Systematic evaluation of machine learning algorithms for neuroanatomically‐based age prediction in youth
Application of machine learning (ML) algorithms to structural magnetic resonance imaging (sMRI) data has yielded behaviorally meaningful estimates of the biological age of the brain (brain‐age). The choice of the ML approach in estimating brain‐age in youth is important because age‐related brain cha...
Saved in:
| Published in | Human brain mapping Vol. 43; no. 17; pp. 5126 - 5140 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Hoboken, USA
John Wiley & Sons, Inc
01.12.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1065-9471 1097-0193 1097-0193 |
| DOI | 10.1002/hbm.26010 |
Cover
| Abstract | Application of machine learning (ML) algorithms to structural magnetic resonance imaging (sMRI) data has yielded behaviorally meaningful estimates of the biological age of the brain (brain‐age). The choice of the ML approach in estimating brain‐age in youth is important because age‐related brain changes in this age‐group are dynamic. However, the comparative performance of the available ML algorithms has not been systematically appraised. To address this gap, the present study evaluated the accuracy (mean absolute error [MAE]) and computational efficiency of 21 machine learning algorithms using sMRI data from 2105 typically developing individuals aged 5–22 years from five cohorts. The trained models were then tested in two independent holdout datasets, one comprising 4078 individuals aged 9–10 years and another comprising 594 individuals aged 5–21 years. The algorithms encompassed parametric and nonparametric, Bayesian, linear and nonlinear, tree‐based, and kernel‐based models. Sensitivity analyses were performed for parcellation scheme, number of neuroimaging input features, number of cross‐validation folds, number of extreme outliers, and sample size. Tree‐based models and algorithms with a nonlinear kernel performed comparably well, with the latter being especially computationally efficient. Extreme Gradient Boosting (MAE of 1.49 years), Random Forest Regression (MAE of 1.58 years), and Support Vector Regression (SVR) with Radial Basis Function (RBF) Kernel (MAE of 1.64 years) emerged as the three most accurate models. Linear algorithms, with the exception of Elastic Net Regression, performed poorly. Findings of the present study could be used as a guide for optimizing methodology when quantifying brain‐age in youth.
We benchmarked 21 machine learning algorithms for brain‐based developmental age prediction in a pooled sample of 6777 individuals aged 5–22 years. Ensemble‐based algorithms and algorithms with nonlinear Kernel performed best in predicting developmental brain‐age. |
|---|---|
| AbstractList | Application of machine learning (ML) algorithms to structural magnetic resonance imaging (sMRI) data has yielded behaviorally meaningful estimates of the biological age of the brain (brain‐age). The choice of the ML approach in estimating brain‐age in youth is important because age‐related brain changes in this age‐group are dynamic. However, the comparative performance of the available ML algorithms has not been systematically appraised. To address this gap, the present study evaluated the accuracy (mean absolute error [MAE]) and computational efficiency of 21 machine learning algorithms using sMRI data from 2105 typically developing individuals aged 5–22 years from five cohorts. The trained models were then tested in two independent holdout datasets, one comprising 4078 individuals aged 9–10 years and another comprising 594 individuals aged 5–21 years. The algorithms encompassed parametric and nonparametric, Bayesian, linear and nonlinear, tree‐based, and kernel‐based models. Sensitivity analyses were performed for parcellation scheme, number of neuroimaging input features, number of cross‐validation folds, number of extreme outliers, and sample size. Tree‐based models and algorithms with a nonlinear kernel performed comparably well, with the latter being especially computationally efficient. Extreme Gradient Boosting (MAE of 1.49 years), Random Forest Regression (MAE of 1.58 years), and Support Vector Regression (SVR) with Radial Basis Function (RBF) Kernel (MAE of 1.64 years) emerged as the three most accurate models. Linear algorithms, with the exception of Elastic Net Regression, performed poorly. Findings of the present study could be used as a guide for optimizing methodology when quantifying brain‐age in youth. We benchmarked 21 machine learning algorithms for brain‐based developmental age prediction in a pooled sample of 6777 individuals aged 5–22 years. Ensemble‐based algorithms and algorithms with nonlinear Kernel performed best in predicting developmental brain‐age. Application of machine learning (ML) algorithms to structural magnetic resonance imaging (sMRI) data has yielded behaviorally meaningful estimates of the biological age of the brain (brain‐age). The choice of the ML approach in estimating brain‐age in youth is important because age‐related brain changes in this age‐group are dynamic. However, the comparative performance of the available ML algorithms has not been systematically appraised. To address this gap, the present study evaluated the accuracy (mean absolute error [MAE]) and computational efficiency of 21 machine learning algorithms using sMRI data from 2105 typically developing individuals aged 5–22 years from five cohorts. The trained models were then tested in two independent holdout datasets, one comprising 4078 individuals aged 9–10 years and another comprising 594 individuals aged 5–21 years. The algorithms encompassed parametric and nonparametric, Bayesian, linear and nonlinear, tree‐based, and kernel‐based models. Sensitivity analyses were performed for parcellation scheme, number of neuroimaging input features, number of cross‐validation folds, number of extreme outliers, and sample size. Tree‐based models and algorithms with a nonlinear kernel performed comparably well, with the latter being especially computationally efficient. Extreme Gradient Boosting (MAE of 1.49 years), Random Forest Regression (MAE of 1.58 years), and Support Vector Regression (SVR) with Radial Basis Function (RBF) Kernel (MAE of 1.64 years) emerged as the three most accurate models. Linear algorithms, with the exception of Elastic Net Regression, performed poorly. Findings of the present study could be used as a guide for optimizing methodology when quantifying brain‐age in youth. Application of machine learning (ML) algorithms to structural magnetic resonance imaging (sMRI) data has yielded behaviorally meaningful estimates of the biological age of the brain (brain‐age). The choice of the ML approach in estimating brain‐age in youth is important because age‐related brain changes in this age‐group are dynamic. However, the comparative performance of the available ML algorithms has not been systematically appraised. To address this gap, the present study evaluated the accuracy (mean absolute error [MAE]) and computational efficiency of 21 machine learning algorithms using sMRI data from 2105 typically developing individuals aged 5–22 years from five cohorts. The trained models were then tested in two independent holdout datasets, one comprising 4078 individuals aged 9–10 years and another comprising 594 individuals aged 5–21 years. The algorithms encompassed parametric and nonparametric, Bayesian, linear and nonlinear, tree‐based, and kernel‐based models. Sensitivity analyses were performed for parcellation scheme, number of neuroimaging input features, number of cross‐validation folds, number of extreme outliers, and sample size. Tree‐based models and algorithms with a nonlinear kernel performed comparably well, with the latter being especially computationally efficient. Extreme Gradient Boosting (MAE of 1.49 years), Random Forest Regression (MAE of 1.58 years), and Support Vector Regression (SVR) with Radial Basis Function (RBF) Kernel (MAE of 1.64 years) emerged as the three most accurate models. Linear algorithms, with the exception of Elastic Net Regression, performed poorly. Findings of the present study could be used as a guide for optimizing methodology when quantifying brain‐age in youth. We benchmarked 21 machine learning algorithms for brain‐based developmental age prediction in a pooled sample of 6777 individuals aged 5–22 years. Ensemble‐based algorithms and algorithms with nonlinear Kernel performed best in predicting developmental brain‐age. Application of machine learning (ML) algorithms to structural magnetic resonance imaging (sMRI) data has yielded behaviorally meaningful estimates of the biological age of the brain (brain-age). The choice of the ML approach in estimating brain-age in youth is important because age-related brain changes in this age-group are dynamic. However, the comparative performance of the available ML algorithms has not been systematically appraised. To address this gap, the present study evaluated the accuracy (mean absolute error [MAE]) and computational efficiency of 21 machine learning algorithms using sMRI data from 2105 typically developing individuals aged 5-22 years from five cohorts. The trained models were then tested in two independent holdout datasets, one comprising 4078 individuals aged 9-10 years and another comprising 594 individuals aged 5-21 years. The algorithms encompassed parametric and nonparametric, Bayesian, linear and nonlinear, tree-based, and kernel-based models. Sensitivity analyses were performed for parcellation scheme, number of neuroimaging input features, number of cross-validation folds, number of extreme outliers, and sample size. Tree-based models and algorithms with a nonlinear kernel performed comparably well, with the latter being especially computationally efficient. Extreme Gradient Boosting (MAE of 1.49 years), Random Forest Regression (MAE of 1.58 years), and Support Vector Regression (SVR) with Radial Basis Function (RBF) Kernel (MAE of 1.64 years) emerged as the three most accurate models. Linear algorithms, with the exception of Elastic Net Regression, performed poorly. Findings of the present study could be used as a guide for optimizing methodology when quantifying brain-age in youth.Application of machine learning (ML) algorithms to structural magnetic resonance imaging (sMRI) data has yielded behaviorally meaningful estimates of the biological age of the brain (brain-age). The choice of the ML approach in estimating brain-age in youth is important because age-related brain changes in this age-group are dynamic. However, the comparative performance of the available ML algorithms has not been systematically appraised. To address this gap, the present study evaluated the accuracy (mean absolute error [MAE]) and computational efficiency of 21 machine learning algorithms using sMRI data from 2105 typically developing individuals aged 5-22 years from five cohorts. The trained models were then tested in two independent holdout datasets, one comprising 4078 individuals aged 9-10 years and another comprising 594 individuals aged 5-21 years. The algorithms encompassed parametric and nonparametric, Bayesian, linear and nonlinear, tree-based, and kernel-based models. Sensitivity analyses were performed for parcellation scheme, number of neuroimaging input features, number of cross-validation folds, number of extreme outliers, and sample size. Tree-based models and algorithms with a nonlinear kernel performed comparably well, with the latter being especially computationally efficient. Extreme Gradient Boosting (MAE of 1.49 years), Random Forest Regression (MAE of 1.58 years), and Support Vector Regression (SVR) with Radial Basis Function (RBF) Kernel (MAE of 1.64 years) emerged as the three most accurate models. Linear algorithms, with the exception of Elastic Net Regression, performed poorly. Findings of the present study could be used as a guide for optimizing methodology when quantifying brain-age in youth. |
| Audience | Academic |
| Author | Glahn, David C. Frangou, Sophia Modabbernia, Amirhossein Thompson, Paul M. Whalley, Heather C. Kahn, Rene S. |
| AuthorAffiliation | 4 Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine University of Southern California Los Angeles California USA 2 Division of Psychiatry University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital Edinburgh UK 3 Boston Children's Hospital and Harvard Medical School Boston Massachusetts USA 1 Department of Psychiatry Icahn School of Medicine at Mount Sinai New York New York USA 5 Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health University of British Columbia Vancouver British Columbia Canada |
| AuthorAffiliation_xml | – name: 4 Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine University of Southern California Los Angeles California USA – name: 5 Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health University of British Columbia Vancouver British Columbia Canada – name: 1 Department of Psychiatry Icahn School of Medicine at Mount Sinai New York New York USA – name: 2 Division of Psychiatry University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital Edinburgh UK – name: 3 Boston Children's Hospital and Harvard Medical School Boston Massachusetts USA |
| Author_xml | – sequence: 1 givenname: Amirhossein surname: Modabbernia fullname: Modabbernia, Amirhossein organization: Icahn School of Medicine at Mount Sinai – sequence: 2 givenname: Heather C. surname: Whalley fullname: Whalley, Heather C. organization: University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital – sequence: 3 givenname: David C. surname: Glahn fullname: Glahn, David C. organization: Boston Children's Hospital and Harvard Medical School – sequence: 4 givenname: Paul M. surname: Thompson fullname: Thompson, Paul M. organization: University of Southern California – sequence: 5 givenname: Rene S. surname: Kahn fullname: Kahn, Rene S. organization: Icahn School of Medicine at Mount Sinai – sequence: 6 givenname: Sophia orcidid: 0000-0002-3210-6470 surname: Frangou fullname: Frangou, Sophia email: sophia.frangou@mssm.edu organization: University of British Columbia |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35852028$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9ks1u1DAQxyNURD_gwAugSFwAabe2Eyf2BalUQJGKOABna-IdZ71K7MVOWuXGI_CMPAneDyitCvLBlv2b_8z8PcfZgfMOs-wpJXNKCDtdNv2cVYSSB9kRJbKeESqLg8254jNZ1vQwO45xRQilnNBH2WHBBWeEiaNs9XmKA_YwWJ3jFXRjOnmXe5P3oJfWYd4hBGddm0PX-mCHZR9z40PucAweHAy-txq6bvr5_UcDERc5tJivAy6s3mpZl09-HJaPs4cGuohP9vtJ9vXd2y_nF7PLT-8_nJ9dzjRP3czqhiAWlRGlBsOl4FzKmkAteC3QcM0oFrJmhBhDK605KwwHagRtqOYcZHGSvdrpjm4N03UqTa2D7SFMihK1MUwlw9TWsAS_3sHrselxodENAW4CPFh1-8XZpWr9lZKCMlZssr3YCwT_bcQ4qN5GjV0HDv0YUxpJayEJrxL6_A668mNwyQvF6kIUpaxEeUO10KGyzviUV29E1Vldliz1zotEze-h0lpg-o40Hsam-1sBz_5u9E-Hv0chAac7QAcfY0CjtB2205CUbXevdy_vRPzP5736dapr-jeoLt583EX8Av1z408 |
| CitedBy_id | crossref_primary_10_1016_j_cortex_2023_11_015 crossref_primary_10_1038_s41598_023_42414_5 crossref_primary_10_1093_schbul_sbae074 crossref_primary_10_1007_s11357_024_01112_4 crossref_primary_10_1186_s40794_023_00208_7 crossref_primary_10_1002_hbm_26768 crossref_primary_10_1061_JWRMD5_WRENG_6334 |
| Cites_doi | 10.1016/j.neuroimage.2010.01.005 10.1038/sdata.2017.181 10.1016/j.neuroimage.2018.09.060 10.1016/j.neuroimage.2015.04.057 10.1002/hbm.25320 10.1002/hbm.25368 10.1371/journal.pone.0067346 10.1023/A:1010933404324 10.1093/cercor/bhx179 10.1002/hbm.25364 10.1007/978-1-4419-9326-7_11 10.1016/j.dcn.2018.04.004 10.1111/j.1467-9868.2005.00503.x 10.2527/jas.2012-6162 10.1111/j.1467-9868.2009.00723.x 10.1145/2939672.2939785 10.1093/cercor/bhaa296 10.1002/hbm.23434 10.1007/BF00994018 10.1109/JBHI.2021.3083187 10.1002/(SICI)1099-128X(199701)11:1<73::AID-CEM435>3.0.CO;2-# 10.1038/mp.2017.62 10.1162/jocn_a_01375 10.1002/hbm.25316 10.1007/978-1-4302-5990-9_4 10.1016/j.neuroimage.2012.08.001 10.1016/j.pscychresns.2021.111270 10.1016/j.neuroimage.2021.118450 10.1162/15324430152748236 10.1016/j.neuroimage.2021.118036 10.1109/34.735807 10.1016/j.neuroimage.2021.118487 10.1093/cercor/bht425 10.1016/j.talanta.2005.10.039 10.1016/s0149-7634(00)00014-2 10.1016/j.neuroimage.2016.11.005 10.1002/hbm.25565 10.1016/j.tics.2004.12.008 10.1002/hbm.25204 10.1523/JNEUROSCI.3302-16.2017 10.1016/j.pscychresns.2021.111313 10.1016/j.nicl.2019.102063 10.1198/016214503000125 10.3389/fnsys.2012.00062 10.1038/npp.2009.115 10.1038/sdata.2017.10 10.1038/s41380-019-0626-7 10.1093/gigascience/giab055 10.1214/08-AOAS191 10.1073/pnas.1905356116 10.1007/s11682-020-00260-3 10.1038/mp.2013.78 10.1126/sciadv.abb3417 10.1093/cercor/bht201 10.1038/s41593-019-0471-7 10.1073/pnas.1316911111 10.1001/jamapsychiatry.2018.1543 10.3389/fneur.2019.00789 |
| ContentType | Journal Article |
| Copyright | 2022 The Authors. published by Wiley Periodicals LLC. 2022 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. COPYRIGHT 2022 John Wiley & Sons, Inc. 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022 The Authors. published by Wiley Periodicals LLC. – notice: 2022 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. – notice: COPYRIGHT 2022 John Wiley & Sons, Inc. – notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM ADTOC UNPAY |
| DOI | 10.1002/hbm.26010 |
| DatabaseName | Wiley Online Library (Open Access collection) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
| DatabaseTitleList | CrossRef Technology Research Database MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Anatomy & Physiology |
| DocumentTitleAlternate | Modabbernia et al |
| EISSN | 1097-0193 |
| EndPage | 5140 |
| ExternalDocumentID | 10.1002/hbm.26010 PMC9812239 A744297253 35852028 10_1002_hbm_26010 HBM26010 |
| Genre | technicalNote Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: National Institute of Mental Health funderid: R01‐MH113619; T32‐MH122394 – fundername: Icahn School of Medicine at Mount Sinai – fundername: National Institutes of Health funderid: U01DA041025; U01DA041093; U24DA041147; U24DA041123; U01DA041174; U01DA041156; U01DA041148; U01DA041134; U01DA041120; U01DA041117; U01DA041106; U01DA041089; U01DA041048; U01DA041028; U01DA041022 – fundername: NIDA NIH HHS grantid: U01 DA041148 – fundername: NIDA NIH HHS grantid: U01 DA041174 – fundername: NIDA NIH HHS grantid: U01 DA041120 – fundername: NIDA NIH HHS grantid: U01 DA041134 – fundername: NIDA NIH HHS grantid: U01 DA041028 – fundername: NIDA NIH HHS grantid: U24 DA041123 – fundername: NIDA NIH HHS grantid: U01 DA041117 – fundername: NIDA NIH HHS grantid: U01 DA041022 – fundername: NIDA NIH HHS grantid: U01 DA041048 – fundername: NIDA NIH HHS grantid: U24 DA041147 – fundername: ; – fundername: ; grantid: R01‐MH113619; T32‐MH122394 – fundername: ; grantid: U01DA041025; U01DA041093; U24DA041147; U24DA041123; U01DA041174; U01DA041156; U01DA041148; U01DA041134; U01DA041120; U01DA041117; U01DA041106; U01DA041089; U01DA041048; U01DA041028; U01DA041022 |
| GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 8FI 8FJ 8UM 930 A03 AAESR AAEVG AAHHS AAONW AAYCA AAZKR ABCQN ABCUV ABIJN ABIVO ABPVW ABUWG ACCFJ ACCMX ACGFS ACIWK ACPOU ACPRK ACXQS ADBBV ADEOM ADIZJ ADMGS ADPDF ADXAS ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPWT AFRAH AFZJQ AHMBA AIURR AIWBW AJBDE AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BENPR BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CCPQU CS3 D-E D-F DCZOG DPXWK DR1 DR2 DU5 EBD EBS EMOBN F00 F01 F04 F5P FYUFA G-S G.N GNP GODZA GROUPED_DOAJ H.T H.X HBH HHY HHZ HMCUK HZ~ IAO IHR ITC IX1 J0M JPC KQQ L7B LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LYRES MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P4D PALCI PIMPY PQQKQ Q.N Q11 QB0 QRW R.K ROL RPM RWD RWI RX1 RYL SUPJJ SV3 TEORI UB1 UKHRP V2E W8V W99 WBKPD WIB WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WUP WYISQ XG1 XSW XV2 ZZTAW ~IA ~WT .Y3 31~ AAFWJ AAMMB AANHP AAYXX ABEML ABJNI ACBWZ ACRPL ACSCC ACYXJ ADNMO AEFGJ AFPKN AGQPQ AGXDD AIDQK AIDYY AIQQE ASPBG AVWKF AZFZN BFHJK CITATION EJD FEDTE GAKWD HF~ HVGLF LW6 M6M PHGZM PHGZT PUEGO RIWAO RJQFR SAMSI WXSBR CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c5100-7b0ee36f84caf598559970a78578ef5c21e397200ff16cc523f5a1f81b1c55a93 |
| IEDL.DBID | UNPAY |
| ISSN | 1065-9471 1097-0193 |
| IngestDate | Sun Oct 26 04:07:59 EDT 2025 Tue Sep 30 17:17:19 EDT 2025 Fri Sep 05 14:40:12 EDT 2025 Tue Oct 07 05:59:56 EDT 2025 Mon Oct 20 22:20:00 EDT 2025 Mon Oct 20 16:50:44 EDT 2025 Mon Jul 21 05:51:23 EDT 2025 Wed Oct 01 01:55:50 EDT 2025 Thu Apr 24 23:06:49 EDT 2025 Wed Jan 22 16:23:03 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 17 |
| Keywords | development brain age machine learning youth neuroimaging |
| Language | English |
| License | Attribution-NonCommercial-NoDerivs 2022 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5100-7b0ee36f84caf598559970a78578ef5c21e397200ff16cc523f5a1f81b1c55a93 |
| Notes | Funding information Icahn School of Medicine at Mount Sinai; National Institute of Mental Health, Grant/Award Numbers: R01‐MH113619, T32‐MH122394; National Institutes of Health, Grant/Award Numbers: U01DA041025, U01DA041093, U24DA041147, U24DA041123, U01DA041174, U01DA041156, U01DA041148, U01DA041134, U01DA041120, U01DA041117, U01DA041106, U01DA041089, U01DA041048, U01DA041028, U01DA041022 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Funding information Icahn School of Medicine at Mount Sinai; National Institute of Mental Health, Grant/Award Numbers: R01‐MH113619, T32‐MH122394; National Institutes of Health, Grant/Award Numbers: U01DA041025, U01DA041093, U24DA041147, U24DA041123, U01DA041174, U01DA041156, U01DA041148, U01DA041134, U01DA041120, U01DA041117, U01DA041106, U01DA041089, U01DA041048, U01DA041028, U01DA041022 |
| ORCID | 0000-0002-3210-6470 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hbm.26010 |
| PMID | 35852028 |
| PQID | 2738349684 |
| PQPubID | 996345 |
| PageCount | 15 |
| ParticipantIDs | unpaywall_primary_10_1002_hbm_26010 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9812239 proquest_miscellaneous_2691789056 proquest_journals_2738349684 gale_infotracmisc_A744297253 gale_infotracacademiconefile_A744297253 pubmed_primary_35852028 crossref_citationtrail_10_1002_hbm_26010 crossref_primary_10_1002_hbm_26010 wiley_primary_10_1002_hbm_26010_HBM26010 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | December 1, 2022 |
| PublicationDateYYYYMMDD | 2022-12-01 |
| PublicationDate_xml | – month: 12 year: 2022 text: December 1, 2022 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: San Antonio |
| PublicationTitle | Human brain mapping |
| PublicationTitleAlternate | Hum Brain Mapp |
| PublicationYear | 2022 |
| Publisher | John Wiley & Sons, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc |
| References | 2021; 26 2017; 4 2019; 10 2022; 26 2021; 243 2021; 242 2001; 45 2013; 8 2008; 2 2003; 98 2005; 67 1995; 20 2020; 6 2021; 31 1997; 11 2017; 37 2021; 310 2019; 22 2021; 235 2017; 38 2019; 24 2021; 314 2006; 69 2019; 116 2014; 19 2009; 19 2018; 32 2018; 75 2010; 72 2012; 63 2018; 28 2021; 42 2018; 183 2010; 35 2012 2019; 31 2000; 24 2016; 124 2013; 91 2022; 43 2018; 23 2014; 111 1998; 20 2021; 15 2015; 25 2021; 10 2020 2005; 9 2017 2016 2015 2001; 1 2012; 6 2017; 148 2010; 50 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 Wu Y. (e_1_2_9_61_1) 2009; 19 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
| References_xml | – volume: 4 year: 2017 article-title: An open resource for transdiagnostic research in pediatric mental health and learning disorders publication-title: Scientific Data – volume: 148 start-page: 179 year: 2017 end-page: 188 article-title: Predicting brain‐age from multimodal imaging data captures cognitive impairment publication-title: NeuroImage – volume: 10 start-page: 1 issue: 9 year: 2021 end-page: 11 article-title: Preventing dataset shift from breaking machine‐learning biomarkers publication-title: GigaScience – volume: 19 start-page: 659 issue: 6 year: 2014 end-page: 667 article-title: The autism brain imaging data exchange: Towards a large‐scale evaluation of the intrinsic brain architecture in autism publication-title: Molecular Psychiatry – volume: 10 year: 2019 article-title: Ten years of BrainAGE as a neuroimaging biomarker of brain aging: What insights have we gained? publication-title: Frontiers in Neurology – volume: 45 start-page: 5 issue: 1 year: 2001 end-page: 32 article-title: Random forests publication-title: Machine Learning – volume: 24 year: 2019 article-title: Bias‐adjustment in neuroimaging‐based brain age frameworks: A robust scheme publication-title: Neuroimage: Clinical – volume: 314 year: 2021 article-title: Biased accuracy in multisite machine‐learning studies due to incomplete removal of the effects of the site publication-title: Psychiatry Research: Neuroimaging – volume: 24 start-page: 417 issue: 4 year: 2000 end-page: 463 article-title: The adolescent brain and age‐related behavioral manifestations publication-title: Neuroscience and Biobehavioral Reviews – volume: 235 year: 2021 article-title: Individual variation underlying brain age estimates in typical development publication-title: NeuroImage – volume: 72 start-page: 3 issue: 1 year: 2010 end-page: 25 article-title: Sparse partial least squares regression for simultaneous dimension reduction and variable selection publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology) – volume: 28 start-page: 3095 issue: 9 year: 2018 end-page: 3114 article-title: Local‐global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI publication-title: Cerebral Cortex – volume: 6 year: 2012 article-title: The ADHD‐200 consortium: A model to advance the translational potential of neuroimaging in clinical neuroscience publication-title: Frontiers in Systems Neuroscience – start-page: 67 year: 2015 end-page: 80 – volume: 116 start-page: 10632 issue: 22 year: 2019 end-page: 10633 article-title: When does the youthfulness of the female brain emerge? publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 31 start-page: 1296 issue: 2 year: 2021 end-page: 1306 article-title: The speed of development of adolescent brain age depends on sex and is genetically determined publication-title: Cerebral Cortex – volume: 11 start-page: 73 issue: 1 year: 1997 end-page: 85 article-title: Improved PLS algorithms publication-title: Journal of Chemometrics – volume: 243 year: 2021 article-title: Brain parcellation selection: An overlooked decision point with meaningful effects on individual differences in resting‐state functional connectivity publication-title: NeuroImage – volume: 91 start-page: 3522 issue: 8 year: 2013 end-page: 3531 article-title: Technical note: An R package for fitting Bayesian regularized neural networks with applications in animal breeding publication-title: Journal of Animal Science – volume: 42 start-page: 2332 issue: 8 year: 2021 end-page: 2346 article-title: Brain age prediction: A comparison between machine learning models using region‐ and voxel‐based morphometric data publication-title: Human Brain Mapping – volume: 25 start-page: 26 issue: 1 year: 2015 end-page: 34 article-title: High‐expanding cortical regions in human development and evolution are related to higher intellectual abilities publication-title: Cerebral Cortex – volume: 98 start-page: 324 issue: 462 year: 2003 end-page: 339 article-title: Boosting with the L 2 loss: Regression and classification publication-title: Journal of the American Statistical Association – volume: 2 start-page: 1360 issue: 4 year: 2008 end-page: 1383 article-title: A weakly informative default prior distribution for logistic and other regression models publication-title: The Annals of Applied Statistics – volume: 67 start-page: 301 issue: 2 year: 2005 end-page: 320 article-title: Regularization and variable selection via the elastic net publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology) – volume: 22 start-page: 1617 issue: 10 year: 2019 end-page: 1623 article-title: Common brain disorders are associated with heritable patterns of apparent aging of the brain publication-title: Nature Neuroscience – volume: 9 start-page: 60 issue: 2 year: 2005 end-page: 68 article-title: Mapping brain maturation and cognitive development during adolescence publication-title: Trends in Cognitive Sciences – volume: 6 start-page: eabb3417 issue: 39 year: 2020 article-title: Shaping brain structure: Genetic and phylogenetic axes of macroscale organization of cortical thickness publication-title: Science Advances – volume: 26 start-page: 1432 issue: 4 year: 2022 end-page: 1440 article-title: Predicting brain age using machine learning algorithms: A comprehensive evaluation publication-title: IEEE Journal of Biomedical and Health Informatics – volume: 43 start-page: 452 year: 2022 end-page: 469 article-title: Subcortical volumes across the lifespan: Data from 18,605 healthy individuals aged 3‐90 years publication-title: Human Brain Mapping – volume: 37 start-page: 3402 issue: 12 year: 2017 end-page: 3412 article-title: Development of the cerebral cortex across adolescence: A multisample study of inter‐related longitudinal changes in cortical volume, surface area, and thickness publication-title: The Journal of Neuroscience – volume: 25 start-page: 1676 issue: 6 year: 2015 end-page: 1684 article-title: Imaging patterns of brain development and their relationship to cognition publication-title: Cerebral Cortex – volume: 8 issue: 6 year: 2013 article-title: BrainAGE in mild cognitive impaired patients: Predicting the conversion to Alzheimer's disease publication-title: PLoS One – volume: 42 start-page: 1626 issue: 6 year: 2021 end-page: 1640 article-title: Prediction of brain age and cognitive age: Quantifying brain and cognitive maintenance in aging publication-title: Human Brain Mapping – volume: 31 start-page: 730 issue: 5 year: 2019 end-page: 753 article-title: Sex effects on development of brain structure and executive functions: Greater variance than mean effects publication-title: Journal of Cognitive Neuroscience – volume: 1 start-page: 211 year: 2001 end-page: 244 article-title: Sparse Bayesian learning and the relevance vector machine publication-title: Journal of Machine Learning Research – volume: 310 year: 2021 article-title: Brain age prediction in schizophrenia: Does the choice of machine learning algorithm matter? publication-title: Psychiatry Research: Neuroimaging – volume: 43 start-page: 431 year: 2022 end-page: 451 article-title: Cortical thickness across the lifespan: Data from 17,075 healthy individuals aged 3‐90 years publication-title: Human Brain Mapping – volume: 15 start-page: 327 issue: 1 year: 2021 end-page: 345 article-title: Brain‐predicted age difference score is related to specific cognitive functions: A multi‐site replication analysis publication-title: Brain Imaging and Behavior – volume: 23 start-page: 1385 issue: 5 year: 2018 end-page: 1392 article-title: Brain age predicts mortality publication-title: Molecular Psychiatry – volume: 26 start-page: 3829 year: 2021 end-page: 3838 article-title: Brain‐age in midlife is associated with accelerated biological aging and cognitive decline in a longitudinal birth cohort publication-title: Molecular Psychiatry – year: 2016 – volume: 111 start-page: 1592 issue: 4 year: 2014 end-page: 1597 article-title: Longitudinal four‐dimensional mapping of subcortical anatomy in human development publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 43 start-page: 470 year: 2022 end-page: 499 article-title: Greater male than female variability in regional brain structure across the lifespan publication-title: Human Brain Mapping – volume: 19 start-page: 801 issue: 2 year: 2009 end-page: 817 article-title: Variable selection in quantile regression publication-title: Statistica Sinica – volume: 32 start-page: 16 year: 2018 end-page: 22 article-title: Recruiting the ABCD sample: Design considerations and procedures publication-title: Developmental Cognitive Neuroscience – volume: 42 start-page: 4568 year: 2021 end-page: 4579 article-title: Maturity of gray matter structures and white matter connectomes, and their relationship with psychiatric symptoms in youth publication-title: Human Brain Mapping – volume: 63 start-page: 1305 issue: 3 year: 2012 end-page: 1312 article-title: Brain maturation: Predicting individual BrainAGE in children and adolescents using structural MRI publication-title: NeuroImage – volume: 4 year: 2017 article-title: Enhancing studies of the connectome in autism using the autism brain imaging data exchange II publication-title: Scientific Data – volume: 50 start-page: 883 issue: 3 year: 2010 end-page: 892 article-title: Estimating the age of healthy subjects from T1‐weighted MRI scans using kernel methods: Exploring the influence of various parameters publication-title: NeuroImage – volume: 124 start-page: 1149 issue: Pt B year: 2016 end-page: 1154 article-title: The Pediatric Imaging, Neurocognition, and Genetics (PING) data repository publication-title: NeuroImage – volume: 35 start-page: 147 issue: 1 year: 2010 end-page: 168 article-title: Normal development of brain circuits publication-title: Neuropsychopharmacology – volume: 75 start-page: 960 issue: 9 year: 2018 end-page: 968 article-title: Use of machine learning to determine deviance in neuroanatomical maturity associated with future psychosis in youths at clinically high risk publication-title: JAMA Psychiatry – volume: 38 start-page: 997 issue: 2 year: 2017 end-page: 1008 article-title: Age prediction on the basis of brain anatomical measures publication-title: Human Brain Mapping – year: 2020 – volume: 183 start-page: 972 year: 2018 end-page: 984 article-title: Extending the human connectome project across ages: Imaging protocols for the lifespan development and aging projects publication-title: NeuroImage – volume: 20 start-page: 1342 issue: 12 year: 1998 end-page: 1351 article-title: Bayesian classification with Gaussian processes publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – year: 2017 – volume: 242 year: 2021 article-title: Inter‐individual variability in structural brain development from late childhood to young adulthood publication-title: NeuroImage – start-page: 307 year: 2012 end-page: 323 – volume: 20 start-page: 273 issue: 3 year: 1995 end-page: 297 article-title: Support‐vector networks publication-title: Machine Learning – volume: 69 start-page: 676 issue: 3 year: 2006 end-page: 680 article-title: A new regression method based on independent component analysis publication-title: Talanta – ident: e_1_2_9_30_1 doi: 10.1016/j.neuroimage.2010.01.005 – ident: e_1_2_9_2_1 doi: 10.1038/sdata.2017.181 – ident: e_1_2_9_35_1 doi: 10.1016/j.neuroimage.2018.09.060 – ident: e_1_2_9_36_1 doi: 10.1016/j.neuroimage.2015.04.057 – ident: e_1_2_9_22_1 doi: 10.1002/hbm.25320 – ident: e_1_2_9_5_1 doi: 10.1002/hbm.25368 – ident: e_1_2_9_32_1 doi: 10.1371/journal.pone.0067346 – ident: e_1_2_9_10_1 doi: 10.1023/A:1010933404324 – ident: e_1_2_9_47_1 doi: 10.1093/cercor/bhx179 – ident: e_1_2_9_27_1 doi: 10.1002/hbm.25364 – ident: e_1_2_9_45_1 doi: 10.1007/978-1-4419-9326-7_11 – ident: e_1_2_9_31_1 doi: 10.1016/j.dcn.2018.04.004 – ident: e_1_2_9_62_1 doi: 10.1111/j.1467-9868.2005.00503.x – ident: e_1_2_9_44_1 doi: 10.2527/jas.2012-6162 – ident: e_1_2_9_15_1 doi: 10.1111/j.1467-9868.2009.00723.x – volume: 19 start-page: 801 issue: 2 year: 2009 ident: e_1_2_9_61_1 article-title: Variable selection in quantile regression publication-title: Statistica Sinica – ident: e_1_2_9_14_1 doi: 10.1145/2939672.2939785 – ident: e_1_2_9_11_1 doi: 10.1093/cercor/bhaa296 – ident: e_1_2_9_56_1 doi: 10.1002/hbm.23434 – ident: e_1_2_9_18_1 doi: 10.1007/BF00994018 – ident: e_1_2_9_7_1 doi: 10.1109/JBHI.2021.3083187 – ident: e_1_2_9_19_1 doi: 10.1002/(SICI)1099-128X(199701)11:1<73::AID-CEM435>3.0.CO;2-# – ident: e_1_2_9_41_1 – ident: e_1_2_9_17_1 doi: 10.1038/mp.2017.62 – ident: e_1_2_9_58_1 doi: 10.1162/jocn_a_01375 – ident: e_1_2_9_3_1 doi: 10.1002/hbm.25316 – ident: e_1_2_9_4_1 doi: 10.1007/978-1-4302-5990-9_4 – ident: e_1_2_9_29_1 doi: 10.1016/j.neuroimage.2012.08.001 – ident: e_1_2_9_38_1 doi: 10.1016/j.pscychresns.2021.111270 – ident: e_1_2_9_42_1 doi: 10.1016/j.neuroimage.2021.118450 – ident: e_1_2_9_54_1 doi: 10.1162/15324430152748236 – ident: e_1_2_9_6_1 doi: 10.1016/j.neuroimage.2021.118036 – ident: e_1_2_9_60_1 doi: 10.1109/34.735807 – ident: e_1_2_9_12_1 doi: 10.1016/j.neuroimage.2021.118487 – ident: e_1_2_9_25_1 doi: 10.1093/cercor/bht425 – ident: e_1_2_9_48_1 doi: 10.1016/j.talanta.2005.10.039 – ident: e_1_2_9_50_1 doi: 10.1016/s0149-7634(00)00014-2 – ident: e_1_2_9_39_1 doi: 10.1016/j.neuroimage.2016.11.005 – ident: e_1_2_9_40_1 doi: 10.1002/hbm.25565 – ident: e_1_2_9_43_1 doi: 10.1016/j.tics.2004.12.008 – ident: e_1_2_9_59_1 doi: 10.1002/hbm.25204 – ident: e_1_2_9_51_1 doi: 10.1523/JNEUROSCI.3302-16.2017 – ident: e_1_2_9_49_1 doi: 10.1016/j.pscychresns.2021.111313 – ident: e_1_2_9_8_1 doi: 10.1016/j.nicl.2019.102063 – ident: e_1_2_9_13_1 doi: 10.1198/016214503000125 – ident: e_1_2_9_53_1 doi: 10.3389/fnsys.2012.00062 – ident: e_1_2_9_52_1 doi: 10.1038/npp.2009.115 – ident: e_1_2_9_20_1 doi: 10.1038/sdata.2017.10 – ident: e_1_2_9_24_1 doi: 10.1038/s41380-019-0626-7 – ident: e_1_2_9_23_1 doi: 10.1093/gigascience/giab055 – ident: e_1_2_9_33_1 doi: 10.1214/08-AOAS191 – ident: e_1_2_9_55_1 doi: 10.1073/pnas.1905356116 – ident: e_1_2_9_9_1 doi: 10.1007/s11682-020-00260-3 – ident: e_1_2_9_21_1 doi: 10.1038/mp.2013.78 – ident: e_1_2_9_57_1 doi: 10.1126/sciadv.abb3417 – ident: e_1_2_9_26_1 doi: 10.1093/cercor/bht201 – ident: e_1_2_9_37_1 doi: 10.1038/s41593-019-0471-7 – ident: e_1_2_9_46_1 doi: 10.1073/pnas.1316911111 – ident: e_1_2_9_16_1 doi: 10.1001/jamapsychiatry.2018.1543 – ident: e_1_2_9_34_1 – ident: e_1_2_9_28_1 doi: 10.3389/fneur.2019.00789 |
| SSID | ssj0011501 |
| Score | 2.4736907 |
| Snippet | Application of machine learning (ML) algorithms to structural magnetic resonance imaging (sMRI) data has yielded behaviorally meaningful estimates of the... |
| SourceID | unpaywall pubmedcentral proquest gale pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 5126 |
| SubjectTerms | Adolescent Age Algorithms Anatomy Bayes Theorem Bayesian analysis Brain Brain - diagnostic imaging brain age Brain architecture Computational efficiency Computational neuroscience Data mining development Humans Kernel functions Learning algorithms Machine Learning Magnetic resonance imaging Mathematical models Medical imaging Neuroimaging Outliers (statistics) Radial basis function Regression Sensitivity analysis Support Vector Machine Support vector machines Teenagers Youth |
| SummonAdditionalLinks | – databaseName: Wiley Online Library - Core collection (SURFmarket) dbid: DR2 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB5VPQAXHi1QQ4uWh6AXp_b6ueIUEFWEFA5ApR6QVuuttwk4TpSHUDjxE_ob-0s6s34UR4AQN0s7XtubeXyzmf0G4AVGvJQYT93AYIoSKuG5Qijf5UolxudnqtoaGH6IByfh-9PodAteN2dhKn6IdsONLMP6azJwlS2OrklDR9mkR3xYlK_7QWzTqY8tdRQBHZtsYYh1BXrghlXI40ftnZ1YtOmRfwlJm-WSN1flTK2_q6LoQlobk47vwJfma6pSlG-91TLr6R8bRI__-bl34XaNVVm_Uq57sJWXO7DbLzFPn6zZS2arR-22_A7cGNZ_0u_C108tOzS7JhNnU8MmtnIzZ3WrinOmivPpfLwcTRYMwTOz5JrKzk-6U6wvf15QmD1j6PXYbE6PsHONS7am3n_34eT43ee3A7du6eBqNH7PTTIvz4PYpKFWJhIp8Z0lnkpSdBy5iTT3cwRIaLnG-LHWmCWbSPkGsbWvo0iJ4AFsl9My3wNmUq4zJXgaK8R8GU6GMYSasKJamixJHThsflypa75zartRyIqpmUtcUmmX1IFnreisIvn4ndAr0hBJho_zaFWfX8C3IQot2U9CjO0JjwIH9juSaLC6O9zomKwdxkLSCSni7k9DB562w3QnFcGV-XSFMjHm1qlAyOrAw0ol29cNMO3jiBUdSDrK2goQjXh3pByPLJ24QIzHA-HA81at_7YKh1ZL_ywhB2-G9uLRv4s-hlucjpXYMqF92F7OV_kBgr1l9sRa9RUHwlFZ priority: 102 providerName: Wiley-Blackwell |
| Title | Systematic evaluation of machine learning algorithms for neuroanatomically‐based age prediction in youth |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.26010 https://www.ncbi.nlm.nih.gov/pubmed/35852028 https://www.proquest.com/docview/2738349684 https://www.proquest.com/docview/2691789056 https://pubmed.ncbi.nlm.nih.gov/PMC9812239 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hbm.26010 |
| UnpaywallVersion | publishedVersion |
| Volume | 43 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1097-0193 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011501 issn: 1097-0193 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1097-0193 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011501 issn: 1097-0193 databaseCode: RPM dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVOVD databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling customDbUrl: eissn: 1097-0193 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011501 issn: 1097-0193 databaseCode: OVEED dateStart: 19930101 isFulltext: true titleUrlDefault: http://ovidsp.ovid.com/ providerName: Ovid – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1097-0193 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011501 issn: 1097-0193 databaseCode: 7X7 dateStart: 20210801 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1097-0193 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011501 issn: 1097-0193 databaseCode: BENPR dateStart: 20210801 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1097-0193 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1097-0193 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011501 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1097-0193 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011501 issn: 1097-0193 databaseCode: 24P dateStart: 20200101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB5BKwEXHrssG1gq8xDsJaVx3scu2lWF1KpaqFROwXHjbdk2rbqtUDnxE_iN_BJmHDdsKkBIXKJKnriJM575xh5_A_ASPV5EjKe2qzBE8UTcsuNYODYXIlQOH4liaaDbCzoD793QH5o6p3QWpuCHKBfcaGZoe00TfDFShZ03u_v8zTidNYkTC2P2euAjGK9BfdDrtz_qPc7At2MTcrWIcxSxypZb6Pq9FY-0a5evOabdpMnb63whNl_EdFoFttoznd2DT9t3KhJSLpvrVdqUX3foHv_jpe_DXYNaWbtQswdwI8v3YL-dY8Q-27BXTOeR6gX6PbjVNdv1-_D5fckTzX7RirO5YjOdw5kxU7TigonpxXw5WY1nVwxhNNM0m0L3T1o03fz49p0c7oih_WOLJf2F7muSsw1VAXwIg7PTD287tinuYEs0Ay07TFtZ5gYq8qRQfhwR81nYEmGEJiRTvuROhlAJ57BSTiAlxsvKF45ClO1I3xexewC1fJ5nh8BUxGUqYh4FAtFfip2hN6FyrKigKg0jC463HziRhvmcCnBMk4KzmSc4pIkeUguel6KLgu7jd0KvSUsSMgHYjxTmJAM-DZFpJe3QQy8fct-14KgiiVNXVpu3epYY03GV0FkpYvGPPAuelc10J6XD5dl8jTIBRtlRjODVgkeFWpaP62IAyBE1WhBWFLYUIELxaks-GWti8RjRHndjC16Uqv23UTjWmvpniaRz0tU_Hv9Th0_gDqezJTpX6Ahqq-U6e4qIb5U24Cb3-ngNh2ED6ienvf55Q6-e0PWcN8ys_wmPM1sn |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5VRaJcEG15BFowD0EvoYnzsqVeFkS1QLdCopV6sxw37i7KZlfbXaG98RP4jfySzjjZlFSAuEXyxIkyM55vnPE3AK8w4gliPPUjiylKrGXgS6lDn2ud2ZCf63prYHCc9k_jT2fJ2RocrM7C1PwQ7YYbeYZbr8nBaUN6_5o1dJiP3xIhFibst-I0TCn14vGX9h8CQh2XbmGQ9SWuwSteoYDvt7d2otHNNfm3oHSzYHJjUU318rsuyy6odVHp8B7cbeAk69X634S1otqC7V6FqfR4yV4zV-Dpds634Pag-Y--Dd--tgTO7Jrvm00sG7viyoI13SQumC4vJrPRfDi-ZIhvmeO_1G5-Um-5_PXjJ0XCc4YLE5vO6BFurlHFltSe7z6cHn44ed_3m64LvkH_DPwsD4oiSq2IjbaJFERJlgU6E-jbhU0MDwvEMOhc1oapMZjI2kSHFuFvaJJEy-gBrFeTqngEzApuci25SDXCshwnw2We-qSi5dg8Ex7srb6-Mg0lOXXGKFVNpswVKko5RXnwohWd1jwcfxJ6QypU5Js4j9HNEQN8G2K5Ur0sxvCb8STyYKcjiT5lusMrI1CNT18qOsRE9Poi9uB5O0x3Up1aVUwWKJNi-iskokoPHtY2075uhJkZRzjnQdaxplaAmL67I9Vo6Bi_JcIwHkkPXrZ296-vsOcs8u8Sqv9u4C4e_7_oM9jonwyO1NHH489P4A6nUyCuqmcH1uezRbGL2GyeP3UueAX9jzTW |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEB5VRSq8cLQchgLLIeiLU3t9rsRLoEThSIWASn2prPXG2wQcJ0oTofDET-A38kuYWR_FESDEW6Qdb-z1HN-sZ78BeIwRLybGU9vTmKL4Uji2ENK1uZSRdvlQllsDg8Owf-S_Pg6ON-BZfRam5IdoNtzIMoy_JgPPZkO9f84aOkonHSLEwoT9gh-ImAr6Dt435FEEdUy6hUHWFuiDa14hh-83l7ai0bpP_iUorRdMXlwWM7n6IvO8DWpNVOpdgZP6ecpilM-d5SLtqK9rVI__-8BX4XIFV1m31K9rsJEV27DTLTBVn6zYE2YKSM3O_DZsDarv9Dvw6UNDEM3O-cTZVLOJKd7MWNWt4pTJ_HQ6Hy9GkzOG-JkZfk1p5if1yVc_vn2nSDtk6PjYbE5_YeYaF2xF7f-uw1Hv5ccXfbvq6mArtH_HjlIny7xQx76Sml5bIETkyChG35HpQHE3Q4yExqu1GyqFibIOpKsRXrsqCKTwbsBmMS2yW8B0zFUqBY9DibAvxckwjFAfVtRMnUaxBXv1201URXlOnTfypCRr5gkuaWKW1IKHjeis5Pn4ndBTUpGEbB_nUbI6woB3QyxaSTfyMbxHPPAs2G1Jos2q9nCtZEnlM84SOiRF9P2xb8GDZpiupDq4IpsuUSbE9DoWiFotuFnqZHO7HmZ-HOGiBVFLWxsBYhJvjxTjkWEUFwjzuCcseNTo9d9WYc-o6Z8lkv7zgflx-99F78PWu4Ne8vbV4Zs7cInTIRNTNLQLm4v5MruL0G-R3jMW_hMvjVT- |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6hrgRceOzyCOwi8xDsJSVxnj52EasKqSskqLScguPG20KaVt1WqJz4Cfsb95cw47hhUwFC4hbJEydxxjPf2ONvAF6gx0uJ8dQNNIYooRSeK4T0XS5lon0-kvXSwOAk7g_Dd6fRqa1zSmdhan6IZsGNZoax1zTB5yNd23m7u89fj_NplzixMGbfiSME4x3YGZ68730ye5xx5AobcnnEOYpYZcMtdPXelkfatstXHNN20uSNVTWX62-yLNvA1nim49vwefNNdULK1-5qmXfV9y26x__46Dtwy6JW1qvV7C5cK6pd2OtVGLFP1-wlM3mkZoF-F64P7Hb9Hnz50PBEs1-04mym2dTkcBbMFq04Y7I8my0my_H0nCGMZoZmU5r-SYvK9eWPC3K4I4b2j80X9AjT16Ria6oCeA-Gx28_vum7triDq9AMeG6Se0URxDoNldSRSIn5LPFkkqIJKXSkuF8gVMI5rLUfK4Xxso6krxFl-yqKpAjuQ6eaVcVDYDrlKpeCp7FE9JdjZ-hNqBwrKqjOk9SBw80PzpRlPqcCHGVWczbzDIc0M0PqwLNGdF7TffxO6BVpSUYmAPtR0p5kwLchMq2sl4To5RMeBQ7styRx6qp280bPMms6zjM6K0Us_mnowNOmme6kdLiqmK1QJsYoOxUIXh14UKtl87oBBoAcUaMDSUthGwEiFG-3VJOxIRYXiPZ4IBx43qj230bh0GjqnyWy_tHAXDz6pw4fw01OZ0tMrtA-dJaLVXGAiG-ZP7Gz-ieNd1Xx |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Systematic+evaluation+of+machine+learning+algorithms+for+neuroanatomically-based+age+prediction+in+youth&rft.jtitle=Human+brain+mapping&rft.au=Modabbernia%2C+Amirhossein&rft.au=Whalley%2C+Heather+C&rft.au=Glahn%2C+David+C&rft.au=Thompson%2C+Paul+M&rft.date=2022-12-01&rft.eissn=1097-0193&rft.volume=43&rft.issue=17&rft.spage=5126&rft_id=info:doi/10.1002%2Fhbm.26010&rft_id=info%3Apmid%2F35852028&rft.externalDocID=35852028 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon |