark detection error (manually annotated versus automatically detected) of the proposed landmark detector is 2.41 mm, and our landmark-based AD classification accuracy is 83.7%. Lastly, the AD classification performance of our method is comparable to, or even better than, that achieved by existing region-based and voxel-based methods, while the proposed method is approximately 50 times faster.
AbstractList Structural magnetic resonance imaging (MRI) is a very popular and effective technique used to diagnose Alzheimer's disease (AD). The success of computer-aided diagnosis methods using structural MRI data is largely dependent on the two time-consuming steps: 1) nonlinear registration across subjects, and 2) brain tissue segmentation. To overcome this limitation, we propose a landmark-based feature extraction method that does not require nonlinear registration and tissue segmentation. In the training stage, in order to distinguish AD subjects from healthy controls (HCs), group comparisons, based on local morphological features, are first performed to identify brain regions that have significant group differences. In general, the centers of the identified regions become landmark locations (or AD landmarks for short) capable of differentiating AD subjects from HCs. In the testing stage, using the learned AD landmarks, the corresponding landmarks are detected in a testing image using an efficient technique based on a shape-constrained regression-forest algorithm. To improve detection accuracy, an additional set of salient and consistent landmarks are also identified to guide the AD landmark detection. Based on the identified AD landmarks, morphological features are extracted to train a support vector machine (SVM) classifier that is capable of predicting the AD condition. In the experiments, our method is evaluated on landmark detection and AD classification sequentially. Specifically, the landmark detection error (manually annotated versus automatically detected) of the proposed landmark detector is 2.41 mm , and our landmark-based AD classification accuracy is 83.7%. Lastly, the AD classification performance of our method is comparable to, or even better than, that achieved by existing region-based and voxel-based methods, while the proposed method is approximately 50 times faster.
Structural magnetic resonance imaging (MRI) is a very popular and effective technique used to diagnose Alzheimer’s disease (AD). The success of computer-aided diagnosis methods using structural MRI data is largely dependent on the two time-consuming steps: 1) nonlinear registration across subjects, and 2) brain tissue segmentation. To overcome this limitation, we propose a landmark-based feature extraction method that does not require nonlinear registration and tissue segmentation. In the training stage, in order to distinguish AD subjects from healthy controls (HCs), group comparisons, based on local morphological features, are first performed to identify brain regions that have significant group differences. In general, the centers of the identified regions become landmark locations (or AD landmarks for short) capable of differentiating AD subjects from HCs. In the testing stage, using the learned AD landmarks, the corresponding landmarks are detected in a testing image using an efficient technique based on a shape-constrained regression-forest algorithm. To improve detection accuracy, an additional set of salient and consistent landmarks are also identified to guide the AD landmark detection. Based on the identified AD landmarks, morphological features are extracted to train a support vector machine (SVM) classifier that is capable of predicting the AD condition. In the experiments, our method is evaluated on landmark detection and AD classification sequentially. Specifically, the landmark detection error (manually annotated versus automatically detected) of the proposed landmark detector is [Formula Omitted], and our landmark-based AD classification accuracy is 83.7%. Lastly, the AD classification performance of our method is comparable to, or even better than, that achieved by existing region-based and voxel-based methods, while the proposed method is approximately 50 times faster.
Structural magnetic resonance imaging (MRI) is a very popular and effective technique used to diagnose Alzheimer’s disease (AD). The success of computer-aided diagnosis methods using structural MRI data is largely dependent on the two time-consuming steps: 1) nonlinear registration across subjects, and 2) brain tissue segmentation. To overcome this limitation, we propose a landmark-based feature extraction method that does not require nonlinear registration and tissue segmentation. In the training stage, in order to distinguish AD subjects from healthy controls (HCs), group comparisons, based on local morphological features, are first performed to identify brain regions that have significant group differences. In general, the centers of the identified regions become landmark locations (or AD landmarks for short) capable of differentiating AD subjects from HCs. In the testing stage, using the learned AD landmarks, the corresponding landmarks are detected in a testing image using an efficient technique based on a shape-constrained regression-forest algorithm. To improve detection accuracy, an additional set of salient and consistent landmarks are also identified to guide the AD landmark detection. Based on the identified AD landmarks, morphological features are extracted to train a support vector machine (SVM) classifier that is capable of predicting the AD condition. In the experiments, our method is evaluated on landmark detection and AD classification sequentially. Specifically, the landmark detection error (manually annotated versus automatically detected) of the proposed landmark detector is 2.41mm, and our landmark-based AD classification accuracy is 83.7%. Lastly, the AD classification performance of our method is comparable to, or even better than, that achieved by existing region-based and voxel-based methods, while the proposed method is approximately 50 times faster.
Author Shen, Dinggang
Munsell, Brent C.
Gao, Yue
Zhang, Jun
Gao, Yaozong
Author_xml – sequence: 1
  givenname: Jun
  surname: Zhang
  fullname: Zhang, Jun
  organization: Department of Radiology and BRIC, University of North Carolina, Chapel Hill, NC, USA
– sequence: 2
  givenname: Yue
  surname: Gao
  fullname: Gao, Yue
  organization: Department of Radiology and BRIC, University of North Carolina, Chapel Hill, NC, USA
– sequence: 3
  givenname: Yaozong
  surname: Gao
  fullname: Gao, Yaozong
  organization: Department of Radiology and BRIC, University of North Carolina, Chapel Hill, NC, USA
– sequence: 4
  givenname: Brent C.
  surname: Munsell
  fullname: Munsell, Brent C.
  organization: Department of Computer Science, College of Charleston, Charleston, SC, USA
– sequence: 5
  givenname: Dinggang
  surname: Shen
  fullname: Shen, Dinggang
  email: dgshen@med.unc.edu
  organization: Department of Radiology and BRIC, University of North Carolina, Chapel Hill, NC, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27333602$$D View this record in MEDLINE/PubMed
BookMark eNp9UU1vEzEUtFArmgbuSEhoJQ5w2eCPtXf3ghT1g1YK4lIkbtaz8zZ12bXTtQMqvx5HCQWCxOk9yTPjmXmn5MgHj4S8YHTGGG3f3Xy8nnHK1IzLhotGPSETJmVTcll9OSITyuumpFTxE3Ia4x2lrJK0fUpOeC2EUJRPyMU5JrTJ-VUx95DC4Cz0xQL8coDxayy6MBaXEFMx73_cohtwfBOLcxcRIuYJKx-ii8_IcQd9xOf7OSWfLy9uzq7KxacP12fzRWklo6mUnTXcKGU60RrkLdR549IsGVWGNaztqDGt4oY3FjrVIQXLQCxFp6wFwcSUsJ3uxq_h4Tv0vV6PLjt90IzqbSU6DU5vK9H7SjLn_Y6z3pgBlxZ9GuE3L4DTf794d6tX4ZuWTAqRNabk7V5gDPcbjEkPLlrse_AYNlGzhquaMlnVGfr6AHoXNqPPlWRUJQVTSlYZ9epPR49Wfl0lA-gOYMcQ44jdPynz4Q9TqgOKdQmSC9tMrv8f8eWO6BDx8Z-6aivFWvET36y5Ug
CODEN ITMID4
CitedBy_id crossref_primary_10_1016_j_bspc_2023_105482
crossref_primary_10_1016_j_bspc_2024_106572
crossref_primary_10_1109_TMI_2022_3180343
crossref_primary_10_1016_j_media_2020_101729
crossref_primary_10_1002_ima_22656
crossref_primary_10_1109_TCYB_2019_2903591
crossref_primary_10_1007_s13198_022_01680_8
crossref_primary_10_26599_BDMA_2022_9020049
crossref_primary_10_1016_j_imu_2018_12_001
crossref_primary_10_1109_TMI_2018_2867837
crossref_primary_10_2139_ssrn_4017382
crossref_primary_10_1007_s42600_024_00394_z
crossref_primary_10_1109_ACCESS_2019_2903332
crossref_primary_10_1016_j_cmpb_2021_106503
crossref_primary_10_1016_j_media_2020_101953
crossref_primary_10_1109_JAS_2023_123591
crossref_primary_10_1080_00207454_2020_1835900
crossref_primary_10_1016_j_compmedimag_2018_09_009
crossref_primary_10_1016_j_bspc_2023_104787
crossref_primary_10_1016_j_media_2016_11_002
crossref_primary_10_1088_1361_6560_accac8
crossref_primary_10_1016_j_eswa_2020_113372
crossref_primary_10_1007_s11277_024_11464_x
crossref_primary_10_1049_iet_ipr_2019_0617
crossref_primary_10_1016_j_cmpb_2021_106581
crossref_primary_10_1007_s00530_017_0582_5
crossref_primary_10_1109_ACCESS_2019_2926288
crossref_primary_10_1109_TPAMI_2018_2889096
crossref_primary_10_1142_S0219467821500297
crossref_primary_10_1109_TBME_2019_2939419
crossref_primary_10_1016_j_neuri_2025_100196
crossref_primary_10_1109_ACCESS_2024_3426085
crossref_primary_10_1109_JBHI_2017_2704614
crossref_primary_10_1038_s41598_024_78712_9
crossref_primary_10_3233_JAD_230705
crossref_primary_10_1016_j_compmedimag_2022_102057
crossref_primary_10_1088_1361_6560_ac5ed5
crossref_primary_10_1109_TMI_2022_3149281
crossref_primary_10_1016_j_patcog_2021_107944
crossref_primary_10_1109_TCYB_2019_2904186
crossref_primary_10_1109_TPAMI_2021_3091214
crossref_primary_10_1016_j_neucom_2020_07_102
crossref_primary_10_1016_j_jneumeth_2018_03_008
crossref_primary_10_1016_j_asoc_2022_108660
crossref_primary_10_1109_ACCESS_2020_3037107
crossref_primary_10_1016_j_measurement_2020_108838
crossref_primary_10_1016_j_media_2020_101659
crossref_primary_10_1002_hbm_25685
crossref_primary_10_1109_ACCESS_2018_2879158
crossref_primary_10_1002_mp_12116
crossref_primary_10_1016_j_compbiomed_2024_108979
crossref_primary_10_4103_mgmj_mgmj_53_23
crossref_primary_10_1016_j_compbiomed_2023_106700
crossref_primary_10_1109_ACCESS_2019_2912467
crossref_primary_10_1016_j_media_2024_103272
crossref_primary_10_1007_s11042_016_4019_5
crossref_primary_10_1016_j_media_2017_10_005
crossref_primary_10_1109_ACCESS_2020_3040340
crossref_primary_10_1016_j_compbiomed_2023_107110
crossref_primary_10_3389_fradi_2021_781868
crossref_primary_10_1109_JBHI_2017_2732287
crossref_primary_10_1109_JBHI_2023_3270937
crossref_primary_10_1587_transinf_2018EDP7393
crossref_primary_10_1016_j_bspc_2025_107583
crossref_primary_10_32604_csse_2022_018520
crossref_primary_10_1016_j_compbiomed_2024_109039
crossref_primary_10_1016_j_jbi_2022_104030
crossref_primary_10_1080_00207454_2021_1901696
crossref_primary_10_1109_ACCESS_2023_3321220
crossref_primary_10_1109_TBME_2018_2869989
crossref_primary_10_1016_j_compbiomed_2022_105901
crossref_primary_10_1016_j_media_2019_101621
crossref_primary_10_2174_1573405614666181012102626
crossref_primary_10_1186_s12880_021_00681_6
crossref_primary_10_33851_JMIS_2022_9_1_21
crossref_primary_10_1016_j_dscb_2024_100168
crossref_primary_10_1007_s11682_017_9705_z
crossref_primary_10_1109_TNNLS_2021_3055772
crossref_primary_10_1109_TBME_2023_3256042
crossref_primary_10_1109_TIP_2017_2721106
crossref_primary_10_1016_j_cmpb_2023_107910
crossref_primary_10_1109_TMI_2021_3077079
crossref_primary_10_1186_s12859_019_3210_x
crossref_primary_10_1016_j_irbm_2020_06_006
crossref_primary_10_1016_j_cmpb_2022_107177
crossref_primary_10_1002_ima_22967
crossref_primary_10_1109_TMI_2020_3008382
crossref_primary_10_3389_fnagi_2022_871706
crossref_primary_10_1016_j_imu_2019_100227
crossref_primary_10_1007_s11042_016_4018_6
crossref_primary_10_1016_j_bspc_2023_105709
crossref_primary_10_1109_TMI_2023_3344384
crossref_primary_10_1007_s12021_016_9318_5
crossref_primary_10_1109_TCBB_2021_3051177
crossref_primary_10_1016_j_neuroimage_2019_116459
crossref_primary_10_1016_j_chemolab_2021_104316
crossref_primary_10_1166_jmihi_2021_3891
crossref_primary_10_3389_fpubh_2023_1277995
crossref_primary_10_3390_s21227634
crossref_primary_10_1109_TMI_2020_2983085
crossref_primary_10_1007_s00530_017_0573_6
crossref_primary_10_1016_j_optcom_2025_131615
crossref_primary_10_1109_ACCESS_2020_3035809
crossref_primary_10_1186_s40708_025_00252_3
crossref_primary_10_1016_j_matpr_2021_06_012
crossref_primary_10_1109_TNNLS_2021_3063516
crossref_primary_10_1002_aur_2626
crossref_primary_10_1007_s10115_023_01890_x
crossref_primary_10_1002_ima_22267
crossref_primary_10_1016_j_patcog_2018_09_002
crossref_primary_10_1109_TNNLS_2023_3243000
crossref_primary_10_1016_j_eswa_2019_06_038
crossref_primary_10_1109_TCYB_2020_3005859
crossref_primary_10_1016_j_cmpb_2021_106282
crossref_primary_10_1016_j_neucom_2024_127325
crossref_primary_10_1109_JBHI_2018_2791863
crossref_primary_10_1007_s42979_024_02743_2
crossref_primary_10_1016_j_media_2017_05_004
Cites_doi 10.1016/j.pscychresns.2012.11.005
10.1016/j.media.2014.01.002
10.1371/journal.pone.0025446
10.1016/j.jalz.2011.03.003
10.1007/978-3-642-33786-4_21
10.1093/brain/awm016
10.1093/brain/awm319
10.1016/j.patcog.2005.01.012
10.1109/TMI.2011.2162634
10.1016/j.neurobiolaging.2010.11.008
10.1176/ajp.155.8.1049
10.1109/TMI.2016.2515021
10.1016/j.neuroimage.2005.05.015
10.1016/j.media.2014.04.006
10.1093/brain/awl256
10.1016/j.neuroimage.2009.05.056
10.1109/TIP.2012.2214045
10.1109/TMI.2006.879320
10.1016/j.neuroimage.2010.06.013
10.1023/A:1012460413855
10.1109/TPAMI.2002.1017623
10.1109/TPAMI.2009.186
10.1006/nimg.2001.0961
10.1109/TMI.2002.803111
10.1097/00004728-199803000-00032
10.1109/CVPR.2000.855835
10.1016/j.neuroimage.2012.01.055
10.1093/brain/awn146
10.1023/B:VISI.0000029664.99615.94
10.1016/j.neurobiolaging.2007.07.022
10.1006/cviu.1995.1004
10.1109/CVPR.2005.177
10.1109/ICIP.2002.1038171
10.1016/j.neuroimage.2009.05.036
10.1016/j.neuroimage.2011.09.069
10.1097/00004728-199707000-00008
10.1023/A:1011126920638
10.1109/TMI.2014.2308999
10.1016/j.neuroimage.2008.01.027
10.1007/978-3-540-85988-8_38
10.1097/WAD.0b013e3182163b62
10.1109/34.868688
10.1109/TMI.2013.2258030
10.1016/j.neuroimage.2006.05.048
10.1006/nimg.2000.0582
10.1016/S0140-6736(06)69113-7
10.1377/hlthaff.12.2.164
10.1002/hbm.22741
10.1038/nrneurol.2009.215
10.1007/s11263-013-0667-3
10.1016/j.media.2013.01.001
10.2174/156720501209151019111448
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
5PM
ADTOC
UNPAY
DOI 10.1109/TMI.2016.2582386
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE

Materials Research Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 2533
ExternalDocumentID oai:pubmedcentral.nih.gov:5153382
PMC5153382
27333602
10_1109_TMI_2016_2582386
7494619
Genre orig-research
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institutes of Health
  grantid: EB006733; EB008374; EB009634; MH100217; AG041721; AG049371; AG042599
  funderid: 10.13039/100000002
– fundername: NIBIB NIH HHS
  grantid: R01 EB006733
– fundername: NIBIB NIH HHS
  grantid: R01 EB009634
– fundername: NIA NIH HHS
  grantid: R01 AG042599
– fundername: NIA NIH HHS
  grantid: R01 AG049371
– fundername: NIBIB NIH HHS
  grantid: R01 EB008374
– fundername: NIA NIH HHS
  grantid: R01 AG041721
– fundername: NIMH NIH HHS
  grantid: R01 MH100217
– fundername: NIA NIH HHS
  grantid: RF1 AG053867
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c510t-5fcb2b66bf39be29a7bf325bd106b1819f0bb962b28caf6fe0ac1a3d3f6cca313
IEDL.DBID RIE
ISSN 0278-0062
1558-254X
IngestDate Wed Oct 29 11:38:08 EDT 2025
Tue Sep 30 16:59:20 EDT 2025
Sat Sep 27 22:36:40 EDT 2025
Sun Sep 07 03:33:21 EDT 2025
Mon Jul 21 05:51:53 EDT 2025
Thu Apr 24 22:58:33 EDT 2025
Wed Oct 01 03:55:26 EDT 2025
Wed Aug 27 02:30:46 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c510t-5fcb2b66bf39be29a7bf325bd106b1819f0bb962b28caf6fe0ac1a3d3f6cca313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/5153382
PMID 27333602
PQID 1845316654
PQPubID 85460
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5153382
crossref_primary_10_1109_TMI_2016_2582386
proquest_journals_1845316654
ieee_primary_7494619
unpaywall_primary_10_1109_tmi_2016_2582386
proquest_miscellaneous_1826701547
pubmed_primary_27333602
crossref_citationtrail_10_1109_TMI_2016_2582386
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-12-01
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-12-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref56
ref12
ref15
ref14
ref53
ref52
ref55
ref11
ref54
ref10
ref17
ref16
ref19
ref18
tu (ref47) 2010; 32
ref51
ref50
chu (ref33) 2014
ref46
ref45
ref48
ref42
ref41
ref44
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref34
ref37
ref36
ref31
ref30
ref32
ref2
ref1
ref39
ref38
ref23
ref26
ref25
criminisi (ref35) 2009
ref20
ref22
ref21
jolliffe (ref43) 2002
ref28
ref27
ref29
mardia (ref24) 1975; 24
References_xml – ident: ref11
  doi: 10.1016/j.pscychresns.2012.11.005
– ident: ref46
  doi: 10.1016/j.media.2014.01.002
– ident: ref55
  doi: 10.1371/journal.pone.0025446
– ident: ref3
  doi: 10.1016/j.jalz.2011.03.003
– ident: ref30
  doi: 10.1007/978-3-642-33786-4_21
– ident: ref14
  doi: 10.1093/brain/awm016
– ident: ref4
  doi: 10.1093/brain/awm319
– ident: ref49
  doi: 10.1016/j.patcog.2005.01.012
– ident: ref36
  doi: 10.1109/TMI.2011.2162634
– ident: ref17
  doi: 10.1016/j.neurobiolaging.2010.11.008
– ident: ref8
  doi: 10.1176/ajp.155.8.1049
– ident: ref20
  doi: 10.1109/TMI.2016.2515021
– ident: ref12
  doi: 10.1016/j.neuroimage.2005.05.015
– ident: ref54
  doi: 10.1016/j.media.2014.04.006
– ident: ref13
  doi: 10.1093/brain/awl256
– ident: ref18
  doi: 10.1016/j.neuroimage.2009.05.056
– ident: ref26
  doi: 10.1109/TIP.2012.2214045
– ident: ref29
  doi: 10.1109/TMI.2006.879320
– ident: ref19
  doi: 10.1016/j.neuroimage.2010.06.013
– ident: ref28
  doi: 10.1023/A:1012460413855
– ident: ref40
  doi: 10.1109/TPAMI.2002.1017623
– volume: 32
  start-page: 1744
  year: 2010
  ident: ref47
  article-title: Auto-context and its application to high-level vision tasks and 3D brain image segmentation
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2009.186
– ident: ref21
  doi: 10.1006/nimg.2001.0961
– ident: ref56
  doi: 10.1109/TMI.2002.803111
– volume: 24
  start-page: 163
  year: 1975
  ident: ref24
  article-title: Assessment of multinormality and the robustness of Hotelling's T2 test
  publication-title: J Roy Statist Soc Ser C (Appl Statist )
– ident: ref25
  doi: 10.1097/00004728-199803000-00032
– ident: ref42
  doi: 10.1109/CVPR.2000.855835
– ident: ref53
  doi: 10.1016/j.neuroimage.2012.01.055
– ident: ref51
  doi: 10.1093/brain/awn146
– ident: ref38
  doi: 10.1023/B:VISI.0000029664.99615.94
– ident: ref15
  doi: 10.1016/j.neurobiolaging.2007.07.022
– ident: ref41
  doi: 10.1006/cviu.1995.1004
– ident: ref39
  doi: 10.1109/CVPR.2005.177
– ident: ref37
  doi: 10.1109/ICIP.2002.1038171
– start-page: 1
  year: 2014
  ident: ref33
  article-title: Fully automatic cephalometric X-ray landmark detection using random forest regression and sparse shape composition
  publication-title: Proc IEEE Int Symp Biomed Imag ISBI
– ident: ref10
  doi: 10.1016/j.neuroimage.2009.05.036
– ident: ref9
  doi: 10.1016/j.neuroimage.2011.09.069
– ident: ref7
  doi: 10.1097/00004728-199707000-00008
– ident: ref27
  doi: 10.1023/A:1011126920638
– ident: ref23
  doi: 10.1109/TMI.2014.2308999
– ident: ref16
  doi: 10.1016/j.neuroimage.2008.01.027
– ident: ref34
  doi: 10.1007/978-3-540-85988-8_38
– ident: ref52
  doi: 10.1097/WAD.0b013e3182163b62
– ident: ref44
  doi: 10.1109/34.868688
– ident: ref32
  doi: 10.1109/TMI.2013.2258030
– start-page: 69
  year: 2009
  ident: ref35
  article-title: Decision forests with long-range spatial context for organ localization CT volumes
  publication-title: Proc MICCAI
– ident: ref50
  doi: 10.1016/j.neuroimage.2006.05.048
– ident: ref22
  doi: 10.1006/nimg.2000.0582
– year: 2002
  ident: ref43
  publication-title: Principal Component Analysis
– ident: ref5
  doi: 10.1016/S0140-6736(06)69113-7
– ident: ref1
  doi: 10.1377/hlthaff.12.2.164
– ident: ref48
  doi: 10.1002/hbm.22741
– ident: ref6
  doi: 10.1038/nrneurol.2009.215
– ident: ref45
  doi: 10.1007/s11263-013-0667-3
– ident: ref31
  doi: 10.1016/j.media.2013.01.001
– ident: ref2
  doi: 10.2174/156720501209151019111448
SSID ssj0014509
Score 2.6055307
Snippet Structural magnetic resonance imaging (MRI) is a very popular and effective technique used to diagnose Alzheimer's disease (AD). The success of computer-aided...
Structural magnetic resonance imaging (MRI) is a very popular and effective technique used to diagnose Alzheimer’s disease (AD). The success of computer-aided...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2524
SubjectTerms Accuracy
Algorithms
Alzheimer Disease - diagnostic imaging
Alzheimer's disease
Alzheimer’s disease (AD)
Anatomic Landmarks - diagnostic imaging
Approximation
Brain
Brain - diagnostic imaging
Classification
Diagnosis
Error detection
Feature extraction
Humans
Image classification
Image Interpretation, Computer-Assisted - methods
Image processing
Image registration
Image segmentation
landmark detection
Magnetic resonance imaging
magnetic resonance imaging (MRI)
Magnetic Resonance Imaging - methods
Medical diagnosis
Morphology
Neurodegenerative diseases
Neuroimaging
NMR
Nuclear magnetic resonance
Regression Analysis
regression forest
Shape
Support vector machines
Testing
Training
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB_KFfx4qNr6Ea0SwReF5HLZZJN9PKxnFa-I9OB8CrubXRqapMclR7FP_hv-e_4lzuaLnhWhT_nYSWCZ32Z-k5mdAXhDuGaaCYVuSeo5AVoUJ46V53iEh5FAWGthNgrPT-jxIvi8DJc7MOn3wjRJ-1JkbpkXbpmdNbmVq0KO-zyxcWgYSoxf3V0aIv0ewe7i5Ov0e_MvxVSL9ZomomgmEQFhsOxDkx4b10Vmcrmo64cxWiq6ZYqa3ir_opk3syXvbsoV_3HJ8_yaKZo9gG_9JNoMlHN3UwtXXv1V3_FWs3wIex0xtaft0CPYUeU-3L9WrnAf7sy7QPwBfDxSJvqAt-1piX57U3TA_sLLtODr88pGKmzPeFXb0_zqTGWFWv_--auyj9pwEB6bBL-segyL2YfT98dO15PBkbh6ayfUUviCUqEJathnPMIzPxQpupYC2QLTnhCM-sKPJddUK4_LCScp0RSxQibkCYzKi1I9AztOFSOKUplyGlDJmUB6GaYTLZDGxJGwYNyrJ5FdwXLTNyNPGsfFY8np_FNiFJp0CrXg7fDEqi3W8R_ZA6PxQS4KWIDOpAWHPQKSbjVXCXrB-KkyfZoteD0M4zo0wRVeqouNkfFpZAhpZMHTFjDDu5EiEkI934JoC0qDgKnxvT2CoGhqfXc4sODdALobU0Ncb03t-W2EX8A9c9lm6BzCqF5v1EvkWbV41a2sP8jhJSY
  priority: 102
  providerName: Unpaywall
Title Detecting Anatomical Landmarks for Fast Alzheimer's Disease Diagnosis
URI https://ieeexplore.ieee.org/document/7494619
https://www.ncbi.nlm.nih.gov/pubmed/27333602
https://www.proquest.com/docview/1845316654
https://www.proquest.com/docview/1826701547
https://pubmed.ncbi.nlm.nih.gov/PMC5153382
https://www.ncbi.nlm.nih.gov/pmc/articles/5153382
UnpaywallVersion submittedVersion
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-254X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014509
  issn: 0278-0062
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEB9qBbUPfrRqo7VEEERp7nLZZJN9PGyPKl7xoQf1KexudunRu1y5JIj9653JFz1bxKeEZHIwmdmb32RmfwPwgUkrrFAG05LM90KMKF6SGN_zmYxihW5tFW0Unp7x01n47SK62IKjfi-MMaZuPjMDOq1r-dlKV_SpbBiHIuTE8fkgTnizV6uvGIRR084REGOsz4OuJOmL4fn0K_Vw8UEQJRihaGoRBm3GePstpYtG9XiV-5Dm3YbJx1V-LX__kovFrWg0eQbTTo-mCeVqUJVqoG_-onj8X0Wfw9MWlrrjxo9ewJbJd2HnFlnhLjyatmX4PTg5NlR7wMvuOMesvaYccL_LPFvK9VXhIhB2J7Io3fHi5tLMl2b9sXCPm1IQHuvmvnnxEmaTk_Mvp147j8HTuHJLL7JaBYpzZRlaNxAyxrMgUhmmlQqRgrC-UoIHKki0tNwaX-qRZBmzHP2Ejdgr2M5XudkHN8mMYIZznUkeci2FQmgZZSOrEMIksXJg2Nkl1S1ZOc3MWKR10uKLFI2aklHT1qgOfOqfuG6IOv4hu0fvvJdrX7cDB53p03YlFylmwPg3RTOaHXjf38Y1SIUVmZtVRTIBjwmMxg68bjyl_-3O0xyIN3yoFyB-7807-fyy5vmOCIsn-OTn3tvuqFYu5xuqvblftbfwhKSaPpwD2C7XlXmHaKpUh_UyOoSHs7Mf459_ALHqGz8
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED5NQ2LwMGADFhgQJCQEIm0ax078WLFVHTR76qS9RbZja9XadGoSIfbXc84vrWxCPCVK7EiXO-e-y52_A_hEhOGGS41hSeZ7IXoUL4617_lE0EiiWRtpNwon52x6Ef64pJc78K3fC6O1rovP9MCe1rn8bK0q-6tsGIU8ZJbj8xENw5A2u7X6nEFIm4KOwHLG-izokpI-H86TM1vFxQYBjdFH2b5F6LYJYe3flM4f1Q1WHsKa90sm96r8Rvz-JZbLO_5o8gySTpKmDOV6UJVyoG7_Inn8X1Gfw34LTN1xY0kvYEfnB_D0Dl3hATxO2kT8IZyeaJt9wMvuOMe4vSYdcGciz1Zic124CIXdiShKd7y8vdKLld58LtyTJhmEx7q8b1G8hIvJ6fz71Gs7MngK127pUaNkIBmThqB-Ay4iPAuozDCwlIgVuPGl5CyQQayEYUb7Qo0EyYhhaClkRF7Bbr7O9RG4caY50YypTLCQKcElgkuajYxEEBNH0oFhp5dUtXTltmvGMq3DFp-nqNTUKjVtlerAl37GTUPV8Y-xh_ad9-Pa1-3Acaf6tF3LRYoxMH6obJdmBz72t3EV2tSKyPW6smMCFlk4GjnwurGU_tmdpTkQbdlQP8AyfG_fyRdXNdM3tWg8xplfe2u7J1q5WmyJ9uZh0T7A3nSezNLZ2fnPt_DEzmiqco5ht9xU-h1iq1K-r5fUH7jMHNw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB_KFfx4qNr6Ea0SwReF5HLZZJN9PKxnFa-I9OB8CrubXRqapMclR7FP_hv-e_4lzuaLnhWhT_nYSWCZ32Z-k5mdAXhDuGaaCYVuSeo5AVoUJ46V53iEh5FAWGthNgrPT-jxIvi8DJc7MOn3wjRJ-1JkbpkXbpmdNbmVq0KO-zyxcWgYSoxf3V0aIv0ewe7i5Ov0e_MvxVSL9ZomomgmEQFhsOxDkx4b10Vmcrmo64cxWiq6ZYqa3ir_opk3syXvbsoV_3HJ8_yaKZo9gG_9JNoMlHN3UwtXXv1V3_FWs3wIex0xtaft0CPYUeU-3L9WrnAf7sy7QPwBfDxSJvqAt-1piX57U3TA_sLLtODr88pGKmzPeFXb0_zqTGWFWv_--auyj9pwEB6bBL-segyL2YfT98dO15PBkbh6ayfUUviCUqEJathnPMIzPxQpupYC2QLTnhCM-sKPJddUK4_LCScp0RSxQibkCYzKi1I9AztOFSOKUplyGlDJmUB6GaYTLZDGxJGwYNyrJ5FdwXLTNyNPGsfFY8np_FNiFJp0CrXg7fDEqi3W8R_ZA6PxQS4KWIDOpAWHPQKSbjVXCXrB-KkyfZoteD0M4zo0wRVeqouNkfFpZAhpZMHTFjDDu5EiEkI934JoC0qDgKnxvT2CoGhqfXc4sODdALobU0Ncb03t-W2EX8A9c9lm6BzCqF5v1EvkWbV41a2sP8jhJSY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detecting+Anatomical+Landmarks+for+Fast+Alzheimer%27s+Disease+Diagnosis&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Zhang%2C+Jun&rft.au=Gao%2C+Yue&rft.au=Gao%2C+Yaozong&rft.au=Munsell%2C+Brent+C&rft.date=2016-12-01&rft.eissn=1558-254X&rft.volume=35&rft.issue=12&rft.spage=2524&rft_id=info:doi/10.1109%2Ftmi.2016.2582386&rft_id=info%3Apmid%2F27333602&rft.externalDocID=27333602
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon