Underwater Target Detection Utilizing Polarization Image Fusion Algorithm Based on Unsupervised Learning and Attention Mechanism

Since light propagation in water bodies is subject to absorption and scattering effects, underwater images using only conventional intensity cameras will suffer from low brightness, blurred images, and loss of details. In this paper, a deep fusion network is applied to underwater polarization images...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 23; no. 12; p. 5594
Main Authors Cheng, Haoyuan, Zhang, Deqing, Zhu, Jinchi, Yu, Hao, Chu, Jinkui
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 15.06.2023
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s23125594

Cover

Abstract Since light propagation in water bodies is subject to absorption and scattering effects, underwater images using only conventional intensity cameras will suffer from low brightness, blurred images, and loss of details. In this paper, a deep fusion network is applied to underwater polarization images; that is, the underwater polarization images are fused with intensity images using the deep learning method. To construct a training dataset, we establish an experimental setup to obtain underwater polarization images and perform appropriate transformations to expand the dataset. Next, an end-to-end learning framework based on unsupervised learning and guided by an attention mechanism is constructed for fusing polarization and light intensity images. The loss function and weight parameters are elaborated. The produced dataset is used to train the network under different loss weight parameters, and the fused images are evaluated based on different image evaluation metrics. The results show that the fused underwater images are more detailed. Compared with light intensity images, the information entropy and standard deviation of the proposed method increase by 24.48% and 139%. The image processing results are better than other fusion-based methods. In addition, the improved U-net network structure is used to extract features for image segmentation. The results show that the target segmentation based on the proposed method is feasible under turbid water. The proposed method does not require manual adjustment of weight parameters, has faster operation speed, and has strong robustness and self-adaptability, which is important for research in vision fields, such as ocean detection and underwater target recognition.
AbstractList Since light propagation in water bodies is subject to absorption and scattering effects, underwater images using only conventional intensity cameras will suffer from low brightness, blurred images, and loss of details. In this paper, a deep fusion network is applied to underwater polarization images; that is, the underwater polarization images are fused with intensity images using the deep learning method. To construct a training dataset, we establish an experimental setup to obtain underwater polarization images and perform appropriate transformations to expand the dataset. Next, an end-to-end learning framework based on unsupervised learning and guided by an attention mechanism is constructed for fusing polarization and light intensity images. The loss function and weight parameters are elaborated. The produced dataset is used to train the network under different loss weight parameters, and the fused images are evaluated based on different image evaluation metrics. The results show that the fused underwater images are more detailed. Compared with light intensity images, the information entropy and standard deviation of the proposed method increase by 24.48% and 139%. The image processing results are better than other fusion-based methods. In addition, the improved U-net network structure is used to extract features for image segmentation. The results show that the target segmentation based on the proposed method is feasible under turbid water. The proposed method does not require manual adjustment of weight parameters, has faster operation speed, and has strong robustness and self-adaptability, which is important for research in vision fields, such as ocean detection and underwater target recognition.Since light propagation in water bodies is subject to absorption and scattering effects, underwater images using only conventional intensity cameras will suffer from low brightness, blurred images, and loss of details. In this paper, a deep fusion network is applied to underwater polarization images; that is, the underwater polarization images are fused with intensity images using the deep learning method. To construct a training dataset, we establish an experimental setup to obtain underwater polarization images and perform appropriate transformations to expand the dataset. Next, an end-to-end learning framework based on unsupervised learning and guided by an attention mechanism is constructed for fusing polarization and light intensity images. The loss function and weight parameters are elaborated. The produced dataset is used to train the network under different loss weight parameters, and the fused images are evaluated based on different image evaluation metrics. The results show that the fused underwater images are more detailed. Compared with light intensity images, the information entropy and standard deviation of the proposed method increase by 24.48% and 139%. The image processing results are better than other fusion-based methods. In addition, the improved U-net network structure is used to extract features for image segmentation. The results show that the target segmentation based on the proposed method is feasible under turbid water. The proposed method does not require manual adjustment of weight parameters, has faster operation speed, and has strong robustness and self-adaptability, which is important for research in vision fields, such as ocean detection and underwater target recognition.
Since light propagation in water bodies is subject to absorption and scattering effects, underwater images using only conventional intensity cameras will suffer from low brightness, blurred images, and loss of details. In this paper, a deep fusion network is applied to underwater polarization images; that is, the underwater polarization images are fused with intensity images using the deep learning method. To construct a training dataset, we establish an experimental setup to obtain underwater polarization images and perform appropriate transformations to expand the dataset. Next, an end-to-end learning framework based on unsupervised learning and guided by an attention mechanism is constructed for fusing polarization and light intensity images. The loss function and weight parameters are elaborated. The produced dataset is used to train the network under different loss weight parameters, and the fused images are evaluated based on different image evaluation metrics. The results show that the fused underwater images are more detailed. Compared with light intensity images, the information entropy and standard deviation of the proposed method increase by 24.48% and 139%. The image processing results are better than other fusion-based methods. In addition, the improved U-net network structure is used to extract features for image segmentation. The results show that the target segmentation based on the proposed method is feasible under turbid water. The proposed method does not require manual adjustment of weight parameters, has faster operation speed, and has strong robustness and self-adaptability, which is important for research in vision fields, such as ocean detection and underwater target recognition.
Audience Academic
Author Cheng, Haoyuan
Zhu, Jinchi
Chu, Jinkui
Zhang, Deqing
Yu, Hao
AuthorAffiliation 2 Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China; 201664058@mail.dlut.edu.cn (H.Y.); chujk@dlut.edu.cn (J.C.)
1 College of Engineering, Ocean University of China, Qingdao 266100, China; zhangdeqing@stu.ouc.edu.cn (D.Z.); zjc@ouc.edu.cn (J.Z.)
AuthorAffiliation_xml – name: 2 Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China; 201664058@mail.dlut.edu.cn (H.Y.); chujk@dlut.edu.cn (J.C.)
– name: 1 College of Engineering, Ocean University of China, Qingdao 266100, China; zhangdeqing@stu.ouc.edu.cn (D.Z.); zjc@ouc.edu.cn (J.Z.)
Author_xml – sequence: 1
  givenname: Haoyuan
  surname: Cheng
  fullname: Cheng, Haoyuan
– sequence: 2
  givenname: Deqing
  surname: Zhang
  fullname: Zhang, Deqing
– sequence: 3
  givenname: Jinchi
  surname: Zhu
  fullname: Zhu, Jinchi
– sequence: 4
  givenname: Hao
  surname: Yu
  fullname: Yu, Hao
– sequence: 5
  givenname: Jinkui
  orcidid: 0000-0001-5742-8460
  surname: Chu
  fullname: Chu, Jinkui
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37420760$$D View this record in MEDLINE/PubMed
BookMark eNp1kk1v1DAQhiNURD_gwB9AkbgA0raOHSfOCS0thZUWwaF7jib2JOtVYi-206o98dPr3S2rtgL5YHv8zuPx6zlODow1mCRvM3LKWEXOPGUZ5bzKXyRHWU7ziaCUHDxaHybH3q8IoYwx8So5ZGVOSVmQo-TPwih0NxDQpVfgOgzpBQaUQVuTLoLu9Z02XfrL9uD0HWzDswE6TC9Hv9lM-846HZZD-gU8qnSTZvy4RnetN_s5gjMbBBiVTkNAs2X8QLkEo_3wOnnZQu_xzcN8kiwuv16df5_Mf36bnU_nE8lJFSaosGigLSEjJRVlLgvaKM6btmSc8BaLqiBMZm2BmRQNVKrkgqlSqZjDJQI7SWY7rrKwqtdOD-Buawu63gas62pwQcseayqqCnPkDCjPs5aCVNAUVVUKSQQhJLI-7VijWcPtDfT9HpiRevMl9f5LovjzTrwemwGVjAY46J9U8PTE6GXd2euIYoTlRETChweCs79H9KEetJfY92DQjj7WyzgtRUZ4lL5_Jl3Z0ZlobFTRKhpXFTSqTneqDuJztWltvFjGoXDQMvZWq2N8Gi3MBSOkiAnvHr9hX_zfPoqCs51AOuu9w7aWOmy7JZJ1_09bPj7L-L-F95r-6Cg
CitedBy_id crossref_primary_10_3390_jmse11081603
crossref_primary_10_3390_e25081215
crossref_primary_10_3390_s24010273
crossref_primary_10_3390_rs15184565
crossref_primary_10_1109_ACCESS_2023_3340207
crossref_primary_10_3390_s24020498
Cites_doi 10.1109/48.50695
10.1364/OE.24.009826
10.1109/LGRS.2010.2046715
10.1016/j.inffus.2019.07.010
10.1016/j.inffus.2006.02.001
10.14429/dsj.61.705
10.1109/TIP.2019.2955241
10.1016/0167-8655(89)90003-2
10.1016/j.inffus.2016.12.001
10.1117/12.958279
10.1007/s11802-020-4399-z
10.1109/JOE.2010.2052691
10.1016/j.patcog.2004.03.010
10.1016/j.inffus.2016.02.001
10.3390/s21217030
10.1016/j.compbiomed.2021.104699
10.1145/3072959.3073609
10.1109/TPAMI.2008.85
10.1016/j.inffus.2018.02.004
10.7717/peerj-cs.364
10.1080/01431161.2019.1685725
10.1364/OL.384189
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/s23125594
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_2899e4e53a2541f2acdab69978c08000
10.3390/s23125594
PMC10303408
A758483006
37420760
10_3390_s23125594
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 52175265
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
ALIPV
NPM
3V.
7XB
8FK
AZQEC
COVID
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ADRAZ
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c509t-ede6baf7a1072874c62bd55bf73505fe69603c1f6e1c8ba9d7583d7ddaf75cea3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Fri Oct 03 12:38:12 EDT 2025
Sun Oct 26 03:46:30 EDT 2025
Tue Sep 30 17:13:42 EDT 2025
Thu Oct 02 11:35:01 EDT 2025
Tue Oct 07 07:13:18 EDT 2025
Mon Oct 20 17:21:06 EDT 2025
Thu Apr 03 07:03:45 EDT 2025
Thu Apr 24 22:55:56 EDT 2025
Thu Oct 16 04:33:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords polarization
underwater target detection
attention mechanism
image fusion
unsupervised learning
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-ede6baf7a1072874c62bd55bf73505fe69603c1f6e1c8ba9d7583d7ddaf75cea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5742-8460
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s23125594
PMID 37420760
PQID 2829874962
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_2899e4e53a2541f2acdab69978c08000
unpaywall_primary_10_3390_s23125594
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10303408
proquest_miscellaneous_2835278105
proquest_journals_2829874962
gale_infotracacademiconefile_A758483006
pubmed_primary_37420760
crossref_citationtrail_10_3390_s23125594
crossref_primary_10_3390_s23125594
PublicationCentury 2000
PublicationDate 20230615
PublicationDateYYYYMMDD 2023-06-15
PublicationDate_xml – month: 6
  year: 2023
  text: 20230615
  day: 15
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Cheng (ref_3) 2020; 41
Pajares (ref_8) 2004; 37
Li (ref_1) 2019; 29
Huang (ref_5) 2016; 24
Liu (ref_13) 2017; 36
Liu (ref_18) 2020; 55
Jaffe (ref_20) 1990; 15
McGlamery (ref_19) 1980; 208
ref_23
Ma (ref_21) 2016; 31
Miller (ref_2) 2010; 35
Toet (ref_7) 1989; 9
Naidu (ref_22) 2011; 61
Rahmani (ref_11) 2010; 7
Kalantari (ref_14) 2017; 36
Cheng (ref_4) 2020; 19
ref_9
Jolliffe (ref_12) 2002; 87
Zhang (ref_17) 2020; 45
Treibitz (ref_6) 2008; 31
Nencini (ref_10) 2007; 8
Ma (ref_15) 2019; 45
Elzeki (ref_16) 2021; 7
Zunair (ref_24) 2021; 136
References_xml – volume: 15
  start-page: 101
  year: 1990
  ident: ref_20
  article-title: Computer modeling and the design of optimal underwater imaging systems
  publication-title: IEEE J. Ocean. Eng.
  doi: 10.1109/48.50695
– volume: 24
  start-page: 9826
  year: 2016
  ident: ref_5
  article-title: Underwater image recovery considering polarization effects of objects
  publication-title: Opt. Express
  doi: 10.1364/OE.24.009826
– ident: ref_9
– volume: 7
  start-page: 746
  year: 2010
  ident: ref_11
  article-title: An adaptive IHS pan-sharpening method
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2010.2046715
– volume: 55
  start-page: 1
  year: 2020
  ident: ref_18
  article-title: Remote sensing image fusion based on two-stream fusion network
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2019.07.010
– volume: 8
  start-page: 143
  year: 2007
  ident: ref_10
  article-title: Remote sensing image fusion using the curvelet transform
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2006.02.001
– volume: 61
  start-page: 479
  year: 2011
  ident: ref_22
  article-title: Image fusion technique using multi-resolution singular value decomposition
  publication-title: Def. Sci. J.
  doi: 10.14429/dsj.61.705
– volume: 29
  start-page: 4376
  year: 2019
  ident: ref_1
  article-title: An underwater image enhancement benchmark dataset and beyond
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2019.2955241
– volume: 9
  start-page: 245
  year: 1989
  ident: ref_7
  article-title: Image fusion by a ratio of low-pass pyramid
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/0167-8655(89)90003-2
– volume: 36
  start-page: 191
  year: 2017
  ident: ref_13
  article-title: Multi-focus image fusion with a deep convolutional neural network
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2016.12.001
– volume: 208
  start-page: 221
  year: 1980
  ident: ref_19
  article-title: A computer model for underwater camera systems
  publication-title: Ocean. Opt. VI
  doi: 10.1117/12.958279
– volume: 19
  start-page: 1042
  year: 2020
  ident: ref_4
  article-title: Real-time position and attitude estimation for homing and docking of an autonomous underwater vehicle based on bionic polarized optical guidance
  publication-title: J. Ocean. Univ. China
  doi: 10.1007/s11802-020-4399-z
– volume: 35
  start-page: 663
  year: 2010
  ident: ref_2
  article-title: Autonomous underwater vehicle navigation
  publication-title: IEEE J. Ocean. Eng.
  doi: 10.1109/JOE.2010.2052691
– volume: 37
  start-page: 1855
  year: 2004
  ident: ref_8
  article-title: A wavelet-based image fusion tutorial
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2004.03.010
– volume: 31
  start-page: 100
  year: 2016
  ident: ref_21
  article-title: Infrared and visible image fusion via gradient transfer and total variation minimization
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2016.02.001
– ident: ref_23
  doi: 10.3390/s21217030
– volume: 136
  start-page: 104699
  year: 2021
  ident: ref_24
  article-title: Sharp U-Net: Depthwise Convolutional Network for Biomedical Image Segmentation
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.104699
– volume: 36
  start-page: 1
  year: 2017
  ident: ref_14
  article-title: Deep high dynamic range imaging of dynamic scenes
  publication-title: ACM Trans. Graph.
  doi: 10.1145/3072959.3073609
– volume: 31
  start-page: 385
  year: 2008
  ident: ref_6
  article-title: Active polarization descattering
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2008.85
– volume: 87
  start-page: 513
  year: 2002
  ident: ref_12
  article-title: Principal Component Analysis
  publication-title: J. Mark. Res.
– volume: 45
  start-page: 153
  year: 2019
  ident: ref_15
  article-title: Infrared and visible image fusion methods and applications: A survey
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2018.02.004
– volume: 7
  start-page: e364
  year: 2021
  ident: ref_16
  article-title: A novel perceptual two layer image fusion using deep learning for imbalanced COVID-19 dataset
  publication-title: PeerJ Comput. Sci.
  doi: 10.7717/peerj-cs.364
– volume: 41
  start-page: 4947
  year: 2020
  ident: ref_3
  article-title: Underwater polarization patterns considering single Rayleigh scattering of water molecules
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2019.1685725
– volume: 45
  start-page: 1507
  year: 2020
  ident: ref_17
  article-title: PFNet: An unsupervised deep network for polarization image fusion
  publication-title: Opt. Lett.
  doi: 10.1364/OL.384189
SSID ssj0023338
Score 2.4531476
Snippet Since light propagation in water bodies is subject to absorption and scattering effects, underwater images using only conventional intensity cameras will...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 5594
SubjectTerms Algorithms
attention mechanism
Benchmarking
Deep learning
Entropy
image fusion
Image processing
Light
Machine learning
Methods
polarization
Sensors
underwater target detection
unsupervised learning
Unsupervised Machine Learning
Water
Wavelet transforms
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB6hXoAD4o2hoOUhwcWq7bXX9jEFooJUxKGRerNmH24tOU6UOKroqT-dGduxEh7iwi2Jx9Lu7MzsfNnZbwDe6QBLVSZkvFpLP45CTS5lIz9ElYaGdtS8K8Y8_aZOZvHX8-R8p9UX14T19MC94o4YELjYJRIJyoRlhMaiVjmBH-bIDjq0HmT5FkwNUEsS8up5hCSB-qM1ZTGcO8d7u09H0v97KN7Zi36tk7y9aZb44wrremcTmt6He0P2KCb9qB_ALdc8hLs7nIKP4KbrZHRFKeRKnHVl3uKTa7uCq0bM2qqurklOfGdIO9zBFF_mFFXEdMP_nIlJfbFYVe3lXBzTDmcFv9asN0sOKvx9YGS9ENhYMWnbvl5SnDq-Q1yt549hNv189vHEH9os-IayhdZ31imNZYqEBJn93qhI2yTRZSopPSqdIpAjTVgqF5pMY24JYkibWkvvJMahfAIHzaJxz0BIZ1JUSMFcmTgLMsQsD1yg6IM0qJwHH7bqL8zAQc6tMOqCsAivVDGulAdvRtFlT7zxJ6FjXsNRgLmyux_IgorBgop_WZAH79kCCvZoGozB4WICTYm5sYoJzTfOJIUnDw63RlIMrr4u-CiatJaryIPX42NyUj55wcYtNixDeW6aUS7rwdPepsYxyzSO-HjUg2zP2vYmtf-kqS47InBuESfjIPPg7WiYf1fW8_-hrBdwJyL34mK5MDmEg3a1cS8pLWv1q84DfwLkZjef
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB6V9AAcKp7FUNDykOBi1fbaa_uAUAKNClKjCjVSb9Z6d51GcpyQ2KrKiZ_OjF8kvG5-jKV9zMzO5539BuBN6shMZAEqb5py2_fcFE1Ke7YrRegqXFHjOhnzbCJOp_6Xy-ByDybdWRhKq-x8Yu2o9VLRP_Jj2vGLQj8W3ofVN5uqRtHualdCQ7alFfT7mmLsFux7xIw1gP3RyeT8aw_BOCKyhl-II9g_3mB0QzG1v7Mq1eT9f7rorTXq9_zJ21WxkjfXMs-3FqfxPThoo0o2bNTgPuyZ4gHc3eIafAg_6gpH1xhartlFnf7NPpmyTsQq2LSc5_PvKMfOCeq2ZzPZ5wV6Gzau6I8aG-YzHI_yasFGuPJpRp8Vm2pFzobuW6bWGZOFZsOybPIo2Zmhs8XzzeIRTMcnFx9P7bb8gq0wiihto41IZRZKRIjEiq-El-ogSLOQY9iUGYHghys3E8ZVUSpjjdCD61Br_CZQRvLHMCiWhXkCjBsVSiHRyQvlR04kZRQ7xhF4wZUUxoJ33fAnquUmpxIZeYIYhWYq6WfKgle96Koh5Pib0IjmsBcgDu36wXI9S1qTTAhqGt8EXCJIdjNPKi1TESOsJvZ1x7HgLWlAQpaOjVGyPbCAXSLOrGSI_fUjjm7LgqNOSZLWBWySXwprwcv-NRov7cjIwiwrksH4N4wwxrXgsNGpvs089D3aNrUg2tG2nU7tvinmVzVBOJWO474TWfC6V8x_D9bT_7f-Gdzx0HAoPc4NjmBQrivzHAOxMn3RWtdPayk2Yg
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF6h9AAcKM9iKGh5SHBxY3vttX1CLhAVpFY9NFI5WftyapE4UWK3oid-OjP2xkoKSEjc4nhW9tizM994Z74l5K30RMGLCIxXSuaGgS9hSunA9QWPfQURNW2LMY9P-NE4_HoenW908WNZJaTiZeuksQvLhQjmDQM29IMhoN9wuNDFh0v7LcnnCU8AMYSQtO_wCND4gOyMT06zb21TkR3dEQoxyO6HK4AzCKLDrTDUsvX_7pM3gtLNgsnbTbUQP67EdLoRjUa7RKz16IpQvh80tTxQ1zcoHv9H0fvknoWqNOts6wG5ZaqH5O4GgeEj8rPdNukK8OqSnrU15fSTqdvqroqO63JaXoMcPcX82TZ80i8zcGF01OAVaTadzJdlfTGjhxBONcVh1apZoAfDY0v_OqGi0jSr6644kx4bbFguV7PHZDz6fPbxyLV7OrgKoEntGm24FEUsIO1Eqn3FA6mjSBYxAyxWGA7vkCm_4MZXiRSphnyG6VhrGBMpI9gTMqjmlXlKKDMqFlxA5OAqTLxEiCT1jMfhB1OCG4e8X7_iXFnCc9x3Y5pD4oPWkPfW4JDXveiiY_n4k9Ah2kkvgMTc7R_z5SS38zzH_NWEJmICMm-_CITSQvIUcnWkdPc8h7xDK8vRfcDNKGG7IEAlJOLKM9A3TBj4Qofsrw0xt35lleO6Nzy1lAcOedWfBo-AyzyiMvMGZQBUxwkAZ4fsdXbb3zOLwwDXYh2SbFn0llLbZ6ryomUdx_3oWOglDnnTG__fH9azf5J6Tu4EABqx9M6P9smgXjbmBYC8Wr608_gXSz5N1w
  priority: 102
  providerName: Unpaywall
Title Underwater Target Detection Utilizing Polarization Image Fusion Algorithm Based on Unsupervised Learning and Attention Mechanism
URI https://www.ncbi.nlm.nih.gov/pubmed/37420760
https://www.proquest.com/docview/2829874962
https://www.proquest.com/docview/2835278105
https://pubmed.ncbi.nlm.nih.gov/PMC10303408
https://www.mdpi.com/1424-8220/23/12/5594/pdf?version=1686811240
https://doaj.org/article/2899e4e53a2541f2acdab69978c08000
UnpaywallVersion publishedVersion
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: HH5
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ABDBF
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ADMLS
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (selected full-text only)
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: RPM
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 8FG
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M48
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dj5NAEJ_cx4P6YPwWPZv1I-oLCiws8GBMq1dPkzaNuSa9J7IsS68Jpb0Wcp5P_unOACWtnr40LSzNfszszI-Z_Q3Aq9iSqUg9FN445qbr2DGqVOKYthS-rdCihlUy5mAoTsbut4k32YNNWnMzgetroR3Vkxqvsnc_Lq4-osJ_IMSJkP39Gn0U8ozd18sLk-pJUdy1Ka6xD4dos0Iq6jBw2_iCwxGZ1TxDu_-wY50qEv-_t-otW_VnHuWNMl_Kq0uZZVtGqn8HbjfeJevW4nAX9nR-D25tcQ7eh19VpaNLdDFX7LRKA2efdVElZOVsXMyy2U9sx0Y0L80ZTfZ1jrsO65f0Zo11symOvjifsx5awITRY_m6XNKmQ78bxtYpk3nCukVR51OygaYzxrP1_AGM-8enn07MpgyDqdCbKEydaBHL1JeIFIkdXwknTjwvTn2O7lOqBYIgruxUaFsFsQwThCA88ZMEn_GUlvwhHOSLXD8GxrXypZC42QvlBlYgZRBa2hL4hSsptAFvN9MfqYajnEplZBFiFVqpqF0pA160TZc1Mcd1jXq0hm0D4tKuLixW06hRzYggp3a1xyWCZTt1pEpkLEKE18TCblkGvCEJiEgGsTNKNgcXcEjEnRV1cbxuwHH7MuBoIyTRRpIjClXjrIXCMeB5exuVmCIzMteLktqgH-wH6Osa8KiWqbbP3HcdCp8aEOxI286gdu_ks_OKKJxKyHHXCgx42Qrmvyfryf97_xRuOqg4lCZne0dwUKxK_QwdsiLuwL4_8fEz6H_pwGHveDj63qlebnQqrcNr4-Goe_YbAMM-yw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcigcEG8MBZaX4GLV9tpr-4BQSokS2lQcEqk3s95dp5ESJySOonLiF_EbmbEdN-F1682xx9Huzusb7-wMwOvUkZnIAhTeNOW277kpqpT2bFeK0FXoUeMyGbN3KjoD__NZcLYDP9dnYSitcm0TS0Otp4q-kR_Qjl8U-rHwPsy-2dQ1inZX1y00KrE4NhcrDNkW77tHyN83ntf-1P_YseuuArZC51jYRhuRyiyUGPhQsXclvFQHQZqFHNFAZgRieq7cTBhXRamMNSJqrkOt8Z1AGcnxf6_BdZ-jLUH9Cc8uAzyO8V5VvYjz2DlYIHYixO5v-byyNcCfDmDDA_6enbm3zGfyYiXH4w3X174Nt2rMylqVkN2BHZPfhZsblQzvwY-yf9IKgeuc9cvkcnZkijLNK2eDYjQefUc69oUC6frkJ-tO0Jax9pK-17HWeIirXZxP2CH6Vc3otXyxnJEpo991Hdghk7lmraKosjRZz9DJ5dFich8GV8KGB7CbT3PzCBg3KpRCogsRyo-cSMoodowj8IIrKYwF79bLn6i68jk14BgnGAERp5KGUxa8bEhnVbmPvxEdEg8bAqrQXd6YzodJrfAJBbLGNwGXGIK7mSeVlqmIMWin2u6OY8FbkoCE7AgORsn6OAROiSpyJS2crx-hkAkL9tdCktQGZpFcqoMFL5rHaBpov0fmZrokGkTXYYQI2oKHlUw1Y-ah79GmrAXRlrRtTWr7ST46L8uPU2M67juRBa8awfz3Yj3-_-ifw16n3ztJTrqnx0_ghodKRIl4brAPu8V8aZ4i5CvSZ6WeMfh61Yr9C-awbnc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIvE4IN4YCiwvwcWK7bXX9gGhlBA1lFY9NFJuZr27TiMlTkgcReXE7-LXMWM7bsLr1luSHUe7O2_v7DcAr1NHZiILUHjTlNu-56aoUtqzXSlCV6FHjctizKNjcdD3Pw-CwQ78XN-FobLKtU0sDbWeKnpH3qITvyj0Y-G1sros4qTT_TD7ZlMHKTppXbfTqETk0JyvMH1bvO91kNdvPK_76fTjgV13GLAVOsrCNtqIVGahxCSIgN-V8FIdBGkWcowMMiMwvufKzYRxVZTKWGN0zXWoNT4TKCM5_u8VuBpyHlM5YTi4SPY45n4VkhEOOq0FxlEUvftb_q9sE_CnM9jwhr9Xal5f5jN5vpLj8YYb7N6GW3X8ytqVwN2BHZPfhZsbqIb34EfZS2mFQeycnZaF5qxjirLkK2f9YjQefUc6dkJJdX0LlPUmaNdYd0nv7lh7PMTdLs4mbB99rGb0WL5Yzsis0fcaE3bIZK5Zuyiqik12ZOgW82gxuQ_9S2HDA9jNp7l5BIwbFUoh0Z0I5UdOJGUUO8YR-IErKYwF79bbn6gaBZ2acYwTzIaIU0nDKQteNqSzCvrjb0T7xMOGgNC6yx-m82FSK39CSa3xTcAlpuNu5kmlZSpiTOAJ591xLHhLEpCQTcHJKFlfjcAlETpX0sb1-hFHA2nB3lpIktrYLJIL1bDgRTOMZoLOfmRupkuiwUg7jDCatuBhJVPNnHnoe3RAa0G0JW1bi9oeyUdnJRQ5NanjvhNZ8KoRzH9v1uP_z_45XEOVTr70jg-fwA0PdYhq8txgD3aL-dI8xeivSJ-Vasbg62Xr9S_rjXK6
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF6h9AAcKM9iKGh5SHBxY3vttX1CLhAVpFY9NFI5WftyapE4UWK3oid-OjP2xkoKSEjc4nhW9tizM994Z74l5K30RMGLCIxXSuaGgS9hSunA9QWPfQURNW2LMY9P-NE4_HoenW908WNZJaTiZeuksQvLhQjmDQM29IMhoN9wuNDFh0v7LcnnCU8AMYSQtO_wCND4gOyMT06zb21TkR3dEQoxyO6HK4AzCKLDrTDUsvX_7pM3gtLNgsnbTbUQP67EdLoRjUa7RKz16IpQvh80tTxQ1zcoHv9H0fvknoWqNOts6wG5ZaqH5O4GgeEj8rPdNukK8OqSnrU15fSTqdvqroqO63JaXoMcPcX82TZ80i8zcGF01OAVaTadzJdlfTGjhxBONcVh1apZoAfDY0v_OqGi0jSr6644kx4bbFguV7PHZDz6fPbxyLV7OrgKoEntGm24FEUsIO1Eqn3FA6mjSBYxAyxWGA7vkCm_4MZXiRSphnyG6VhrGBMpI9gTMqjmlXlKKDMqFlxA5OAqTLxEiCT1jMfhB1OCG4e8X7_iXFnCc9x3Y5pD4oPWkPfW4JDXveiiY_n4k9Ah2kkvgMTc7R_z5SS38zzH_NWEJmICMm-_CITSQvIUcnWkdPc8h7xDK8vRfcDNKGG7IEAlJOLKM9A3TBj4Qofsrw0xt35lleO6Nzy1lAcOedWfBo-AyzyiMvMGZQBUxwkAZ4fsdXbb3zOLwwDXYh2SbFn0llLbZ6ryomUdx_3oWOglDnnTG__fH9azf5J6Tu4EABqx9M6P9smgXjbmBYC8Wr608_gXSz5N1w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Underwater+Target+Detection+Utilizing+Polarization+Image+Fusion+Algorithm+Based+on+Unsupervised+Learning+and+Attention+Mechanism&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Cheng%2C+Haoyuan&rft.au=Zhang%2C+Deqing&rft.au=Zhu%2C+Jinchi&rft.au=Yu%2C+Hao&rft.date=2023-06-15&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=23&rft.issue=12&rft.spage=5594&rft_id=info:doi/10.3390%2Fs23125594&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon