The sleep-wake cycle regulates brain interstitial fluid tau in mice and CSF tau in humans

The sleep-wake cycle regulates interstitial fluid (ISF) and cerebrospinal fluid (CSF) levels of β-amyloid (Aβ) that accumulates in Alzheimer’s disease (AD). Furthermore, chronic sleep deprivation (SD) increases Aβ plaques. However, tau, not Aβ, accumulation appears to drive AD neurodegeneration. We...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 363; no. 6429; pp. 880 - 884
Main Authors Holth, Jerrah K., Fritschi, Sarah K., Wang, Chanung, Pedersen, Nigel P., Cirrito, John R., Mahan, Thomas E., Finn, Mary Beth, Manis, Melissa, Geerling, Joel C., Fuller, Patrick M., Lucey, Brendan P., Holtzman, David M.
Format Journal Article
LanguageEnglish
Published United States American Association for the Advancement of Science 22.02.2019
The American Association for the Advancement of Science
Subjects
Online AccessGet full text
ISSN0036-8075
1095-9203
1095-9203
DOI10.1126/science.aav2546

Cover

Abstract The sleep-wake cycle regulates interstitial fluid (ISF) and cerebrospinal fluid (CSF) levels of β-amyloid (Aβ) that accumulates in Alzheimer’s disease (AD). Furthermore, chronic sleep deprivation (SD) increases Aβ plaques. However, tau, not Aβ, accumulation appears to drive AD neurodegeneration. We tested whether ISF/CSF tau and tau seeding and spreading were influenced by the sleep-wake cycle and SD. Mouse ISF tau was increased ~90% during normal wakefulness versus sleep and ~100% during SD. Human CSF tau also increased more than 50% during SD. In a tau seeding-and-spreading model, chronic SD increased tau pathology spreading. Chemogenetically driven wakefulness in mice also significantly increased both ISF Aβ and tau. Thus, the sleep-wake cycle regulates ISF tau, and SD increases ISF and CSF tau as well as tau pathology spreading.
AbstractList The sleep-wake cycle regulates interstitial fluid (ISF) and cerebrospinal fluid (CSF) levels of β-amyloid (Aβ) that accumulates in Alzheimer's disease (AD). Furthermore, chronic sleep deprivation (SD) increases Aβ plaques. However, tau, not Aβ, accumulation appears to drive AD neurodegeneration. We tested whether ISF/CSF tau and tau seeding and spreading were influenced by the sleep-wake cycle and SD. Mouse ISF tau was increased ~90% during normal wakefulness versus sleep and ~100% during SD. Human CSF tau also increased more than 50% during SD. In a tau seeding-and-spreading model, chronic SD increased tau pathology spreading. Chemogenetically driven wakefulness in mice also significantly increased both ISF Aβ and tau. Thus, the sleep-wake cycle regulates ISF tau, and SD increases ISF and CSF tau as well as tau pathology spreading.The sleep-wake cycle regulates interstitial fluid (ISF) and cerebrospinal fluid (CSF) levels of β-amyloid (Aβ) that accumulates in Alzheimer's disease (AD). Furthermore, chronic sleep deprivation (SD) increases Aβ plaques. However, tau, not Aβ, accumulation appears to drive AD neurodegeneration. We tested whether ISF/CSF tau and tau seeding and spreading were influenced by the sleep-wake cycle and SD. Mouse ISF tau was increased ~90% during normal wakefulness versus sleep and ~100% during SD. Human CSF tau also increased more than 50% during SD. In a tau seeding-and-spreading model, chronic SD increased tau pathology spreading. Chemogenetically driven wakefulness in mice also significantly increased both ISF Aβ and tau. Thus, the sleep-wake cycle regulates ISF tau, and SD increases ISF and CSF tau as well as tau pathology spreading.
Sleep may protect the brain from ADTwo main proteins accumulate in the brain in Alzheimer's disease (AD), β-amyloid (Aβ) and tau. Aβ appears to instigate AD, but tau appears to drive brain damage and cognitive decline. Sleep deprivation is known to increase Aβ acutely and chronically. Now, Holth et al. show that chronic sleep deprivation strongly increases tau acutely over hours and also drives tau pathology spreading in the brains of mice and humans (see the Perspective by Noble and Spires-Jones). Thus, sleep appears to have a direct protective effect on a key protein that drives AD pathology.Science, this issue p. 880; see also p. 813The sleep-wake cycle regulates interstitial fluid (ISF) and cerebrospinal fluid (CSF) levels of β-amyloid (Aβ) that accumulates in Alzheimer’s disease (AD). Furthermore, chronic sleep deprivation (SD) increases Aβ plaques. However, tau, not Aβ, accumulation appears to drive AD neurodegeneration. We tested whether ISF/CSF tau and tau seeding and spreading were influenced by the sleep-wake cycle and SD. Mouse ISF tau was increased ~90% during normal wakefulness versus sleep and ~100% during SD. Human CSF tau also increased more than 50% during SD. In a tau seeding-and-spreading model, chronic SD increased tau pathology spreading. Chemogenetically driven wakefulness in mice also significantly increased both ISF Aβ and tau. Thus, the sleep-wake cycle regulates ISF tau, and SD increases ISF and CSF tau as well as tau pathology spreading.
The sleep-wake cycle regulates interstitial fluid (ISF) and cerebrospinal fluid (CSF) levels of β-amyloid (Aβ) that accumulates in Alzheimer’s disease (AD). Furthermore, chronic sleep deprivation (SD) increases Aβ plaques. However, tau, not Aβ, accumulation appears to drive AD neurodegeneration. We tested whether ISF/CSF tau and tau seeding and spreading were influenced by the sleep-wake cycle and SD. Mouse ISF tau was increased ~90% during normal wakefulness versus sleep and ~100% during SD. Human CSF tau also increased more than 50% during SD. In a tau seeding-and-spreading model, chronic SD increased tau pathology spreading. Chemogenetically driven wakefulness in mice also significantly increased both ISF Aβ and tau. Thus, the sleep-wake cycle regulates ISF tau, and SD increases ISF and CSF tau as well as tau pathology spreading.
The sleep-wake cycle regulates interstitial fluid (ISF) and cerebrospinal (CSF) levels of amyloid-β (Aβ) that accumulates in Alzheimer disease (AD) and chronic sleep deprivation (SD) increases Aβ plaques. However, tau not Aβ accumulation appears to drive AD neurodegeneration. Therefore, we tested whether ISF/CSF tau and tau seeding/spreading was influenced by the sleep-wake cycle and SD. Mouse ISF tau was increased ~90% during normal wakefulness vs. sleep and ~100% during SD. Human CSF tau also increased over 50% during SD. In a tau seeding and spreading model, chronic SD increased tau pathology spreading. Chemogenetically-driven wakefulness in mice also significantly increased both ISF Aβ and tau. Thus, the sleep-wake cycle regulates ISF tau and sleep deprivation increases ISF and CSF tau as well as tau pathology spreading. Brain interstitial fluid tau is increased during wakefulness and with sleep deprivation, which is relevant for Alzheimer disease and other tauopathies.
Two main proteins accumulate in the brain in Alzheimer's disease (AD), β-amyloid (Aβ) and tau. Aβ appears to instigate AD, but tau appears to drive brain damage and cognitive decline. Sleep deprivation is known to increase Aβ acutely and chronically. Now, Holth et al. show that chronic sleep deprivation strongly increases tau acutely over hours and also drives tau pathology spreading in the brains of mice and humans (see the Perspective by Noble and Spires-Jones). Thus, sleep appears to have a direct protective effect on a key protein that drives AD pathology. Science , this issue p. 880 ; see also p. 813 Extracellular tau is increased during wakefulness and with sleep deprivation, with potential relevance for Alzheimer’s disease. The sleep-wake cycle regulates interstitial fluid (ISF) and cerebrospinal fluid (CSF) levels of β-amyloid (Aβ) that accumulates in Alzheimer’s disease (AD). Furthermore, chronic sleep deprivation (SD) increases Aβ plaques. However, tau, not Aβ, accumulation appears to drive AD neurodegeneration. We tested whether ISF/CSF tau and tau seeding and spreading were influenced by the sleep-wake cycle and SD. Mouse ISF tau was increased ~90% during normal wakefulness versus sleep and ~100% during SD. Human CSF tau also increased more than 50% during SD. In a tau seeding-and-spreading model, chronic SD increased tau pathology spreading. Chemogenetically driven wakefulness in mice also significantly increased both ISF Aβ and tau. Thus, the sleep-wake cycle regulates ISF tau, and SD increases ISF and CSF tau as well as tau pathology spreading.
Author Wang, Chanung
Holtzman, David M.
Holth, Jerrah K.
Mahan, Thomas E.
Lucey, Brendan P.
Pedersen, Nigel P.
Manis, Melissa
Cirrito, John R.
Finn, Mary Beth
Fuller, Patrick M.
Geerling, Joel C.
Fritschi, Sarah K.
AuthorAffiliation 2 Department of Neurology, Emory Epilepsy Center and Program in Neuroscience, Emory University, Atlanta, GA 30322, USA
3 Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
1 Department of Neurology, Hope Center for Neurological Disorders, and Charles F. and Joanne Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
4 Department of Neurology, Beth Israel Deaconess Medical Center, Division of Sleep Medicine, Harvard Medical School, Boston, MA 02215, USA
AuthorAffiliation_xml – name: 1 Department of Neurology, Hope Center for Neurological Disorders, and Charles F. and Joanne Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
– name: 4 Department of Neurology, Beth Israel Deaconess Medical Center, Division of Sleep Medicine, Harvard Medical School, Boston, MA 02215, USA
– name: 2 Department of Neurology, Emory Epilepsy Center and Program in Neuroscience, Emory University, Atlanta, GA 30322, USA
– name: 3 Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
Author_xml – sequence: 1
  givenname: Jerrah K.
  surname: Holth
  fullname: Holth, Jerrah K.
– sequence: 2
  givenname: Sarah K.
  surname: Fritschi
  fullname: Fritschi, Sarah K.
– sequence: 3
  givenname: Chanung
  surname: Wang
  fullname: Wang, Chanung
– sequence: 4
  givenname: Nigel P.
  surname: Pedersen
  fullname: Pedersen, Nigel P.
– sequence: 5
  givenname: John R.
  surname: Cirrito
  fullname: Cirrito, John R.
– sequence: 6
  givenname: Thomas E.
  surname: Mahan
  fullname: Mahan, Thomas E.
– sequence: 7
  givenname: Mary Beth
  surname: Finn
  fullname: Finn, Mary Beth
– sequence: 8
  givenname: Melissa
  surname: Manis
  fullname: Manis, Melissa
– sequence: 9
  givenname: Joel C.
  surname: Geerling
  fullname: Geerling, Joel C.
– sequence: 10
  givenname: Patrick M.
  surname: Fuller
  fullname: Fuller, Patrick M.
– sequence: 11
  givenname: Brendan P.
  surname: Lucey
  fullname: Lucey, Brendan P.
– sequence: 12
  givenname: David M.
  surname: Holtzman
  fullname: Holtzman, David M.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30679382$$D View this record in MEDLINE/PubMed
BookMark eNp9kb1vFDEQxS0URC6BmgpkiSbNJl5_7NoNUnQiASkSBaGgsrzecc6Hz3vY3qD89zi6ywlSUFma-b3nmXkn6ChOERB625LztqXdRbYeooVzY-6p4N0LtGiJEo2ihB2hBSGsayTpxTE6yXlNSO0p9godM9L1ikm6QD9uV4BzANg2v81PwPbBBsAJ7uZgCmQ8JOMj9rFAysUXbwJ2YfYjLmauZbzxFrCJI15-u3qqreaNifk1eulMyPBm_56i71efbpefm5uv11-WlzeNFUSVBkYDg7JEWjeAVEYJB86IUY5ESqeUpT0B6uRgu44JxrjidHDCjZRKGCRhp-jjznc7DxsYLcSSTNDb5DcmPejJeP1vJ_qVvpvudcfbeh9VDc72Bmn6NUMueuOzhRBMhGnOmra94j3jlFf0wzN0Pc0p1vUqJbngXIi-Uu__nugwytPVK3CxA2yack7gDkhL9GOuep-r3udaFeKZwvpiip8eV_LhP7p3O906lykdvqFd31HKW_YHqBe1ag
CitedBy_id crossref_primary_10_1093_sleep_zsaa137
crossref_primary_10_1002_mds_29010
crossref_primary_10_3390_s22145372
crossref_primary_10_1007_s00401_020_02227_6
crossref_primary_10_1111_cns_14521
crossref_primary_10_1371_journal_pbio_3001412
crossref_primary_10_1016_j_nbd_2020_104820
crossref_primary_10_1016_j_reth_2024_09_014
crossref_primary_10_1080_07391102_2023_2276876
crossref_primary_10_3390_biology10111127
crossref_primary_10_1186_s12889_025_22338_7
crossref_primary_10_1016_j_neubiorev_2020_01_026
crossref_primary_10_3390_brainsci10070411
crossref_primary_10_1016_j_pneurobio_2021_102089
crossref_primary_10_1172_JCI169131
crossref_primary_10_3389_fnagi_2023_1185671
crossref_primary_10_3390_cells10112907
crossref_primary_10_1016_j_tins_2019_05_001
crossref_primary_10_1212_WNL_0000000000008866
crossref_primary_10_1016_j_tjpad_2024_100024
crossref_primary_10_1039_D2MO00061J
crossref_primary_10_1007_s11055_024_01585_y
crossref_primary_10_1016_j_neuron_2022_01_017
crossref_primary_10_1001_jamanetworkopen_2020_13191
crossref_primary_10_1093_sleep_zsz266
crossref_primary_10_3389_fnagi_2021_763264
crossref_primary_10_1016_j_brainres_2021_147669
crossref_primary_10_1016_j_sleep_2025_02_028
crossref_primary_10_3390_ph17030319
crossref_primary_10_1007_s44258_024_00021_7
crossref_primary_10_1016_j_nbd_2020_104832
crossref_primary_10_1097_CM9_0000000000001706
crossref_primary_10_3233_JAD_221048
crossref_primary_10_1038_s41598_021_86255_6
crossref_primary_10_1016_j_arr_2021_101335
crossref_primary_10_3390_brainsci14100978
crossref_primary_10_3390_molecules25235508
crossref_primary_10_1016_j_arr_2024_102481
crossref_primary_10_4049_jimmunol_1900838
crossref_primary_10_1080_03014460_2021_1998624
crossref_primary_10_1007_s11064_023_04086_5
crossref_primary_10_3390_biom11071004
crossref_primary_10_1080_0361073X_2023_2172949
crossref_primary_10_1097_GME_0000000000002027
crossref_primary_10_1016_j_tins_2022_05_007
crossref_primary_10_3390_ijms21031168
crossref_primary_10_3390_life13030613
crossref_primary_10_33611_trs_2023_003
crossref_primary_10_3389_fnins_2023_1185078
crossref_primary_10_1001_jamanetworkopen_2022_47115
crossref_primary_10_1016_j_mehy_2020_110283
crossref_primary_10_1093_sleep_zsaa149
crossref_primary_10_1093_sleep_zsab117
crossref_primary_10_1146_annurev_neuro_100322_112249
crossref_primary_10_3233_JPD_201988
crossref_primary_10_1016_j_biopsych_2021_02_973
crossref_primary_10_1001_jamanetworkopen_2020_14008
crossref_primary_10_1177_13872877241293812
crossref_primary_10_1002_dad2_12521
crossref_primary_10_1177_0271678X241230188
crossref_primary_10_3389_fnins_2024_1428085
crossref_primary_10_1016_j_neurot_2025_e00535
crossref_primary_10_1093_sleep_zsaa272
crossref_primary_10_1016_j_pneurobio_2023_102512
crossref_primary_10_1016_j_gene_2021_145894
crossref_primary_10_1007_s44254_024_00066_2
crossref_primary_10_5664_jcsm_9022
crossref_primary_10_1016_j_jalz_2019_06_3916
crossref_primary_10_1177_1529100620941808
crossref_primary_10_3389_fneur_2022_929569
crossref_primary_10_1096_fj_202101633R
crossref_primary_10_1016_j_bja_2023_05_025
crossref_primary_10_1007_s00018_019_03349_1
crossref_primary_10_1038_s41598_024_64817_8
crossref_primary_10_1017_S1092852920002114
crossref_primary_10_1111_cns_70305
crossref_primary_10_3233_JAD_221016
crossref_primary_10_1021_acs_analchem_3c04457
crossref_primary_10_1001_jamanetworkopen_2019_9891
crossref_primary_10_1016_j_neuroscience_2024_08_008
crossref_primary_10_3389_fnagi_2022_944283
crossref_primary_10_3389_fnins_2024_1436966
crossref_primary_10_1055_a_1958_0710
crossref_primary_10_1126_science_abb8255
crossref_primary_10_1080_02699052_2022_2037711
crossref_primary_10_3389_fphar_2021_655052
crossref_primary_10_1093_geronb_gbac137
crossref_primary_10_1002_ana_25702
crossref_primary_10_1016_j_sleep_2022_03_021
crossref_primary_10_1080_15402002_2022_2136671
crossref_primary_10_1038_s41582_024_00932_4
crossref_primary_10_1038_s41401_024_01269_w
crossref_primary_10_3389_fneur_2023_1272369
crossref_primary_10_3389_fnut_2022_1034743
crossref_primary_10_1016_j_cell_2020_04_049
crossref_primary_10_1007_s10571_022_01234_3
crossref_primary_10_1016_j_msard_2024_105456
crossref_primary_10_3389_fneur_2020_572850
crossref_primary_10_1177_0271678X221098145
crossref_primary_10_3390_brainsci13020292
crossref_primary_10_3389_fnagi_2021_683483
crossref_primary_10_1098_rsfs_2019_0092
crossref_primary_10_1038_s41593_025_01897_3
crossref_primary_10_1007_s40266_021_00891_1
crossref_primary_10_1007_s12017_023_08767_w
crossref_primary_10_1016_j_yfrne_2022_100986
crossref_primary_10_3389_fnins_2020_627330
crossref_primary_10_1111_imr_12896
crossref_primary_10_3233_JPD_191627
crossref_primary_10_1080_14656566_2021_1900116
crossref_primary_10_3389_fnagi_2021_663446
crossref_primary_10_1093_sleep_zsaa111
crossref_primary_10_3389_fnins_2020_525970
crossref_primary_10_7759_cureus_63448
crossref_primary_10_2147_NSS_S310351
crossref_primary_10_3390_brainsci11040426
crossref_primary_10_1111_jpi_12759
crossref_primary_10_1051_medsci_2020147
crossref_primary_10_1371_journal_pbio_3002684
crossref_primary_10_1186_s13024_022_00523_1
crossref_primary_10_1515_cclm_2022_0480
crossref_primary_10_1016_j_sleep_2023_05_014
crossref_primary_10_1016_j_ceb_2021_05_005
crossref_primary_10_1164_rccm_202202_0262LE
crossref_primary_10_1038_s41380_020_0738_0
crossref_primary_10_1111_jsr_13187
crossref_primary_10_1016_j_arr_2023_101916
crossref_primary_10_1007_s10072_024_07738_8
crossref_primary_10_1016_j_sleep_2024_02_028
crossref_primary_10_1016_j_aca_2022_340691
crossref_primary_10_1212_WNL_0000000000210054
crossref_primary_10_1002_brb3_3306
crossref_primary_10_1016_j_arr_2020_101252
crossref_primary_10_1007_s41105_023_00477_x
crossref_primary_10_3390_medicina57121366
crossref_primary_10_1002_trc2_12379
crossref_primary_10_37586_2949_4745_3_2024_141_153
crossref_primary_10_3389_fneur_2022_836292
crossref_primary_10_1111_cns_14803
crossref_primary_10_1016_j_isci_2025_112036
crossref_primary_10_3390_ijms25094969
crossref_primary_10_1016_j_cmet_2024_04_018
crossref_primary_10_14283_jpad_2024_162
crossref_primary_10_1111_jsr_14029
crossref_primary_10_1002_alz_12452
crossref_primary_10_3389_fnagi_2021_689098
crossref_primary_10_1038_s41582_019_0281_2
crossref_primary_10_1016_j_neurol_2023_08_006
crossref_primary_10_3233_JAD_230177
crossref_primary_10_1063_1_5117299
crossref_primary_10_1001_jamaneurol_2022_1732
crossref_primary_10_1172_JCI171838
crossref_primary_10_1126_sciadv_abg6677
crossref_primary_10_1186_s12987_021_00243_6
crossref_primary_10_3389_fnagi_2024_1369545
crossref_primary_10_1001_jamanetworkopen_2023_25152
crossref_primary_10_1084_jem_20211275
crossref_primary_10_1001_jamaneurol_2023_3889
crossref_primary_10_1002_advs_202205037
crossref_primary_10_1001_jamaneurol_2020_1623
crossref_primary_10_1007_s11055_024_01604_y
crossref_primary_10_1073_pnas_2221686120
crossref_primary_10_1016_j_isci_2022_103964
crossref_primary_10_1152_physrev_00031_2020
crossref_primary_10_7554_eLife_90633
crossref_primary_10_1016_j_jare_2024_04_005
crossref_primary_10_3233_JAD_200634
crossref_primary_10_1093_brain_awaa443
crossref_primary_10_4103_1673_5374_390970
crossref_primary_10_1016_j_jsmc_2021_07_002
crossref_primary_10_15252_embr_201948070
crossref_primary_10_3389_fnagi_2023_1238588
crossref_primary_10_1002_mds_30064
crossref_primary_10_1016_j_nbd_2019_104507
crossref_primary_10_1016_j_neuro_2020_11_009
crossref_primary_10_1038_s41583_024_00797_y
crossref_primary_10_1038_s41598_022_21879_w
crossref_primary_10_4103_1673_5374_390962
crossref_primary_10_1146_annurev_pharmtox_040323_031929
crossref_primary_10_3390_cells12101378
crossref_primary_10_4236_jbbs_2022_124008
crossref_primary_10_1007_s00018_019_03314_y
crossref_primary_10_1016_j_sleep_2023_12_010
crossref_primary_10_1016_j_neurobiolaging_2021_09_013
crossref_primary_10_3233_JAD_191122
crossref_primary_10_20517_and_2023_56
crossref_primary_10_1016_j_arr_2024_102307
crossref_primary_10_1097_HTR_0000000000000701
crossref_primary_10_1016_j_pneurobio_2019_101644
crossref_primary_10_1186_s12974_023_02944_1
crossref_primary_10_1093_cei_uxab017
crossref_primary_10_1186_s13195_019_0547_3
crossref_primary_10_1159_000509585
crossref_primary_10_1016_j_neulet_2021_136247
crossref_primary_10_1007_s11033_023_08459_5
crossref_primary_10_1016_j_smrv_2022_101592
crossref_primary_10_1177_10998004221081044
crossref_primary_10_1007_s13311_020_00959_7
crossref_primary_10_1002_mdc3_14254
crossref_primary_10_1016_j_nbd_2023_106120
crossref_primary_10_1186_s13024_023_00617_4
crossref_primary_10_1016_j_neubiorev_2021_06_039
crossref_primary_10_23868_gc546022
crossref_primary_10_1093_gerona_glae115
crossref_primary_10_54097_hset_v8i_1184
crossref_primary_10_1016_j_isci_2021_102386
crossref_primary_10_1177_00368504231189536
crossref_primary_10_1016_j_brainresbull_2022_07_002
crossref_primary_10_1038_s41593_024_01638_y
crossref_primary_10_1140_epjp_s13360_021_01491_z
crossref_primary_10_1152_physiol_00015_2022
crossref_primary_10_1523_ENEURO_0004_24_2024
crossref_primary_10_1016_j_immuni_2019_12_003
crossref_primary_10_3389_fgene_2021_777926
crossref_primary_10_3390_ijms251910535
crossref_primary_10_3390_biom10111487
crossref_primary_10_1186_s12877_023_04288_0
crossref_primary_10_1186_s13024_020_00391_7
crossref_primary_10_1126_science_aaw5583
crossref_primary_10_1111_jsr_13362
crossref_primary_10_1016_j_neubiorev_2022_104999
crossref_primary_10_1016_j_tins_2022_02_001
crossref_primary_10_1016_j_jnutbio_2022_109128
crossref_primary_10_1172_jci_insight_142514
crossref_primary_10_3389_fnagi_2019_00320
crossref_primary_10_1007_s00415_019_09651_z
crossref_primary_10_1016_j_pneurobio_2020_101902
crossref_primary_10_1212_WNL_0000000000011377
crossref_primary_10_1186_s13024_021_00424_9
crossref_primary_10_1016_j_neuroscience_2021_11_042
crossref_primary_10_1186_s13024_023_00618_3
crossref_primary_10_1016_j_brainres_2024_149016
crossref_primary_10_1186_s13062_023_00387_5
crossref_primary_10_1093_brain_awz113
crossref_primary_10_3389_fphys_2024_1456690
crossref_primary_10_1002_alz_12117
crossref_primary_10_1016_j_arr_2024_102232
crossref_primary_10_1186_s13195_023_01365_9
crossref_primary_10_1002_acn3_51975
crossref_primary_10_2196_55575
crossref_primary_10_1093_braincomms_fcac192
crossref_primary_10_4103_1673_5374_272579
crossref_primary_10_3390_ijms23062975
crossref_primary_10_3389_fneur_2021_618101
crossref_primary_10_3233_JAD_180291
crossref_primary_10_1111_jsr_14316
crossref_primary_10_32607_actanaturae_11415
crossref_primary_10_1038_s41598_020_77830_4
crossref_primary_10_1097_01_NT_0000655404_75632_ef
crossref_primary_10_3389_fnagi_2020_00272
crossref_primary_10_1021_acs_jproteome_3c00269
crossref_primary_10_1097_WNR_0000000000001592
crossref_primary_10_1001_jamaneurol_2022_0429
crossref_primary_10_1038_s41582_020_0333_7
crossref_primary_10_1016_j_ypmed_2023_107830
crossref_primary_10_1038_s41580_024_00753_9
crossref_primary_10_13104_imri_2023_0032
crossref_primary_10_1093_procel_pwae026
crossref_primary_10_1080_00140139_2021_1882705
crossref_primary_10_1007_s00018_023_04736_5
crossref_primary_10_3390_ijms24010878
crossref_primary_10_1016_j_mad_2023_111899
crossref_primary_10_1038_s41467_023_42721_5
crossref_primary_10_1002_lipd_12428
crossref_primary_10_1073_pnas_1914017117
crossref_primary_10_3174_ajnr_A6941
crossref_primary_10_1016_j_neuron_2024_08_006
crossref_primary_10_1038_s41598_023_28832_5
crossref_primary_10_1097_WNP_0000000000000818
crossref_primary_10_1172_jci_insight_162454
crossref_primary_10_1371_journal_pgen_1010681
crossref_primary_10_1016_j_medcle_2021_03_003
crossref_primary_10_15212_CVIA_2024_0068
crossref_primary_10_3389_fphys_2023_1146096
crossref_primary_10_7555_JBR_37_20230264
crossref_primary_10_1016_j_neuropharm_2020_108104
crossref_primary_10_1038_s41583_023_00723_8
crossref_primary_10_1093_brain_awz087
crossref_primary_10_17352_ojc_000012
crossref_primary_10_5607_en22019
crossref_primary_10_1126_scitranslmed_ade6285
crossref_primary_10_1186_s12916_023_02910_x
crossref_primary_10_1186_s13073_019_0704_0
crossref_primary_10_1111_ane_13573
crossref_primary_10_1089_ars_2020_8134
crossref_primary_10_1186_s12987_021_00296_7
crossref_primary_10_1016_j_chemosphere_2020_126762
crossref_primary_10_1136_bmjopen_2022_067159
crossref_primary_10_1016_j_tins_2020_04_003
crossref_primary_10_1111_bpa_13028
crossref_primary_10_5812_ijpbs_126596
crossref_primary_10_1016_j_smrv_2020_101409
crossref_primary_10_1016_j_neuron_2025_02_004
crossref_primary_10_1007_s13311_019_00769_6
crossref_primary_10_1093_sleep_zsae082
crossref_primary_10_3390_brainsci14010008
crossref_primary_10_1002_alz_12035
crossref_primary_10_3233_ADR_230187
crossref_primary_10_3390_neuroglia6010001
crossref_primary_10_1038_s41598_022_25364_2
crossref_primary_10_24188_recia_v15_n1_2023_985
crossref_primary_10_1038_s41386_019_0490_9
crossref_primary_10_3389_fnagi_2019_00258
crossref_primary_10_3390_biomedicines11082296
crossref_primary_10_1007_s12035_025_04851_3
crossref_primary_10_1016_j_sleep_2024_11_009
crossref_primary_10_3389_fneur_2022_1038735
crossref_primary_10_1016_j_bbi_2022_11_013
crossref_primary_10_1126_scitranslmed_abh4284
crossref_primary_10_1016_j_nbd_2023_106378
crossref_primary_10_1126_science_abb8739
crossref_primary_10_1016_j_preteyeres_2024_101273
crossref_primary_10_1016_j_cellsig_2019_109420
crossref_primary_10_3389_fnagi_2019_00146
crossref_primary_10_1007_s10072_023_07232_7
crossref_primary_10_1093_sleep_zsae076
crossref_primary_10_4103_1673_5374_371370
crossref_primary_10_1111_jsr_13538
crossref_primary_10_1016_j_molmed_2020_03_012
crossref_primary_10_17116_jnevro202312309131
crossref_primary_10_1038_s41598_023_27913_9
crossref_primary_10_1016_j_bbrc_2020_11_064
crossref_primary_10_3233_JAD_230527
crossref_primary_10_1001_jama_2021_5631
crossref_primary_10_1007_s11357_023_00886_3
crossref_primary_10_1038_s41398_024_02985_x
crossref_primary_10_1111_cns_13194
crossref_primary_10_3389_fphar_2023_1112743
crossref_primary_10_1155_2019_4569614
crossref_primary_10_1093_sleep_zsae145
crossref_primary_10_1038_s41593_023_01548_5
crossref_primary_10_1038_s41380_024_02691_6
crossref_primary_10_1093_sleep_zsae007
crossref_primary_10_1177_01939459211041163
crossref_primary_10_1016_j_jsmc_2022_02_003
crossref_primary_10_1007_s12035_021_02425_7
crossref_primary_10_17116_jnevro202412404169
crossref_primary_10_1016_j_brs_2024_06_007
crossref_primary_10_1038_s41582_020_0312_z
crossref_primary_10_1002_jev2_12398
crossref_primary_10_3390_ijms242417458
crossref_primary_10_17116_jnevro202312310142
crossref_primary_10_1126_science_adp1705
crossref_primary_10_1007_s40265_021_01546_6
crossref_primary_10_1111_bph_16212
crossref_primary_10_1111_apha_13966
crossref_primary_10_1097_GME_0000000000001414
crossref_primary_10_1002_alz_14495
crossref_primary_10_1038_s41433_024_03341_5
crossref_primary_10_1126_science_aax5440
crossref_primary_10_1093_cercor_bhad253
crossref_primary_10_1159_000504020
crossref_primary_10_3389_fnagi_2022_800278
crossref_primary_10_1523_JNEUROSCI_1929_23_2024
crossref_primary_10_1021_acschemneuro_2c00097
crossref_primary_10_1016_j_ebiom_2022_104249
crossref_primary_10_1007_s41105_024_00568_3
crossref_primary_10_1016_j_celrep_2021_108899
crossref_primary_10_1177_0271678X20982388
crossref_primary_10_1007_s12264_019_00453_x
crossref_primary_10_1523_JNEUROSCI_0241_23_2023
crossref_primary_10_1016_j_cub_2024_05_005
crossref_primary_10_1007_s40265_024_02096_3
crossref_primary_10_1021_acs_jpcb_2c06375
crossref_primary_10_1254_fpj_154_306
crossref_primary_10_3390_ijms20040803
crossref_primary_10_1016_j_medcli_2020_08_020
crossref_primary_10_1002_mds_28643
crossref_primary_10_1016_j_jns_2024_122900
crossref_primary_10_1212_WNL_0000000000009315
crossref_primary_10_3390_ijms24076528
crossref_primary_10_1126_scitranslmed_abe7099
crossref_primary_10_1371_journal_pbio_3001812
crossref_primary_10_3390_biom14030274
crossref_primary_10_3233_JAD_190501
crossref_primary_10_3389_fncel_2021_695479
crossref_primary_10_1186_s40478_022_01359_y
crossref_primary_10_1002_mds_28558
crossref_primary_10_1038_s41386_019_0478_5
crossref_primary_10_1016_j_neuroimage_2024_120905
crossref_primary_10_1038_s41467_023_40546_w
crossref_primary_10_1186_s12987_020_00181_9
crossref_primary_10_1038_s43587_022_00210_2
crossref_primary_10_1001_jamanetworkopen_2020_13573
crossref_primary_10_1016_j_smrv_2019_101250
crossref_primary_10_2174_0115672050336499240903113255
crossref_primary_10_1093_sleepadvances_zpab007
crossref_primary_10_1093_sleep_zsab057
crossref_primary_10_1016_j_sleep_2024_02_003
crossref_primary_10_3390_biology10080707
crossref_primary_10_1016_j_chest_2020_09_006
crossref_primary_10_1038_s41398_023_02553_9
crossref_primary_10_1016_j_biopsych_2023_09_003
crossref_primary_10_1111_bph_15813
crossref_primary_10_1186_s12942_024_00384_5
crossref_primary_10_1177_0271678X221090747
crossref_primary_10_3389_fneur_2022_1053942
crossref_primary_10_2147_NSS_S254449
crossref_primary_10_3389_fnagi_2022_998292
crossref_primary_10_3389_fnins_2024_1390216
crossref_primary_10_1186_s12951_021_00814_7
crossref_primary_10_4103_1673_5374_346484
crossref_primary_10_1136_jmg_2023_109508
crossref_primary_10_3389_fnins_2023_1160805
crossref_primary_10_53053_EWGZ1877
crossref_primary_10_3389_fphar_2022_881385
crossref_primary_10_1371_journal_pbio_3000623
crossref_primary_10_3389_fcimb_2023_1159771
crossref_primary_10_14336_AD_2020_0103
crossref_primary_10_1172_JCI148288
crossref_primary_10_1177_10738584241309850
crossref_primary_10_1126_scitranslmed_aaw3210
crossref_primary_10_3389_fnagi_2022_1055170
crossref_primary_10_3390_biom12020196
crossref_primary_10_1124_pharmrev_123_000953
crossref_primary_10_3233_JHD_230567
crossref_primary_10_1016_j_neubiorev_2019_07_019
crossref_primary_10_1093_sleep_zsae245
crossref_primary_10_1093_sleep_zsad274
crossref_primary_10_1016_j_celrep_2021_110268
crossref_primary_10_1038_s41531_022_00431_7
crossref_primary_10_1002_alz_14296
crossref_primary_10_1038_s41582_021_00577_7
crossref_primary_10_38053_acmj_1309367
crossref_primary_10_1016_j_mrl_2024_200154
crossref_primary_10_1093_sleep_zsae226
crossref_primary_10_1007_s11064_022_03578_0
crossref_primary_10_1038_s41598_022_19967_y
crossref_primary_10_1126_scitranslmed_aba6334
crossref_primary_10_1096_fj_202202040RR
crossref_primary_10_3233_JAD_215460
crossref_primary_10_3389_fnagi_2021_759983
crossref_primary_10_1016_j_arr_2022_101775
crossref_primary_10_1152_jn_00118_2019
crossref_primary_10_3389_fnagi_2025_1560032
crossref_primary_10_1007_s41105_022_00439_9
crossref_primary_10_1016_j_genhosppsych_2024_08_001
crossref_primary_10_1038_s44323_025_00025_5
crossref_primary_10_3233_JHD_230574
crossref_primary_10_4236_aad_2020_93003
crossref_primary_10_1002_mds_28562
crossref_primary_10_1007_s00415_020_10334_3
crossref_primary_10_1016_j_jns_2024_122927
crossref_primary_10_3390_ijms252111634
crossref_primary_10_3390_ijms23010504
crossref_primary_10_1016_j_neuron_2024_09_017
crossref_primary_10_1017_S1041610219000462
crossref_primary_10_1016_j_bios_2022_114821
crossref_primary_10_1016_j_nbd_2020_105031
crossref_primary_10_1111_psyg_13056
crossref_primary_10_1016_j_arr_2023_101885
crossref_primary_10_1080_08820139_2024_2358446
crossref_primary_10_1002_alz_12930
crossref_primary_10_1016_j_cccb_2021_100025
crossref_primary_10_1016_j_cell_2019_09_001
crossref_primary_10_3233_JAD_215417
crossref_primary_10_1016_j_brainresbull_2024_111181
crossref_primary_10_2147_NSS_S336318
crossref_primary_10_3389_fneur_2024_1430989
crossref_primary_10_1016_j_jep_2024_118939
crossref_primary_10_1126_sciadv_abf6935
crossref_primary_10_3390_biomedicines10092261
crossref_primary_10_1007_s11064_021_03325_x
crossref_primary_10_1186_s13195_020_00668_5
crossref_primary_10_1038_s41583_019_0255_9
crossref_primary_10_3233_JAD_201378
crossref_primary_10_2147_NDT_S388832
crossref_primary_10_1007_s13311_019_00755_y
crossref_primary_10_1093_pnasnexus_pgae548
crossref_primary_10_3233_NRE_230380
crossref_primary_10_12688_hrbopenres_13988_1
crossref_primary_10_1007_s00018_024_05225_z
crossref_primary_10_1002_ana_26641
crossref_primary_10_3390_ph14040383
crossref_primary_10_1007_s10571_022_01228_1
crossref_primary_10_1093_sleepadvances_zpac022
crossref_primary_10_1126_science_abi8375
crossref_primary_10_3390_brainsci11020229
crossref_primary_10_1186_s12974_020_01960_9
crossref_primary_10_1002_brb3_3270
crossref_primary_10_1016_j_sleep_2020_07_048
crossref_primary_10_3390_ctn8020023
crossref_primary_10_1016_j_ncl_2022_05_001
crossref_primary_10_1016_j_nbd_2022_105748
crossref_primary_10_3389_fneur_2022_927994
crossref_primary_10_1093_sleep_zsac123
crossref_primary_10_1016_j_cell_2024_08_046
crossref_primary_10_1111_nyas_14371
crossref_primary_10_1186_s12883_021_02521_0
crossref_primary_10_14336_AD_2023_1229
crossref_primary_10_1111_jnc_15883
crossref_primary_10_1186_s13041_021_00835_1
crossref_primary_10_1111_cns_14592
crossref_primary_10_1002_ibra_12167
crossref_primary_10_1134_S2079057025600053
crossref_primary_10_1002_ana_25459
crossref_primary_10_1002_mds_28006
crossref_primary_10_1007_s40675_024_00316_6
crossref_primary_10_1126_sciadv_adj4457
Cites_doi 10.1093/brain/awx243
10.1016/j.brainres.2004.01.019
10.1038/ncb1901
10.1126/scitranslmed.aal2029
10.1038/nrn2786
10.1038/s41593-018-0289-8
10.1016/j.pbb.2008.04.001
10.1002/ana.25117
10.1016/j.neuron.2013.07.046
10.1038/s41467-017-01004-6
10.1016/j.neuron.2018.04.035
10.1523/JNEUROSCI.2569-11.2011
10.1093/hmg/ddh019
10.1016/S1474-4422(13)70090-5
10.1126/science.1241224
10.1523/JNEUROSCI.0275-18.2018
10.1523/JNEUROSCI.2642-12.2013
10.1371/journal.pone.0031302
10.1084/jem.20131685
10.1186/s13024-018-0241-0
10.1038/nn2035
10.1126/science.1180962
10.1002/ana.24454
10.1038/embor.2013.15
10.1523/JNEUROSCI.23-26-08844.2003
10.1016/j.neuron.2011.11.033
10.1038/nn.4328
10.1126/scitranslmed.3004291
10.1186/s13024-015-0052-5
10.1172/JCI79742
10.1038/nn.2801
ContentType Journal Article
Copyright Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
Copyright_xml – notice: Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
– notice: Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
5PM
DOI 10.1126/science.aav2546
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database


MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 884
ExternalDocumentID PMC6410369
30679382
10_1126_science_aav2546
26762241
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R01 NS103161
– fundername: NIA NIH HHS
  grantid: R03 AG047999
– fundername: NINDS NIH HHS
  grantid: R01 NS092652
– fundername: NINDS NIH HHS
  grantid: K08 NS105929
– fundername: NIA NIH HHS
  grantid: K76 AG054863
– fundername: NCATS NIH HHS
  grantid: UL1 TR002345
– fundername: NIA NIH HHS
  grantid: P01 AG026276
– fundername: NCATS NIH HHS
  grantid: UL1 TR000448
– fundername: NINDS NIH HHS
  grantid: F32 NS089381
– fundername: NINDS NIH HHS
  grantid: P01 NS074969
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
ABBHK
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADUKH
ADXHL
AEGBM
AENEX
AETEA
AEUPB
AEXZC
AFBNE
AFFDN
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ASPBG
AVWKF
BKF
BLC
C45
CS3
DB2
DCCCD
DU5
EBS
EJD
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPSME
IPY
ISE
JAAYA
JBMMH
JCF
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
QS-
RHI
RXW
SA0
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
AAYXX
ABCQX
CITATION
K-O
0B8
CGR
CUY
CVF
ECM
EIF
ESX
GX1
IGG
NPM
OK1
PKN
RHF
UIG
VQA
YCJ
YIF
YIN
ZKG
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c509t-edaeb9c08cfbe89a95fefa5d8d088f99c270e2f8bc6635334942bf5fd228eb803
ISSN 0036-8075
1095-9203
IngestDate Thu Aug 21 18:02:52 EDT 2025
Sun Sep 28 09:23:56 EDT 2025
Fri Jul 25 19:11:48 EDT 2025
Wed Feb 19 02:31:21 EST 2025
Thu Apr 24 23:07:38 EDT 2025
Tue Jul 01 01:51:28 EDT 2025
Thu Jul 03 21:38:05 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6429
Language English
License Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c509t-edaeb9c08cfbe89a95fefa5d8d088f99c270e2f8bc6635334942bf5fd228eb803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
Author contributions: JKH, SKF, NPP, JRC, JCG, CBP, PMF, BPL, and DMH designed the research studies. JKH, SKF, CW, TEM, MBF, and MM conducted experiments and acquired data. JKH, SKF, and DMH wrote the first version of the manuscript, JKH, SKF, CW, NPP, JRC, TEM, MBF, MM, JCG, CBS, PMF, BPL, and DMH edited the manuscript.
ORCID 0000-0003-3980-9221
0000-0001-5400-825X
0000-0003-4665-7203
0000-0002-6418-3809
0000-0001-9811-7490
0000-0001-5930-6555
0000-0002-3400-0856
0000-0002-8494-0635
0000-0001-7912-2016
0000-0001-9956-4006
OpenAccessLink https://escholarship.org/content/qt7k7772nd/qt7k7772nd.pdf
PMID 30679382
PQID 2184544557
PQPubID 1256
PageCount 5
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6410369
proquest_miscellaneous_2179473424
proquest_journals_2184544557
pubmed_primary_30679382
crossref_primary_10_1126_science_aav2546
crossref_citationtrail_10_1126_science_aav2546
jstor_primary_26762241
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-02-22
PublicationDateYYYYMMDD 2019-02-22
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-22
  day: 22
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2019
Publisher American Association for the Advancement of Science
The American Association for the Advancement of Science
Publisher_xml – name: American Association for the Advancement of Science
– name: The American Association for the Advancement of Science
References e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_20_2
e_1_3_2_21_2
e_1_3_2_22_2
e_1_3_2_23_2
e_1_3_2_24_2
e_1_3_2_25_2
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_2_2
e_1_3_2_14_2
30792288 - Science. 2019 Feb 22;363(6429):813-814
References_xml – ident: e_1_3_2_3_2
  doi: 10.1093/brain/awx243
– ident: e_1_3_2_32_2
  doi: 10.1016/j.brainres.2004.01.019
– ident: e_1_3_2_4_2
  doi: 10.1038/ncb1901
– ident: e_1_3_2_25_2
  doi: 10.1126/scitranslmed.aal2029
– ident: e_1_3_2_5_2
  doi: 10.1038/nrn2786
– ident: e_1_3_2_20_2
  doi: 10.1038/s41593-018-0289-8
– ident: e_1_3_2_14_2
  doi: 10.1016/j.pbb.2008.04.001
– ident: e_1_3_2_17_2
  doi: 10.1002/ana.25117
– ident: e_1_3_2_19_2
  doi: 10.1016/j.neuron.2013.07.046
– ident: e_1_3_2_21_2
  doi: 10.1038/s41467-017-01004-6
– ident: e_1_3_2_24_2
  doi: 10.1016/j.neuron.2018.04.035
– ident: e_1_3_2_28_2
  doi: 10.1523/JNEUROSCI.2569-11.2011
– ident: e_1_3_2_22_2
  doi: 10.1093/hmg/ddh019
– ident: e_1_3_2_2_2
  doi: 10.1016/S1474-4422(13)70090-5
– ident: e_1_3_2_26_2
  doi: 10.1126/science.1241224
– ident: e_1_3_2_27_2
  doi: 10.1523/JNEUROSCI.0275-18.2018
– ident: e_1_3_2_6_2
  doi: 10.1523/JNEUROSCI.2642-12.2013
– ident: e_1_3_2_8_2
  doi: 10.1371/journal.pone.0031302
– ident: e_1_3_2_10_2
  doi: 10.1084/jem.20131685
– ident: e_1_3_2_18_2
  doi: 10.1186/s13024-018-0241-0
– ident: e_1_3_2_12_2
  doi: 10.1038/nn2035
– ident: e_1_3_2_16_2
  doi: 10.1126/science.1180962
– ident: e_1_3_2_31_2
  doi: 10.1002/ana.24454
– ident: e_1_3_2_9_2
  doi: 10.1038/embor.2013.15
– ident: e_1_3_2_29_2
  doi: 10.1523/JNEUROSCI.23-26-08844.2003
– ident: e_1_3_2_7_2
  doi: 10.1016/j.neuron.2011.11.033
– ident: e_1_3_2_11_2
  doi: 10.1038/nn.4328
– ident: e_1_3_2_15_2
  doi: 10.1126/scitranslmed.3004291
– ident: e_1_3_2_23_2
  doi: 10.1186/s13024-015-0052-5
– ident: e_1_3_2_30_2
  doi: 10.1172/JCI79742
– ident: e_1_3_2_13_2
  doi: 10.1038/nn.2801
– reference: 30792288 - Science. 2019 Feb 22;363(6429):813-814
SSID ssj0009593
Score 2.702348
Snippet The sleep-wake cycle regulates interstitial fluid (ISF) and cerebrospinal fluid (CSF) levels of β-amyloid (Aβ) that accumulates in Alzheimer’s disease (AD)....
Two main proteins accumulate in the brain in Alzheimer's disease (AD), β-amyloid (Aβ) and tau. Aβ appears to instigate AD, but tau appears to drive brain...
The sleep-wake cycle regulates interstitial fluid (ISF) and cerebrospinal fluid (CSF) levels of β-amyloid (Aβ) that accumulates in Alzheimer's disease (AD)....
Sleep may protect the brain from ADTwo main proteins accumulate in the brain in Alzheimer's disease (AD), β-amyloid (Aβ) and tau. Aβ appears to instigate AD,...
The sleep-wake cycle regulates interstitial fluid (ISF) and cerebrospinal (CSF) levels of amyloid-β (Aβ) that accumulates in Alzheimer disease (AD) and chronic...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 880
SubjectTerms Alzheimer's disease
Amyloid beta-Peptides - analysis
Amyloid beta-Peptides - cerebrospinal fluid
Amyloid beta-Peptides - metabolism
Animals
Brain
Brain - metabolism
Brain damage
Brain injury
Cerebrospinal fluid
Circadian Rhythm
Cognitive ability
Extracellular Fluid - chemistry
Extracellular Fluid - metabolism
Female
Male
Mice
Mice, Transgenic
Neurodegeneration
Neurodegenerative diseases
Neurological Impairments
Pathology
Proteins
Senile plaques
Sleep
Sleep - physiology
Sleep and wakefulness
Sleep deprivation
Sleep Deprivation - cerebrospinal fluid
Sleep Deprivation - metabolism
Spires
Spreading
Tau protein
tau Proteins - analysis
tau Proteins - cerebrospinal fluid
tau Proteins - metabolism
Wakefulness
Wakefulness - genetics
Wakefulness - physiology
β-Amyloid
Title The sleep-wake cycle regulates brain interstitial fluid tau in mice and CSF tau in humans
URI https://www.jstor.org/stable/26762241
https://www.ncbi.nlm.nih.gov/pubmed/30679382
https://www.proquest.com/docview/2184544557
https://www.proquest.com/docview/2179473424
https://pubmed.ncbi.nlm.nih.gov/PMC6410369
Volume 363
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdKJ9BeEBsMAgMZiYehKFXmfD92hWoa2jSJTYynKE5sqCht1Sag8Zfx53EX25k7Ngn2ElX-SKLeL-e78_l-hLwJq1jGUSbBN_ELL0yi0Et55XusKoMyBvuex3ga-fgkPjwPjy6ii17vt5W11NR8UP668VzJXaQKbSBXPCX7H5LtbgoN8BvkC1eQMFz_WcarqRAL72fxTbjlJfS7S8UuL1YuR_qHtiDEEjMCMDYup82kcuuiwTgHMtG3mwejj2PT1nL2rWyT1Xz9YIp22zuWULs8xaHKJjDJBXqaFWk4nE9VEOdILEHFuR8GHXiWkxq87EkXorb6PumANh6DaPQy26pyzMBWOvNk8kVM3dOBHcHAQ1PMY3ZQ0xRFVmuSUsQ-ckgyP7A1daB1oYIkeE6ZpXpTxQhlVnFFPPf3AmFRWopBUfxAPgB7JEh48b3FCzpTWaCoka7V5D49HsXhPrx2do9ssASstj7ZGB68OxjfWvBZl5WyDmyZp2-SB-ZRa8aRyo-9yfO5nsBrWURnj8hD7crQocLlFumJ2Ta5r8hNL7fJlkbAiu7p2uZvH5PPAFl6BVnaQpZ2kKUtZKkNWdpClgI8oZkiZClAlgJkTZuC7BNyPn5_Njr0NLuHV4KRWnuiKgTPSj8tJRdpVmSRFLKIqrSChU9mWckSXzCZ8hKN4gDLKDEuI1kxlgqe-sEO6c_mM_GMUCRfi1gohS_iUO4XnAdpEYaBjBMWVFngkIH5W_NSl75HBpZp3rrALM61SHItEofsdRMWqurL7UN3Wjl141gM9gXYxQ7ZNYLLtc5Y5RhQwfJXUeKQ1103aHTcpitmYt7gGFgjkyBkoUOeKjl3NzdAcUiyhoBuAFaLX--ZTb62VeM1YJ_feeYLsnn19e6Sfr1sxEuwyGv-SoP_D7Li5PI
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+sleep-wake+cycle+regulates+brain+interstitial+fluid+tau+in+mice+and+CSF+tau+in+humans&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Holth%2C+Jerrah+K.&rft.au=Fritschi%2C+Sarah+K.&rft.au=Wang%2C+Chanung&rft.au=Pedersen%2C+Nigel+P.&rft.date=2019-02-22&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=363&rft.issue=6429&rft.spage=880&rft.epage=884&rft_id=info:doi/10.1126%2Fscience.aav2546&rft_id=info%3Apmid%2F30679382&rft.externalDocID=PMC6410369
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon