Systematic evaluation of machine learning algorithms for neuroanatomically‐based age prediction in youth

Application of machine learning (ML) algorithms to structural magnetic resonance imaging (sMRI) data has yielded behaviorally meaningful estimates of the biological age of the brain (brain‐age). The choice of the ML approach in estimating brain‐age in youth is important because age‐related brain cha...

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 43; no. 17; pp. 5126 - 5140
Main Authors Modabbernia, Amirhossein, Whalley, Heather C., Glahn, David C., Thompson, Paul M., Kahn, Rene S., Frangou, Sophia
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.12.2022
Subjects
Online AccessGet full text
ISSN1065-9471
1097-0193
1097-0193
DOI10.1002/hbm.26010

Cover

Abstract Application of machine learning (ML) algorithms to structural magnetic resonance imaging (sMRI) data has yielded behaviorally meaningful estimates of the biological age of the brain (brain‐age). The choice of the ML approach in estimating brain‐age in youth is important because age‐related brain changes in this age‐group are dynamic. However, the comparative performance of the available ML algorithms has not been systematically appraised. To address this gap, the present study evaluated the accuracy (mean absolute error [MAE]) and computational efficiency of 21 machine learning algorithms using sMRI data from 2105 typically developing individuals aged 5–22 years from five cohorts. The trained models were then tested in two independent holdout datasets, one comprising 4078 individuals aged 9–10 years and another comprising 594 individuals aged 5–21 years. The algorithms encompassed parametric and nonparametric, Bayesian, linear and nonlinear, tree‐based, and kernel‐based models. Sensitivity analyses were performed for parcellation scheme, number of neuroimaging input features, number of cross‐validation folds, number of extreme outliers, and sample size. Tree‐based models and algorithms with a nonlinear kernel performed comparably well, with the latter being especially computationally efficient. Extreme Gradient Boosting (MAE of 1.49 years), Random Forest Regression (MAE of 1.58 years), and Support Vector Regression (SVR) with Radial Basis Function (RBF) Kernel (MAE of 1.64 years) emerged as the three most accurate models. Linear algorithms, with the exception of Elastic Net Regression, performed poorly. Findings of the present study could be used as a guide for optimizing methodology when quantifying brain‐age in youth. We benchmarked 21 machine learning algorithms for brain‐based developmental age prediction in a pooled sample of 6777 individuals aged 5–22 years. Ensemble‐based algorithms and algorithms with nonlinear Kernel performed best in predicting developmental brain‐age.
AbstractList Application of machine learning (ML) algorithms to structural magnetic resonance imaging (sMRI) data has yielded behaviorally meaningful estimates of the biological age of the brain (brain‐age). The choice of the ML approach in estimating brain‐age in youth is important because age‐related brain changes in this age‐group are dynamic. However, the comparative performance of the available ML algorithms has not been systematically appraised. To address this gap, the present study evaluated the accuracy (mean absolute error [MAE]) and computational efficiency of 21 machine learning algorithms using sMRI data from 2105 typically developing individuals aged 5–22 years from five cohorts. The trained models were then tested in two independent holdout datasets, one comprising 4078 individuals aged 9–10 years and another comprising 594 individuals aged 5–21 years. The algorithms encompassed parametric and nonparametric, Bayesian, linear and nonlinear, tree‐based, and kernel‐based models. Sensitivity analyses were performed for parcellation scheme, number of neuroimaging input features, number of cross‐validation folds, number of extreme outliers, and sample size. Tree‐based models and algorithms with a nonlinear kernel performed comparably well, with the latter being especially computationally efficient. Extreme Gradient Boosting (MAE of 1.49 years), Random Forest Regression (MAE of 1.58 years), and Support Vector Regression (SVR) with Radial Basis Function (RBF) Kernel (MAE of 1.64 years) emerged as the three most accurate models. Linear algorithms, with the exception of Elastic Net Regression, performed poorly. Findings of the present study could be used as a guide for optimizing methodology when quantifying brain‐age in youth. We benchmarked 21 machine learning algorithms for brain‐based developmental age prediction in a pooled sample of 6777 individuals aged 5–22 years. Ensemble‐based algorithms and algorithms with nonlinear Kernel performed best in predicting developmental brain‐age.
Application of machine learning (ML) algorithms to structural magnetic resonance imaging (sMRI) data has yielded behaviorally meaningful estimates of the biological age of the brain (brain‐age). The choice of the ML approach in estimating brain‐age in youth is important because age‐related brain changes in this age‐group are dynamic. However, the comparative performance of the available ML algorithms has not been systematically appraised. To address this gap, the present study evaluated the accuracy (mean absolute error [MAE]) and computational efficiency of 21 machine learning algorithms using sMRI data from 2105 typically developing individuals aged 5–22 years from five cohorts. The trained models were then tested in two independent holdout datasets, one comprising 4078 individuals aged 9–10 years and another comprising 594 individuals aged 5–21 years. The algorithms encompassed parametric and nonparametric, Bayesian, linear and nonlinear, tree‐based, and kernel‐based models. Sensitivity analyses were performed for parcellation scheme, number of neuroimaging input features, number of cross‐validation folds, number of extreme outliers, and sample size. Tree‐based models and algorithms with a nonlinear kernel performed comparably well, with the latter being especially computationally efficient. Extreme Gradient Boosting (MAE of 1.49 years), Random Forest Regression (MAE of 1.58 years), and Support Vector Regression (SVR) with Radial Basis Function (RBF) Kernel (MAE of 1.64 years) emerged as the three most accurate models. Linear algorithms, with the exception of Elastic Net Regression, performed poorly. Findings of the present study could be used as a guide for optimizing methodology when quantifying brain‐age in youth.
Application of machine learning (ML) algorithms to structural magnetic resonance imaging (sMRI) data has yielded behaviorally meaningful estimates of the biological age of the brain (brain‐age). The choice of the ML approach in estimating brain‐age in youth is important because age‐related brain changes in this age‐group are dynamic. However, the comparative performance of the available ML algorithms has not been systematically appraised. To address this gap, the present study evaluated the accuracy (mean absolute error [MAE]) and computational efficiency of 21 machine learning algorithms using sMRI data from 2105 typically developing individuals aged 5–22 years from five cohorts. The trained models were then tested in two independent holdout datasets, one comprising 4078 individuals aged 9–10 years and another comprising 594 individuals aged 5–21 years. The algorithms encompassed parametric and nonparametric, Bayesian, linear and nonlinear, tree‐based, and kernel‐based models. Sensitivity analyses were performed for parcellation scheme, number of neuroimaging input features, number of cross‐validation folds, number of extreme outliers, and sample size. Tree‐based models and algorithms with a nonlinear kernel performed comparably well, with the latter being especially computationally efficient. Extreme Gradient Boosting (MAE of 1.49 years), Random Forest Regression (MAE of 1.58 years), and Support Vector Regression (SVR) with Radial Basis Function (RBF) Kernel (MAE of 1.64 years) emerged as the three most accurate models. Linear algorithms, with the exception of Elastic Net Regression, performed poorly. Findings of the present study could be used as a guide for optimizing methodology when quantifying brain‐age in youth. We benchmarked 21 machine learning algorithms for brain‐based developmental age prediction in a pooled sample of 6777 individuals aged 5–22 years. Ensemble‐based algorithms and algorithms with nonlinear Kernel performed best in predicting developmental brain‐age.
Application of machine learning (ML) algorithms to structural magnetic resonance imaging (sMRI) data has yielded behaviorally meaningful estimates of the biological age of the brain (brain-age). The choice of the ML approach in estimating brain-age in youth is important because age-related brain changes in this age-group are dynamic. However, the comparative performance of the available ML algorithms has not been systematically appraised. To address this gap, the present study evaluated the accuracy (mean absolute error [MAE]) and computational efficiency of 21 machine learning algorithms using sMRI data from 2105 typically developing individuals aged 5-22 years from five cohorts. The trained models were then tested in two independent holdout datasets, one comprising 4078 individuals aged 9-10 years and another comprising 594 individuals aged 5-21 years. The algorithms encompassed parametric and nonparametric, Bayesian, linear and nonlinear, tree-based, and kernel-based models. Sensitivity analyses were performed for parcellation scheme, number of neuroimaging input features, number of cross-validation folds, number of extreme outliers, and sample size. Tree-based models and algorithms with a nonlinear kernel performed comparably well, with the latter being especially computationally efficient. Extreme Gradient Boosting (MAE of 1.49 years), Random Forest Regression (MAE of 1.58 years), and Support Vector Regression (SVR) with Radial Basis Function (RBF) Kernel (MAE of 1.64 years) emerged as the three most accurate models. Linear algorithms, with the exception of Elastic Net Regression, performed poorly. Findings of the present study could be used as a guide for optimizing methodology when quantifying brain-age in youth.Application of machine learning (ML) algorithms to structural magnetic resonance imaging (sMRI) data has yielded behaviorally meaningful estimates of the biological age of the brain (brain-age). The choice of the ML approach in estimating brain-age in youth is important because age-related brain changes in this age-group are dynamic. However, the comparative performance of the available ML algorithms has not been systematically appraised. To address this gap, the present study evaluated the accuracy (mean absolute error [MAE]) and computational efficiency of 21 machine learning algorithms using sMRI data from 2105 typically developing individuals aged 5-22 years from five cohorts. The trained models were then tested in two independent holdout datasets, one comprising 4078 individuals aged 9-10 years and another comprising 594 individuals aged 5-21 years. The algorithms encompassed parametric and nonparametric, Bayesian, linear and nonlinear, tree-based, and kernel-based models. Sensitivity analyses were performed for parcellation scheme, number of neuroimaging input features, number of cross-validation folds, number of extreme outliers, and sample size. Tree-based models and algorithms with a nonlinear kernel performed comparably well, with the latter being especially computationally efficient. Extreme Gradient Boosting (MAE of 1.49 years), Random Forest Regression (MAE of 1.58 years), and Support Vector Regression (SVR) with Radial Basis Function (RBF) Kernel (MAE of 1.64 years) emerged as the three most accurate models. Linear algorithms, with the exception of Elastic Net Regression, performed poorly. Findings of the present study could be used as a guide for optimizing methodology when quantifying brain-age in youth.
Audience Academic
Author Glahn, David C.
Frangou, Sophia
Modabbernia, Amirhossein
Thompson, Paul M.
Whalley, Heather C.
Kahn, Rene S.
AuthorAffiliation 4 Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine University of Southern California Los Angeles California USA
2 Division of Psychiatry University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital Edinburgh UK
3 Boston Children's Hospital and Harvard Medical School Boston Massachusetts USA
1 Department of Psychiatry Icahn School of Medicine at Mount Sinai New York New York USA
5 Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health University of British Columbia Vancouver British Columbia Canada
AuthorAffiliation_xml – name: 4 Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine University of Southern California Los Angeles California USA
– name: 5 Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health University of British Columbia Vancouver British Columbia Canada
– name: 1 Department of Psychiatry Icahn School of Medicine at Mount Sinai New York New York USA
– name: 2 Division of Psychiatry University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital Edinburgh UK
– name: 3 Boston Children's Hospital and Harvard Medical School Boston Massachusetts USA
Author_xml – sequence: 1
  givenname: Amirhossein
  surname: Modabbernia
  fullname: Modabbernia, Amirhossein
  organization: Icahn School of Medicine at Mount Sinai
– sequence: 2
  givenname: Heather C.
  surname: Whalley
  fullname: Whalley, Heather C.
  organization: University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital
– sequence: 3
  givenname: David C.
  surname: Glahn
  fullname: Glahn, David C.
  organization: Boston Children's Hospital and Harvard Medical School
– sequence: 4
  givenname: Paul M.
  surname: Thompson
  fullname: Thompson, Paul M.
  organization: University of Southern California
– sequence: 5
  givenname: Rene S.
  surname: Kahn
  fullname: Kahn, Rene S.
  organization: Icahn School of Medicine at Mount Sinai
– sequence: 6
  givenname: Sophia
  orcidid: 0000-0002-3210-6470
  surname: Frangou
  fullname: Frangou, Sophia
  email: sophia.frangou@mssm.edu
  organization: University of British Columbia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35852028$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1u1DAQxyNURD_gwAugSFwAabe2Eyf2BalUQJGKOABna-IdZ71K7MVOWuXGI_CMPAneDyitCvLBlv2b_8z8PcfZgfMOs-wpJXNKCDtdNv2cVYSSB9kRJbKeESqLg8254jNZ1vQwO45xRQilnNBH2WHBBWeEiaNs9XmKA_YwWJ3jFXRjOnmXe5P3oJfWYd4hBGddm0PX-mCHZR9z40PucAweHAy-txq6bvr5_UcDERc5tJivAy6s3mpZl09-HJaPs4cGuohP9vtJ9vXd2y_nF7PLT-8_nJ9dzjRP3czqhiAWlRGlBsOl4FzKmkAteC3QcM0oFrJmhBhDK605KwwHagRtqOYcZHGSvdrpjm4N03UqTa2D7SFMihK1MUwlw9TWsAS_3sHrselxodENAW4CPFh1-8XZpWr9lZKCMlZssr3YCwT_bcQ4qN5GjV0HDv0YUxpJayEJrxL6_A668mNwyQvF6kIUpaxEeUO10KGyzviUV29E1Vldliz1zotEze-h0lpg-o40Hsam-1sBz_5u9E-Hv0chAac7QAcfY0CjtB2205CUbXevdy_vRPzP5736dapr-jeoLt583EX8Av1z408
CitedBy_id crossref_primary_10_1016_j_cortex_2023_11_015
crossref_primary_10_1038_s41598_023_42414_5
crossref_primary_10_1093_schbul_sbae074
crossref_primary_10_1007_s11357_024_01112_4
crossref_primary_10_1186_s40794_023_00208_7
crossref_primary_10_1002_hbm_26768
crossref_primary_10_1061_JWRMD5_WRENG_6334
Cites_doi 10.1016/j.neuroimage.2010.01.005
10.1038/sdata.2017.181
10.1016/j.neuroimage.2018.09.060
10.1016/j.neuroimage.2015.04.057
10.1002/hbm.25320
10.1002/hbm.25368
10.1371/journal.pone.0067346
10.1023/A:1010933404324
10.1093/cercor/bhx179
10.1002/hbm.25364
10.1007/978-1-4419-9326-7_11
10.1016/j.dcn.2018.04.004
10.1111/j.1467-9868.2005.00503.x
10.2527/jas.2012-6162
10.1111/j.1467-9868.2009.00723.x
10.1145/2939672.2939785
10.1093/cercor/bhaa296
10.1002/hbm.23434
10.1007/BF00994018
10.1109/JBHI.2021.3083187
10.1002/(SICI)1099-128X(199701)11:1<73::AID-CEM435>3.0.CO;2-#
10.1038/mp.2017.62
10.1162/jocn_a_01375
10.1002/hbm.25316
10.1007/978-1-4302-5990-9_4
10.1016/j.neuroimage.2012.08.001
10.1016/j.pscychresns.2021.111270
10.1016/j.neuroimage.2021.118450
10.1162/15324430152748236
10.1016/j.neuroimage.2021.118036
10.1109/34.735807
10.1016/j.neuroimage.2021.118487
10.1093/cercor/bht425
10.1016/j.talanta.2005.10.039
10.1016/s0149-7634(00)00014-2
10.1016/j.neuroimage.2016.11.005
10.1002/hbm.25565
10.1016/j.tics.2004.12.008
10.1002/hbm.25204
10.1523/JNEUROSCI.3302-16.2017
10.1016/j.pscychresns.2021.111313
10.1016/j.nicl.2019.102063
10.1198/016214503000125
10.3389/fnsys.2012.00062
10.1038/npp.2009.115
10.1038/sdata.2017.10
10.1038/s41380-019-0626-7
10.1093/gigascience/giab055
10.1214/08-AOAS191
10.1073/pnas.1905356116
10.1007/s11682-020-00260-3
10.1038/mp.2013.78
10.1126/sciadv.abb3417
10.1093/cercor/bht201
10.1038/s41593-019-0471-7
10.1073/pnas.1316911111
10.1001/jamapsychiatry.2018.1543
10.3389/fneur.2019.00789
ContentType Journal Article
Copyright 2022 The Authors. published by Wiley Periodicals LLC.
2022 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
COPYRIGHT 2022 John Wiley & Sons, Inc.
2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by Wiley Periodicals LLC.
– notice: 2022 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
– notice: COPYRIGHT 2022 John Wiley & Sons, Inc.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
ADTOC
UNPAY
DOI 10.1002/hbm.26010
DatabaseName Wiley Online Library (Open Access collection)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
CrossRef


Technology Research Database

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate Modabbernia et al
EISSN 1097-0193
EndPage 5140
ExternalDocumentID 10.1002/hbm.26010
PMC9812239
A744297253
35852028
10_1002_hbm_26010
HBM26010
Genre technicalNote
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institute of Mental Health
  funderid: R01‐MH113619; T32‐MH122394
– fundername: Icahn School of Medicine at Mount Sinai
– fundername: National Institutes of Health
  funderid: U01DA041025; U01DA041093; U24DA041147; U24DA041123; U01DA041174; U01DA041156; U01DA041148; U01DA041134; U01DA041120; U01DA041117; U01DA041106; U01DA041089; U01DA041048; U01DA041028; U01DA041022
– fundername: NIDA NIH HHS
  grantid: U01 DA041148
– fundername: NIDA NIH HHS
  grantid: U01 DA041174
– fundername: NIDA NIH HHS
  grantid: U01 DA041120
– fundername: NIDA NIH HHS
  grantid: U01 DA041134
– fundername: NIDA NIH HHS
  grantid: U01 DA041028
– fundername: NIDA NIH HHS
  grantid: U24 DA041123
– fundername: NIDA NIH HHS
  grantid: U01 DA041117
– fundername: NIDA NIH HHS
  grantid: U01 DA041022
– fundername: NIDA NIH HHS
  grantid: U01 DA041048
– fundername: NIDA NIH HHS
  grantid: U24 DA041147
– fundername: ;
– fundername: ;
  grantid: R01‐MH113619; T32‐MH122394
– fundername: ;
  grantid: U01DA041025; U01DA041093; U24DA041147; U24DA041123; U01DA041174; U01DA041156; U01DA041148; U01DA041134; U01DA041120; U01DA041117; U01DA041106; U01DA041089; U01DA041048; U01DA041028; U01DA041022
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A03
AAESR
AAEVG
AAHHS
AAONW
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABIVO
ABPVW
ABUWG
ACCFJ
ACCMX
ACGFS
ACIWK
ACPOU
ACPRK
ACXQS
ADBBV
ADEOM
ADIZJ
ADMGS
ADPDF
ADXAS
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BENPR
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EMOBN
F00
F01
F04
F5P
FYUFA
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HHY
HHZ
HMCUK
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RPM
RWD
RWI
RX1
RYL
SUPJJ
SV3
TEORI
UB1
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
.Y3
31~
AAFWJ
AAMMB
AANHP
AAYXX
ABEML
ABJNI
ACBWZ
ACRPL
ACSCC
ACYXJ
ADNMO
AEFGJ
AFPKN
AGQPQ
AGXDD
AIDQK
AIDYY
AIQQE
ASPBG
AVWKF
AZFZN
BFHJK
CITATION
EJD
FEDTE
GAKWD
HF~
HVGLF
LW6
M6M
PHGZM
PHGZT
PUEGO
RIWAO
RJQFR
SAMSI
WXSBR
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c5100-7b0ee36f84caf598559970a78578ef5c21e397200ff16cc523f5a1f81b1c55a93
IEDL.DBID UNPAY
ISSN 1065-9471
1097-0193
IngestDate Sun Oct 26 04:07:59 EDT 2025
Tue Sep 30 17:17:19 EDT 2025
Fri Sep 05 14:40:12 EDT 2025
Tue Oct 07 05:59:56 EDT 2025
Mon Oct 20 22:20:00 EDT 2025
Mon Oct 20 16:50:44 EDT 2025
Mon Jul 21 05:51:23 EDT 2025
Wed Oct 01 01:55:50 EDT 2025
Thu Apr 24 23:06:49 EDT 2025
Wed Jan 22 16:23:03 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords development
brain age
machine learning
youth
neuroimaging
Language English
License Attribution-NonCommercial-NoDerivs
2022 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5100-7b0ee36f84caf598559970a78578ef5c21e397200ff16cc523f5a1f81b1c55a93
Notes Funding information
Icahn School of Medicine at Mount Sinai; National Institute of Mental Health, Grant/Award Numbers: R01‐MH113619, T32‐MH122394; National Institutes of Health, Grant/Award Numbers: U01DA041025, U01DA041093, U24DA041147, U24DA041123, U01DA041174, U01DA041156, U01DA041148, U01DA041134, U01DA041120, U01DA041117, U01DA041106, U01DA041089, U01DA041048, U01DA041028, U01DA041022
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Funding information Icahn School of Medicine at Mount Sinai; National Institute of Mental Health, Grant/Award Numbers: R01‐MH113619, T32‐MH122394; National Institutes of Health, Grant/Award Numbers: U01DA041025, U01DA041093, U24DA041147, U24DA041123, U01DA041174, U01DA041156, U01DA041148, U01DA041134, U01DA041120, U01DA041117, U01DA041106, U01DA041089, U01DA041048, U01DA041028, U01DA041022
ORCID 0000-0002-3210-6470
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hbm.26010
PMID 35852028
PQID 2738349684
PQPubID 996345
PageCount 15
ParticipantIDs unpaywall_primary_10_1002_hbm_26010
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9812239
proquest_miscellaneous_2691789056
proquest_journals_2738349684
gale_infotracmisc_A744297253
gale_infotracacademiconefile_A744297253
pubmed_primary_35852028
crossref_citationtrail_10_1002_hbm_26010
crossref_primary_10_1002_hbm_26010
wiley_primary_10_1002_hbm_26010_HBM26010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 1, 2022
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 1, 2022
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: San Antonio
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum Brain Mapp
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2021; 26
2017; 4
2019; 10
2022; 26
2021; 243
2021; 242
2001; 45
2013; 8
2008; 2
2003; 98
2005; 67
1995; 20
2020; 6
2021; 31
1997; 11
2017; 37
2021; 310
2019; 22
2021; 235
2017; 38
2019; 24
2021; 314
2006; 69
2019; 116
2014; 19
2009; 19
2018; 32
2018; 75
2010; 72
2012; 63
2018; 28
2021; 42
2018; 183
2010; 35
2012
2019; 31
2000; 24
2016; 124
2013; 91
2022; 43
2018; 23
2014; 111
1998; 20
2021; 15
2015; 25
2021; 10
2020
2005; 9
2017
2016
2015
2001; 1
2012; 6
2017; 148
2010; 50
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
Wu Y. (e_1_2_9_61_1) 2009; 19
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 4
  year: 2017
  article-title: An open resource for transdiagnostic research in pediatric mental health and learning disorders
  publication-title: Scientific Data
– volume: 148
  start-page: 179
  year: 2017
  end-page: 188
  article-title: Predicting brain‐age from multimodal imaging data captures cognitive impairment
  publication-title: NeuroImage
– volume: 10
  start-page: 1
  issue: 9
  year: 2021
  end-page: 11
  article-title: Preventing dataset shift from breaking machine‐learning biomarkers
  publication-title: GigaScience
– volume: 19
  start-page: 659
  issue: 6
  year: 2014
  end-page: 667
  article-title: The autism brain imaging data exchange: Towards a large‐scale evaluation of the intrinsic brain architecture in autism
  publication-title: Molecular Psychiatry
– volume: 10
  year: 2019
  article-title: Ten years of BrainAGE as a neuroimaging biomarker of brain aging: What insights have we gained?
  publication-title: Frontiers in Neurology
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  end-page: 32
  article-title: Random forests
  publication-title: Machine Learning
– volume: 24
  year: 2019
  article-title: Bias‐adjustment in neuroimaging‐based brain age frameworks: A robust scheme
  publication-title: Neuroimage: Clinical
– volume: 314
  year: 2021
  article-title: Biased accuracy in multisite machine‐learning studies due to incomplete removal of the effects of the site
  publication-title: Psychiatry Research: Neuroimaging
– volume: 24
  start-page: 417
  issue: 4
  year: 2000
  end-page: 463
  article-title: The adolescent brain and age‐related behavioral manifestations
  publication-title: Neuroscience and Biobehavioral Reviews
– volume: 235
  year: 2021
  article-title: Individual variation underlying brain age estimates in typical development
  publication-title: NeuroImage
– volume: 72
  start-page: 3
  issue: 1
  year: 2010
  end-page: 25
  article-title: Sparse partial least squares regression for simultaneous dimension reduction and variable selection
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
– volume: 28
  start-page: 3095
  issue: 9
  year: 2018
  end-page: 3114
  article-title: Local‐global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI
  publication-title: Cerebral Cortex
– volume: 6
  year: 2012
  article-title: The ADHD‐200 consortium: A model to advance the translational potential of neuroimaging in clinical neuroscience
  publication-title: Frontiers in Systems Neuroscience
– start-page: 67
  year: 2015
  end-page: 80
– volume: 116
  start-page: 10632
  issue: 22
  year: 2019
  end-page: 10633
  article-title: When does the youthfulness of the female brain emerge?
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 31
  start-page: 1296
  issue: 2
  year: 2021
  end-page: 1306
  article-title: The speed of development of adolescent brain age depends on sex and is genetically determined
  publication-title: Cerebral Cortex
– volume: 11
  start-page: 73
  issue: 1
  year: 1997
  end-page: 85
  article-title: Improved PLS algorithms
  publication-title: Journal of Chemometrics
– volume: 243
  year: 2021
  article-title: Brain parcellation selection: An overlooked decision point with meaningful effects on individual differences in resting‐state functional connectivity
  publication-title: NeuroImage
– volume: 91
  start-page: 3522
  issue: 8
  year: 2013
  end-page: 3531
  article-title: Technical note: An R package for fitting Bayesian regularized neural networks with applications in animal breeding
  publication-title: Journal of Animal Science
– volume: 42
  start-page: 2332
  issue: 8
  year: 2021
  end-page: 2346
  article-title: Brain age prediction: A comparison between machine learning models using region‐ and voxel‐based morphometric data
  publication-title: Human Brain Mapping
– volume: 25
  start-page: 26
  issue: 1
  year: 2015
  end-page: 34
  article-title: High‐expanding cortical regions in human development and evolution are related to higher intellectual abilities
  publication-title: Cerebral Cortex
– volume: 98
  start-page: 324
  issue: 462
  year: 2003
  end-page: 339
  article-title: Boosting with the L 2 loss: Regression and classification
  publication-title: Journal of the American Statistical Association
– volume: 2
  start-page: 1360
  issue: 4
  year: 2008
  end-page: 1383
  article-title: A weakly informative default prior distribution for logistic and other regression models
  publication-title: The Annals of Applied Statistics
– volume: 67
  start-page: 301
  issue: 2
  year: 2005
  end-page: 320
  article-title: Regularization and variable selection via the elastic net
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
– volume: 22
  start-page: 1617
  issue: 10
  year: 2019
  end-page: 1623
  article-title: Common brain disorders are associated with heritable patterns of apparent aging of the brain
  publication-title: Nature Neuroscience
– volume: 9
  start-page: 60
  issue: 2
  year: 2005
  end-page: 68
  article-title: Mapping brain maturation and cognitive development during adolescence
  publication-title: Trends in Cognitive Sciences
– volume: 6
  start-page: eabb3417
  issue: 39
  year: 2020
  article-title: Shaping brain structure: Genetic and phylogenetic axes of macroscale organization of cortical thickness
  publication-title: Science Advances
– volume: 26
  start-page: 1432
  issue: 4
  year: 2022
  end-page: 1440
  article-title: Predicting brain age using machine learning algorithms: A comprehensive evaluation
  publication-title: IEEE Journal of Biomedical and Health Informatics
– volume: 43
  start-page: 452
  year: 2022
  end-page: 469
  article-title: Subcortical volumes across the lifespan: Data from 18,605 healthy individuals aged 3‐90 years
  publication-title: Human Brain Mapping
– volume: 37
  start-page: 3402
  issue: 12
  year: 2017
  end-page: 3412
  article-title: Development of the cerebral cortex across adolescence: A multisample study of inter‐related longitudinal changes in cortical volume, surface area, and thickness
  publication-title: The Journal of Neuroscience
– volume: 25
  start-page: 1676
  issue: 6
  year: 2015
  end-page: 1684
  article-title: Imaging patterns of brain development and their relationship to cognition
  publication-title: Cerebral Cortex
– volume: 8
  issue: 6
  year: 2013
  article-title: BrainAGE in mild cognitive impaired patients: Predicting the conversion to Alzheimer's disease
  publication-title: PLoS One
– volume: 42
  start-page: 1626
  issue: 6
  year: 2021
  end-page: 1640
  article-title: Prediction of brain age and cognitive age: Quantifying brain and cognitive maintenance in aging
  publication-title: Human Brain Mapping
– volume: 31
  start-page: 730
  issue: 5
  year: 2019
  end-page: 753
  article-title: Sex effects on development of brain structure and executive functions: Greater variance than mean effects
  publication-title: Journal of Cognitive Neuroscience
– volume: 1
  start-page: 211
  year: 2001
  end-page: 244
  article-title: Sparse Bayesian learning and the relevance vector machine
  publication-title: Journal of Machine Learning Research
– volume: 310
  year: 2021
  article-title: Brain age prediction in schizophrenia: Does the choice of machine learning algorithm matter?
  publication-title: Psychiatry Research: Neuroimaging
– volume: 43
  start-page: 431
  year: 2022
  end-page: 451
  article-title: Cortical thickness across the lifespan: Data from 17,075 healthy individuals aged 3‐90 years
  publication-title: Human Brain Mapping
– volume: 15
  start-page: 327
  issue: 1
  year: 2021
  end-page: 345
  article-title: Brain‐predicted age difference score is related to specific cognitive functions: A multi‐site replication analysis
  publication-title: Brain Imaging and Behavior
– volume: 23
  start-page: 1385
  issue: 5
  year: 2018
  end-page: 1392
  article-title: Brain age predicts mortality
  publication-title: Molecular Psychiatry
– volume: 26
  start-page: 3829
  year: 2021
  end-page: 3838
  article-title: Brain‐age in midlife is associated with accelerated biological aging and cognitive decline in a longitudinal birth cohort
  publication-title: Molecular Psychiatry
– year: 2016
– volume: 111
  start-page: 1592
  issue: 4
  year: 2014
  end-page: 1597
  article-title: Longitudinal four‐dimensional mapping of subcortical anatomy in human development
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 43
  start-page: 470
  year: 2022
  end-page: 499
  article-title: Greater male than female variability in regional brain structure across the lifespan
  publication-title: Human Brain Mapping
– volume: 19
  start-page: 801
  issue: 2
  year: 2009
  end-page: 817
  article-title: Variable selection in quantile regression
  publication-title: Statistica Sinica
– volume: 32
  start-page: 16
  year: 2018
  end-page: 22
  article-title: Recruiting the ABCD sample: Design considerations and procedures
  publication-title: Developmental Cognitive Neuroscience
– volume: 42
  start-page: 4568
  year: 2021
  end-page: 4579
  article-title: Maturity of gray matter structures and white matter connectomes, and their relationship with psychiatric symptoms in youth
  publication-title: Human Brain Mapping
– volume: 63
  start-page: 1305
  issue: 3
  year: 2012
  end-page: 1312
  article-title: Brain maturation: Predicting individual BrainAGE in children and adolescents using structural MRI
  publication-title: NeuroImage
– volume: 4
  year: 2017
  article-title: Enhancing studies of the connectome in autism using the autism brain imaging data exchange II
  publication-title: Scientific Data
– volume: 50
  start-page: 883
  issue: 3
  year: 2010
  end-page: 892
  article-title: Estimating the age of healthy subjects from T1‐weighted MRI scans using kernel methods: Exploring the influence of various parameters
  publication-title: NeuroImage
– volume: 124
  start-page: 1149
  issue: Pt B
  year: 2016
  end-page: 1154
  article-title: The Pediatric Imaging, Neurocognition, and Genetics (PING) data repository
  publication-title: NeuroImage
– volume: 35
  start-page: 147
  issue: 1
  year: 2010
  end-page: 168
  article-title: Normal development of brain circuits
  publication-title: Neuropsychopharmacology
– volume: 75
  start-page: 960
  issue: 9
  year: 2018
  end-page: 968
  article-title: Use of machine learning to determine deviance in neuroanatomical maturity associated with future psychosis in youths at clinically high risk
  publication-title: JAMA Psychiatry
– volume: 38
  start-page: 997
  issue: 2
  year: 2017
  end-page: 1008
  article-title: Age prediction on the basis of brain anatomical measures
  publication-title: Human Brain Mapping
– year: 2020
– volume: 183
  start-page: 972
  year: 2018
  end-page: 984
  article-title: Extending the human connectome project across ages: Imaging protocols for the lifespan development and aging projects
  publication-title: NeuroImage
– volume: 20
  start-page: 1342
  issue: 12
  year: 1998
  end-page: 1351
  article-title: Bayesian classification with Gaussian processes
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– year: 2017
– volume: 242
  year: 2021
  article-title: Inter‐individual variability in structural brain development from late childhood to young adulthood
  publication-title: NeuroImage
– start-page: 307
  year: 2012
  end-page: 323
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  end-page: 297
  article-title: Support‐vector networks
  publication-title: Machine Learning
– volume: 69
  start-page: 676
  issue: 3
  year: 2006
  end-page: 680
  article-title: A new regression method based on independent component analysis
  publication-title: Talanta
– ident: e_1_2_9_30_1
  doi: 10.1016/j.neuroimage.2010.01.005
– ident: e_1_2_9_2_1
  doi: 10.1038/sdata.2017.181
– ident: e_1_2_9_35_1
  doi: 10.1016/j.neuroimage.2018.09.060
– ident: e_1_2_9_36_1
  doi: 10.1016/j.neuroimage.2015.04.057
– ident: e_1_2_9_22_1
  doi: 10.1002/hbm.25320
– ident: e_1_2_9_5_1
  doi: 10.1002/hbm.25368
– ident: e_1_2_9_32_1
  doi: 10.1371/journal.pone.0067346
– ident: e_1_2_9_10_1
  doi: 10.1023/A:1010933404324
– ident: e_1_2_9_47_1
  doi: 10.1093/cercor/bhx179
– ident: e_1_2_9_27_1
  doi: 10.1002/hbm.25364
– ident: e_1_2_9_45_1
  doi: 10.1007/978-1-4419-9326-7_11
– ident: e_1_2_9_31_1
  doi: 10.1016/j.dcn.2018.04.004
– ident: e_1_2_9_62_1
  doi: 10.1111/j.1467-9868.2005.00503.x
– ident: e_1_2_9_44_1
  doi: 10.2527/jas.2012-6162
– ident: e_1_2_9_15_1
  doi: 10.1111/j.1467-9868.2009.00723.x
– volume: 19
  start-page: 801
  issue: 2
  year: 2009
  ident: e_1_2_9_61_1
  article-title: Variable selection in quantile regression
  publication-title: Statistica Sinica
– ident: e_1_2_9_14_1
  doi: 10.1145/2939672.2939785
– ident: e_1_2_9_11_1
  doi: 10.1093/cercor/bhaa296
– ident: e_1_2_9_56_1
  doi: 10.1002/hbm.23434
– ident: e_1_2_9_18_1
  doi: 10.1007/BF00994018
– ident: e_1_2_9_7_1
  doi: 10.1109/JBHI.2021.3083187
– ident: e_1_2_9_19_1
  doi: 10.1002/(SICI)1099-128X(199701)11:1<73::AID-CEM435>3.0.CO;2-#
– ident: e_1_2_9_41_1
– ident: e_1_2_9_17_1
  doi: 10.1038/mp.2017.62
– ident: e_1_2_9_58_1
  doi: 10.1162/jocn_a_01375
– ident: e_1_2_9_3_1
  doi: 10.1002/hbm.25316
– ident: e_1_2_9_4_1
  doi: 10.1007/978-1-4302-5990-9_4
– ident: e_1_2_9_29_1
  doi: 10.1016/j.neuroimage.2012.08.001
– ident: e_1_2_9_38_1
  doi: 10.1016/j.pscychresns.2021.111270
– ident: e_1_2_9_42_1
  doi: 10.1016/j.neuroimage.2021.118450
– ident: e_1_2_9_54_1
  doi: 10.1162/15324430152748236
– ident: e_1_2_9_6_1
  doi: 10.1016/j.neuroimage.2021.118036
– ident: e_1_2_9_60_1
  doi: 10.1109/34.735807
– ident: e_1_2_9_12_1
  doi: 10.1016/j.neuroimage.2021.118487
– ident: e_1_2_9_25_1
  doi: 10.1093/cercor/bht425
– ident: e_1_2_9_48_1
  doi: 10.1016/j.talanta.2005.10.039
– ident: e_1_2_9_50_1
  doi: 10.1016/s0149-7634(00)00014-2
– ident: e_1_2_9_39_1
  doi: 10.1016/j.neuroimage.2016.11.005
– ident: e_1_2_9_40_1
  doi: 10.1002/hbm.25565
– ident: e_1_2_9_43_1
  doi: 10.1016/j.tics.2004.12.008
– ident: e_1_2_9_59_1
  doi: 10.1002/hbm.25204
– ident: e_1_2_9_51_1
  doi: 10.1523/JNEUROSCI.3302-16.2017
– ident: e_1_2_9_49_1
  doi: 10.1016/j.pscychresns.2021.111313
– ident: e_1_2_9_8_1
  doi: 10.1016/j.nicl.2019.102063
– ident: e_1_2_9_13_1
  doi: 10.1198/016214503000125
– ident: e_1_2_9_53_1
  doi: 10.3389/fnsys.2012.00062
– ident: e_1_2_9_52_1
  doi: 10.1038/npp.2009.115
– ident: e_1_2_9_20_1
  doi: 10.1038/sdata.2017.10
– ident: e_1_2_9_24_1
  doi: 10.1038/s41380-019-0626-7
– ident: e_1_2_9_23_1
  doi: 10.1093/gigascience/giab055
– ident: e_1_2_9_33_1
  doi: 10.1214/08-AOAS191
– ident: e_1_2_9_55_1
  doi: 10.1073/pnas.1905356116
– ident: e_1_2_9_9_1
  doi: 10.1007/s11682-020-00260-3
– ident: e_1_2_9_21_1
  doi: 10.1038/mp.2013.78
– ident: e_1_2_9_57_1
  doi: 10.1126/sciadv.abb3417
– ident: e_1_2_9_26_1
  doi: 10.1093/cercor/bht201
– ident: e_1_2_9_37_1
  doi: 10.1038/s41593-019-0471-7
– ident: e_1_2_9_46_1
  doi: 10.1073/pnas.1316911111
– ident: e_1_2_9_16_1
  doi: 10.1001/jamapsychiatry.2018.1543
– ident: e_1_2_9_34_1
– ident: e_1_2_9_28_1
  doi: 10.3389/fneur.2019.00789
SSID ssj0011501
Score 2.4736907
Snippet Application of machine learning (ML) algorithms to structural magnetic resonance imaging (sMRI) data has yielded behaviorally meaningful estimates of the...
SourceID unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5126
SubjectTerms Adolescent
Age
Algorithms
Anatomy
Bayes Theorem
Bayesian analysis
Brain
Brain - diagnostic imaging
brain age
Brain architecture
Computational efficiency
Computational neuroscience
Data mining
development
Humans
Kernel functions
Learning algorithms
Machine Learning
Magnetic resonance imaging
Mathematical models
Medical imaging
Neuroimaging
Outliers (statistics)
Radial basis function
Regression
Sensitivity analysis
Support Vector Machine
Support vector machines
Teenagers
Youth
SummonAdditionalLinks – databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB5VPQAXHi1QQ4uWh6AXp_b6ueIUEFWEFA5ApR6QVuuttwk4TpSHUDjxE_ob-0s6s34UR4AQN0s7XtubeXyzmf0G4AVGvJQYT93AYIoSKuG5Qijf5UolxudnqtoaGH6IByfh-9PodAteN2dhKn6IdsONLMP6azJwlS2OrklDR9mkR3xYlK_7QWzTqY8tdRQBHZtsYYh1BXrghlXI40ftnZ1YtOmRfwlJm-WSN1flTK2_q6LoQlobk47vwJfma6pSlG-91TLr6R8bRI__-bl34XaNVVm_Uq57sJWXO7DbLzFPn6zZS2arR-22_A7cGNZ_0u_C108tOzS7JhNnU8MmtnIzZ3WrinOmivPpfLwcTRYMwTOz5JrKzk-6U6wvf15QmD1j6PXYbE6PsHONS7am3n_34eT43ee3A7du6eBqNH7PTTIvz4PYpKFWJhIp8Z0lnkpSdBy5iTT3cwRIaLnG-LHWmCWbSPkGsbWvo0iJ4AFsl9My3wNmUq4zJXgaK8R8GU6GMYSasKJamixJHThsflypa75zartRyIqpmUtcUmmX1IFnreisIvn4ndAr0hBJho_zaFWfX8C3IQot2U9CjO0JjwIH9juSaLC6O9zomKwdxkLSCSni7k9DB562w3QnFcGV-XSFMjHm1qlAyOrAw0ol29cNMO3jiBUdSDrK2goQjXh3pByPLJ24QIzHA-HA81at_7YKh1ZL_ywhB2-G9uLRv4s-hlucjpXYMqF92F7OV_kBgr1l9sRa9RUHwlFZ
  priority: 102
  providerName: Wiley-Blackwell
Title Systematic evaluation of machine learning algorithms for neuroanatomically‐based age prediction in youth
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.26010
https://www.ncbi.nlm.nih.gov/pubmed/35852028
https://www.proquest.com/docview/2738349684
https://www.proquest.com/docview/2691789056
https://pubmed.ncbi.nlm.nih.gov/PMC9812239
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hbm.26010
UnpaywallVersion publishedVersion
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011501
  issn: 1097-0193
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011501
  issn: 1097-0193
  databaseCode: RPM
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVOVD
  databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011501
  issn: 1097-0193
  databaseCode: OVEED
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: http://ovidsp.ovid.com/
  providerName: Ovid
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011501
  issn: 1097-0193
  databaseCode: 7X7
  dateStart: 20210801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011501
  issn: 1097-0193
  databaseCode: BENPR
  dateStart: 20210801
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1097-0193
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011501
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011501
  issn: 1097-0193
  databaseCode: 24P
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB5BKwEXHrssG1gq8xDsJaVx3scu2lWF1KpaqFROwXHjbdk2rbqtUDnxE_iN_BJmHDdsKkBIXKJKnriJM575xh5_A_ASPV5EjKe2qzBE8UTcsuNYODYXIlQOH4liaaDbCzoD793QH5o6p3QWpuCHKBfcaGZoe00TfDFShZ03u_v8zTidNYkTC2P2euAjGK9BfdDrtz_qPc7At2MTcrWIcxSxypZb6Pq9FY-0a5evOabdpMnb63whNl_EdFoFttoznd2DT9t3KhJSLpvrVdqUX3foHv_jpe_DXYNaWbtQswdwI8v3YL-dY8Q-27BXTOeR6gX6PbjVNdv1-_D5fckTzX7RirO5YjOdw5kxU7TigonpxXw5WY1nVwxhNNM0m0L3T1o03fz49p0c7oih_WOLJf2F7muSsw1VAXwIg7PTD287tinuYEs0Ay07TFtZ5gYq8qRQfhwR81nYEmGEJiRTvuROhlAJ57BSTiAlxsvKF45ClO1I3xexewC1fJ5nh8BUxGUqYh4FAtFfip2hN6FyrKigKg0jC463HziRhvmcCnBMk4KzmSc4pIkeUguel6KLgu7jd0KvSUsSMgHYjxTmJAM-DZFpJe3QQy8fct-14KgiiVNXVpu3epYY03GV0FkpYvGPPAuelc10J6XD5dl8jTIBRtlRjODVgkeFWpaP62IAyBE1WhBWFLYUIELxaks-GWti8RjRHndjC16Uqv23UTjWmvpniaRz0tU_Hv9Th0_gDqezJTpX6Ahqq-U6e4qIb5U24Cb3-ngNh2ED6ienvf55Q6-e0PWcN8ys_wmPM1sn
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5VRaJcEG15BFowD0EvoYnzsqVeFkS1QLdCopV6sxw37i7KZlfbXaG98RP4jfySzjjZlFSAuEXyxIkyM55vnPE3AK8w4gliPPUjiylKrGXgS6lDn2ud2ZCf63prYHCc9k_jT2fJ2RocrM7C1PwQ7YYbeYZbr8nBaUN6_5o1dJiP3xIhFibst-I0TCn14vGX9h8CQh2XbmGQ9SWuwSteoYDvt7d2otHNNfm3oHSzYHJjUU318rsuyy6odVHp8B7cbeAk69X634S1otqC7V6FqfR4yV4zV-Dpds634Pag-Y--Dd--tgTO7Jrvm00sG7viyoI13SQumC4vJrPRfDi-ZIhvmeO_1G5-Um-5_PXjJ0XCc4YLE5vO6BFurlHFltSe7z6cHn44ed_3m64LvkH_DPwsD4oiSq2IjbaJFERJlgU6E-jbhU0MDwvEMOhc1oapMZjI2kSHFuFvaJJEy-gBrFeTqngEzApuci25SDXCshwnw2We-qSi5dg8Ex7srb6-Mg0lOXXGKFVNpswVKko5RXnwohWd1jwcfxJ6QypU5Js4j9HNEQN8G2K5Ur0sxvCb8STyYKcjiT5lusMrI1CNT18qOsRE9Poi9uB5O0x3Up1aVUwWKJNi-iskokoPHtY2075uhJkZRzjnQdaxplaAmL67I9Vo6Bi_JcIwHkkPXrZ296-vsOcs8u8Sqv9u4C4e_7_oM9jonwyO1NHH489P4A6nUyCuqmcH1uezRbGL2GyeP3UueAX9jzTW
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEB5VRSq8cLQchgLLIeiLU3t9rsRLoEThSIWASn2prPXG2wQcJ0oTofDET-A38kuYWR_FESDEW6Qdb-z1HN-sZ78BeIwRLybGU9vTmKL4Uji2ENK1uZSRdvlQllsDg8Owf-S_Pg6ON-BZfRam5IdoNtzIMoy_JgPPZkO9f84aOkonHSLEwoT9gh-ImAr6Dt435FEEdUy6hUHWFuiDa14hh-83l7ai0bpP_iUorRdMXlwWM7n6IvO8DWpNVOpdgZP6ecpilM-d5SLtqK9rVI__-8BX4XIFV1m31K9rsJEV27DTLTBVn6zYE2YKSM3O_DZsDarv9Dvw6UNDEM3O-cTZVLOJKd7MWNWt4pTJ_HQ6Hy9GkzOG-JkZfk1p5if1yVc_vn2nSDtk6PjYbE5_YeYaF2xF7f-uw1Hv5ccXfbvq6mArtH_HjlIny7xQx76Sml5bIETkyChG35HpQHE3Q4yExqu1GyqFibIOpKsRXrsqCKTwbsBmMS2yW8B0zFUqBY9DibAvxckwjFAfVtRMnUaxBXv1201URXlOnTfypCRr5gkuaWKW1IKHjeis5Pn4ndBTUpGEbB_nUbI6woB3QyxaSTfyMbxHPPAs2G1Jos2q9nCtZEnlM84SOiRF9P2xb8GDZpiupDq4IpsuUSbE9DoWiFotuFnqZHO7HmZ-HOGiBVFLWxsBYhJvjxTjkWEUFwjzuCcseNTo9d9WYc-o6Z8lkv7zgflx-99F78PWu4Ne8vbV4Zs7cInTIRNTNLQLm4v5MruL0G-R3jMW_hMvjVT-
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6hrgRceOzyCOwi8xDsJSVxnj52EasKqSskqLScguPG20KaVt1WqJz4Cfsb95cw47hhUwFC4hbJEydxxjPf2ONvAF6gx0uJ8dQNNIYooRSeK4T0XS5lon0-kvXSwOAk7g_Dd6fRqa1zSmdhan6IZsGNZoax1zTB5yNd23m7u89fj_NplzixMGbfiSME4x3YGZ68730ye5xx5AobcnnEOYpYZcMtdPXelkfatstXHNN20uSNVTWX62-yLNvA1nim49vwefNNdULK1-5qmXfV9y26x__46Dtwy6JW1qvV7C5cK6pd2OtVGLFP1-wlM3mkZoF-F64P7Hb9Hnz50PBEs1-04mym2dTkcBbMFq04Y7I8my0my_H0nCGMZoZmU5r-SYvK9eWPC3K4I4b2j80X9AjT16Ria6oCeA-Gx28_vum7triDq9AMeG6Se0URxDoNldSRSIn5LPFkkqIJKXSkuF8gVMI5rLUfK4Xxso6krxFl-yqKpAjuQ6eaVcVDYDrlKpeCp7FE9JdjZ-hNqBwrKqjOk9SBw80PzpRlPqcCHGVWczbzDIc0M0PqwLNGdF7TffxO6BVpSUYmAPtR0p5kwLchMq2sl4To5RMeBQ7styRx6qp280bPMms6zjM6K0Us_mnowNOmme6kdLiqmK1QJsYoOxUIXh14UKtl87oBBoAcUaMDSUthGwEiFG-3VJOxIRYXiPZ4IBx43qj230bh0GjqnyWy_tHAXDz6pw4fw01OZ0tMrtA-dJaLVXGAiG-ZP7Gz-ieNd1Xx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Systematic+evaluation+of+machine+learning+algorithms+for+neuroanatomically-based+age+prediction+in+youth&rft.jtitle=Human+brain+mapping&rft.au=Modabbernia%2C+Amirhossein&rft.au=Whalley%2C+Heather+C&rft.au=Glahn%2C+David+C&rft.au=Thompson%2C+Paul+M&rft.date=2022-12-01&rft.eissn=1097-0193&rft.volume=43&rft.issue=17&rft.spage=5126&rft_id=info:doi/10.1002%2Fhbm.26010&rft_id=info%3Apmid%2F35852028&rft.externalDocID=35852028
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon