From a deep learning model back to the brain—Identifying regional predictors and their relation to aging

We present a Deep Learning framework for the prediction of chronological age from structural magnetic resonance imaging scans. Previous findings associate increased brain age with neurodegenerative diseases and higher mortality rates. However, the importance of brain age prediction goes beyond servi...

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 41; no. 12; pp. 3235 - 3252
Main Authors Levakov, Gidon, Rosenthal, Gideon, Shelef, Ilan, Raviv, Tammy Riklin, Avidan, Galia
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 15.08.2020
Subjects
Online AccessGet full text
ISSN1065-9471
1097-0193
1097-0193
DOI10.1002/hbm.25011

Cover

Abstract We present a Deep Learning framework for the prediction of chronological age from structural magnetic resonance imaging scans. Previous findings associate increased brain age with neurodegenerative diseases and higher mortality rates. However, the importance of brain age prediction goes beyond serving as biomarkers for neurological disorders. Specifically, utilizing convolutional neural network (CNN) analysis to identify brain regions contributing to the prediction can shed light on the complex multivariate process of brain aging. Previous work examined methods to attribute pixel/voxel‐wise contributions to the prediction in a single image, resulting in “explanation maps” that were found noisy and unreliable. To address this problem, we developed an inference scheme for combining these maps across subjects, thus creating a population‐based, rather than a subject‐specific map. We applied this method to a CNN ensemble trained on predicting subjects' age from raw T1 brain images in a lifespan sample of 10,176 subjects. Evaluating the model on an untouched test set resulted in mean absolute error of 3.07 years and a correlation between chronological and predicted age of r = 0.98. Using the inference method, we revealed that cavities containing cerebrospinal fluid, previously found as general atrophy markers, had the highest contribution for age prediction. Comparing maps derived from different models within the ensemble allowed to assess differences and similarities in brain regions utilized by the model. We showed that this method substantially increased the replicability of explanation maps, converged with results from voxel‐based morphometry age studies and highlighted brain regions whose volumetric variability correlated the most with the prediction error. The current work has two main contributions, a CNN ensemble shown to estimate “brain age” from structural MRI with a mean absolute error of ~3.1 years, and a novel scheme highlightighting brain regions contributing to the age prediction. This scheme results in explanation maps showing consistency with the literature, and as sample size increases, these maps show higher inter‐sample replicability. Cerebrospinal fluid cavities, possibly reflecting general atrophy, were found as a prominent aging biomarker.
AbstractList We present a Deep Learning framework for the prediction of chronological age from structural magnetic resonance imaging scans. Previous findings associate increased brain age with neurodegenerative diseases and higher mortality rates. However, the importance of brain age prediction goes beyond serving as biomarkers for neurological disorders. Specifically, utilizing convolutional neural network (CNN) analysis to identify brain regions contributing to the prediction can shed light on the complex multivariate process of brain aging. Previous work examined methods to attribute pixel/voxel-wise contributions to the prediction in a single image, resulting in "explanation maps" that were found noisy and unreliable. To address this problem, we developed an inference scheme for combining these maps across subjects, thus creating a population-based, rather than a subject-specific map. We applied this method to a CNN ensemble trained on predicting subjects' age from raw T1 brain images in a lifespan sample of 10,176 subjects. Evaluating the model on an untouched test set resulted in mean absolute error of 3.07 years and a correlation between chronological and predicted age of r = 0.98. Using the inference method, we revealed that cavities containing cerebrospinal fluid, previously found as general atrophy markers, had the highest contribution for age prediction. Comparing maps derived from different models within the ensemble allowed to assess differences and similarities in brain regions utilized by the model. We showed that this method substantially increased the replicability of explanation maps, converged with results from voxel-based morphometry age studies and highlighted brain regions whose volumetric variability correlated the most with the prediction error.
We present a Deep Learning framework for the prediction of chronological age from structural magnetic resonance imaging scans. Previous findings associate increased brain age with neurodegenerative diseases and higher mortality rates. However, the importance of brain age prediction goes beyond serving as biomarkers for neurological disorders. Specifically, utilizing convolutional neural network (CNN) analysis to identify brain regions contributing to the prediction can shed light on the complex multivariate process of brain aging. Previous work examined methods to attribute pixel/voxel‐wise contributions to the prediction in a single image, resulting in “explanation maps” that were found noisy and unreliable. To address this problem, we developed an inference scheme for combining these maps across subjects, thus creating a population‐based, rather than a subject‐specific map. We applied this method to a CNN ensemble trained on predicting subjects' age from raw T1 brain images in a lifespan sample of 10,176 subjects. Evaluating the model on an untouched test set resulted in mean absolute error of 3.07 years and a correlation between chronological and predicted age of r = 0.98. Using the inference method, we revealed that cavities containing cerebrospinal fluid, previously found as general atrophy markers, had the highest contribution for age prediction. Comparing maps derived from different models within the ensemble allowed to assess differences and similarities in brain regions utilized by the model. We showed that this method substantially increased the replicability of explanation maps, converged with results from voxel‐based morphometry age studies and highlighted brain regions whose volumetric variability correlated the most with the prediction error. The current work has two main contributions, a CNN ensemble shown to estimate “brain age” from structural MRI with a mean absolute error of ~3.1 years, and a novel scheme highlightighting brain regions contributing to the age prediction. This scheme results in explanation maps showing consistency with the literature, and as sample size increases, these maps show higher inter‐sample replicability. Cerebrospinal fluid cavities, possibly reflecting general atrophy, were found as a prominent aging biomarker.
We present a Deep Learning framework for the prediction of chronological age from structural magnetic resonance imaging scans. Previous findings associate increased brain age with neurodegenerative diseases and higher mortality rates. However, the importance of brain age prediction goes beyond serving as biomarkers for neurological disorders. Specifically, utilizing convolutional neural network (CNN) analysis to identify brain regions contributing to the prediction can shed light on the complex multivariate process of brain aging. Previous work examined methods to attribute pixel/voxel-wise contributions to the prediction in a single image, resulting in "explanation maps" that were found noisy and unreliable. To address this problem, we developed an inference scheme for combining these maps across subjects, thus creating a population-based, rather than a subject-specific map. We applied this method to a CNN ensemble trained on predicting subjects' age from raw T1 brain images in a lifespan sample of 10,176 subjects. Evaluating the model on an untouched test set resulted in mean absolute error of 3.07 years and a correlation between chronological and predicted age of r = 0.98. Using the inference method, we revealed that cavities containing cerebrospinal fluid, previously found as general atrophy markers, had the highest contribution for age prediction. Comparing maps derived from different models within the ensemble allowed to assess differences and similarities in brain regions utilized by the model. We showed that this method substantially increased the replicability of explanation maps, converged with results from voxel-based morphometry age studies and highlighted brain regions whose volumetric variability correlated the most with the prediction error.We present a Deep Learning framework for the prediction of chronological age from structural magnetic resonance imaging scans. Previous findings associate increased brain age with neurodegenerative diseases and higher mortality rates. However, the importance of brain age prediction goes beyond serving as biomarkers for neurological disorders. Specifically, utilizing convolutional neural network (CNN) analysis to identify brain regions contributing to the prediction can shed light on the complex multivariate process of brain aging. Previous work examined methods to attribute pixel/voxel-wise contributions to the prediction in a single image, resulting in "explanation maps" that were found noisy and unreliable. To address this problem, we developed an inference scheme for combining these maps across subjects, thus creating a population-based, rather than a subject-specific map. We applied this method to a CNN ensemble trained on predicting subjects' age from raw T1 brain images in a lifespan sample of 10,176 subjects. Evaluating the model on an untouched test set resulted in mean absolute error of 3.07 years and a correlation between chronological and predicted age of r = 0.98. Using the inference method, we revealed that cavities containing cerebrospinal fluid, previously found as general atrophy markers, had the highest contribution for age prediction. Comparing maps derived from different models within the ensemble allowed to assess differences and similarities in brain regions utilized by the model. We showed that this method substantially increased the replicability of explanation maps, converged with results from voxel-based morphometry age studies and highlighted brain regions whose volumetric variability correlated the most with the prediction error.
We present a Deep Learning framework for the prediction of chronological age from structural magnetic resonance imaging scans. Previous findings associate increased brain age with neurodegenerative diseases and higher mortality rates. However, the importance of brain age prediction goes beyond serving as biomarkers for neurological disorders. Specifically, utilizing convolutional neural network (CNN) analysis to identify brain regions contributing to the prediction can shed light on the complex multivariate process of brain aging. Previous work examined methods to attribute pixel/voxel‐wise contributions to the prediction in a single image, resulting in “explanation maps” that were found noisy and unreliable. To address this problem, we developed an inference scheme for combining these maps across subjects, thus creating a population‐based, rather than a subject‐specific map. We applied this method to a CNN ensemble trained on predicting subjects' age from raw T1 brain images in a lifespan sample of 10,176 subjects. Evaluating the model on an untouched test set resulted in mean absolute error of 3.07 years and a correlation between chronological and predicted age of r = 0.98. Using the inference method, we revealed that cavities containing cerebrospinal fluid, previously found as general atrophy markers, had the highest contribution for age prediction. Comparing maps derived from different models within the ensemble allowed to assess differences and similarities in brain regions utilized by the model. We showed that this method substantially increased the replicability of explanation maps, converged with results from voxel‐based morphometry age studies and highlighted brain regions whose volumetric variability correlated the most with the prediction error. The current work has two main contributions, a CNN ensemble shown to estimate “brain age” from structural MRI with a mean absolute error of ~3.1 years, and a novel scheme highlightighting brain regions contributing to the age prediction. This scheme results in explanation maps showing consistency with the literature, and as sample size increases, these maps show higher inter‐sample replicability. Cerebrospinal fluid cavities, possibly reflecting general atrophy, were found as a prominent aging biomarker.
We present a Deep Learning framework for the prediction of chronological age from structural magnetic resonance imaging scans. Previous findings associate increased brain age with neurodegenerative diseases and higher mortality rates. However, the importance of brain age prediction goes beyond serving as biomarkers for neurological disorders. Specifically, utilizing convolutional neural network (CNN) analysis to identify brain regions contributing to the prediction can shed light on the complex multivariate process of brain aging. Previous work examined methods to attribute pixel/voxel‐wise contributions to the prediction in a single image, resulting in “explanation maps” that were found noisy and unreliable. To address this problem, we developed an inference scheme for combining these maps across subjects, thus creating a population‐based, rather than a subject‐specific map. We applied this method to a CNN ensemble trained on predicting subjects' age from raw T1 brain images in a lifespan sample of 10,176 subjects. Evaluating the model on an untouched test set resulted in mean absolute error of 3.07 years and a correlation between chronological and predicted age of r = 0.98. Using the inference method, we revealed that cavities containing cerebrospinal fluid, previously found as general atrophy markers, had the highest contribution for age prediction. Comparing maps derived from different models within the ensemble allowed to assess differences and similarities in brain regions utilized by the model. We showed that this method substantially increased the replicability of explanation maps, converged with results from voxel‐based morphometry age studies and highlighted brain regions whose volumetric variability correlated the most with the prediction error.
Audience Academic
Author Levakov, Gidon
Raviv, Tammy Riklin
Rosenthal, Gideon
Avidan, Galia
Shelef, Ilan
AuthorAffiliation 2 Zlotowski Center for Neuroscience Ben‐Gurion University of the Negev Beer‐Sheva Israel
5 Department of Psychology Ben‐Gurion University of the Negev Beer‐Sheva Israel
1 Department of Cognitive and Brain Sciences Ben‐Gurion University of the Negev Beer‐Sheva Israel
4 The School of Electrical and Computer Engineering Ben Gurion University of the Negev Beer‐Sheva Israel
3 Department of Diagnostic Imaging Ben‐Gurion University of the Negev Beer‐Sheva Israel
AuthorAffiliation_xml – name: 1 Department of Cognitive and Brain Sciences Ben‐Gurion University of the Negev Beer‐Sheva Israel
– name: 3 Department of Diagnostic Imaging Ben‐Gurion University of the Negev Beer‐Sheva Israel
– name: 4 The School of Electrical and Computer Engineering Ben Gurion University of the Negev Beer‐Sheva Israel
– name: 5 Department of Psychology Ben‐Gurion University of the Negev Beer‐Sheva Israel
– name: 2 Zlotowski Center for Neuroscience Ben‐Gurion University of the Negev Beer‐Sheva Israel
Author_xml – sequence: 1
  givenname: Gidon
  orcidid: 0000-0002-5520-3556
  surname: Levakov
  fullname: Levakov, Gidon
  email: gidonle@post.bgu.ac.il
  organization: Ben‐Gurion University of the Negev
– sequence: 2
  givenname: Gideon
  surname: Rosenthal
  fullname: Rosenthal, Gideon
  organization: Ben‐Gurion University of the Negev
– sequence: 3
  givenname: Ilan
  surname: Shelef
  fullname: Shelef, Ilan
  organization: Ben‐Gurion University of the Negev
– sequence: 4
  givenname: Tammy Riklin
  surname: Raviv
  fullname: Raviv, Tammy Riklin
  organization: Ben Gurion University of the Negev
– sequence: 5
  givenname: Galia
  surname: Avidan
  fullname: Avidan, Galia
  organization: Ben‐Gurion University of the Negev
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32320123$$D View this record in MEDLINE/PubMed
BookMark eNp9ksFu1DAQhi1URNuFAy-AInEBpGztOI7jS6VSUVqpiAucLceeZL049uIkVHvjIXhCngSnWyitoPLBlueb3zP_-BDt-eABoecELwnGxdGq6ZcFw4Q8QgcEC55jIujefK5YLkpO9tHhMKxxIhL1BO3TghaYFPQArc9i6DOVGYBN5kBFb32X9cGAyxqlv2RjyMYVZE1U1v_8_uPCgB9tu52pCJ0NXrlsE8FYPYY4ZMqbmbcxRZ0aU3xWUF3in6LHrXIDPLvZF-jz2btPp-f55cf3F6cnl7lmBJOcaKhLA0zwAgtsCC6h5ho3lCihRNMwU7OGcmgpI0yZuhFC8VoLXtGWc6zpAr3Z6U5-o7ZXyjm5ibZXcSsJlrNhMhkmrw1L8PEO3kxND0an7qK6TQjKyrsRb1eyC98kL4uKc5YEXt0IxPB1gmGUvR00OKc8hGmQBRWU8aqkVUJf3kPXYYrJwESVBatpRQp8S3XKgbS-DeldPYvKE04wEzVL012g5T-otAz0Vqfv0dp0fyfhxd-N_unw91dIwOsdoGMYhgjtg64d3WO1Ha-nnaqw7qGMq1TX9v_S8vzth13GLx7F4bU
CitedBy_id crossref_primary_10_1109_TMI_2022_3161947
crossref_primary_10_1016_j_neuroimage_2024_120751
crossref_primary_10_1093_cercor_bhae030
crossref_primary_10_1038_s41598_023_49514_2
crossref_primary_10_3389_fnins_2021_674055
crossref_primary_10_3389_fpsyt_2021_627996
crossref_primary_10_1007_s11517_023_02915_x
crossref_primary_10_1016_j_neucom_2024_127974
crossref_primary_10_1155_2022_7842304
crossref_primary_10_1016_j_ejrad_2023_111159
crossref_primary_10_1016_j_media_2025_103503
crossref_primary_10_1109_ACCESS_2025_3526520
crossref_primary_10_1016_j_neuroimage_2023_120469
crossref_primary_10_1016_j_neuroimage_2024_120825
crossref_primary_10_1002_hbm_26558
crossref_primary_10_3389_fnagi_2023_1303036
crossref_primary_10_3390_jpm12111850
crossref_primary_10_1002_hbm_26595
crossref_primary_10_1016_j_eswa_2024_124893
crossref_primary_10_1038_s43587_022_00219_7
crossref_primary_10_1002_hbm_26632
crossref_primary_10_1093_gerona_glac209
crossref_primary_10_1016_j_neuroimage_2023_119929
crossref_primary_10_1186_s40708_024_00244_9
crossref_primary_10_3389_fnins_2023_1222751
crossref_primary_10_3389_fneur_2022_979774
crossref_primary_10_1016_j_inffus_2023_03_007
crossref_primary_10_1162_imag_a_00214
crossref_primary_10_1016_j_arr_2023_102144
crossref_primary_10_1162_imag_a_00497
crossref_primary_10_3389_fpsyt_2020_619629
crossref_primary_10_7554_eLife_83604
crossref_primary_10_1007_s11571_023_09941_3
crossref_primary_10_1109_TMI_2021_3108910
crossref_primary_10_3390_s23063062
crossref_primary_10_1016_j_neuroimage_2022_119621
crossref_primary_10_1016_j_brainres_2021_147431
crossref_primary_10_1016_j_neuroimage_2022_119504
crossref_primary_10_3389_fnagi_2022_895535
crossref_primary_10_1007_s12021_024_09694_2
crossref_primary_10_1109_MSP_2021_3126573
crossref_primary_10_3389_fnagi_2021_761954
crossref_primary_10_1016_j_neurobiolaging_2024_02_014
crossref_primary_10_1007_s11357_023_00924_0
crossref_primary_10_1109_JBHI_2023_3341629
crossref_primary_10_1002_hbm_25805
crossref_primary_10_1016_j_jare_2024_11_015
crossref_primary_10_3389_fnimg_2022_981642
crossref_primary_10_1186_s40708_024_00218_x
crossref_primary_10_1016_j_jpsychires_2022_11_011
crossref_primary_10_1016_j_compbiomed_2023_106668
crossref_primary_10_30773_pi_2023_0183
crossref_primary_10_1016_j_nbas_2022_100032
crossref_primary_10_1148_radiol_211860
Cites_doi 10.1523/JNEUROSCI.5996-10.2012
10.1212/WNL.0b013e31828726f5
10.1073/pnas.1902376116
10.7717/peerj.453
10.1002/hbm.23434
10.1016/j.neuroimage.2018.05.049
10.1007/s11065-014-9266-5
10.1093/schbul/sbm120
10.1371/journal.pone.0052664
10.1016/S1076-6332(03)00671-8
10.3389/fninf.2011.00013
10.3389/fnagi.2014.00264
10.1023/A:1022859003006
10.1162/jocn.2007.19.9.1498
10.1038/s41598-018-29295-9
10.1016/j.neurobiolaging.2008.01.010
10.1148/radiology.216.3.r00au37672
10.1002/hbm.22065
10.1109/TMI.2011.2138152
10.1023/A:1010933404324
10.1007/s11682-014-9321-0
10.1016/j.neuroimage.2017.07.059
10.1016/j.mri.2019.06.018
10.1109/CVPR.2017.316
10.1007/s12021-011-9133-y
10.1002/hbm.22619
10.1016/j.neurobiolaging.2009.04.011
10.1017/S1041610209009405
10.1016/B978-044451741-8/50003-2
10.1038/mp.2017.62
10.1016/j.neuroimage.2016.11.005
10.1002/widm.1249
10.1007/978-3-642-38868-2_8
10.1006/nimg.1995.1012
10.3389/fninf.2015.00008
10.1186/s12859-019-2609-8
10.1038/mp.2013.78
10.2174/1874609809666160413113711
10.1016/j.neuroimage.2006.01.021
10.1093/cercor/bhn232
10.1006/nimg.2002.1132
10.1002/hbm.21374
10.1016/j.neurobiolaging.2010.07.013
10.1016/j.pneurobio.2011.09.005
10.1016/j.neuroimage.2009.06.060
10.1038/sdata.2014.49
10.1016/j.media.2017.07.006
10.1007/s00330-015-3932-8
10.1016/j.neuroimage.2008.10.055
10.1038/nn.3331
10.1016/j.neuroimage.2010.03.020
10.1073/pnas.0911855107
10.1109/HPCC/SmartCity/DSS.2018.00256
10.1038/sdata.2017.17
10.1016/j.neurobiolaging.2018.07.001
10.1016/j.tins.2017.10.001
10.1523/JNEUROSCI.0391-14.2014
10.1162/jocn.2009.21407
10.1002/hbm.24078
10.1002/jmri.21049
10.1109/TMI.2016.2538465
10.1016/j.neurobiolaging.2014.07.046
10.1007/978-3-030-00919-9_35
10.1109/5.726791
10.23915/distill.00010
10.1002/hbm.22856
10.1109/ICDAR.2003.1227801
10.1109/EMBC.2018.8512443
10.1016/j.neuroimage.2018.05.065
10.1006/nimg.2000.0582
10.1002/hbm.23137
ContentType Journal Article
Copyright 2020 The Authors. published by Wiley Periodicals, Inc.
2020 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc.
COPYRIGHT 2020 John Wiley & Sons, Inc.
2020. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 The Authors. published by Wiley Periodicals, Inc.
– notice: 2020 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc.
– notice: COPYRIGHT 2020 John Wiley & Sons, Inc.
– notice: 2020. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
ADTOC
UNPAY
DOI 10.1002/hbm.25011
DatabaseName WIley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList

Technology Research Database
MEDLINE

MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate Levakov et al
EISSN 1097-0193
EndPage 3252
ExternalDocumentID 10.1002/hbm.25011
PMC7426775
A710598519
32320123
10_1002_hbm_25011
HBM25011
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Ben Gurion University of the Negev
  funderid: Internal funding grant
– fundername: NIDA NIH HHS
  grantid: RL1 DA024853
– fundername: NIMH NIH HHS
  grantid: RL1 MH083270
– fundername: NIDCR NIH HHS
  grantid: UL1 DE019580
– fundername: NIA NIH HHS
  grantid: P01 AG003991
– fundername: NCRR NIH HHS
  grantid: P41 RR014075
– fundername: NIMH NIH HHS
  grantid: R03 MH096321
– fundername: NIMH NIH HHS
  grantid: RL1 MH083268
– fundername: NIMH NIH HHS
  grantid: P50 MH071616
– fundername: NIA NIH HHS
  grantid: U01 AG024904
– fundername: NLM NIH HHS
  grantid: RL1 LM009833
– fundername: Ben Gurion University of the Negev
  grantid: Internal funding grant
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAONW
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABIVO
ABPVW
ACCFJ
ACCMX
ACGFS
ACIWK
ACPOU
ACPRK
ACXQS
ADBBV
ADEOM
ADIZJ
ADMGS
ADPDF
ADXAS
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFRAH
AFZJQ
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HHY
HHZ
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RPM
RWD
RWI
RX1
RYL
SUPJJ
SV3
TEORI
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
AAFWJ
AAMMB
AAYXX
AEFGJ
AFPKN
AGXDD
AIDQK
AIDYY
CITATION
WXSBR
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
.Y3
31~
7X7
8FI
8FJ
AANHP
ABEML
ABJNI
ABUWG
ACBWZ
ACRPL
ACSCC
ACYXJ
ADNMO
ADTOC
AFKRA
AGQPQ
AIQQE
ASPBG
AVWKF
AZFZN
BENPR
BFHJK
CCPQU
EJD
FEDTE
FYUFA
GAKWD
HF~
HMCUK
HVGLF
LW6
M6M
PHGZM
PHGZT
RIWAO
RJQFR
SAMSI
UKHRP
UNPAY
ID FETCH-LOGICAL-c5101-1ce84de5972090d104e87c0b31a9a9bb5d85b37ef3515ad8b99a78c9763f770c3
IEDL.DBID UNPAY
ISSN 1065-9471
1097-0193
IngestDate Sun Oct 26 03:47:16 EDT 2025
Tue Sep 30 16:50:42 EDT 2025
Sun Sep 28 08:31:15 EDT 2025
Tue Oct 07 06:29:46 EDT 2025
Mon Oct 20 22:25:12 EDT 2025
Mon Oct 20 16:47:35 EDT 2025
Mon Jul 21 05:50:52 EDT 2025
Wed Oct 01 01:55:42 EDT 2025
Thu Apr 24 23:09:42 EDT 2025
Wed Jan 22 16:32:46 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords brain aging
deep learning
interpretability
convolutional neural networks
neuroimaging
Language English
License Attribution-NonCommercial
2020 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
cc-by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5101-1ce84de5972090d104e87c0b31a9a9bb5d85b37ef3515ad8b99a78c9763f770c3
Notes Funding information
Ben Gurion University of the Negev, Grant/Award Number: Internal funding grant
Data used in preparation of this article were partially obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu) and the Australian Imaging Biomarkers and Lifestyle flagship study of ageing (AIBL) funded by the Commonwealth Scientific and Industrial Research Organisation (CSIRO). As such, the investigators within ADNI and AIBL contributed to the design and implementation of ADNI and AIBL and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI and AIBL investigators can be found at
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
Tammy Riklin Raviv and Galia Avidan have contributed equally to this work.
www.aibl.csiro.au
and at
.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Funding information Ben Gurion University of the Negev, Grant/Award Number: Internal funding grant
Data used in preparation of this article were partially obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu) and the Australian Imaging Biomarkers and Lifestyle flagship study of ageing (AIBL) funded by the Commonwealth Scientific and Industrial Research Organisation (CSIRO). As such, the investigators within ADNI and AIBL contributed to the design and implementation of ADNI and AIBL and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI and AIBL investigators can be found at http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf and at www.aibl.csiro.au.
ORCID 0000-0002-5520-3556
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hbm.25011
PMID 32320123
PQID 2425836120
PQPubID 996345
PageCount 18
ParticipantIDs unpaywall_primary_10_1002_hbm_25011
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7426775
proquest_miscellaneous_2393576436
proquest_journals_2425836120
gale_infotracmisc_A710598519
gale_infotracacademiconefile_A710598519
pubmed_primary_32320123
crossref_primary_10_1002_hbm_25011
crossref_citationtrail_10_1002_hbm_25011
wiley_primary_10_1002_hbm_25011_HBM25011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 15, 2020
PublicationDateYYYYMMDD 2020-08-15
PublicationDate_xml – month: 08
  year: 2020
  text: August 15, 2020
  day: 15
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: San Antonio
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum Brain Mapp
PublicationYear 2020
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2017; 40
2009; 45
2002; 17
2017; 42
2013; 7917
2015; 36
2006; 31
2017; 4
2010; 107
2000; 216
2008; 34
2014; 24
2011; 59
2016; 148
2001; 45
2003; 51
1998; 86
2016; 37
2012; 10
2009; 48
2016; 35
2014; 1
2010; 22
2018; 8
2018; 39
2018; 3
2019; 62
2014; 2
2019; 20
2017; 38
2000; 11
2018; 178
2008; 27
2019; 116
2017; 163
2014; 19
2018; 71
2010; 3
2009; 19
2014; 6
2014; 10
2007; 19
2009; 21
2002; 1
2011; 30
2011; 32
2005
2004
2003
2018; 11307 LNCS
2018; 23
1995; 2
2015; 9
2011; 5
2012; 33
2018; 11046 LNCS
2012; 32
2004; 11
2009; 30
2013; 34
2011; 95
2013; 80
2019
2018
2017
2016
2015
2014
2013
2012; 7
2016; 26
2014; 34
2010; 51
2016; 9
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_26_1
e_1_2_7_49_1
Kendall A. (e_1_2_7_46_1) 2017
e_1_2_7_90_1
e_1_2_7_94_1
e_1_2_7_71_1
e_1_2_7_52_1
e_1_2_7_98_1
e_1_2_7_33_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_79_1
e_1_2_7_4_1
Qi Q. (e_1_2_7_75_1) 2018
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_82_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_86_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
Poldrack, R. A., Congdon, E., Triplett, W., Gorgolewski, K. J., Karlsgodt, K. H., Mumford, J. A., … Bilder, R. (e_1_2_7_74_1) 2016
e_1_2_7_97_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
Beliy R. (e_1_2_7_8_1) 2019
e_1_2_7_5_1
e_1_2_7_9_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
Sowell E. R. (e_1_2_7_83_1) 2004
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
Dubuisson M.‐P. (e_1_2_7_23_1) 2002
e_1_2_7_47_1
e_1_2_7_89_1
e_1_2_7_28_1
e_1_2_7_73_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_54_1
e_1_2_7_96_1
e_1_2_7_21_1
e_1_2_7_58_1
Springenberg J. T. (e_1_2_7_84_1) 2014
e_1_2_7_39_1
Goodfellow I. (e_1_2_7_30_1) 2016
Heckemann R. A. (e_1_2_7_35_1) 2003
e_1_2_7_6_1
Buckner R. L. (e_1_2_7_13_1) 2014; 10
Nair V. (e_1_2_7_69_1) 2010; 3
e_1_2_7_80_1
e_1_2_7_18_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
Laird A. R. (e_1_2_7_50_1) 2011; 59
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_27_1
Adebayo J. (e_1_2_7_3_1) 2018
e_1_2_7_91_1
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_38_1
References_xml – volume: 9
  start-page: 310
  year: 2016
  end-page: 317
  article-title: Quantitative machine learning analysis of brain MRI morphology throughout aging
  publication-title: Current Aging Science
– volume: 42
  start-page: 145
  year: 2017
  end-page: 159
  article-title: Ensemble of expert deep neural networks for spatio‐temporal denoising of contrast‐enhanced MRI sequences
  publication-title: Medical Image Analysis
– volume: 11307 LNCS
  start-page: 410
  year: 2018
  end-page: 419
– volume: 27
  start-page: 685
  issue: 4
  year: 2008
  end-page: 691
  article-title: The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods
  publication-title: Journal of Magnetic Resonance Imaging
– start-page: 2962
  year: 2017
  end-page: 2971
– volume: 4
  start-page: 1
  year: 2017
  end-page: 9
  article-title: Data descriptor: Longitudinal test–retest neuroimaging data from healthy young adults in Southwest China
  publication-title: Scientific Data
– volume: 10
  start-page: 319
  issue: 3
  year: 2012
  end-page: 322
  article-title: CANDIShare: A resource for pediatric neuroimaging data
  publication-title: Neuroinformatics
– volume: 36
  start-page: S42
  issue: S1
  year: 2015
  end-page: S52
  article-title: Disentangling normal aging from Alzheimer's disease in structural magnetic resonance images
  publication-title: Neurobiology of Aging
– year: 2005
– volume: 11
  start-page: 805
  issue: 6 I
  year: 2000
  end-page: 821
  article-title: Voxel‐based morphometry—The methods
  publication-title: NeuroImage
– volume: 19
  start-page: 659
  issue: 6
  year: 2014
  end-page: 667
  article-title: The autism brain imaging data exchange: Towards a large‐scale evaluation of the intrinsic brain architecture in autism
  publication-title: Molecular Psychiatry
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  end-page: 32
  article-title: Random forests
  publication-title: Machine Learning
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  end-page: 2323
  article-title: Gradient‐based learning applied to document recognition
  publication-title: Proceedings of the IEEE
– volume: 51
  start-page: 501
  issue: 2
  year: 2010
  end-page: 511
  article-title: Trajectories of brain aging in middle‐aged and older adults: Regional and individual differences
  publication-title: NeuroImage
– volume: 11
  start-page: 178
  issue: 2
  year: 2004
  end-page: 189
  article-title: Statistical validation of image segmentation quality based on a spatial overlap index
  publication-title: Academic Radiology
– volume: 34
  start-page: 2302
  issue: 9
  year: 2013
  end-page: 2312
  article-title: Functional imaging of the hemodynamic sensory gating response in schizophrenia
  publication-title: Human Brain Mapping
– volume: 62
  start-page: 70
  year: 2019
  end-page: 77
  article-title: Anatomical context improves deep learning on the brain age estimation task
  publication-title: Magnetic Resonance Imaging
– volume: 33
  start-page: 617.e1
  issue: 3
  year: 2012
  end-page: 617.e9
  article-title: Normal age‐related brain morphometric changes: Nonuniformity across cortical thickness, surface area and gray matter volume?
  publication-title: Neurobiology of Aging
– volume: 10
  year: 2014
  article-title: Brain genomics Superstruct project (GSP)
  publication-title: Harvard Dataverse
– volume: 7917
  start-page: 86
  year: 2013
  end-page: 97
  article-title: Predicting cognitive data from medical images using sparse linear regression
  publication-title: Information Processing in Medical Imaging
– volume: 32
  start-page: 817
  issue: 3
  year: 2012
  end-page: 825
  article-title: Genetic variants of FOXP2 and KIAA0319/TTRAP/THEM2 locus are associated with altered brain activation in distinct language‐related regions
  publication-title: The Journal of Neuroscience: The Official Journal of the Society for Neuroscience
– volume: 95
  start-page: 629
  issue: 4
  year: 2011
  end-page: 635
  article-title: The Parkinson progression marker initiative (PPMI)
  publication-title: Progress in Neurobiology
– volume: 216
  start-page: 672
  issue: 3
  year: 2000
  end-page: 682
  article-title: Normal brain development and aging: Quantitative analysis at in vivo MR imaging in healthy volunteers
  publication-title: Radiology
– year: 2018
– year: 2014
– volume: 7
  issue: 12
  year: 2012
  article-title: Cerebrospinal fluid pressure decreases with older age
  publication-title: PLoS One
– volume: 3
  start-page: 807
  year: 2010
  end-page: 814
  article-title: Rectified linear units improve restricted Boltzmann machines
  publication-title: Proceedings of the 27th International Conference on Machine Learning
– volume: 24
  start-page: 332
  year: 2014
  end-page: 354
  article-title: The effects of healthy aging, amnestic mild cognitive impairment, and Alzheimer's disease on recollection and familiarity: A meta‐analytic review
  publication-title: Neuropsychology Review
– volume: 19
  start-page: 2001
  issue: 9
  year: 2009
  end-page: 2012
  article-title: High consistency of regional cortical thinning in aging across multiple samples
  publication-title: Cerebral Cortex
– volume: 178
  start-page: 183
  year: 2018
  end-page: 197
  article-title: A computational framework for the detection of subcortical brain dysmaturation in neonatal MRI using 3D convolutional neural networks
  publication-title: NeuroImage
– volume: 2
  start-page: 89
  issue: 2
  year: 1995
  end-page: 101
  article-title: A probabilistic atlas of the human brain: Theory and rationale for its development
  publication-title: NeuroImage
– volume: 20
  start-page: 55
  issue: 1
  year: 2019
  article-title: A controlled comparison of thickness, volume and surface areas from multiple cortical parcellation packages
  publication-title: BMC Bioinformatics
– volume: 3
  issue: 3
  year: 2018
  article-title: The building blocks of interpretability
  publication-title: Distill
– volume: 32
  start-page: 572
  issue: 4
  year: 2011
  end-page: 580
  article-title: Brain atrophy associated with baseline and longitudinal measures of cognition
  publication-title: Neurobiology of Aging
– volume: 59
  start-page: 2349
  issue: 3
  year: 2011
  end-page: 2361
  article-title: Activation likelihood estimation meta‐analysis revisited
  publication-title: NeuroImage
– volume: 22
  start-page: 2677
  issue: 12
  year: 2010
  end-page: 2684
  article-title: Open access series of imaging studies: Longitudinal MRI data in nondemented and demented older adults
  publication-title: Journal of Cognitive Neuroscience
– volume: 107
  start-page: 4734
  issue: 10
  year: 2010
  end-page: 4739
  article-title: Toward discovery science of human brain function
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– year: 2004
– volume: 45
  start-page: S173
  issue: 1
  year: 2009
  end-page: S186
  article-title: Bayesian analysis of neuroimaging data in FSL
  publication-title: NeuroImage
– volume: 5
  start-page: 13
  year: 2011
  article-title: Nipype: A flexible, lightweight and extensible neuroimaging data processing framework in python
  publication-title: Frontiers in Neuroinformatics
– volume: 31
  start-page: 968
  issue: 3
  year: 2006
  end-page: 980
  article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest
  publication-title: NeuroImage
– volume: 37
  start-page: 1801
  issue: 5
  year: 2016
  end-page: 1815
  article-title: Neurobiological origin of spurious brain morphological changes: A quantitative MRI study
  publication-title: Human Brain Mapping
– volume: 71
  start-page: 32
  year: 2018
  end-page: 40
  article-title: Trajectories of imaging markers in brain aging: The Rotterdam study
  publication-title: Neurobiology of Aging
– volume: 19
  start-page: 1498
  issue: 9
  year: 2007
  end-page: 1507
  article-title: Open access series of imaging studies (OASIS): Cross‐sectional MRI data in young, middle aged, nondemented, and demented older adults
  publication-title: Journal of Cognitive Neuroscience
– volume: 9
  start-page: 8
  year: 2015
  article-title: NeuroVault.org: A web‐based repository for collecting and sharing unthresholded statistical maps of the human brain
  publication-title: Frontiers in Neuroinformatics
– year: 2019
– year: 2015
– volume: 30
  start-page: 1617
  issue: 9
  year: 2011
  end-page: 1634
  article-title: Robust brain extraction across datasets and comparison with publicly available methods
  publication-title: IEEE Transactions on Medical Imaging
– start-page: 5575
  year: 2017
  end-page: 5585
– volume: 36
  start-page: 3472
  issue: 9
  year: 2015
  end-page: 3485
  article-title: Test‐retest reliability of freesurfer measurements within and between sites: Effects of visual approval process
  publication-title: Human Brain Mapping
– volume: 8
  issue: 1
  year: 2018
  article-title: Structural brain imaging in Alzheimer's disease and mild cognitive impairment: Biomarker analysis and shared morphometry database
  publication-title: Scientific Reports
– volume: 30
  start-page: 1711
  year: 2009
  end-page: 1723
  article-title: A meta‐analysis of hippocampal atrophy rates in Alzheimer's disease
  publication-title: Neurobiology of Aging
– volume: 40
  start-page: 681
  issue: 12
  year: 2017
  end-page: 690
  article-title: Predicting age using: Neuroimaging: Innovative brain ageing biomarkers
  publication-title: Trends in Neurosciences
– year: 2003
– volume: 11046 LNCS
  start-page: 303
  year: 2018
  end-page: 309
– start-page: 694
  year: 2018
  end-page: 697
– volume: 9
  start-page: 678
  issue: 4
  year: 2015
  end-page: 689
  article-title: Statistical estimation of physiological brain age as a descriptor of senescence rate during adulthood
  publication-title: Brain Imaging and Behavior
– volume: 23
  start-page: 1385
  issue: 5
  year: 2018
  end-page: 1392
  article-title: Brain age predicts mortality
  publication-title: Molecular Psychiatry
– volume: 51
  start-page: 181
  issue: 2
  year: 2003
  end-page: 207
  article-title: Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
  publication-title: Machine Learning
– volume: 48
  start-page: 63
  issue: 1
  year: 2009
  end-page: 72
  article-title: Accurate and robust brain image alignment using boundary‐based registration
  publication-title: NeuroImage
– volume: 80
  start-page: 1778
  issue: 19
  year: 2013
  end-page: 1783
  article-title: Alzheimer disease in the United States (2010–2050) estimated using the 2010 census
  publication-title: Neurology
– year: 2016
– volume: 2
  year: 2014
  article-title: Scikit‐image: Image processing in python
  publication-title: PeerJ
– volume: 33
  start-page: 2377
  issue: 10
  year: 2012
  end-page: 2389
  article-title: Brain structural trajectories over the adult lifespan
  publication-title: Human Brain Mapping
– volume: 8
  issue: 4
  year: 2018
  article-title: Ensemble learning: A survey
  publication-title: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
– volume: 39
  start-page: 3308
  issue: 8
  year: 2018
  end-page: 3325
  article-title: BrainMap VBM: An environment for structural meta‐analysis
  publication-title: Human Brain Mapping
– volume: 34
  start-page: 37
  issue: 1
  year: 2008
  end-page: 46
  article-title: Diagnostic and sex effects on limbic volumes in early‐onset bipolar disorder and schizophrenia
  publication-title: Schizophrenia Bulletin
– volume: 1
  year: 2014
  article-title: An open science resource for establishing reliability and reproducibility in functional connectomics
  publication-title: Scientific Data
– volume: 1
  start-page: 566
  year: 2002
  end-page: 568
– year: 2016
  article-title: A phenome‐wide examination of neural and cognitive function
  publication-title: BioRxiv
– volume: 38
  start-page: 997
  issue: 2
  year: 2017
  end-page: 1008
  article-title: Age prediction on the basis of brain anatomical measures
  publication-title: Human Brain Mapping
– volume: 178
  start-page: 753
  year: 2018
  end-page: 768
  article-title: A comparison of various MRI feature types for characterizing whole brain anatomical differences using linear pattern recognition methods
  publication-title: NeuroImage
– start-page: 6514
  year: 2019
  end-page: 6524
  article-title: From voxels to pixels and back: Self‐supervision in natural‐image reconstruction from fMRI
  publication-title: Advances in Neural Information Processing Systems
– volume: 21
  start-page: 672
  issue: 4
  year: 2009
  end-page: 687
  article-title: The Australian imaging, biomarkers and lifestyle (AIBL) study of aging: Methodology and baseline characteristics of 1112 individuals recruited for a longitudinal study of Alzheimer's disease
  publication-title: International Psychogeriatrics
– volume: 148
  start-page: 179
  year: 2016
  end-page: 188
  article-title: Predicting brain‐age from multimodal imaging data captures cognitive impairment
  publication-title: NeuroImage
– volume: 116
  start-page: 21213
  issue: 42
  year: 2019
  end-page: 21218
  article-title: Gray matter age prediction as a biomarker for risk of dementia
  publication-title: Proceedings of the National Academy of Sciences
– volume: 6
  start-page: 264
  year: 2014
  article-title: The effects of intracranial volume adjustment approaches on multiple regional MRI volumes in healthy aging and Alzheimer's disease
  publication-title: Frontiers in Aging Neuroscience
– volume: 36
  start-page: 150
  issue: 1
  year: 2015
  end-page: 169
  article-title: Brain size, sex, and the aging brain
  publication-title: Human Brain Mapping
– start-page: 9505
  year: 2018
  end-page: 9515
  article-title: Sanity checks for saliency maps
  publication-title: Advances in Neural Information Processing Systems
– year: 2017
– volume: 163
  start-page: 115
  year: 2017
  end-page: 124
  article-title: Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker
  publication-title: NeuroImage
– volume: 17
  start-page: 825
  issue: 2015
  year: 2002
  end-page: 841
  article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images improved optimization for the robust and accurate linear registration and motion correction of brain images
  publication-title: NeuroImage
– volume: 34
  start-page: 8488
  issue: 25
  year: 2014
  end-page: 8498
  article-title: Differential longitudinal changes in cortical thickness, surface area and volume across the adult life span: Regions of accelerating and decelerating change
  publication-title: The Journal of Neuroscience: The Official Journal of the Society for Neuroscience
– volume: 35
  start-page: 1240
  issue: 5
  year: 2016
  end-page: 1251
  article-title: Brain tumor segmentation using convolutional neural networks in MRI images
  publication-title: IEEE Transactions on Medical Imaging
– volume: 26
  start-page: 1254
  issue: 5
  year: 2016
  end-page: 1262
  article-title: Cerebrospinal fluid volumetric MRI mapping as a simple measurement for evaluating brain atrophy
  publication-title: European Radiology
– year: 2013
– ident: e_1_2_7_73_1
  doi: 10.1523/JNEUROSCI.5996-10.2012
– ident: e_1_2_7_34_1
  doi: 10.1212/WNL.0b013e31828726f5
– ident: e_1_2_7_93_1
  doi: 10.1073/pnas.1902376116
– start-page: 5575
  volume-title: Advances in Neural Information Processing Systems
  year: 2017
  ident: e_1_2_7_46_1
– ident: e_1_2_7_89_1
  doi: 10.7717/peerj.453
– ident: e_1_2_7_88_1
  doi: 10.1002/hbm.23434
– ident: e_1_2_7_15_1
  doi: 10.1016/j.neuroimage.2018.05.049
– ident: e_1_2_7_48_1
  doi: 10.1007/s11065-014-9266-5
– ident: e_1_2_7_28_1
  doi: 10.1093/schbul/sbm120
– year: 2016
  ident: e_1_2_7_74_1
  article-title: A phenome‐wide examination of neural and cognitive function
  publication-title: BioRxiv
– ident: e_1_2_7_26_1
  doi: 10.1371/journal.pone.0052664
– volume-title: Deep learning
  year: 2016
  ident: e_1_2_7_30_1
– ident: e_1_2_7_97_1
  doi: 10.1016/S1076-6332(03)00671-8
– ident: e_1_2_7_31_1
  doi: 10.3389/fninf.2011.00013
– ident: e_1_2_7_92_1
  doi: 10.3389/fnagi.2014.00264
– ident: e_1_2_7_27_1
– ident: e_1_2_7_49_1
  doi: 10.1023/A:1022859003006
– ident: e_1_2_7_62_1
  doi: 10.1162/jocn.2007.19.9.1498
– ident: e_1_2_7_54_1
– ident: e_1_2_7_53_1
  doi: 10.1038/s41598-018-29295-9
– ident: e_1_2_7_7_1
  doi: 10.1016/j.neurobiolaging.2008.01.010
– ident: e_1_2_7_19_1
  doi: 10.1148/radiology.216.3.r00au37672
– ident: e_1_2_7_64_1
  doi: 10.1002/hbm.22065
– volume-title: Mapping changes in the human cortex throughout the span of life. Neuroscientist
  year: 2004
  ident: e_1_2_7_83_1
– ident: e_1_2_7_36_1
  doi: 10.1109/TMI.2011.2138152
– ident: e_1_2_7_70_1
– ident: e_1_2_7_29_1
– volume: 10
  year: 2014
  ident: e_1_2_7_13_1
  article-title: Brain genomics Superstruct project (GSP)
  publication-title: Harvard Dataverse
– ident: e_1_2_7_12_1
  doi: 10.1023/A:1010933404324
– start-page: 410
  volume-title: Lecture Notes in Computer Science
  year: 2018
  ident: e_1_2_7_75_1
– ident: e_1_2_7_38_1
  doi: 10.1007/s11682-014-9321-0
– volume: 59
  start-page: 2349
  issue: 3
  year: 2011
  ident: e_1_2_7_50_1
  article-title: Activation likelihood estimation meta‐analysis revisited
  publication-title: NeuroImage
– start-page: 9505
  year: 2018
  ident: e_1_2_7_3_1
  article-title: Sanity checks for saliency maps
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_2_7_17_1
  doi: 10.1016/j.neuroimage.2017.07.059
– ident: e_1_2_7_10_1
  doi: 10.1016/j.mri.2019.06.018
– ident: e_1_2_7_87_1
  doi: 10.1109/CVPR.2017.316
– ident: e_1_2_7_47_1
  doi: 10.1007/s12021-011-9133-y
– ident: e_1_2_7_42_1
  doi: 10.1002/hbm.22619
– ident: e_1_2_7_86_1
– ident: e_1_2_7_14_1
  doi: 10.1016/j.neurobiolaging.2009.04.011
– volume: 3
  start-page: 807
  year: 2010
  ident: e_1_2_7_69_1
  article-title: Rectified linear units improve restricted Boltzmann machines
  publication-title: Proceedings of the 27th International Conference on Machine Learning
– ident: e_1_2_7_24_1
  doi: 10.1017/S1041610209009405
– ident: e_1_2_7_68_1
  doi: 10.1016/B978-044451741-8/50003-2
– ident: e_1_2_7_18_1
  doi: 10.1038/mp.2017.62
– ident: e_1_2_7_80_1
– ident: e_1_2_7_57_1
  doi: 10.1016/j.neuroimage.2016.11.005
– ident: e_1_2_7_77_1
  doi: 10.1002/widm.1249
– ident: e_1_2_7_45_1
  doi: 10.1007/978-3-642-38868-2_8
– ident: e_1_2_7_65_1
  doi: 10.1006/nimg.1995.1012
– ident: e_1_2_7_32_1
  doi: 10.3389/fninf.2015.00008
– ident: e_1_2_7_66_1
  doi: 10.1186/s12859-019-2609-8
– ident: e_1_2_7_22_1
  doi: 10.1038/mp.2013.78
– ident: e_1_2_7_78_1
  doi: 10.2174/1874609809666160413113711
– ident: e_1_2_7_21_1
  doi: 10.1016/j.neuroimage.2006.01.021
– ident: e_1_2_7_51_1
– ident: e_1_2_7_25_1
  doi: 10.1093/cercor/bhn232
– ident: e_1_2_7_82_1
– ident: e_1_2_7_43_1
  doi: 10.1006/nimg.2002.1132
– ident: e_1_2_7_4_1
– ident: e_1_2_7_5_1
– ident: e_1_2_7_96_1
  doi: 10.1002/hbm.21374
– ident: e_1_2_7_55_1
  doi: 10.1016/j.neurobiolaging.2010.07.013
– ident: e_1_2_7_63_1
  doi: 10.1016/j.pneurobio.2011.09.005
– ident: e_1_2_7_33_1
  doi: 10.1016/j.neuroimage.2009.06.060
– ident: e_1_2_7_98_1
  doi: 10.1038/sdata.2014.49
– ident: e_1_2_7_9_1
  doi: 10.1016/j.media.2017.07.006
– ident: e_1_2_7_20_1
  doi: 10.1007/s00330-015-3932-8
– ident: e_1_2_7_94_1
  doi: 10.1016/j.neuroimage.2008.10.055
– ident: e_1_2_7_2_1
  doi: 10.1038/nn.3331
– ident: e_1_2_7_81_1
– volume-title: Proceedings of UK e‐Science all Hands Meeting
  year: 2003
  ident: e_1_2_7_35_1
– volume-title: In 3rd International Conference on Learning Representations, ICLR 2015—Workshop Track Proceedings
  year: 2014
  ident: e_1_2_7_84_1
– ident: e_1_2_7_37_1
– ident: e_1_2_7_76_1
  doi: 10.1016/j.neuroimage.2010.03.020
– ident: e_1_2_7_11_1
  doi: 10.1073/pnas.0911855107
– ident: e_1_2_7_95_1
  doi: 10.1109/HPCC/SmartCity/DSS.2018.00256
– ident: e_1_2_7_58_1
  doi: 10.1038/sdata.2017.17
– ident: e_1_2_7_91_1
  doi: 10.1016/j.neurobiolaging.2018.07.001
– ident: e_1_2_7_16_1
  doi: 10.1016/j.tins.2017.10.001
– ident: e_1_2_7_85_1
  doi: 10.1523/JNEUROSCI.0391-14.2014
– ident: e_1_2_7_61_1
  doi: 10.1162/jocn.2009.21407
– ident: e_1_2_7_90_1
  doi: 10.1002/hbm.24078
– ident: e_1_2_7_41_1
  doi: 10.1002/jmri.21049
– ident: e_1_2_7_72_1
  doi: 10.1109/TMI.2016.2538465
– ident: e_1_2_7_44_1
– ident: e_1_2_7_59_1
  doi: 10.1016/j.neurobiolaging.2014.07.046
– ident: e_1_2_7_56_1
  doi: 10.1007/978-3-030-00919-9_35
– start-page: 6514
  year: 2019
  ident: e_1_2_7_8_1
  article-title: From voxels to pixels and back: Self‐supervision in natural‐image reconstruction from fMRI
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_2_7_52_1
  doi: 10.1109/5.726791
– ident: e_1_2_7_71_1
  doi: 10.23915/distill.00010
– ident: e_1_2_7_39_1
  doi: 10.1002/hbm.22856
– ident: e_1_2_7_79_1
  doi: 10.1109/ICDAR.2003.1227801
– ident: e_1_2_7_40_1
  doi: 10.1109/EMBC.2018.8512443
– ident: e_1_2_7_67_1
  doi: 10.1016/j.neuroimage.2018.05.065
– ident: e_1_2_7_6_1
  doi: 10.1006/nimg.2000.0582
– ident: e_1_2_7_60_1
  doi: 10.1002/hbm.23137
– start-page: 566
  volume-title: Proceedings of 12th International Conference on Pattern Recognition
  year: 2002
  ident: e_1_2_7_23_1
SSID ssj0011501
Score 2.571089
Snippet We present a Deep Learning framework for the prediction of chronological age from structural magnetic resonance imaging scans. Previous findings associate...
SourceID unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3235
SubjectTerms Adolescent
Adult
Age
Age Factors
Aged
Aged, 80 and over
Aging
Artificial neural networks
Atrophy
Biomarkers
Brain
Brain - anatomy & histology
Brain - diagnostic imaging
brain aging
Brain research
Cerebrospinal fluid
Child
Child, Preschool
convolutional neural networks
Datasets as Topic
Deep Learning
Female
Health aspects
Humans
Inference
interpretability
Life span
Machine learning
Magnetic Resonance Imaging
Male
Medical imaging
Middle Aged
Morphometry
Mortality
Nervous system diseases
Neural networks
Neurodegenerative diseases
Neuroimaging
Neuroimaging - methods
Neurological diseases
Predictions
Young Adult
SummonAdditionalLinks – databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB6t9gBceOzyCCzIPAR7STeNk9gRp4KoKqRyQKy0ByTLdhwWtk2rbiu0nPgR_EJ-CTPOA1IBQtwieeIkzsz4G9vzDcATw6VDr5eEMTqCMCmLKNTSliEiV6NRQ3hZ0o7u9E02OU5en6QnO_C8zYWp-SG6BTeyDO-vycC1OT_6SRp6auYDnL99Xu-QZz6cettRRxHQ8cEWTrFhjh64ZRWK4qPuzt5ctO2Rf5mSto9LXt5US33xWc9mfUjr56TxNXjffk19FOVssFmbgf2yRfT4n597Ha42WJWNauW6ATuu2oP9UYVx-vyCPWX-9Khflt-DS9Nmk34fPo1XiznTrHBuyZqqFB-YL7nDjLZnbL1gCDuZoeoU379-q3OFfb4VozoRFBuw5Yr6o1JATFcF8_sZbNWc3KMefHWlm3A8fvXu5SRsSjqElow_HFonk8JhFBNHeVRgLOiksJHhQ53r3Ji0kKnhwpUccZYupMlzLaRFzMRLISLLb8FutajcHWAlhrbSJNrYGDGfljIzpcuKzEUuKWyUB3DY_lxlG75zKrsxUzVTc6xwSJUf0gAedaLLmuTjd0LPSEMUGT72Y3WTv4BvQxRaaiQIqiKAxScf9CTRYG2_udUx1TiMc0WRn-QIN6MAHnbNdCcdgqvcYoMylEYtEEJmAdyuVbJ7XY7ImOBxAKKnrJ0A0Yj3W6qPp55OXCBIEyIN4HGn1n8bhUOvpX-WUJMXU39x999F78GVmNYxiGo4PYDd9Wrj7iPYW5sH3qp_AGmrUFU
  priority: 102
  providerName: Wiley-Blackwell
Title From a deep learning model back to the brain—Identifying regional predictors and their relation to aging
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.25011
https://www.ncbi.nlm.nih.gov/pubmed/32320123
https://www.proquest.com/docview/2425836120
https://www.proquest.com/docview/2393576436
https://pubmed.ncbi.nlm.nih.gov/PMC7426775
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hbm.25011
UnpaywallVersion publishedVersion
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011501
  issn: 1097-0193
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011501
  issn: 1097-0193
  databaseCode: RPM
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVOVD
  databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011501
  issn: 1097-0193
  databaseCode: OVEED
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: http://ovidsp.ovid.com/
  providerName: Ovid
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1097-0193
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011501
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011501
  issn: 1097-0193
  databaseCode: 24P
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB5BVwIuPHZ5BJbKPAR7ScnmZedYEFWF1NUKUWk5BdtxWNg2jUortJz4EfxCfgkzjhttKkBIXKpInriJMx5_Y898A_BURcKg1Yv9EA2BH5dF4EuhSx-Rq5KoIVFZ0onu5CgdT-M3J8mJq3NKuTANP0S74UYzw9prmuB1UTZ23p3uhy9O1XyAazjl9u6kCYLxHuxMj46H7-0ZZ5r4mXO5AuIcRayy4Ra6eG9nRdq2yxcWpu2gyavrqpbnX-Vs1gW2dmUa3YAPm3dqAlLOBuuVGuhvW3SP__HSN-G6Q61s2KjZLbhkql3YG1bosc_P2TNm40jtBv0uXJm44_o9-DxaLuZMssKYmrn6FB-ZLb7DlNRnbLVgCECZojoVP7__aLKGbeYVo4oR5CWwekn9UVEgJquC2ZMNtnQxfNSDrbN0G6aj1-9ejX1X3MHXZAb8Q21EXBj0Z8IgCwr0Co3gOlDRocxkplRSiERF3JQRIi5ZCJVlkguN6CkqOQ90dAd61aIy94CV6OQKFUulQ0R_UohUlSYtUhOYuNBB5sHB5gPn2jGfUwGOWd5wNoc5Dmluh9SDx61o3dB9_E7oOWlJTiYA-9HSZTLg0xCZVj7kBFoRyuI_73ckcerqbvNGz3JnOr7k5AOKCIFn4MGjtpnupHC4yizWKEMJ1RzBZOrB3UYt28eNECMTUPaAdxS2FSBC8W5L9enUEotzhGucJx48aVX7b6NwYDX1zxL5-OXEXtz_pw4fwLWQNjOIbzjZh95quTYPEfGtVB8uh_Fx3-6X0O_bsO_m-S8C4Vei
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB5VRaJcqj54mLawPAS9mDp-7VriEhBRgKbi0Eq9rfZlSkmcKCRCvfEj-IX8EmbWjsEVIG6RdryxvPP4ZnfnG4CnOhEOvV4axugIwrS0UaiEKUNErlqhhiRlSSe6o5N8eJa-O8_O1-Dlqham5odoN9zIMry_JgOnDemjX6yhF3ryAgM4FfbeSPNeTqlXnH5ozxAQ6vh0C4NsWKAPXvEKRfFR-2gnGl33yb8FpesXJjeW1UxdfVXjcRfU-qg02ILNBk6yfr3-27Dmqh3Y7VeYSk-u2DPmL3j6nfMduDlqztF34XIwn06YYta5GWsaR3xkvisO08p8ZospQ2TINDWQ-PHte13O60uiGLVyIPjOZnOaj7r1MFVZ5o8c2Ly5XEcz-AZIt-Fs8Ob09TBsui6Ehuwz7BknUusw0YijIrKYrjnBTaSTnipUoXVmRaYT7soEoZCyQheF4sIgrElKziOT3IH1alq5e8BKzD6FTpU2McIyJUSuS5fb3EUutSYqAjhcfX1pGkpy6owxljWZcixxoaRfqAAet6KzmofjT0LPaQkl2SbOY1RTYoBvQyxXss8JTSLGxH_e70iiTZnu8EoJZGPTXyQlZyJBRBgF8KgdpifpnlrlpkuUoUpnjigvD-BurTPt6yYIXgnBBsA72tQKENN3d6T6dOEZvzniKM6zAJ60evevr3DoNfLvEnL4auR_3P9_0YewMTwdHcvjtyfv9-BWTNsOxAyc7cP6Yr50B4jNFvqBN8Gf_NIz0g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEB5VRSq8cLQchgLLIeiLU9dHdi3xEihROFIhRKW-VNZeptDEsUIiVJ74EfxCfgkz6wMcAUK8RfJ4Y69nZr_ZnfkG4KGKhEWvF_shOgI_zk3gS6FzH5GrkqghUZ7Tie74oD86jF8eJUdr8KSphan4IdoNN7IM56_JwG1p8t2frKEnatrDBZwKe8_FSSoooW__bUseRVDHhVu4yPop-uCGVygId9tbO6vRqk_-ZVFaTZg8vyxKefZZTiZdUOtWpeElOG7ep0pGOe0tF6qnv6xQPf7vC1-GizVcZYNKv67Ami02YWtQYKg-PWOPmEsgdTvzm7Axrs_pt-DjcD6bMsmMtSWrG1O8Z67rDlNSn7LFjCHyZIoaVHz_-q0qF3YlV4xaRVB4wMo5jUfdgJgsDHNHGmxeJ-_RCK7B0lU4HD5_92zk110dfE327-9pK2JjMZAJgzQwGA5awXWgoj2ZylSpxIhERdzmEUItaYRKU8mFRtgU5ZwHOroG68WssDeA5RjdChVLpUOEfVKIvspt3_RtYGOjg9SDnebrZrqmPKfOG5OsImsOM5zSzE2pB_db0bLi-fid0GNSkYxsH8fRsi5hwKchFq1swAmtIobFf97uSKLN6u7lRsmy2md8yij4ExEizsCDe-1lupPy4Ao7W6IMVVJzRJF9D65XOtk-boTgmBCyB7yjra0AMYl3rxQfThyjOEecxnniwYNWr_82CztOTf8skY2ejt2Pm_8uehc23uwPs9cvDl7dggsh7WoQ8XCyDeuL-dLeRui3UHechf8AiLlT-g
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6hVAIuUFoehoKWh6AXB9evXR8DIoqQUnEgUjmZfZlCEycKiVA58SP4hfySzqw3Vh0BQuJmacdrez07-83uzDcAz1QiLFq9NIzREIRpZaJQCl2FiFyVRA1JqopOdMfH-WiSvj3JTnydU8qFafgh2g03mhnOXtMEX5iqsfP-dD9-eapmfVzDKbd3J88QjPdgZ3L8bvDBnXHmWVh4lysizlHEKhtuocv3dlakbbt8aWHaDpq8tq4X8vybnE67wNatTMOb8HHzTU1Ayll_vVJ9_X2L7vE_PnoXbnjUygaNmt2CK7beg_1BjR777Jw9Zy6O1G3Q78HVsT-u34cvw-V8xiQz1i6Yr0_xibniO0xJfcZWc4YAlCmqU_Hrx88ma9hlXjGqGEFeAlssqT8qCsRkbZg72WBLH8NHPbg6S7dhMnzz_vUo9MUdQk1mIDzSVqTGoj8TR0Vk0Cu0gutIJUeykIVSmRGZSritEkRc0ghVFJILjegpqTiPdHIHevW8tveAVejkCpVKpWNEf1KIXFU2N7mNbGp0VARwuPnBpfbM51SAY1o2nM1xiUNauiEN4EkrumjoPn4n9IK0pCQTgP1o6TMZ8G2ITKsccAKtCGXxyQcdSZy6utu80bPSm46vJfmAIkHgGQXwuG2mOykcrrbzNcpQQjVHMJkHcLdRy_Z1E8TIBJQD4B2FbQWIULzbUn8-dcTiHOEa51kAT1vV_tsoHDpN_bNEOXo1dhf3_6nDB3A9ps0M4hvODqC3Wq7tQ0R8K_XIz-oL-9lU7Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+a+deep+learning+model+back+to+the+brain%E2%80%94Identifying+regional+predictors+and+their+relation+to+aging&rft.jtitle=Human+brain+mapping&rft.au=Levakov%2C+Gidon&rft.au=Rosenthal%2C+Gideon&rft.au=Shelef%2C+Ilan&rft.au=Raviv%2C+Tammy+Riklin&rft.date=2020-08-15&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1065-9471&rft.volume=41&rft.issue=12&rft.spage=3235&rft_id=info:doi/10.1002%2Fhbm.25011&rft.externalDocID=A710598519
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon