Underwater Target Detection Utilizing Polarization Image Fusion Algorithm Based on Unsupervised Learning and Attention Mechanism
Since light propagation in water bodies is subject to absorption and scattering effects, underwater images using only conventional intensity cameras will suffer from low brightness, blurred images, and loss of details. In this paper, a deep fusion network is applied to underwater polarization images...
Saved in:
| Published in | Sensors (Basel, Switzerland) Vol. 23; no. 12; p. 5594 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
MDPI AG
15.06.2023
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1424-8220 1424-8220 |
| DOI | 10.3390/s23125594 |
Cover
| Abstract | Since light propagation in water bodies is subject to absorption and scattering effects, underwater images using only conventional intensity cameras will suffer from low brightness, blurred images, and loss of details. In this paper, a deep fusion network is applied to underwater polarization images; that is, the underwater polarization images are fused with intensity images using the deep learning method. To construct a training dataset, we establish an experimental setup to obtain underwater polarization images and perform appropriate transformations to expand the dataset. Next, an end-to-end learning framework based on unsupervised learning and guided by an attention mechanism is constructed for fusing polarization and light intensity images. The loss function and weight parameters are elaborated. The produced dataset is used to train the network under different loss weight parameters, and the fused images are evaluated based on different image evaluation metrics. The results show that the fused underwater images are more detailed. Compared with light intensity images, the information entropy and standard deviation of the proposed method increase by 24.48% and 139%. The image processing results are better than other fusion-based methods. In addition, the improved U-net network structure is used to extract features for image segmentation. The results show that the target segmentation based on the proposed method is feasible under turbid water. The proposed method does not require manual adjustment of weight parameters, has faster operation speed, and has strong robustness and self-adaptability, which is important for research in vision fields, such as ocean detection and underwater target recognition. |
|---|---|
| AbstractList | Since light propagation in water bodies is subject to absorption and scattering effects, underwater images using only conventional intensity cameras will suffer from low brightness, blurred images, and loss of details. In this paper, a deep fusion network is applied to underwater polarization images; that is, the underwater polarization images are fused with intensity images using the deep learning method. To construct a training dataset, we establish an experimental setup to obtain underwater polarization images and perform appropriate transformations to expand the dataset. Next, an end-to-end learning framework based on unsupervised learning and guided by an attention mechanism is constructed for fusing polarization and light intensity images. The loss function and weight parameters are elaborated. The produced dataset is used to train the network under different loss weight parameters, and the fused images are evaluated based on different image evaluation metrics. The results show that the fused underwater images are more detailed. Compared with light intensity images, the information entropy and standard deviation of the proposed method increase by 24.48% and 139%. The image processing results are better than other fusion-based methods. In addition, the improved U-net network structure is used to extract features for image segmentation. The results show that the target segmentation based on the proposed method is feasible under turbid water. The proposed method does not require manual adjustment of weight parameters, has faster operation speed, and has strong robustness and self-adaptability, which is important for research in vision fields, such as ocean detection and underwater target recognition.Since light propagation in water bodies is subject to absorption and scattering effects, underwater images using only conventional intensity cameras will suffer from low brightness, blurred images, and loss of details. In this paper, a deep fusion network is applied to underwater polarization images; that is, the underwater polarization images are fused with intensity images using the deep learning method. To construct a training dataset, we establish an experimental setup to obtain underwater polarization images and perform appropriate transformations to expand the dataset. Next, an end-to-end learning framework based on unsupervised learning and guided by an attention mechanism is constructed for fusing polarization and light intensity images. The loss function and weight parameters are elaborated. The produced dataset is used to train the network under different loss weight parameters, and the fused images are evaluated based on different image evaluation metrics. The results show that the fused underwater images are more detailed. Compared with light intensity images, the information entropy and standard deviation of the proposed method increase by 24.48% and 139%. The image processing results are better than other fusion-based methods. In addition, the improved U-net network structure is used to extract features for image segmentation. The results show that the target segmentation based on the proposed method is feasible under turbid water. The proposed method does not require manual adjustment of weight parameters, has faster operation speed, and has strong robustness and self-adaptability, which is important for research in vision fields, such as ocean detection and underwater target recognition. Since light propagation in water bodies is subject to absorption and scattering effects, underwater images using only conventional intensity cameras will suffer from low brightness, blurred images, and loss of details. In this paper, a deep fusion network is applied to underwater polarization images; that is, the underwater polarization images are fused with intensity images using the deep learning method. To construct a training dataset, we establish an experimental setup to obtain underwater polarization images and perform appropriate transformations to expand the dataset. Next, an end-to-end learning framework based on unsupervised learning and guided by an attention mechanism is constructed for fusing polarization and light intensity images. The loss function and weight parameters are elaborated. The produced dataset is used to train the network under different loss weight parameters, and the fused images are evaluated based on different image evaluation metrics. The results show that the fused underwater images are more detailed. Compared with light intensity images, the information entropy and standard deviation of the proposed method increase by 24.48% and 139%. The image processing results are better than other fusion-based methods. In addition, the improved U-net network structure is used to extract features for image segmentation. The results show that the target segmentation based on the proposed method is feasible under turbid water. The proposed method does not require manual adjustment of weight parameters, has faster operation speed, and has strong robustness and self-adaptability, which is important for research in vision fields, such as ocean detection and underwater target recognition. |
| Audience | Academic |
| Author | Cheng, Haoyuan Zhu, Jinchi Chu, Jinkui Zhang, Deqing Yu, Hao |
| AuthorAffiliation | 2 Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China; 201664058@mail.dlut.edu.cn (H.Y.); chujk@dlut.edu.cn (J.C.) 1 College of Engineering, Ocean University of China, Qingdao 266100, China; zhangdeqing@stu.ouc.edu.cn (D.Z.); zjc@ouc.edu.cn (J.Z.) |
| AuthorAffiliation_xml | – name: 2 Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China; 201664058@mail.dlut.edu.cn (H.Y.); chujk@dlut.edu.cn (J.C.) – name: 1 College of Engineering, Ocean University of China, Qingdao 266100, China; zhangdeqing@stu.ouc.edu.cn (D.Z.); zjc@ouc.edu.cn (J.Z.) |
| Author_xml | – sequence: 1 givenname: Haoyuan surname: Cheng fullname: Cheng, Haoyuan – sequence: 2 givenname: Deqing surname: Zhang fullname: Zhang, Deqing – sequence: 3 givenname: Jinchi surname: Zhu fullname: Zhu, Jinchi – sequence: 4 givenname: Hao surname: Yu fullname: Yu, Hao – sequence: 5 givenname: Jinkui orcidid: 0000-0001-5742-8460 surname: Chu fullname: Chu, Jinkui |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37420760$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kk1v1DAQhiNURD_gwB9AkbgA0raOHSfOCS0thZUWwaF7jib2JOtVYi-206o98dPr3S2rtgL5YHv8zuPx6zlODow1mCRvM3LKWEXOPGUZ5bzKXyRHWU7ziaCUHDxaHybH3q8IoYwx8So5ZGVOSVmQo-TPwih0NxDQpVfgOgzpBQaUQVuTLoLu9Z02XfrL9uD0HWzDswE6TC9Hv9lM-846HZZD-gU8qnSTZvy4RnetN_s5gjMbBBiVTkNAs2X8QLkEo_3wOnnZQu_xzcN8kiwuv16df5_Mf36bnU_nE8lJFSaosGigLSEjJRVlLgvaKM6btmSc8BaLqiBMZm2BmRQNVKrkgqlSqZjDJQI7SWY7rrKwqtdOD-Buawu63gas62pwQcseayqqCnPkDCjPs5aCVNAUVVUKSQQhJLI-7VijWcPtDfT9HpiRevMl9f5LovjzTrwemwGVjAY46J9U8PTE6GXd2euIYoTlRETChweCs79H9KEetJfY92DQjj7WyzgtRUZ4lL5_Jl3Z0ZlobFTRKhpXFTSqTneqDuJztWltvFjGoXDQMvZWq2N8Gi3MBSOkiAnvHr9hX_zfPoqCs51AOuu9w7aWOmy7JZJ1_09bPj7L-L-F95r-6Cg |
| CitedBy_id | crossref_primary_10_3390_jmse11081603 crossref_primary_10_3390_e25081215 crossref_primary_10_3390_s24010273 crossref_primary_10_3390_rs15184565 crossref_primary_10_1109_ACCESS_2023_3340207 crossref_primary_10_3390_s24020498 |
| Cites_doi | 10.1109/48.50695 10.1364/OE.24.009826 10.1109/LGRS.2010.2046715 10.1016/j.inffus.2019.07.010 10.1016/j.inffus.2006.02.001 10.14429/dsj.61.705 10.1109/TIP.2019.2955241 10.1016/0167-8655(89)90003-2 10.1016/j.inffus.2016.12.001 10.1117/12.958279 10.1007/s11802-020-4399-z 10.1109/JOE.2010.2052691 10.1016/j.patcog.2004.03.010 10.1016/j.inffus.2016.02.001 10.3390/s21217030 10.1016/j.compbiomed.2021.104699 10.1145/3072959.3073609 10.1109/TPAMI.2008.85 10.1016/j.inffus.2018.02.004 10.7717/peerj-cs.364 10.1080/01431161.2019.1685725 10.1364/OL.384189 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3390/s23125594 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central ProQuest One Community College Coronavirus Research Database ProQuest Central Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_2899e4e53a2541f2acdab69978c08000 10.3390/s23125594 PMC10303408 A758483006 37420760 10_3390_s23125594 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 52175265 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M ALIPV NPM 3V. 7XB 8FK AZQEC COVID DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM ADRAZ ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c509t-ede6baf7a1072874c62bd55bf73505fe69603c1f6e1c8ba9d7583d7ddaf75cea3 |
| IEDL.DBID | M48 |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:38:12 EDT 2025 Sun Oct 26 03:46:30 EDT 2025 Tue Sep 30 17:13:42 EDT 2025 Thu Oct 02 11:35:01 EDT 2025 Tue Oct 07 07:13:18 EDT 2025 Mon Oct 20 17:21:06 EDT 2025 Thu Apr 03 07:03:45 EDT 2025 Thu Apr 24 22:55:56 EDT 2025 Thu Oct 16 04:33:45 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | polarization underwater target detection attention mechanism image fusion unsupervised learning |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c509t-ede6baf7a1072874c62bd55bf73505fe69603c1f6e1c8ba9d7583d7ddaf75cea3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-5742-8460 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s23125594 |
| PMID | 37420760 |
| PQID | 2829874962 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_2899e4e53a2541f2acdab69978c08000 unpaywall_primary_10_3390_s23125594 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10303408 proquest_miscellaneous_2835278105 proquest_journals_2829874962 gale_infotracacademiconefile_A758483006 pubmed_primary_37420760 crossref_citationtrail_10_3390_s23125594 crossref_primary_10_3390_s23125594 |
| PublicationCentury | 2000 |
| PublicationDate | 20230615 |
| PublicationDateYYYYMMDD | 2023-06-15 |
| PublicationDate_xml | – month: 6 year: 2023 text: 20230615 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2023 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Cheng (ref_3) 2020; 41 Pajares (ref_8) 2004; 37 Li (ref_1) 2019; 29 Huang (ref_5) 2016; 24 Liu (ref_13) 2017; 36 Liu (ref_18) 2020; 55 Jaffe (ref_20) 1990; 15 McGlamery (ref_19) 1980; 208 ref_23 Ma (ref_21) 2016; 31 Miller (ref_2) 2010; 35 Toet (ref_7) 1989; 9 Naidu (ref_22) 2011; 61 Rahmani (ref_11) 2010; 7 Kalantari (ref_14) 2017; 36 Cheng (ref_4) 2020; 19 ref_9 Jolliffe (ref_12) 2002; 87 Zhang (ref_17) 2020; 45 Treibitz (ref_6) 2008; 31 Nencini (ref_10) 2007; 8 Ma (ref_15) 2019; 45 Elzeki (ref_16) 2021; 7 Zunair (ref_24) 2021; 136 |
| References_xml | – volume: 15 start-page: 101 year: 1990 ident: ref_20 article-title: Computer modeling and the design of optimal underwater imaging systems publication-title: IEEE J. Ocean. Eng. doi: 10.1109/48.50695 – volume: 24 start-page: 9826 year: 2016 ident: ref_5 article-title: Underwater image recovery considering polarization effects of objects publication-title: Opt. Express doi: 10.1364/OE.24.009826 – ident: ref_9 – volume: 7 start-page: 746 year: 2010 ident: ref_11 article-title: An adaptive IHS pan-sharpening method publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2010.2046715 – volume: 55 start-page: 1 year: 2020 ident: ref_18 article-title: Remote sensing image fusion based on two-stream fusion network publication-title: Inf. Fusion doi: 10.1016/j.inffus.2019.07.010 – volume: 8 start-page: 143 year: 2007 ident: ref_10 article-title: Remote sensing image fusion using the curvelet transform publication-title: Inf. Fusion doi: 10.1016/j.inffus.2006.02.001 – volume: 61 start-page: 479 year: 2011 ident: ref_22 article-title: Image fusion technique using multi-resolution singular value decomposition publication-title: Def. Sci. J. doi: 10.14429/dsj.61.705 – volume: 29 start-page: 4376 year: 2019 ident: ref_1 article-title: An underwater image enhancement benchmark dataset and beyond publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2019.2955241 – volume: 9 start-page: 245 year: 1989 ident: ref_7 article-title: Image fusion by a ratio of low-pass pyramid publication-title: Pattern Recognit. Lett. doi: 10.1016/0167-8655(89)90003-2 – volume: 36 start-page: 191 year: 2017 ident: ref_13 article-title: Multi-focus image fusion with a deep convolutional neural network publication-title: Inf. Fusion doi: 10.1016/j.inffus.2016.12.001 – volume: 208 start-page: 221 year: 1980 ident: ref_19 article-title: A computer model for underwater camera systems publication-title: Ocean. Opt. VI doi: 10.1117/12.958279 – volume: 19 start-page: 1042 year: 2020 ident: ref_4 article-title: Real-time position and attitude estimation for homing and docking of an autonomous underwater vehicle based on bionic polarized optical guidance publication-title: J. Ocean. Univ. China doi: 10.1007/s11802-020-4399-z – volume: 35 start-page: 663 year: 2010 ident: ref_2 article-title: Autonomous underwater vehicle navigation publication-title: IEEE J. Ocean. Eng. doi: 10.1109/JOE.2010.2052691 – volume: 37 start-page: 1855 year: 2004 ident: ref_8 article-title: A wavelet-based image fusion tutorial publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2004.03.010 – volume: 31 start-page: 100 year: 2016 ident: ref_21 article-title: Infrared and visible image fusion via gradient transfer and total variation minimization publication-title: Inf. Fusion doi: 10.1016/j.inffus.2016.02.001 – ident: ref_23 doi: 10.3390/s21217030 – volume: 136 start-page: 104699 year: 2021 ident: ref_24 article-title: Sharp U-Net: Depthwise Convolutional Network for Biomedical Image Segmentation publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2021.104699 – volume: 36 start-page: 1 year: 2017 ident: ref_14 article-title: Deep high dynamic range imaging of dynamic scenes publication-title: ACM Trans. Graph. doi: 10.1145/3072959.3073609 – volume: 31 start-page: 385 year: 2008 ident: ref_6 article-title: Active polarization descattering publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2008.85 – volume: 87 start-page: 513 year: 2002 ident: ref_12 article-title: Principal Component Analysis publication-title: J. Mark. Res. – volume: 45 start-page: 153 year: 2019 ident: ref_15 article-title: Infrared and visible image fusion methods and applications: A survey publication-title: Inf. Fusion doi: 10.1016/j.inffus.2018.02.004 – volume: 7 start-page: e364 year: 2021 ident: ref_16 article-title: A novel perceptual two layer image fusion using deep learning for imbalanced COVID-19 dataset publication-title: PeerJ Comput. Sci. doi: 10.7717/peerj-cs.364 – volume: 41 start-page: 4947 year: 2020 ident: ref_3 article-title: Underwater polarization patterns considering single Rayleigh scattering of water molecules publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2019.1685725 – volume: 45 start-page: 1507 year: 2020 ident: ref_17 article-title: PFNet: An unsupervised deep network for polarization image fusion publication-title: Opt. Lett. doi: 10.1364/OL.384189 |
| SSID | ssj0023338 |
| Score | 2.4531476 |
| Snippet | Since light propagation in water bodies is subject to absorption and scattering effects, underwater images using only conventional intensity cameras will... |
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 5594 |
| SubjectTerms | Algorithms attention mechanism Benchmarking Deep learning Entropy image fusion Image processing Light Machine learning Methods polarization Sensors underwater target detection unsupervised learning Unsupervised Machine Learning Water Wavelet transforms |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB6hXoAD4o2hoOUhwcWq7bXX9jEFooJUxKGRerNmH24tOU6UOKroqT-dGduxEh7iwi2Jx9Lu7MzsfNnZbwDe6QBLVSZkvFpLP45CTS5lIz9ElYaGdtS8K8Y8_aZOZvHX8-R8p9UX14T19MC94o4YELjYJRIJyoRlhMaiVjmBH-bIDjq0HmT5FkwNUEsS8up5hCSB-qM1ZTGcO8d7u09H0v97KN7Zi36tk7y9aZb44wrremcTmt6He0P2KCb9qB_ALdc8hLs7nIKP4KbrZHRFKeRKnHVl3uKTa7uCq0bM2qqurklOfGdIO9zBFF_mFFXEdMP_nIlJfbFYVe3lXBzTDmcFv9asN0sOKvx9YGS9ENhYMWnbvl5SnDq-Q1yt549hNv189vHEH9os-IayhdZ31imNZYqEBJn93qhI2yTRZSopPSqdIpAjTVgqF5pMY24JYkibWkvvJMahfAIHzaJxz0BIZ1JUSMFcmTgLMsQsD1yg6IM0qJwHH7bqL8zAQc6tMOqCsAivVDGulAdvRtFlT7zxJ6FjXsNRgLmyux_IgorBgop_WZAH79kCCvZoGozB4WICTYm5sYoJzTfOJIUnDw63RlIMrr4u-CiatJaryIPX42NyUj55wcYtNixDeW6aUS7rwdPepsYxyzSO-HjUg2zP2vYmtf-kqS47InBuESfjIPPg7WiYf1fW8_-hrBdwJyL34mK5MDmEg3a1cS8pLWv1q84DfwLkZjef priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB6V9AAcKp7FUNDykOBi1fbaa_uAUAKNClKjCjVSb9Z6d51GcpyQ2KrKiZ_OjF8kvG5-jKV9zMzO5539BuBN6shMZAEqb5py2_fcFE1Ke7YrRegqXFHjOhnzbCJOp_6Xy-ByDybdWRhKq-x8Yu2o9VLRP_Jj2vGLQj8W3ofVN5uqRtHualdCQ7alFfT7mmLsFux7xIw1gP3RyeT8aw_BOCKyhl-II9g_3mB0QzG1v7Mq1eT9f7rorTXq9_zJ21WxkjfXMs-3FqfxPThoo0o2bNTgPuyZ4gHc3eIafAg_6gpH1xhartlFnf7NPpmyTsQq2LSc5_PvKMfOCeq2ZzPZ5wV6Gzau6I8aG-YzHI_yasFGuPJpRp8Vm2pFzobuW6bWGZOFZsOybPIo2Zmhs8XzzeIRTMcnFx9P7bb8gq0wiihto41IZRZKRIjEiq-El-ogSLOQY9iUGYHghys3E8ZVUSpjjdCD61Br_CZQRvLHMCiWhXkCjBsVSiHRyQvlR04kZRQ7xhF4wZUUxoJ33fAnquUmpxIZeYIYhWYq6WfKgle96Koh5Pib0IjmsBcgDu36wXI9S1qTTAhqGt8EXCJIdjNPKi1TESOsJvZ1x7HgLWlAQpaOjVGyPbCAXSLOrGSI_fUjjm7LgqNOSZLWBWySXwprwcv-NRov7cjIwiwrksH4N4wwxrXgsNGpvs089D3aNrUg2tG2nU7tvinmVzVBOJWO474TWfC6V8x_D9bT_7f-Gdzx0HAoPc4NjmBQrivzHAOxMn3RWtdPayk2Yg priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF6h9AAcKM9iKGh5SHBxY3vttX1CLhAVpFY9NFI5WftyapE4UWK3oid-OjP2xkoKSEjc4nhW9tizM994Z74l5K30RMGLCIxXSuaGgS9hSunA9QWPfQURNW2LMY9P-NE4_HoenW908WNZJaTiZeuksQvLhQjmDQM29IMhoN9wuNDFh0v7LcnnCU8AMYSQtO_wCND4gOyMT06zb21TkR3dEQoxyO6HK4AzCKLDrTDUsvX_7pM3gtLNgsnbTbUQP67EdLoRjUa7RKz16IpQvh80tTxQ1zcoHv9H0fvknoWqNOts6wG5ZaqH5O4GgeEj8rPdNukK8OqSnrU15fSTqdvqroqO63JaXoMcPcX82TZ80i8zcGF01OAVaTadzJdlfTGjhxBONcVh1apZoAfDY0v_OqGi0jSr6644kx4bbFguV7PHZDz6fPbxyLV7OrgKoEntGm24FEUsIO1Eqn3FA6mjSBYxAyxWGA7vkCm_4MZXiRSphnyG6VhrGBMpI9gTMqjmlXlKKDMqFlxA5OAqTLxEiCT1jMfhB1OCG4e8X7_iXFnCc9x3Y5pD4oPWkPfW4JDXveiiY_n4k9Ah2kkvgMTc7R_z5SS38zzH_NWEJmICMm-_CITSQvIUcnWkdPc8h7xDK8vRfcDNKGG7IEAlJOLKM9A3TBj4Qofsrw0xt35lleO6Nzy1lAcOedWfBo-AyzyiMvMGZQBUxwkAZ4fsdXbb3zOLwwDXYh2SbFn0llLbZ6ryomUdx_3oWOglDnnTG__fH9azf5J6Tu4EABqx9M6P9smgXjbmBYC8Wr608_gXSz5N1w priority: 102 providerName: Unpaywall |
| Title | Underwater Target Detection Utilizing Polarization Image Fusion Algorithm Based on Unsupervised Learning and Attention Mechanism |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/37420760 https://www.proquest.com/docview/2829874962 https://www.proquest.com/docview/2835278105 https://pubmed.ncbi.nlm.nih.gov/PMC10303408 https://www.mdpi.com/1424-8220/23/12/5594/pdf?version=1686811240 https://doaj.org/article/2899e4e53a2541f2acdab69978c08000 |
| UnpaywallVersion | publishedVersion |
| Volume | 23 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: HH5 dateStart: 20010101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ADMLS dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (selected full-text only) customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1424-8220 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M48 dateStart: 20030101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dj5NAEJ_cx4P6YPwWPZv1I-oLCiws8GBMq1dPkzaNuSa9J7IsS68Jpb0Wcp5P_unOACWtnr40LSzNfszszI-Z_Q3Aq9iSqUg9FN445qbr2DGqVOKYthS-rdCihlUy5mAoTsbut4k32YNNWnMzgetroR3Vkxqvsnc_Lq4-osJ_IMSJkP39Gn0U8ozd18sLk-pJUdy1Ka6xD4dos0Iq6jBw2_iCwxGZ1TxDu_-wY50qEv-_t-otW_VnHuWNMl_Kq0uZZVtGqn8HbjfeJevW4nAX9nR-D25tcQ7eh19VpaNLdDFX7LRKA2efdVElZOVsXMyy2U9sx0Y0L80ZTfZ1jrsO65f0Zo11symOvjifsx5awITRY_m6XNKmQ78bxtYpk3nCukVR51OygaYzxrP1_AGM-8enn07MpgyDqdCbKEydaBHL1JeIFIkdXwknTjwvTn2O7lOqBYIgruxUaFsFsQwThCA88ZMEn_GUlvwhHOSLXD8GxrXypZC42QvlBlYgZRBa2hL4hSsptAFvN9MfqYajnEplZBFiFVqpqF0pA160TZc1Mcd1jXq0hm0D4tKuLixW06hRzYggp3a1xyWCZTt1pEpkLEKE18TCblkGvCEJiEgGsTNKNgcXcEjEnRV1cbxuwHH7MuBoIyTRRpIjClXjrIXCMeB5exuVmCIzMteLktqgH-wH6Osa8KiWqbbP3HcdCp8aEOxI286gdu_ks_OKKJxKyHHXCgx42Qrmvyfryf97_xRuOqg4lCZne0dwUKxK_QwdsiLuwL4_8fEz6H_pwGHveDj63qlebnQqrcNr4-Goe_YbAMM-yw |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcigcEG8MBZaX4GLV9tpr-4BQSokS2lQcEqk3s95dp5ESJySOonLiF_EbmbEdN-F1682xx9Huzusb7-wMwOvUkZnIAhTeNOW277kpqpT2bFeK0FXoUeMyGbN3KjoD__NZcLYDP9dnYSitcm0TS0Otp4q-kR_Qjl8U-rHwPsy-2dQ1inZX1y00KrE4NhcrDNkW77tHyN83ntf-1P_YseuuArZC51jYRhuRyiyUGPhQsXclvFQHQZqFHNFAZgRieq7cTBhXRamMNSJqrkOt8Z1AGcnxf6_BdZ-jLUH9Cc8uAzyO8V5VvYjz2DlYIHYixO5v-byyNcCfDmDDA_6enbm3zGfyYiXH4w3X174Nt2rMylqVkN2BHZPfhZsblQzvwY-yf9IKgeuc9cvkcnZkijLNK2eDYjQefUc69oUC6frkJ-tO0Jax9pK-17HWeIirXZxP2CH6Vc3otXyxnJEpo991Hdghk7lmraKosjRZz9DJ5dFich8GV8KGB7CbT3PzCBg3KpRCogsRyo-cSMoodowj8IIrKYwF79bLn6i68jk14BgnGAERp5KGUxa8bEhnVbmPvxEdEg8bAqrQXd6YzodJrfAJBbLGNwGXGIK7mSeVlqmIMWin2u6OY8FbkoCE7AgORsn6OAROiSpyJS2crx-hkAkL9tdCktQGZpFcqoMFL5rHaBpov0fmZrokGkTXYYQI2oKHlUw1Y-ah79GmrAXRlrRtTWr7ST46L8uPU2M67juRBa8awfz3Yj3-_-ifw16n3ztJTrqnx0_ghodKRIl4brAPu8V8aZ4i5CvSZ6WeMfh61Yr9C-awbnc |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIvE4IN4YCiwvwcWK7bXX9gGhlBA1lFY9NFJuZr27TiMlTkgcReXE7-LXMWM7bsLr1luSHUe7O2_v7DcAr1NHZiILUHjTlNu-56aoUtqzXSlCV6FHjctizKNjcdD3Pw-CwQ78XN-FobLKtU0sDbWeKnpH3qITvyj0Y-G1sros4qTT_TD7ZlMHKTppXbfTqETk0JyvMH1bvO91kNdvPK_76fTjgV13GLAVOsrCNtqIVGahxCSIgN-V8FIdBGkWcowMMiMwvufKzYRxVZTKWGN0zXWoNT4TKCM5_u8VuBpyHlM5YTi4SPY45n4VkhEOOq0FxlEUvftb_q9sE_CnM9jwhr9Xal5f5jN5vpLj8YYb7N6GW3X8ytqVwN2BHZPfhZsbqIb34EfZS2mFQeycnZaF5qxjirLkK2f9YjQefUc6dkJJdX0LlPUmaNdYd0nv7lh7PMTdLs4mbB99rGb0WL5Yzsis0fcaE3bIZK5Zuyiqik12ZOgW82gxuQ_9S2HDA9jNp7l5BIwbFUoh0Z0I5UdOJGUUO8YR-IErKYwF79bbn6gaBZ2acYwTzIaIU0nDKQteNqSzCvrjb0T7xMOGgNC6yx-m82FSK39CSa3xTcAlpuNu5kmlZSpiTOAJ591xLHhLEpCQTcHJKFlfjcAlETpX0sb1-hFHA2nB3lpIktrYLJIL1bDgRTOMZoLOfmRupkuiwUg7jDCatuBhJVPNnHnoe3RAa0G0JW1bi9oeyUdnJRQ5NanjvhNZ8KoRzH9v1uP_z_45XEOVTr70jg-fwA0PdYhq8txgD3aL-dI8xeivSJ-Vasbg62Xr9S_rjXK6 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF6h9AAcKM9iKGh5SHBxY3vttX1CLhAVpFY9NFI5WftyapE4UWK3oid-OjP2xkoKSEjc4nhW9tizM994Z74l5K30RMGLCIxXSuaGgS9hSunA9QWPfQURNW2LMY9P-NE4_HoenW908WNZJaTiZeuksQvLhQjmDQM29IMhoN9wuNDFh0v7LcnnCU8AMYSQtO_wCND4gOyMT06zb21TkR3dEQoxyO6HK4AzCKLDrTDUsvX_7pM3gtLNgsnbTbUQP67EdLoRjUa7RKz16IpQvh80tTxQ1zcoHv9H0fvknoWqNOts6wG5ZaqH5O4GgeEj8rPdNukK8OqSnrU15fSTqdvqroqO63JaXoMcPcX82TZ80i8zcGF01OAVaTadzJdlfTGjhxBONcVh1apZoAfDY0v_OqGi0jSr6644kx4bbFguV7PHZDz6fPbxyLV7OrgKoEntGm24FEUsIO1Eqn3FA6mjSBYxAyxWGA7vkCm_4MZXiRSphnyG6VhrGBMpI9gTMqjmlXlKKDMqFlxA5OAqTLxEiCT1jMfhB1OCG4e8X7_iXFnCc9x3Y5pD4oPWkPfW4JDXveiiY_n4k9Ah2kkvgMTc7R_z5SS38zzH_NWEJmICMm-_CITSQvIUcnWkdPc8h7xDK8vRfcDNKGG7IEAlJOLKM9A3TBj4Qofsrw0xt35lleO6Nzy1lAcOedWfBo-AyzyiMvMGZQBUxwkAZ4fsdXbb3zOLwwDXYh2SbFn0llLbZ6ryomUdx_3oWOglDnnTG__fH9azf5J6Tu4EABqx9M6P9smgXjbmBYC8Wr608_gXSz5N1w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Underwater+Target+Detection+Utilizing+Polarization+Image+Fusion+Algorithm+Based+on+Unsupervised+Learning+and+Attention+Mechanism&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Cheng%2C+Haoyuan&rft.au=Zhang%2C+Deqing&rft.au=Zhu%2C+Jinchi&rft.au=Yu%2C+Hao&rft.date=2023-06-15&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=23&rft.issue=12&rft.spage=5594&rft_id=info:doi/10.3390%2Fs23125594&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |