From a deep learning model back to the brain—Identifying regional predictors and their relation to aging
We present a Deep Learning framework for the prediction of chronological age from structural magnetic resonance imaging scans. Previous findings associate increased brain age with neurodegenerative diseases and higher mortality rates. However, the importance of brain age prediction goes beyond servi...
Saved in:
| Published in | Human brain mapping Vol. 41; no. 12; pp. 3235 - 3252 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Hoboken, USA
John Wiley & Sons, Inc
15.08.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1065-9471 1097-0193 1097-0193 |
| DOI | 10.1002/hbm.25011 |
Cover
| Abstract | We present a Deep Learning framework for the prediction of chronological age from structural magnetic resonance imaging scans. Previous findings associate increased brain age with neurodegenerative diseases and higher mortality rates. However, the importance of brain age prediction goes beyond serving as biomarkers for neurological disorders. Specifically, utilizing convolutional neural network (CNN) analysis to identify brain regions contributing to the prediction can shed light on the complex multivariate process of brain aging. Previous work examined methods to attribute pixel/voxel‐wise contributions to the prediction in a single image, resulting in “explanation maps” that were found noisy and unreliable. To address this problem, we developed an inference scheme for combining these maps across subjects, thus creating a population‐based, rather than a subject‐specific map. We applied this method to a CNN ensemble trained on predicting subjects' age from raw T1 brain images in a lifespan sample of 10,176 subjects. Evaluating the model on an untouched test set resulted in mean absolute error of 3.07 years and a correlation between chronological and predicted age of r = 0.98. Using the inference method, we revealed that cavities containing cerebrospinal fluid, previously found as general atrophy markers, had the highest contribution for age prediction. Comparing maps derived from different models within the ensemble allowed to assess differences and similarities in brain regions utilized by the model. We showed that this method substantially increased the replicability of explanation maps, converged with results from voxel‐based morphometry age studies and highlighted brain regions whose volumetric variability correlated the most with the prediction error.
The current work has two main contributions, a CNN ensemble shown to estimate “brain age” from structural MRI with a mean absolute error of ~3.1 years, and a novel scheme highlightighting brain regions contributing to the age prediction. This scheme results in explanation maps showing consistency with the literature, and as sample size increases, these maps show higher inter‐sample replicability. Cerebrospinal fluid cavities, possibly reflecting general atrophy, were found as a prominent aging biomarker. |
|---|---|
| AbstractList | We present a Deep Learning framework for the prediction of chronological age from structural magnetic resonance imaging scans. Previous findings associate increased brain age with neurodegenerative diseases and higher mortality rates. However, the importance of brain age prediction goes beyond serving as biomarkers for neurological disorders. Specifically, utilizing convolutional neural network (CNN) analysis to identify brain regions contributing to the prediction can shed light on the complex multivariate process of brain aging. Previous work examined methods to attribute pixel/voxel-wise contributions to the prediction in a single image, resulting in "explanation maps" that were found noisy and unreliable. To address this problem, we developed an inference scheme for combining these maps across subjects, thus creating a population-based, rather than a subject-specific map. We applied this method to a CNN ensemble trained on predicting subjects' age from raw T1 brain images in a lifespan sample of 10,176 subjects. Evaluating the model on an untouched test set resulted in mean absolute error of 3.07 years and a correlation between chronological and predicted age of r = 0.98. Using the inference method, we revealed that cavities containing cerebrospinal fluid, previously found as general atrophy markers, had the highest contribution for age prediction. Comparing maps derived from different models within the ensemble allowed to assess differences and similarities in brain regions utilized by the model. We showed that this method substantially increased the replicability of explanation maps, converged with results from voxel-based morphometry age studies and highlighted brain regions whose volumetric variability correlated the most with the prediction error. We present a Deep Learning framework for the prediction of chronological age from structural magnetic resonance imaging scans. Previous findings associate increased brain age with neurodegenerative diseases and higher mortality rates. However, the importance of brain age prediction goes beyond serving as biomarkers for neurological disorders. Specifically, utilizing convolutional neural network (CNN) analysis to identify brain regions contributing to the prediction can shed light on the complex multivariate process of brain aging. Previous work examined methods to attribute pixel/voxel‐wise contributions to the prediction in a single image, resulting in “explanation maps” that were found noisy and unreliable. To address this problem, we developed an inference scheme for combining these maps across subjects, thus creating a population‐based, rather than a subject‐specific map. We applied this method to a CNN ensemble trained on predicting subjects' age from raw T1 brain images in a lifespan sample of 10,176 subjects. Evaluating the model on an untouched test set resulted in mean absolute error of 3.07 years and a correlation between chronological and predicted age of r = 0.98. Using the inference method, we revealed that cavities containing cerebrospinal fluid, previously found as general atrophy markers, had the highest contribution for age prediction. Comparing maps derived from different models within the ensemble allowed to assess differences and similarities in brain regions utilized by the model. We showed that this method substantially increased the replicability of explanation maps, converged with results from voxel‐based morphometry age studies and highlighted brain regions whose volumetric variability correlated the most with the prediction error. The current work has two main contributions, a CNN ensemble shown to estimate “brain age” from structural MRI with a mean absolute error of ~3.1 years, and a novel scheme highlightighting brain regions contributing to the age prediction. This scheme results in explanation maps showing consistency with the literature, and as sample size increases, these maps show higher inter‐sample replicability. Cerebrospinal fluid cavities, possibly reflecting general atrophy, were found as a prominent aging biomarker. We present a Deep Learning framework for the prediction of chronological age from structural magnetic resonance imaging scans. Previous findings associate increased brain age with neurodegenerative diseases and higher mortality rates. However, the importance of brain age prediction goes beyond serving as biomarkers for neurological disorders. Specifically, utilizing convolutional neural network (CNN) analysis to identify brain regions contributing to the prediction can shed light on the complex multivariate process of brain aging. Previous work examined methods to attribute pixel/voxel-wise contributions to the prediction in a single image, resulting in "explanation maps" that were found noisy and unreliable. To address this problem, we developed an inference scheme for combining these maps across subjects, thus creating a population-based, rather than a subject-specific map. We applied this method to a CNN ensemble trained on predicting subjects' age from raw T1 brain images in a lifespan sample of 10,176 subjects. Evaluating the model on an untouched test set resulted in mean absolute error of 3.07 years and a correlation between chronological and predicted age of r = 0.98. Using the inference method, we revealed that cavities containing cerebrospinal fluid, previously found as general atrophy markers, had the highest contribution for age prediction. Comparing maps derived from different models within the ensemble allowed to assess differences and similarities in brain regions utilized by the model. We showed that this method substantially increased the replicability of explanation maps, converged with results from voxel-based morphometry age studies and highlighted brain regions whose volumetric variability correlated the most with the prediction error.We present a Deep Learning framework for the prediction of chronological age from structural magnetic resonance imaging scans. Previous findings associate increased brain age with neurodegenerative diseases and higher mortality rates. However, the importance of brain age prediction goes beyond serving as biomarkers for neurological disorders. Specifically, utilizing convolutional neural network (CNN) analysis to identify brain regions contributing to the prediction can shed light on the complex multivariate process of brain aging. Previous work examined methods to attribute pixel/voxel-wise contributions to the prediction in a single image, resulting in "explanation maps" that were found noisy and unreliable. To address this problem, we developed an inference scheme for combining these maps across subjects, thus creating a population-based, rather than a subject-specific map. We applied this method to a CNN ensemble trained on predicting subjects' age from raw T1 brain images in a lifespan sample of 10,176 subjects. Evaluating the model on an untouched test set resulted in mean absolute error of 3.07 years and a correlation between chronological and predicted age of r = 0.98. Using the inference method, we revealed that cavities containing cerebrospinal fluid, previously found as general atrophy markers, had the highest contribution for age prediction. Comparing maps derived from different models within the ensemble allowed to assess differences and similarities in brain regions utilized by the model. We showed that this method substantially increased the replicability of explanation maps, converged with results from voxel-based morphometry age studies and highlighted brain regions whose volumetric variability correlated the most with the prediction error. We present a Deep Learning framework for the prediction of chronological age from structural magnetic resonance imaging scans. Previous findings associate increased brain age with neurodegenerative diseases and higher mortality rates. However, the importance of brain age prediction goes beyond serving as biomarkers for neurological disorders. Specifically, utilizing convolutional neural network (CNN) analysis to identify brain regions contributing to the prediction can shed light on the complex multivariate process of brain aging. Previous work examined methods to attribute pixel/voxel‐wise contributions to the prediction in a single image, resulting in “explanation maps” that were found noisy and unreliable. To address this problem, we developed an inference scheme for combining these maps across subjects, thus creating a population‐based, rather than a subject‐specific map. We applied this method to a CNN ensemble trained on predicting subjects' age from raw T1 brain images in a lifespan sample of 10,176 subjects. Evaluating the model on an untouched test set resulted in mean absolute error of 3.07 years and a correlation between chronological and predicted age of r = 0.98. Using the inference method, we revealed that cavities containing cerebrospinal fluid, previously found as general atrophy markers, had the highest contribution for age prediction. Comparing maps derived from different models within the ensemble allowed to assess differences and similarities in brain regions utilized by the model. We showed that this method substantially increased the replicability of explanation maps, converged with results from voxel‐based morphometry age studies and highlighted brain regions whose volumetric variability correlated the most with the prediction error. The current work has two main contributions, a CNN ensemble shown to estimate “brain age” from structural MRI with a mean absolute error of ~3.1 years, and a novel scheme highlightighting brain regions contributing to the age prediction. This scheme results in explanation maps showing consistency with the literature, and as sample size increases, these maps show higher inter‐sample replicability. Cerebrospinal fluid cavities, possibly reflecting general atrophy, were found as a prominent aging biomarker. We present a Deep Learning framework for the prediction of chronological age from structural magnetic resonance imaging scans. Previous findings associate increased brain age with neurodegenerative diseases and higher mortality rates. However, the importance of brain age prediction goes beyond serving as biomarkers for neurological disorders. Specifically, utilizing convolutional neural network (CNN) analysis to identify brain regions contributing to the prediction can shed light on the complex multivariate process of brain aging. Previous work examined methods to attribute pixel/voxel‐wise contributions to the prediction in a single image, resulting in “explanation maps” that were found noisy and unreliable. To address this problem, we developed an inference scheme for combining these maps across subjects, thus creating a population‐based, rather than a subject‐specific map. We applied this method to a CNN ensemble trained on predicting subjects' age from raw T1 brain images in a lifespan sample of 10,176 subjects. Evaluating the model on an untouched test set resulted in mean absolute error of 3.07 years and a correlation between chronological and predicted age of r = 0.98. Using the inference method, we revealed that cavities containing cerebrospinal fluid, previously found as general atrophy markers, had the highest contribution for age prediction. Comparing maps derived from different models within the ensemble allowed to assess differences and similarities in brain regions utilized by the model. We showed that this method substantially increased the replicability of explanation maps, converged with results from voxel‐based morphometry age studies and highlighted brain regions whose volumetric variability correlated the most with the prediction error. |
| Audience | Academic |
| Author | Levakov, Gidon Raviv, Tammy Riklin Rosenthal, Gideon Avidan, Galia Shelef, Ilan |
| AuthorAffiliation | 2 Zlotowski Center for Neuroscience Ben‐Gurion University of the Negev Beer‐Sheva Israel 5 Department of Psychology Ben‐Gurion University of the Negev Beer‐Sheva Israel 1 Department of Cognitive and Brain Sciences Ben‐Gurion University of the Negev Beer‐Sheva Israel 4 The School of Electrical and Computer Engineering Ben Gurion University of the Negev Beer‐Sheva Israel 3 Department of Diagnostic Imaging Ben‐Gurion University of the Negev Beer‐Sheva Israel |
| AuthorAffiliation_xml | – name: 1 Department of Cognitive and Brain Sciences Ben‐Gurion University of the Negev Beer‐Sheva Israel – name: 3 Department of Diagnostic Imaging Ben‐Gurion University of the Negev Beer‐Sheva Israel – name: 4 The School of Electrical and Computer Engineering Ben Gurion University of the Negev Beer‐Sheva Israel – name: 5 Department of Psychology Ben‐Gurion University of the Negev Beer‐Sheva Israel – name: 2 Zlotowski Center for Neuroscience Ben‐Gurion University of the Negev Beer‐Sheva Israel |
| Author_xml | – sequence: 1 givenname: Gidon orcidid: 0000-0002-5520-3556 surname: Levakov fullname: Levakov, Gidon email: gidonle@post.bgu.ac.il organization: Ben‐Gurion University of the Negev – sequence: 2 givenname: Gideon surname: Rosenthal fullname: Rosenthal, Gideon organization: Ben‐Gurion University of the Negev – sequence: 3 givenname: Ilan surname: Shelef fullname: Shelef, Ilan organization: Ben‐Gurion University of the Negev – sequence: 4 givenname: Tammy Riklin surname: Raviv fullname: Raviv, Tammy Riklin organization: Ben Gurion University of the Negev – sequence: 5 givenname: Galia surname: Avidan fullname: Avidan, Galia organization: Ben‐Gurion University of the Negev |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32320123$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9ksFu1DAQhi1URNuFAy-AInEBpGztOI7jS6VSUVqpiAucLceeZL049uIkVHvjIXhCngSnWyitoPLBlueb3zP_-BDt-eABoecELwnGxdGq6ZcFw4Q8QgcEC55jIujefK5YLkpO9tHhMKxxIhL1BO3TghaYFPQArc9i6DOVGYBN5kBFb32X9cGAyxqlv2RjyMYVZE1U1v_8_uPCgB9tu52pCJ0NXrlsE8FYPYY4ZMqbmbcxRZ0aU3xWUF3in6LHrXIDPLvZF-jz2btPp-f55cf3F6cnl7lmBJOcaKhLA0zwAgtsCC6h5ho3lCihRNMwU7OGcmgpI0yZuhFC8VoLXtGWc6zpAr3Z6U5-o7ZXyjm5ibZXcSsJlrNhMhkmrw1L8PEO3kxND0an7qK6TQjKyrsRb1eyC98kL4uKc5YEXt0IxPB1gmGUvR00OKc8hGmQBRWU8aqkVUJf3kPXYYrJwESVBatpRQp8S3XKgbS-DeldPYvKE04wEzVL012g5T-otAz0Vqfv0dp0fyfhxd-N_unw91dIwOsdoGMYhgjtg64d3WO1Ha-nnaqw7qGMq1TX9v_S8vzth13GLx7F4bU |
| CitedBy_id | crossref_primary_10_1109_TMI_2022_3161947 crossref_primary_10_1016_j_neuroimage_2024_120751 crossref_primary_10_1093_cercor_bhae030 crossref_primary_10_1038_s41598_023_49514_2 crossref_primary_10_3389_fnins_2021_674055 crossref_primary_10_3389_fpsyt_2021_627996 crossref_primary_10_1007_s11517_023_02915_x crossref_primary_10_1016_j_neucom_2024_127974 crossref_primary_10_1155_2022_7842304 crossref_primary_10_1016_j_ejrad_2023_111159 crossref_primary_10_1016_j_media_2025_103503 crossref_primary_10_1109_ACCESS_2025_3526520 crossref_primary_10_1016_j_neuroimage_2023_120469 crossref_primary_10_1016_j_neuroimage_2024_120825 crossref_primary_10_1002_hbm_26558 crossref_primary_10_3389_fnagi_2023_1303036 crossref_primary_10_3390_jpm12111850 crossref_primary_10_1002_hbm_26595 crossref_primary_10_1016_j_eswa_2024_124893 crossref_primary_10_1038_s43587_022_00219_7 crossref_primary_10_1002_hbm_26632 crossref_primary_10_1093_gerona_glac209 crossref_primary_10_1016_j_neuroimage_2023_119929 crossref_primary_10_1186_s40708_024_00244_9 crossref_primary_10_3389_fnins_2023_1222751 crossref_primary_10_3389_fneur_2022_979774 crossref_primary_10_1016_j_inffus_2023_03_007 crossref_primary_10_1162_imag_a_00214 crossref_primary_10_1016_j_arr_2023_102144 crossref_primary_10_1162_imag_a_00497 crossref_primary_10_3389_fpsyt_2020_619629 crossref_primary_10_7554_eLife_83604 crossref_primary_10_1007_s11571_023_09941_3 crossref_primary_10_1109_TMI_2021_3108910 crossref_primary_10_3390_s23063062 crossref_primary_10_1016_j_neuroimage_2022_119621 crossref_primary_10_1016_j_brainres_2021_147431 crossref_primary_10_1016_j_neuroimage_2022_119504 crossref_primary_10_3389_fnagi_2022_895535 crossref_primary_10_1007_s12021_024_09694_2 crossref_primary_10_1109_MSP_2021_3126573 crossref_primary_10_3389_fnagi_2021_761954 crossref_primary_10_1016_j_neurobiolaging_2024_02_014 crossref_primary_10_1007_s11357_023_00924_0 crossref_primary_10_1109_JBHI_2023_3341629 crossref_primary_10_1002_hbm_25805 crossref_primary_10_1016_j_jare_2024_11_015 crossref_primary_10_3389_fnimg_2022_981642 crossref_primary_10_1186_s40708_024_00218_x crossref_primary_10_1016_j_jpsychires_2022_11_011 crossref_primary_10_1016_j_compbiomed_2023_106668 crossref_primary_10_30773_pi_2023_0183 crossref_primary_10_1016_j_nbas_2022_100032 crossref_primary_10_1148_radiol_211860 |
| Cites_doi | 10.1523/JNEUROSCI.5996-10.2012 10.1212/WNL.0b013e31828726f5 10.1073/pnas.1902376116 10.7717/peerj.453 10.1002/hbm.23434 10.1016/j.neuroimage.2018.05.049 10.1007/s11065-014-9266-5 10.1093/schbul/sbm120 10.1371/journal.pone.0052664 10.1016/S1076-6332(03)00671-8 10.3389/fninf.2011.00013 10.3389/fnagi.2014.00264 10.1023/A:1022859003006 10.1162/jocn.2007.19.9.1498 10.1038/s41598-018-29295-9 10.1016/j.neurobiolaging.2008.01.010 10.1148/radiology.216.3.r00au37672 10.1002/hbm.22065 10.1109/TMI.2011.2138152 10.1023/A:1010933404324 10.1007/s11682-014-9321-0 10.1016/j.neuroimage.2017.07.059 10.1016/j.mri.2019.06.018 10.1109/CVPR.2017.316 10.1007/s12021-011-9133-y 10.1002/hbm.22619 10.1016/j.neurobiolaging.2009.04.011 10.1017/S1041610209009405 10.1016/B978-044451741-8/50003-2 10.1038/mp.2017.62 10.1016/j.neuroimage.2016.11.005 10.1002/widm.1249 10.1007/978-3-642-38868-2_8 10.1006/nimg.1995.1012 10.3389/fninf.2015.00008 10.1186/s12859-019-2609-8 10.1038/mp.2013.78 10.2174/1874609809666160413113711 10.1016/j.neuroimage.2006.01.021 10.1093/cercor/bhn232 10.1006/nimg.2002.1132 10.1002/hbm.21374 10.1016/j.neurobiolaging.2010.07.013 10.1016/j.pneurobio.2011.09.005 10.1016/j.neuroimage.2009.06.060 10.1038/sdata.2014.49 10.1016/j.media.2017.07.006 10.1007/s00330-015-3932-8 10.1016/j.neuroimage.2008.10.055 10.1038/nn.3331 10.1016/j.neuroimage.2010.03.020 10.1073/pnas.0911855107 10.1109/HPCC/SmartCity/DSS.2018.00256 10.1038/sdata.2017.17 10.1016/j.neurobiolaging.2018.07.001 10.1016/j.tins.2017.10.001 10.1523/JNEUROSCI.0391-14.2014 10.1162/jocn.2009.21407 10.1002/hbm.24078 10.1002/jmri.21049 10.1109/TMI.2016.2538465 10.1016/j.neurobiolaging.2014.07.046 10.1007/978-3-030-00919-9_35 10.1109/5.726791 10.23915/distill.00010 10.1002/hbm.22856 10.1109/ICDAR.2003.1227801 10.1109/EMBC.2018.8512443 10.1016/j.neuroimage.2018.05.065 10.1006/nimg.2000.0582 10.1002/hbm.23137 |
| ContentType | Journal Article |
| Copyright | 2020 The Authors. published by Wiley Periodicals, Inc. 2020 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc. COPYRIGHT 2020 John Wiley & Sons, Inc. 2020. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2020 The Authors. published by Wiley Periodicals, Inc. – notice: 2020 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc. – notice: COPYRIGHT 2020 John Wiley & Sons, Inc. – notice: 2020. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM ADTOC UNPAY |
| DOI | 10.1002/hbm.25011 |
| DatabaseName | WIley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
| DatabaseTitleList | Technology Research Database MEDLINE MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Anatomy & Physiology |
| DocumentTitleAlternate | Levakov et al |
| EISSN | 1097-0193 |
| EndPage | 3252 |
| ExternalDocumentID | 10.1002/hbm.25011 PMC7426775 A710598519 32320123 10_1002_hbm_25011 HBM25011 |
| Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: Ben Gurion University of the Negev funderid: Internal funding grant – fundername: NIDA NIH HHS grantid: RL1 DA024853 – fundername: NIMH NIH HHS grantid: RL1 MH083270 – fundername: NIDCR NIH HHS grantid: UL1 DE019580 – fundername: NIA NIH HHS grantid: P01 AG003991 – fundername: NCRR NIH HHS grantid: P41 RR014075 – fundername: NIMH NIH HHS grantid: R03 MH096321 – fundername: NIMH NIH HHS grantid: RL1 MH083268 – fundername: NIMH NIH HHS grantid: P50 MH071616 – fundername: NIA NIH HHS grantid: U01 AG024904 – fundername: NLM NIH HHS grantid: RL1 LM009833 – fundername: Ben Gurion University of the Negev grantid: Internal funding grant |
| GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAONW AAYCA AAZKR ABCQN ABCUV ABIJN ABIVO ABPVW ACCFJ ACCMX ACGFS ACIWK ACPOU ACPRK ACXQS ADBBV ADEOM ADIZJ ADMGS ADPDF ADXAS ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFRAH AFZJQ AHMBA AIURR AIWBW AJBDE AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DU5 EBD EBS EMOBN F00 F01 F04 F5P G-S G.N GNP GODZA GROUPED_DOAJ H.T H.X HBH HHY HHZ HZ~ IAO IHR ITC IX1 J0M JPC KQQ L7B LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LYRES MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P4D PALCI PIMPY PQQKQ Q.N Q11 QB0 QRW R.K ROL RPM RWD RWI RX1 RYL SUPJJ SV3 TEORI UB1 V2E W8V W99 WBKPD WIB WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WUP WYISQ XG1 XSW XV2 ZZTAW ~IA ~WT AAFWJ AAMMB AAYXX AEFGJ AFPKN AGXDD AIDQK AIDYY CITATION WXSBR CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM .Y3 31~ 7X7 8FI 8FJ AANHP ABEML ABJNI ABUWG ACBWZ ACRPL ACSCC ACYXJ ADNMO ADTOC AFKRA AGQPQ AIQQE ASPBG AVWKF AZFZN BENPR BFHJK CCPQU EJD FEDTE FYUFA GAKWD HF~ HMCUK HVGLF LW6 M6M PHGZM PHGZT RIWAO RJQFR SAMSI UKHRP UNPAY |
| ID | FETCH-LOGICAL-c5101-1ce84de5972090d104e87c0b31a9a9bb5d85b37ef3515ad8b99a78c9763f770c3 |
| IEDL.DBID | UNPAY |
| ISSN | 1065-9471 1097-0193 |
| IngestDate | Sun Oct 26 03:47:16 EDT 2025 Tue Sep 30 16:50:42 EDT 2025 Sun Sep 28 08:31:15 EDT 2025 Tue Oct 07 06:29:46 EDT 2025 Mon Oct 20 22:25:12 EDT 2025 Mon Oct 20 16:47:35 EDT 2025 Mon Jul 21 05:50:52 EDT 2025 Wed Oct 01 01:55:42 EDT 2025 Thu Apr 24 23:09:42 EDT 2025 Wed Jan 22 16:32:46 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | brain aging deep learning interpretability convolutional neural networks neuroimaging |
| Language | English |
| License | Attribution-NonCommercial 2020 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. cc-by-nc |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5101-1ce84de5972090d104e87c0b31a9a9bb5d85b37ef3515ad8b99a78c9763f770c3 |
| Notes | Funding information Ben Gurion University of the Negev, Grant/Award Number: Internal funding grant Data used in preparation of this article were partially obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu) and the Australian Imaging Biomarkers and Lifestyle flagship study of ageing (AIBL) funded by the Commonwealth Scientific and Industrial Research Organisation (CSIRO). As such, the investigators within ADNI and AIBL contributed to the design and implementation of ADNI and AIBL and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI and AIBL investigators can be found at http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf Tammy Riklin Raviv and Galia Avidan have contributed equally to this work. www.aibl.csiro.au and at . ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Funding information Ben Gurion University of the Negev, Grant/Award Number: Internal funding grant Data used in preparation of this article were partially obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu) and the Australian Imaging Biomarkers and Lifestyle flagship study of ageing (AIBL) funded by the Commonwealth Scientific and Industrial Research Organisation (CSIRO). As such, the investigators within ADNI and AIBL contributed to the design and implementation of ADNI and AIBL and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI and AIBL investigators can be found at http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf and at www.aibl.csiro.au. |
| ORCID | 0000-0002-5520-3556 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hbm.25011 |
| PMID | 32320123 |
| PQID | 2425836120 |
| PQPubID | 996345 |
| PageCount | 18 |
| ParticipantIDs | unpaywall_primary_10_1002_hbm_25011 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7426775 proquest_miscellaneous_2393576436 proquest_journals_2425836120 gale_infotracmisc_A710598519 gale_infotracacademiconefile_A710598519 pubmed_primary_32320123 crossref_primary_10_1002_hbm_25011 crossref_citationtrail_10_1002_hbm_25011 wiley_primary_10_1002_hbm_25011_HBM25011 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | August 15, 2020 |
| PublicationDateYYYYMMDD | 2020-08-15 |
| PublicationDate_xml | – month: 08 year: 2020 text: August 15, 2020 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: San Antonio |
| PublicationTitle | Human brain mapping |
| PublicationTitleAlternate | Hum Brain Mapp |
| PublicationYear | 2020 |
| Publisher | John Wiley & Sons, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc |
| References | 2017; 40 2009; 45 2002; 17 2017; 42 2013; 7917 2015; 36 2006; 31 2017; 4 2010; 107 2000; 216 2008; 34 2014; 24 2011; 59 2016; 148 2001; 45 2003; 51 1998; 86 2016; 37 2012; 10 2009; 48 2016; 35 2014; 1 2010; 22 2018; 8 2018; 39 2018; 3 2019; 62 2014; 2 2019; 20 2017; 38 2000; 11 2018; 178 2008; 27 2019; 116 2017; 163 2014; 19 2018; 71 2010; 3 2009; 19 2014; 6 2014; 10 2007; 19 2009; 21 2002; 1 2011; 30 2011; 32 2005 2004 2003 2018; 11307 LNCS 2018; 23 1995; 2 2015; 9 2011; 5 2012; 33 2018; 11046 LNCS 2012; 32 2004; 11 2009; 30 2013; 34 2011; 95 2013; 80 2019 2018 2017 2016 2015 2014 2013 2012; 7 2016; 26 2014; 34 2010; 51 2016; 9 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_26_1 e_1_2_7_49_1 Kendall A. (e_1_2_7_46_1) 2017 e_1_2_7_90_1 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_33_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_79_1 e_1_2_7_4_1 Qi Q. (e_1_2_7_75_1) 2018 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_82_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_86_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 Poldrack, R. A., Congdon, E., Triplett, W., Gorgolewski, K. J., Karlsgodt, K. H., Mumford, J. A., … Bilder, R. (e_1_2_7_74_1) 2016 e_1_2_7_97_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 Beliy R. (e_1_2_7_8_1) 2019 e_1_2_7_5_1 e_1_2_7_9_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 Sowell E. R. (e_1_2_7_83_1) 2004 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 Dubuisson M.‐P. (e_1_2_7_23_1) 2002 e_1_2_7_47_1 e_1_2_7_89_1 e_1_2_7_28_1 e_1_2_7_73_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_58_1 Springenberg J. T. (e_1_2_7_84_1) 2014 e_1_2_7_39_1 Goodfellow I. (e_1_2_7_30_1) 2016 Heckemann R. A. (e_1_2_7_35_1) 2003 e_1_2_7_6_1 Buckner R. L. (e_1_2_7_13_1) 2014; 10 Nair V. (e_1_2_7_69_1) 2010; 3 e_1_2_7_80_1 e_1_2_7_18_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 Laird A. R. (e_1_2_7_50_1) 2011; 59 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_27_1 Adebayo J. (e_1_2_7_3_1) 2018 e_1_2_7_91_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_38_1 |
| References_xml | – volume: 9 start-page: 310 year: 2016 end-page: 317 article-title: Quantitative machine learning analysis of brain MRI morphology throughout aging publication-title: Current Aging Science – volume: 42 start-page: 145 year: 2017 end-page: 159 article-title: Ensemble of expert deep neural networks for spatio‐temporal denoising of contrast‐enhanced MRI sequences publication-title: Medical Image Analysis – volume: 11307 LNCS start-page: 410 year: 2018 end-page: 419 – volume: 27 start-page: 685 issue: 4 year: 2008 end-page: 691 article-title: The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods publication-title: Journal of Magnetic Resonance Imaging – start-page: 2962 year: 2017 end-page: 2971 – volume: 4 start-page: 1 year: 2017 end-page: 9 article-title: Data descriptor: Longitudinal test–retest neuroimaging data from healthy young adults in Southwest China publication-title: Scientific Data – volume: 10 start-page: 319 issue: 3 year: 2012 end-page: 322 article-title: CANDIShare: A resource for pediatric neuroimaging data publication-title: Neuroinformatics – volume: 36 start-page: S42 issue: S1 year: 2015 end-page: S52 article-title: Disentangling normal aging from Alzheimer's disease in structural magnetic resonance images publication-title: Neurobiology of Aging – year: 2005 – volume: 11 start-page: 805 issue: 6 I year: 2000 end-page: 821 article-title: Voxel‐based morphometry—The methods publication-title: NeuroImage – volume: 19 start-page: 659 issue: 6 year: 2014 end-page: 667 article-title: The autism brain imaging data exchange: Towards a large‐scale evaluation of the intrinsic brain architecture in autism publication-title: Molecular Psychiatry – volume: 45 start-page: 5 issue: 1 year: 2001 end-page: 32 article-title: Random forests publication-title: Machine Learning – volume: 86 start-page: 2278 issue: 11 year: 1998 end-page: 2323 article-title: Gradient‐based learning applied to document recognition publication-title: Proceedings of the IEEE – volume: 51 start-page: 501 issue: 2 year: 2010 end-page: 511 article-title: Trajectories of brain aging in middle‐aged and older adults: Regional and individual differences publication-title: NeuroImage – volume: 11 start-page: 178 issue: 2 year: 2004 end-page: 189 article-title: Statistical validation of image segmentation quality based on a spatial overlap index publication-title: Academic Radiology – volume: 34 start-page: 2302 issue: 9 year: 2013 end-page: 2312 article-title: Functional imaging of the hemodynamic sensory gating response in schizophrenia publication-title: Human Brain Mapping – volume: 62 start-page: 70 year: 2019 end-page: 77 article-title: Anatomical context improves deep learning on the brain age estimation task publication-title: Magnetic Resonance Imaging – volume: 33 start-page: 617.e1 issue: 3 year: 2012 end-page: 617.e9 article-title: Normal age‐related brain morphometric changes: Nonuniformity across cortical thickness, surface area and gray matter volume? publication-title: Neurobiology of Aging – volume: 10 year: 2014 article-title: Brain genomics Superstruct project (GSP) publication-title: Harvard Dataverse – volume: 7917 start-page: 86 year: 2013 end-page: 97 article-title: Predicting cognitive data from medical images using sparse linear regression publication-title: Information Processing in Medical Imaging – volume: 32 start-page: 817 issue: 3 year: 2012 end-page: 825 article-title: Genetic variants of FOXP2 and KIAA0319/TTRAP/THEM2 locus are associated with altered brain activation in distinct language‐related regions publication-title: The Journal of Neuroscience: The Official Journal of the Society for Neuroscience – volume: 95 start-page: 629 issue: 4 year: 2011 end-page: 635 article-title: The Parkinson progression marker initiative (PPMI) publication-title: Progress in Neurobiology – volume: 216 start-page: 672 issue: 3 year: 2000 end-page: 682 article-title: Normal brain development and aging: Quantitative analysis at in vivo MR imaging in healthy volunteers publication-title: Radiology – year: 2018 – year: 2014 – volume: 7 issue: 12 year: 2012 article-title: Cerebrospinal fluid pressure decreases with older age publication-title: PLoS One – volume: 3 start-page: 807 year: 2010 end-page: 814 article-title: Rectified linear units improve restricted Boltzmann machines publication-title: Proceedings of the 27th International Conference on Machine Learning – volume: 24 start-page: 332 year: 2014 end-page: 354 article-title: The effects of healthy aging, amnestic mild cognitive impairment, and Alzheimer's disease on recollection and familiarity: A meta‐analytic review publication-title: Neuropsychology Review – volume: 19 start-page: 2001 issue: 9 year: 2009 end-page: 2012 article-title: High consistency of regional cortical thinning in aging across multiple samples publication-title: Cerebral Cortex – volume: 178 start-page: 183 year: 2018 end-page: 197 article-title: A computational framework for the detection of subcortical brain dysmaturation in neonatal MRI using 3D convolutional neural networks publication-title: NeuroImage – volume: 2 start-page: 89 issue: 2 year: 1995 end-page: 101 article-title: A probabilistic atlas of the human brain: Theory and rationale for its development publication-title: NeuroImage – volume: 20 start-page: 55 issue: 1 year: 2019 article-title: A controlled comparison of thickness, volume and surface areas from multiple cortical parcellation packages publication-title: BMC Bioinformatics – volume: 3 issue: 3 year: 2018 article-title: The building blocks of interpretability publication-title: Distill – volume: 32 start-page: 572 issue: 4 year: 2011 end-page: 580 article-title: Brain atrophy associated with baseline and longitudinal measures of cognition publication-title: Neurobiology of Aging – volume: 59 start-page: 2349 issue: 3 year: 2011 end-page: 2361 article-title: Activation likelihood estimation meta‐analysis revisited publication-title: NeuroImage – volume: 22 start-page: 2677 issue: 12 year: 2010 end-page: 2684 article-title: Open access series of imaging studies: Longitudinal MRI data in nondemented and demented older adults publication-title: Journal of Cognitive Neuroscience – volume: 107 start-page: 4734 issue: 10 year: 2010 end-page: 4739 article-title: Toward discovery science of human brain function publication-title: Proceedings of the National Academy of Sciences of the United States of America – year: 2004 – volume: 45 start-page: S173 issue: 1 year: 2009 end-page: S186 article-title: Bayesian analysis of neuroimaging data in FSL publication-title: NeuroImage – volume: 5 start-page: 13 year: 2011 article-title: Nipype: A flexible, lightweight and extensible neuroimaging data processing framework in python publication-title: Frontiers in Neuroinformatics – volume: 31 start-page: 968 issue: 3 year: 2006 end-page: 980 article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest publication-title: NeuroImage – volume: 37 start-page: 1801 issue: 5 year: 2016 end-page: 1815 article-title: Neurobiological origin of spurious brain morphological changes: A quantitative MRI study publication-title: Human Brain Mapping – volume: 71 start-page: 32 year: 2018 end-page: 40 article-title: Trajectories of imaging markers in brain aging: The Rotterdam study publication-title: Neurobiology of Aging – volume: 19 start-page: 1498 issue: 9 year: 2007 end-page: 1507 article-title: Open access series of imaging studies (OASIS): Cross‐sectional MRI data in young, middle aged, nondemented, and demented older adults publication-title: Journal of Cognitive Neuroscience – volume: 9 start-page: 8 year: 2015 article-title: NeuroVault.org: A web‐based repository for collecting and sharing unthresholded statistical maps of the human brain publication-title: Frontiers in Neuroinformatics – year: 2019 – year: 2015 – volume: 30 start-page: 1617 issue: 9 year: 2011 end-page: 1634 article-title: Robust brain extraction across datasets and comparison with publicly available methods publication-title: IEEE Transactions on Medical Imaging – start-page: 5575 year: 2017 end-page: 5585 – volume: 36 start-page: 3472 issue: 9 year: 2015 end-page: 3485 article-title: Test‐retest reliability of freesurfer measurements within and between sites: Effects of visual approval process publication-title: Human Brain Mapping – volume: 8 issue: 1 year: 2018 article-title: Structural brain imaging in Alzheimer's disease and mild cognitive impairment: Biomarker analysis and shared morphometry database publication-title: Scientific Reports – volume: 30 start-page: 1711 year: 2009 end-page: 1723 article-title: A meta‐analysis of hippocampal atrophy rates in Alzheimer's disease publication-title: Neurobiology of Aging – volume: 40 start-page: 681 issue: 12 year: 2017 end-page: 690 article-title: Predicting age using: Neuroimaging: Innovative brain ageing biomarkers publication-title: Trends in Neurosciences – year: 2003 – volume: 11046 LNCS start-page: 303 year: 2018 end-page: 309 – start-page: 694 year: 2018 end-page: 697 – volume: 9 start-page: 678 issue: 4 year: 2015 end-page: 689 article-title: Statistical estimation of physiological brain age as a descriptor of senescence rate during adulthood publication-title: Brain Imaging and Behavior – volume: 23 start-page: 1385 issue: 5 year: 2018 end-page: 1392 article-title: Brain age predicts mortality publication-title: Molecular Psychiatry – volume: 51 start-page: 181 issue: 2 year: 2003 end-page: 207 article-title: Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy publication-title: Machine Learning – volume: 48 start-page: 63 issue: 1 year: 2009 end-page: 72 article-title: Accurate and robust brain image alignment using boundary‐based registration publication-title: NeuroImage – volume: 80 start-page: 1778 issue: 19 year: 2013 end-page: 1783 article-title: Alzheimer disease in the United States (2010–2050) estimated using the 2010 census publication-title: Neurology – year: 2016 – volume: 2 year: 2014 article-title: Scikit‐image: Image processing in python publication-title: PeerJ – volume: 33 start-page: 2377 issue: 10 year: 2012 end-page: 2389 article-title: Brain structural trajectories over the adult lifespan publication-title: Human Brain Mapping – volume: 8 issue: 4 year: 2018 article-title: Ensemble learning: A survey publication-title: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery – volume: 39 start-page: 3308 issue: 8 year: 2018 end-page: 3325 article-title: BrainMap VBM: An environment for structural meta‐analysis publication-title: Human Brain Mapping – volume: 34 start-page: 37 issue: 1 year: 2008 end-page: 46 article-title: Diagnostic and sex effects on limbic volumes in early‐onset bipolar disorder and schizophrenia publication-title: Schizophrenia Bulletin – volume: 1 year: 2014 article-title: An open science resource for establishing reliability and reproducibility in functional connectomics publication-title: Scientific Data – volume: 1 start-page: 566 year: 2002 end-page: 568 – year: 2016 article-title: A phenome‐wide examination of neural and cognitive function publication-title: BioRxiv – volume: 38 start-page: 997 issue: 2 year: 2017 end-page: 1008 article-title: Age prediction on the basis of brain anatomical measures publication-title: Human Brain Mapping – volume: 178 start-page: 753 year: 2018 end-page: 768 article-title: A comparison of various MRI feature types for characterizing whole brain anatomical differences using linear pattern recognition methods publication-title: NeuroImage – start-page: 6514 year: 2019 end-page: 6524 article-title: From voxels to pixels and back: Self‐supervision in natural‐image reconstruction from fMRI publication-title: Advances in Neural Information Processing Systems – volume: 21 start-page: 672 issue: 4 year: 2009 end-page: 687 article-title: The Australian imaging, biomarkers and lifestyle (AIBL) study of aging: Methodology and baseline characteristics of 1112 individuals recruited for a longitudinal study of Alzheimer's disease publication-title: International Psychogeriatrics – volume: 148 start-page: 179 year: 2016 end-page: 188 article-title: Predicting brain‐age from multimodal imaging data captures cognitive impairment publication-title: NeuroImage – volume: 116 start-page: 21213 issue: 42 year: 2019 end-page: 21218 article-title: Gray matter age prediction as a biomarker for risk of dementia publication-title: Proceedings of the National Academy of Sciences – volume: 6 start-page: 264 year: 2014 article-title: The effects of intracranial volume adjustment approaches on multiple regional MRI volumes in healthy aging and Alzheimer's disease publication-title: Frontiers in Aging Neuroscience – volume: 36 start-page: 150 issue: 1 year: 2015 end-page: 169 article-title: Brain size, sex, and the aging brain publication-title: Human Brain Mapping – start-page: 9505 year: 2018 end-page: 9515 article-title: Sanity checks for saliency maps publication-title: Advances in Neural Information Processing Systems – year: 2017 – volume: 163 start-page: 115 year: 2017 end-page: 124 article-title: Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker publication-title: NeuroImage – volume: 17 start-page: 825 issue: 2015 year: 2002 end-page: 841 article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images improved optimization for the robust and accurate linear registration and motion correction of brain images publication-title: NeuroImage – volume: 34 start-page: 8488 issue: 25 year: 2014 end-page: 8498 article-title: Differential longitudinal changes in cortical thickness, surface area and volume across the adult life span: Regions of accelerating and decelerating change publication-title: The Journal of Neuroscience: The Official Journal of the Society for Neuroscience – volume: 35 start-page: 1240 issue: 5 year: 2016 end-page: 1251 article-title: Brain tumor segmentation using convolutional neural networks in MRI images publication-title: IEEE Transactions on Medical Imaging – volume: 26 start-page: 1254 issue: 5 year: 2016 end-page: 1262 article-title: Cerebrospinal fluid volumetric MRI mapping as a simple measurement for evaluating brain atrophy publication-title: European Radiology – year: 2013 – ident: e_1_2_7_73_1 doi: 10.1523/JNEUROSCI.5996-10.2012 – ident: e_1_2_7_34_1 doi: 10.1212/WNL.0b013e31828726f5 – ident: e_1_2_7_93_1 doi: 10.1073/pnas.1902376116 – start-page: 5575 volume-title: Advances in Neural Information Processing Systems year: 2017 ident: e_1_2_7_46_1 – ident: e_1_2_7_89_1 doi: 10.7717/peerj.453 – ident: e_1_2_7_88_1 doi: 10.1002/hbm.23434 – ident: e_1_2_7_15_1 doi: 10.1016/j.neuroimage.2018.05.049 – ident: e_1_2_7_48_1 doi: 10.1007/s11065-014-9266-5 – ident: e_1_2_7_28_1 doi: 10.1093/schbul/sbm120 – year: 2016 ident: e_1_2_7_74_1 article-title: A phenome‐wide examination of neural and cognitive function publication-title: BioRxiv – ident: e_1_2_7_26_1 doi: 10.1371/journal.pone.0052664 – volume-title: Deep learning year: 2016 ident: e_1_2_7_30_1 – ident: e_1_2_7_97_1 doi: 10.1016/S1076-6332(03)00671-8 – ident: e_1_2_7_31_1 doi: 10.3389/fninf.2011.00013 – ident: e_1_2_7_92_1 doi: 10.3389/fnagi.2014.00264 – ident: e_1_2_7_27_1 – ident: e_1_2_7_49_1 doi: 10.1023/A:1022859003006 – ident: e_1_2_7_62_1 doi: 10.1162/jocn.2007.19.9.1498 – ident: e_1_2_7_54_1 – ident: e_1_2_7_53_1 doi: 10.1038/s41598-018-29295-9 – ident: e_1_2_7_7_1 doi: 10.1016/j.neurobiolaging.2008.01.010 – ident: e_1_2_7_19_1 doi: 10.1148/radiology.216.3.r00au37672 – ident: e_1_2_7_64_1 doi: 10.1002/hbm.22065 – volume-title: Mapping changes in the human cortex throughout the span of life. Neuroscientist year: 2004 ident: e_1_2_7_83_1 – ident: e_1_2_7_36_1 doi: 10.1109/TMI.2011.2138152 – ident: e_1_2_7_70_1 – ident: e_1_2_7_29_1 – volume: 10 year: 2014 ident: e_1_2_7_13_1 article-title: Brain genomics Superstruct project (GSP) publication-title: Harvard Dataverse – ident: e_1_2_7_12_1 doi: 10.1023/A:1010933404324 – start-page: 410 volume-title: Lecture Notes in Computer Science year: 2018 ident: e_1_2_7_75_1 – ident: e_1_2_7_38_1 doi: 10.1007/s11682-014-9321-0 – volume: 59 start-page: 2349 issue: 3 year: 2011 ident: e_1_2_7_50_1 article-title: Activation likelihood estimation meta‐analysis revisited publication-title: NeuroImage – start-page: 9505 year: 2018 ident: e_1_2_7_3_1 article-title: Sanity checks for saliency maps publication-title: Advances in Neural Information Processing Systems – ident: e_1_2_7_17_1 doi: 10.1016/j.neuroimage.2017.07.059 – ident: e_1_2_7_10_1 doi: 10.1016/j.mri.2019.06.018 – ident: e_1_2_7_87_1 doi: 10.1109/CVPR.2017.316 – ident: e_1_2_7_47_1 doi: 10.1007/s12021-011-9133-y – ident: e_1_2_7_42_1 doi: 10.1002/hbm.22619 – ident: e_1_2_7_86_1 – ident: e_1_2_7_14_1 doi: 10.1016/j.neurobiolaging.2009.04.011 – volume: 3 start-page: 807 year: 2010 ident: e_1_2_7_69_1 article-title: Rectified linear units improve restricted Boltzmann machines publication-title: Proceedings of the 27th International Conference on Machine Learning – ident: e_1_2_7_24_1 doi: 10.1017/S1041610209009405 – ident: e_1_2_7_68_1 doi: 10.1016/B978-044451741-8/50003-2 – ident: e_1_2_7_18_1 doi: 10.1038/mp.2017.62 – ident: e_1_2_7_80_1 – ident: e_1_2_7_57_1 doi: 10.1016/j.neuroimage.2016.11.005 – ident: e_1_2_7_77_1 doi: 10.1002/widm.1249 – ident: e_1_2_7_45_1 doi: 10.1007/978-3-642-38868-2_8 – ident: e_1_2_7_65_1 doi: 10.1006/nimg.1995.1012 – ident: e_1_2_7_32_1 doi: 10.3389/fninf.2015.00008 – ident: e_1_2_7_66_1 doi: 10.1186/s12859-019-2609-8 – ident: e_1_2_7_22_1 doi: 10.1038/mp.2013.78 – ident: e_1_2_7_78_1 doi: 10.2174/1874609809666160413113711 – ident: e_1_2_7_21_1 doi: 10.1016/j.neuroimage.2006.01.021 – ident: e_1_2_7_51_1 – ident: e_1_2_7_25_1 doi: 10.1093/cercor/bhn232 – ident: e_1_2_7_82_1 – ident: e_1_2_7_43_1 doi: 10.1006/nimg.2002.1132 – ident: e_1_2_7_4_1 – ident: e_1_2_7_5_1 – ident: e_1_2_7_96_1 doi: 10.1002/hbm.21374 – ident: e_1_2_7_55_1 doi: 10.1016/j.neurobiolaging.2010.07.013 – ident: e_1_2_7_63_1 doi: 10.1016/j.pneurobio.2011.09.005 – ident: e_1_2_7_33_1 doi: 10.1016/j.neuroimage.2009.06.060 – ident: e_1_2_7_98_1 doi: 10.1038/sdata.2014.49 – ident: e_1_2_7_9_1 doi: 10.1016/j.media.2017.07.006 – ident: e_1_2_7_20_1 doi: 10.1007/s00330-015-3932-8 – ident: e_1_2_7_94_1 doi: 10.1016/j.neuroimage.2008.10.055 – ident: e_1_2_7_2_1 doi: 10.1038/nn.3331 – ident: e_1_2_7_81_1 – volume-title: Proceedings of UK e‐Science all Hands Meeting year: 2003 ident: e_1_2_7_35_1 – volume-title: In 3rd International Conference on Learning Representations, ICLR 2015—Workshop Track Proceedings year: 2014 ident: e_1_2_7_84_1 – ident: e_1_2_7_37_1 – ident: e_1_2_7_76_1 doi: 10.1016/j.neuroimage.2010.03.020 – ident: e_1_2_7_11_1 doi: 10.1073/pnas.0911855107 – ident: e_1_2_7_95_1 doi: 10.1109/HPCC/SmartCity/DSS.2018.00256 – ident: e_1_2_7_58_1 doi: 10.1038/sdata.2017.17 – ident: e_1_2_7_91_1 doi: 10.1016/j.neurobiolaging.2018.07.001 – ident: e_1_2_7_16_1 doi: 10.1016/j.tins.2017.10.001 – ident: e_1_2_7_85_1 doi: 10.1523/JNEUROSCI.0391-14.2014 – ident: e_1_2_7_61_1 doi: 10.1162/jocn.2009.21407 – ident: e_1_2_7_90_1 doi: 10.1002/hbm.24078 – ident: e_1_2_7_41_1 doi: 10.1002/jmri.21049 – ident: e_1_2_7_72_1 doi: 10.1109/TMI.2016.2538465 – ident: e_1_2_7_44_1 – ident: e_1_2_7_59_1 doi: 10.1016/j.neurobiolaging.2014.07.046 – ident: e_1_2_7_56_1 doi: 10.1007/978-3-030-00919-9_35 – start-page: 6514 year: 2019 ident: e_1_2_7_8_1 article-title: From voxels to pixels and back: Self‐supervision in natural‐image reconstruction from fMRI publication-title: Advances in Neural Information Processing Systems – ident: e_1_2_7_52_1 doi: 10.1109/5.726791 – ident: e_1_2_7_71_1 doi: 10.23915/distill.00010 – ident: e_1_2_7_39_1 doi: 10.1002/hbm.22856 – ident: e_1_2_7_79_1 doi: 10.1109/ICDAR.2003.1227801 – ident: e_1_2_7_40_1 doi: 10.1109/EMBC.2018.8512443 – ident: e_1_2_7_67_1 doi: 10.1016/j.neuroimage.2018.05.065 – ident: e_1_2_7_6_1 doi: 10.1006/nimg.2000.0582 – ident: e_1_2_7_60_1 doi: 10.1002/hbm.23137 – start-page: 566 volume-title: Proceedings of 12th International Conference on Pattern Recognition year: 2002 ident: e_1_2_7_23_1 |
| SSID | ssj0011501 |
| Score | 2.571089 |
| Snippet | We present a Deep Learning framework for the prediction of chronological age from structural magnetic resonance imaging scans. Previous findings associate... |
| SourceID | unpaywall pubmedcentral proquest gale pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 3235 |
| SubjectTerms | Adolescent Adult Age Age Factors Aged Aged, 80 and over Aging Artificial neural networks Atrophy Biomarkers Brain Brain - anatomy & histology Brain - diagnostic imaging brain aging Brain research Cerebrospinal fluid Child Child, Preschool convolutional neural networks Datasets as Topic Deep Learning Female Health aspects Humans Inference interpretability Life span Machine learning Magnetic Resonance Imaging Male Medical imaging Middle Aged Morphometry Mortality Nervous system diseases Neural networks Neurodegenerative diseases Neuroimaging Neuroimaging - methods Neurological diseases Predictions Young Adult |
| SummonAdditionalLinks | – databaseName: Wiley Online Library - Core collection (SURFmarket) dbid: DR2 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB6t9gBceOzyCCzIPAR7STeNk9gRp4KoKqRyQKy0ByTLdhwWtk2rbiu0nPgR_EJ-CTPOA1IBQtwieeIkzsz4G9vzDcATw6VDr5eEMTqCMCmLKNTSliEiV6NRQ3hZ0o7u9E02OU5en6QnO_C8zYWp-SG6BTeyDO-vycC1OT_6SRp6auYDnL99Xu-QZz6cettRRxHQ8cEWTrFhjh64ZRWK4qPuzt5ctO2Rf5mSto9LXt5US33xWc9mfUjr56TxNXjffk19FOVssFmbgf2yRfT4n597Ha42WJWNauW6ATuu2oP9UYVx-vyCPWX-9Khflt-DS9Nmk34fPo1XiznTrHBuyZqqFB-YL7nDjLZnbL1gCDuZoeoU379-q3OFfb4VozoRFBuw5Yr6o1JATFcF8_sZbNWc3KMefHWlm3A8fvXu5SRsSjqElow_HFonk8JhFBNHeVRgLOiksJHhQ53r3Ji0kKnhwpUccZYupMlzLaRFzMRLISLLb8FutajcHWAlhrbSJNrYGDGfljIzpcuKzEUuKWyUB3DY_lxlG75zKrsxUzVTc6xwSJUf0gAedaLLmuTjd0LPSEMUGT72Y3WTv4BvQxRaaiQIqiKAxScf9CTRYG2_udUx1TiMc0WRn-QIN6MAHnbNdCcdgqvcYoMylEYtEEJmAdyuVbJ7XY7ImOBxAKKnrJ0A0Yj3W6qPp55OXCBIEyIN4HGn1n8bhUOvpX-WUJMXU39x999F78GVmNYxiGo4PYDd9Wrj7iPYW5sH3qp_AGmrUFU priority: 102 providerName: Wiley-Blackwell |
| Title | From a deep learning model back to the brain—Identifying regional predictors and their relation to aging |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.25011 https://www.ncbi.nlm.nih.gov/pubmed/32320123 https://www.proquest.com/docview/2425836120 https://www.proquest.com/docview/2393576436 https://pubmed.ncbi.nlm.nih.gov/PMC7426775 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hbm.25011 |
| UnpaywallVersion | publishedVersion |
| Volume | 41 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1097-0193 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011501 issn: 1097-0193 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1097-0193 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011501 issn: 1097-0193 databaseCode: RPM dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVOVD databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling customDbUrl: eissn: 1097-0193 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011501 issn: 1097-0193 databaseCode: OVEED dateStart: 19930101 isFulltext: true titleUrlDefault: http://ovidsp.ovid.com/ providerName: Ovid – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1097-0193 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1097-0193 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011501 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1097-0193 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011501 issn: 1097-0193 databaseCode: 24P dateStart: 20200101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB5BVwIuPHZ5BJbKPAR7ScnmZedYEFWF1NUKUWk5BdtxWNg2jUortJz4EfxCfgkzjhttKkBIXKpInriJMx5_Y898A_BURcKg1Yv9EA2BH5dF4EuhSx-Rq5KoIVFZ0onu5CgdT-M3J8mJq3NKuTANP0S74UYzw9prmuB1UTZ23p3uhy9O1XyAazjl9u6kCYLxHuxMj46H7-0ZZ5r4mXO5AuIcRayy4Ra6eG9nRdq2yxcWpu2gyavrqpbnX-Vs1gW2dmUa3YAPm3dqAlLOBuuVGuhvW3SP__HSN-G6Q61s2KjZLbhkql3YG1bosc_P2TNm40jtBv0uXJm44_o9-DxaLuZMssKYmrn6FB-ZLb7DlNRnbLVgCECZojoVP7__aLKGbeYVo4oR5CWwekn9UVEgJquC2ZMNtnQxfNSDrbN0G6aj1-9ejX1X3MHXZAb8Q21EXBj0Z8IgCwr0Co3gOlDRocxkplRSiERF3JQRIi5ZCJVlkguN6CkqOQ90dAd61aIy94CV6OQKFUulQ0R_UohUlSYtUhOYuNBB5sHB5gPn2jGfUwGOWd5wNoc5Dmluh9SDx61o3dB9_E7oOWlJTiYA-9HSZTLg0xCZVj7kBFoRyuI_73ckcerqbvNGz3JnOr7k5AOKCIFn4MGjtpnupHC4yizWKEMJ1RzBZOrB3UYt28eNECMTUPaAdxS2FSBC8W5L9enUEotzhGucJx48aVX7b6NwYDX1zxL5-OXEXtz_pw4fwLWQNjOIbzjZh95quTYPEfGtVB8uh_Fx3-6X0O_bsO_m-S8C4Vei |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB5VRaJcqj54mLawPAS9mDp-7VriEhBRgKbi0Eq9rfZlSkmcKCRCvfEj-IX8EmbWjsEVIG6RdryxvPP4ZnfnG4CnOhEOvV4axugIwrS0UaiEKUNErlqhhiRlSSe6o5N8eJa-O8_O1-Dlqham5odoN9zIMry_JgOnDemjX6yhF3ryAgM4FfbeSPNeTqlXnH5ozxAQ6vh0C4NsWKAPXvEKRfFR-2gnGl33yb8FpesXJjeW1UxdfVXjcRfU-qg02ILNBk6yfr3-27Dmqh3Y7VeYSk-u2DPmL3j6nfMduDlqztF34XIwn06YYta5GWsaR3xkvisO08p8ZospQ2TINDWQ-PHte13O60uiGLVyIPjOZnOaj7r1MFVZ5o8c2Ly5XEcz-AZIt-Fs8Ob09TBsui6Ehuwz7BknUusw0YijIrKYrjnBTaSTnipUoXVmRaYT7soEoZCyQheF4sIgrElKziOT3IH1alq5e8BKzD6FTpU2McIyJUSuS5fb3EUutSYqAjhcfX1pGkpy6owxljWZcixxoaRfqAAet6KzmofjT0LPaQkl2SbOY1RTYoBvQyxXss8JTSLGxH_e70iiTZnu8EoJZGPTXyQlZyJBRBgF8KgdpifpnlrlpkuUoUpnjigvD-BurTPt6yYIXgnBBsA72tQKENN3d6T6dOEZvzniKM6zAJ60evevr3DoNfLvEnL4auR_3P9_0YewMTwdHcvjtyfv9-BWTNsOxAyc7cP6Yr50B4jNFvqBN8Gf_NIz0g |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEB5VRSq8cLQchgLLIeiLU9dHdi3xEihROFIhRKW-VNZeptDEsUIiVJ74EfxCfgkz6wMcAUK8RfJ4Y69nZr_ZnfkG4KGKhEWvF_shOgI_zk3gS6FzH5GrkqghUZ7Tie74oD86jF8eJUdr8KSphan4IdoNN7IM56_JwG1p8t2frKEnatrDBZwKe8_FSSoooW__bUseRVDHhVu4yPop-uCGVygId9tbO6vRqk_-ZVFaTZg8vyxKefZZTiZdUOtWpeElOG7ep0pGOe0tF6qnv6xQPf7vC1-GizVcZYNKv67Ami02YWtQYKg-PWOPmEsgdTvzm7Axrs_pt-DjcD6bMsmMtSWrG1O8Z67rDlNSn7LFjCHyZIoaVHz_-q0qF3YlV4xaRVB4wMo5jUfdgJgsDHNHGmxeJ-_RCK7B0lU4HD5_92zk110dfE327-9pK2JjMZAJgzQwGA5awXWgoj2ZylSpxIhERdzmEUItaYRKU8mFRtgU5ZwHOroG68WssDeA5RjdChVLpUOEfVKIvspt3_RtYGOjg9SDnebrZrqmPKfOG5OsImsOM5zSzE2pB_db0bLi-fid0GNSkYxsH8fRsi5hwKchFq1swAmtIobFf97uSKLN6u7lRsmy2md8yij4ExEizsCDe-1lupPy4Ao7W6IMVVJzRJF9D65XOtk-boTgmBCyB7yjra0AMYl3rxQfThyjOEecxnniwYNWr_82CztOTf8skY2ejt2Pm_8uehc23uwPs9cvDl7dggsh7WoQ8XCyDeuL-dLeRui3UHechf8AiLlT-g |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6hVAIuUFoehoKWh6AXB9evXR8DIoqQUnEgUjmZfZlCEycKiVA58SP4hfySzqw3Vh0BQuJmacdrez07-83uzDcAz1QiLFq9NIzREIRpZaJQCl2FiFyVRA1JqopOdMfH-WiSvj3JTnydU8qFafgh2g03mhnOXtMEX5iqsfP-dD9-eapmfVzDKbd3J88QjPdgZ3L8bvDBnXHmWVh4lysizlHEKhtuocv3dlakbbt8aWHaDpq8tq4X8vybnE67wNatTMOb8HHzTU1Ayll_vVJ9_X2L7vE_PnoXbnjUygaNmt2CK7beg_1BjR777Jw9Zy6O1G3Q78HVsT-u34cvw-V8xiQz1i6Yr0_xibniO0xJfcZWc4YAlCmqU_Hrx88ma9hlXjGqGEFeAlssqT8qCsRkbZg72WBLH8NHPbg6S7dhMnzz_vUo9MUdQk1mIDzSVqTGoj8TR0Vk0Cu0gutIJUeykIVSmRGZSritEkRc0ghVFJILjegpqTiPdHIHevW8tveAVejkCpVKpWNEf1KIXFU2N7mNbGp0VARwuPnBpfbM51SAY1o2nM1xiUNauiEN4EkrumjoPn4n9IK0pCQTgP1o6TMZ8G2ITKsccAKtCGXxyQcdSZy6utu80bPSm46vJfmAIkHgGQXwuG2mOykcrrbzNcpQQjVHMJkHcLdRy_Z1E8TIBJQD4B2FbQWIULzbUn8-dcTiHOEa51kAT1vV_tsoHDpN_bNEOXo1dhf3_6nDB3A9ps0M4hvODqC3Wq7tQ0R8K_XIz-oL-9lU7Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+a+deep+learning+model+back+to+the+brain%E2%80%94Identifying+regional+predictors+and+their+relation+to+aging&rft.jtitle=Human+brain+mapping&rft.au=Levakov%2C+Gidon&rft.au=Rosenthal%2C+Gideon&rft.au=Shelef%2C+Ilan&rft.au=Raviv%2C+Tammy+Riklin&rft.date=2020-08-15&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1065-9471&rft.volume=41&rft.issue=12&rft.spage=3235&rft_id=info:doi/10.1002%2Fhbm.25011&rft.externalDocID=A710598519 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon |