The sleep-wake cycle regulates brain interstitial fluid tau in mice and CSF tau in humans
The sleep-wake cycle regulates interstitial fluid (ISF) and cerebrospinal fluid (CSF) levels of β-amyloid (Aβ) that accumulates in Alzheimer’s disease (AD). Furthermore, chronic sleep deprivation (SD) increases Aβ plaques. However, tau, not Aβ, accumulation appears to drive AD neurodegeneration. We...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 363; no. 6429; pp. 880 - 884 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Association for the Advancement of Science
22.02.2019
The American Association for the Advancement of Science |
Subjects | |
Online Access | Get full text |
ISSN | 0036-8075 1095-9203 1095-9203 |
DOI | 10.1126/science.aav2546 |
Cover
Abstract | The sleep-wake cycle regulates interstitial fluid (ISF) and cerebrospinal fluid (CSF) levels of β-amyloid (Aβ) that accumulates in Alzheimer’s disease (AD). Furthermore, chronic sleep deprivation (SD) increases Aβ plaques. However, tau, not Aβ, accumulation appears to drive AD neurodegeneration. We tested whether ISF/CSF tau and tau seeding and spreading were influenced by the sleep-wake cycle and SD. Mouse ISF tau was increased ~90% during normal wakefulness versus sleep and ~100% during SD. Human CSF tau also increased more than 50% during SD. In a tau seeding-and-spreading model, chronic SD increased tau pathology spreading. Chemogenetically driven wakefulness in mice also significantly increased both ISF Aβ and tau. Thus, the sleep-wake cycle regulates ISF tau, and SD increases ISF and CSF tau as well as tau pathology spreading. |
---|---|
AbstractList | The sleep-wake cycle regulates interstitial fluid (ISF) and cerebrospinal fluid (CSF) levels of β-amyloid (Aβ) that accumulates in Alzheimer's disease (AD). Furthermore, chronic sleep deprivation (SD) increases Aβ plaques. However, tau, not Aβ, accumulation appears to drive AD neurodegeneration. We tested whether ISF/CSF tau and tau seeding and spreading were influenced by the sleep-wake cycle and SD. Mouse ISF tau was increased ~90% during normal wakefulness versus sleep and ~100% during SD. Human CSF tau also increased more than 50% during SD. In a tau seeding-and-spreading model, chronic SD increased tau pathology spreading. Chemogenetically driven wakefulness in mice also significantly increased both ISF Aβ and tau. Thus, the sleep-wake cycle regulates ISF tau, and SD increases ISF and CSF tau as well as tau pathology spreading.The sleep-wake cycle regulates interstitial fluid (ISF) and cerebrospinal fluid (CSF) levels of β-amyloid (Aβ) that accumulates in Alzheimer's disease (AD). Furthermore, chronic sleep deprivation (SD) increases Aβ plaques. However, tau, not Aβ, accumulation appears to drive AD neurodegeneration. We tested whether ISF/CSF tau and tau seeding and spreading were influenced by the sleep-wake cycle and SD. Mouse ISF tau was increased ~90% during normal wakefulness versus sleep and ~100% during SD. Human CSF tau also increased more than 50% during SD. In a tau seeding-and-spreading model, chronic SD increased tau pathology spreading. Chemogenetically driven wakefulness in mice also significantly increased both ISF Aβ and tau. Thus, the sleep-wake cycle regulates ISF tau, and SD increases ISF and CSF tau as well as tau pathology spreading. Sleep may protect the brain from ADTwo main proteins accumulate in the brain in Alzheimer's disease (AD), β-amyloid (Aβ) and tau. Aβ appears to instigate AD, but tau appears to drive brain damage and cognitive decline. Sleep deprivation is known to increase Aβ acutely and chronically. Now, Holth et al. show that chronic sleep deprivation strongly increases tau acutely over hours and also drives tau pathology spreading in the brains of mice and humans (see the Perspective by Noble and Spires-Jones). Thus, sleep appears to have a direct protective effect on a key protein that drives AD pathology.Science, this issue p. 880; see also p. 813The sleep-wake cycle regulates interstitial fluid (ISF) and cerebrospinal fluid (CSF) levels of β-amyloid (Aβ) that accumulates in Alzheimer’s disease (AD). Furthermore, chronic sleep deprivation (SD) increases Aβ plaques. However, tau, not Aβ, accumulation appears to drive AD neurodegeneration. We tested whether ISF/CSF tau and tau seeding and spreading were influenced by the sleep-wake cycle and SD. Mouse ISF tau was increased ~90% during normal wakefulness versus sleep and ~100% during SD. Human CSF tau also increased more than 50% during SD. In a tau seeding-and-spreading model, chronic SD increased tau pathology spreading. Chemogenetically driven wakefulness in mice also significantly increased both ISF Aβ and tau. Thus, the sleep-wake cycle regulates ISF tau, and SD increases ISF and CSF tau as well as tau pathology spreading. The sleep-wake cycle regulates interstitial fluid (ISF) and cerebrospinal fluid (CSF) levels of β-amyloid (Aβ) that accumulates in Alzheimer’s disease (AD). Furthermore, chronic sleep deprivation (SD) increases Aβ plaques. However, tau, not Aβ, accumulation appears to drive AD neurodegeneration. We tested whether ISF/CSF tau and tau seeding and spreading were influenced by the sleep-wake cycle and SD. Mouse ISF tau was increased ~90% during normal wakefulness versus sleep and ~100% during SD. Human CSF tau also increased more than 50% during SD. In a tau seeding-and-spreading model, chronic SD increased tau pathology spreading. Chemogenetically driven wakefulness in mice also significantly increased both ISF Aβ and tau. Thus, the sleep-wake cycle regulates ISF tau, and SD increases ISF and CSF tau as well as tau pathology spreading. The sleep-wake cycle regulates interstitial fluid (ISF) and cerebrospinal (CSF) levels of amyloid-β (Aβ) that accumulates in Alzheimer disease (AD) and chronic sleep deprivation (SD) increases Aβ plaques. However, tau not Aβ accumulation appears to drive AD neurodegeneration. Therefore, we tested whether ISF/CSF tau and tau seeding/spreading was influenced by the sleep-wake cycle and SD. Mouse ISF tau was increased ~90% during normal wakefulness vs. sleep and ~100% during SD. Human CSF tau also increased over 50% during SD. In a tau seeding and spreading model, chronic SD increased tau pathology spreading. Chemogenetically-driven wakefulness in mice also significantly increased both ISF Aβ and tau. Thus, the sleep-wake cycle regulates ISF tau and sleep deprivation increases ISF and CSF tau as well as tau pathology spreading. Brain interstitial fluid tau is increased during wakefulness and with sleep deprivation, which is relevant for Alzheimer disease and other tauopathies. Two main proteins accumulate in the brain in Alzheimer's disease (AD), β-amyloid (Aβ) and tau. Aβ appears to instigate AD, but tau appears to drive brain damage and cognitive decline. Sleep deprivation is known to increase Aβ acutely and chronically. Now, Holth et al. show that chronic sleep deprivation strongly increases tau acutely over hours and also drives tau pathology spreading in the brains of mice and humans (see the Perspective by Noble and Spires-Jones). Thus, sleep appears to have a direct protective effect on a key protein that drives AD pathology. Science , this issue p. 880 ; see also p. 813 Extracellular tau is increased during wakefulness and with sleep deprivation, with potential relevance for Alzheimer’s disease. The sleep-wake cycle regulates interstitial fluid (ISF) and cerebrospinal fluid (CSF) levels of β-amyloid (Aβ) that accumulates in Alzheimer’s disease (AD). Furthermore, chronic sleep deprivation (SD) increases Aβ plaques. However, tau, not Aβ, accumulation appears to drive AD neurodegeneration. We tested whether ISF/CSF tau and tau seeding and spreading were influenced by the sleep-wake cycle and SD. Mouse ISF tau was increased ~90% during normal wakefulness versus sleep and ~100% during SD. Human CSF tau also increased more than 50% during SD. In a tau seeding-and-spreading model, chronic SD increased tau pathology spreading. Chemogenetically driven wakefulness in mice also significantly increased both ISF Aβ and tau. Thus, the sleep-wake cycle regulates ISF tau, and SD increases ISF and CSF tau as well as tau pathology spreading. |
Author | Wang, Chanung Holtzman, David M. Holth, Jerrah K. Mahan, Thomas E. Lucey, Brendan P. Pedersen, Nigel P. Manis, Melissa Cirrito, John R. Finn, Mary Beth Fuller, Patrick M. Geerling, Joel C. Fritschi, Sarah K. |
AuthorAffiliation | 2 Department of Neurology, Emory Epilepsy Center and Program in Neuroscience, Emory University, Atlanta, GA 30322, USA 3 Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA 1 Department of Neurology, Hope Center for Neurological Disorders, and Charles F. and Joanne Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA 4 Department of Neurology, Beth Israel Deaconess Medical Center, Division of Sleep Medicine, Harvard Medical School, Boston, MA 02215, USA |
AuthorAffiliation_xml | – name: 1 Department of Neurology, Hope Center for Neurological Disorders, and Charles F. and Joanne Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA – name: 4 Department of Neurology, Beth Israel Deaconess Medical Center, Division of Sleep Medicine, Harvard Medical School, Boston, MA 02215, USA – name: 2 Department of Neurology, Emory Epilepsy Center and Program in Neuroscience, Emory University, Atlanta, GA 30322, USA – name: 3 Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA |
Author_xml | – sequence: 1 givenname: Jerrah K. surname: Holth fullname: Holth, Jerrah K. – sequence: 2 givenname: Sarah K. surname: Fritschi fullname: Fritschi, Sarah K. – sequence: 3 givenname: Chanung surname: Wang fullname: Wang, Chanung – sequence: 4 givenname: Nigel P. surname: Pedersen fullname: Pedersen, Nigel P. – sequence: 5 givenname: John R. surname: Cirrito fullname: Cirrito, John R. – sequence: 6 givenname: Thomas E. surname: Mahan fullname: Mahan, Thomas E. – sequence: 7 givenname: Mary Beth surname: Finn fullname: Finn, Mary Beth – sequence: 8 givenname: Melissa surname: Manis fullname: Manis, Melissa – sequence: 9 givenname: Joel C. surname: Geerling fullname: Geerling, Joel C. – sequence: 10 givenname: Patrick M. surname: Fuller fullname: Fuller, Patrick M. – sequence: 11 givenname: Brendan P. surname: Lucey fullname: Lucey, Brendan P. – sequence: 12 givenname: David M. surname: Holtzman fullname: Holtzman, David M. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30679382$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kb1vFDEQxS0URC6BmgpkiSbNJl5_7NoNUnQiASkSBaGgsrzecc6Hz3vY3qD89zi6ywlSUFma-b3nmXkn6ChOERB625LztqXdRbYeooVzY-6p4N0LtGiJEo2ihB2hBSGsayTpxTE6yXlNSO0p9godM9L1ikm6QD9uV4BzANg2v81PwPbBBsAJ7uZgCmQ8JOMj9rFAysUXbwJ2YfYjLmauZbzxFrCJI15-u3qqreaNifk1eulMyPBm_56i71efbpefm5uv11-WlzeNFUSVBkYDg7JEWjeAVEYJB86IUY5ESqeUpT0B6uRgu44JxrjidHDCjZRKGCRhp-jjznc7DxsYLcSSTNDb5DcmPejJeP1vJ_qVvpvudcfbeh9VDc72Bmn6NUMueuOzhRBMhGnOmra94j3jlFf0wzN0Pc0p1vUqJbngXIi-Uu__nugwytPVK3CxA2yack7gDkhL9GOuep-r3udaFeKZwvpiip8eV_LhP7p3O906lykdvqFd31HKW_YHqBe1ag |
CitedBy_id | crossref_primary_10_1093_sleep_zsaa137 crossref_primary_10_1002_mds_29010 crossref_primary_10_3390_s22145372 crossref_primary_10_1007_s00401_020_02227_6 crossref_primary_10_1111_cns_14521 crossref_primary_10_1371_journal_pbio_3001412 crossref_primary_10_1016_j_nbd_2020_104820 crossref_primary_10_1016_j_reth_2024_09_014 crossref_primary_10_1080_07391102_2023_2276876 crossref_primary_10_3390_biology10111127 crossref_primary_10_1186_s12889_025_22338_7 crossref_primary_10_1016_j_neubiorev_2020_01_026 crossref_primary_10_3390_brainsci10070411 crossref_primary_10_1016_j_pneurobio_2021_102089 crossref_primary_10_1172_JCI169131 crossref_primary_10_3389_fnagi_2023_1185671 crossref_primary_10_3390_cells10112907 crossref_primary_10_1016_j_tins_2019_05_001 crossref_primary_10_1212_WNL_0000000000008866 crossref_primary_10_1016_j_tjpad_2024_100024 crossref_primary_10_1039_D2MO00061J crossref_primary_10_1007_s11055_024_01585_y crossref_primary_10_1016_j_neuron_2022_01_017 crossref_primary_10_1001_jamanetworkopen_2020_13191 crossref_primary_10_1093_sleep_zsz266 crossref_primary_10_3389_fnagi_2021_763264 crossref_primary_10_1016_j_brainres_2021_147669 crossref_primary_10_1016_j_sleep_2025_02_028 crossref_primary_10_3390_ph17030319 crossref_primary_10_1007_s44258_024_00021_7 crossref_primary_10_1016_j_nbd_2020_104832 crossref_primary_10_1097_CM9_0000000000001706 crossref_primary_10_3233_JAD_221048 crossref_primary_10_1038_s41598_021_86255_6 crossref_primary_10_1016_j_arr_2021_101335 crossref_primary_10_3390_brainsci14100978 crossref_primary_10_3390_molecules25235508 crossref_primary_10_1016_j_arr_2024_102481 crossref_primary_10_4049_jimmunol_1900838 crossref_primary_10_1080_03014460_2021_1998624 crossref_primary_10_1007_s11064_023_04086_5 crossref_primary_10_3390_biom11071004 crossref_primary_10_1080_0361073X_2023_2172949 crossref_primary_10_1097_GME_0000000000002027 crossref_primary_10_1016_j_tins_2022_05_007 crossref_primary_10_3390_ijms21031168 crossref_primary_10_3390_life13030613 crossref_primary_10_33611_trs_2023_003 crossref_primary_10_3389_fnins_2023_1185078 crossref_primary_10_1001_jamanetworkopen_2022_47115 crossref_primary_10_1016_j_mehy_2020_110283 crossref_primary_10_1093_sleep_zsaa149 crossref_primary_10_1093_sleep_zsab117 crossref_primary_10_1146_annurev_neuro_100322_112249 crossref_primary_10_3233_JPD_201988 crossref_primary_10_1016_j_biopsych_2021_02_973 crossref_primary_10_1001_jamanetworkopen_2020_14008 crossref_primary_10_1177_13872877241293812 crossref_primary_10_1002_dad2_12521 crossref_primary_10_1177_0271678X241230188 crossref_primary_10_3389_fnins_2024_1428085 crossref_primary_10_1016_j_neurot_2025_e00535 crossref_primary_10_1093_sleep_zsaa272 crossref_primary_10_1016_j_pneurobio_2023_102512 crossref_primary_10_1016_j_gene_2021_145894 crossref_primary_10_1007_s44254_024_00066_2 crossref_primary_10_5664_jcsm_9022 crossref_primary_10_1016_j_jalz_2019_06_3916 crossref_primary_10_1177_1529100620941808 crossref_primary_10_3389_fneur_2022_929569 crossref_primary_10_1096_fj_202101633R crossref_primary_10_1016_j_bja_2023_05_025 crossref_primary_10_1007_s00018_019_03349_1 crossref_primary_10_1038_s41598_024_64817_8 crossref_primary_10_1017_S1092852920002114 crossref_primary_10_1111_cns_70305 crossref_primary_10_3233_JAD_221016 crossref_primary_10_1021_acs_analchem_3c04457 crossref_primary_10_1001_jamanetworkopen_2019_9891 crossref_primary_10_1016_j_neuroscience_2024_08_008 crossref_primary_10_3389_fnagi_2022_944283 crossref_primary_10_3389_fnins_2024_1436966 crossref_primary_10_1055_a_1958_0710 crossref_primary_10_1126_science_abb8255 crossref_primary_10_1080_02699052_2022_2037711 crossref_primary_10_3389_fphar_2021_655052 crossref_primary_10_1093_geronb_gbac137 crossref_primary_10_1002_ana_25702 crossref_primary_10_1016_j_sleep_2022_03_021 crossref_primary_10_1080_15402002_2022_2136671 crossref_primary_10_1038_s41582_024_00932_4 crossref_primary_10_1038_s41401_024_01269_w crossref_primary_10_3389_fneur_2023_1272369 crossref_primary_10_3389_fnut_2022_1034743 crossref_primary_10_1016_j_cell_2020_04_049 crossref_primary_10_1007_s10571_022_01234_3 crossref_primary_10_1016_j_msard_2024_105456 crossref_primary_10_3389_fneur_2020_572850 crossref_primary_10_1177_0271678X221098145 crossref_primary_10_3390_brainsci13020292 crossref_primary_10_3389_fnagi_2021_683483 crossref_primary_10_1098_rsfs_2019_0092 crossref_primary_10_1038_s41593_025_01897_3 crossref_primary_10_1007_s40266_021_00891_1 crossref_primary_10_1007_s12017_023_08767_w crossref_primary_10_1016_j_yfrne_2022_100986 crossref_primary_10_3389_fnins_2020_627330 crossref_primary_10_1111_imr_12896 crossref_primary_10_3233_JPD_191627 crossref_primary_10_1080_14656566_2021_1900116 crossref_primary_10_3389_fnagi_2021_663446 crossref_primary_10_1093_sleep_zsaa111 crossref_primary_10_3389_fnins_2020_525970 crossref_primary_10_7759_cureus_63448 crossref_primary_10_2147_NSS_S310351 crossref_primary_10_3390_brainsci11040426 crossref_primary_10_1111_jpi_12759 crossref_primary_10_1051_medsci_2020147 crossref_primary_10_1371_journal_pbio_3002684 crossref_primary_10_1186_s13024_022_00523_1 crossref_primary_10_1515_cclm_2022_0480 crossref_primary_10_1016_j_sleep_2023_05_014 crossref_primary_10_1016_j_ceb_2021_05_005 crossref_primary_10_1164_rccm_202202_0262LE crossref_primary_10_1038_s41380_020_0738_0 crossref_primary_10_1111_jsr_13187 crossref_primary_10_1016_j_arr_2023_101916 crossref_primary_10_1007_s10072_024_07738_8 crossref_primary_10_1016_j_sleep_2024_02_028 crossref_primary_10_1016_j_aca_2022_340691 crossref_primary_10_1212_WNL_0000000000210054 crossref_primary_10_1002_brb3_3306 crossref_primary_10_1016_j_arr_2020_101252 crossref_primary_10_1007_s41105_023_00477_x crossref_primary_10_3390_medicina57121366 crossref_primary_10_1002_trc2_12379 crossref_primary_10_37586_2949_4745_3_2024_141_153 crossref_primary_10_3389_fneur_2022_836292 crossref_primary_10_1111_cns_14803 crossref_primary_10_1016_j_isci_2025_112036 crossref_primary_10_3390_ijms25094969 crossref_primary_10_1016_j_cmet_2024_04_018 crossref_primary_10_14283_jpad_2024_162 crossref_primary_10_1111_jsr_14029 crossref_primary_10_1002_alz_12452 crossref_primary_10_3389_fnagi_2021_689098 crossref_primary_10_1038_s41582_019_0281_2 crossref_primary_10_1016_j_neurol_2023_08_006 crossref_primary_10_3233_JAD_230177 crossref_primary_10_1063_1_5117299 crossref_primary_10_1001_jamaneurol_2022_1732 crossref_primary_10_1172_JCI171838 crossref_primary_10_1126_sciadv_abg6677 crossref_primary_10_1186_s12987_021_00243_6 crossref_primary_10_3389_fnagi_2024_1369545 crossref_primary_10_1001_jamanetworkopen_2023_25152 crossref_primary_10_1084_jem_20211275 crossref_primary_10_1001_jamaneurol_2023_3889 crossref_primary_10_1002_advs_202205037 crossref_primary_10_1001_jamaneurol_2020_1623 crossref_primary_10_1007_s11055_024_01604_y crossref_primary_10_1073_pnas_2221686120 crossref_primary_10_1016_j_isci_2022_103964 crossref_primary_10_1152_physrev_00031_2020 crossref_primary_10_7554_eLife_90633 crossref_primary_10_1016_j_jare_2024_04_005 crossref_primary_10_3233_JAD_200634 crossref_primary_10_1093_brain_awaa443 crossref_primary_10_4103_1673_5374_390970 crossref_primary_10_1016_j_jsmc_2021_07_002 crossref_primary_10_15252_embr_201948070 crossref_primary_10_3389_fnagi_2023_1238588 crossref_primary_10_1002_mds_30064 crossref_primary_10_1016_j_nbd_2019_104507 crossref_primary_10_1016_j_neuro_2020_11_009 crossref_primary_10_1038_s41583_024_00797_y crossref_primary_10_1038_s41598_022_21879_w crossref_primary_10_4103_1673_5374_390962 crossref_primary_10_1146_annurev_pharmtox_040323_031929 crossref_primary_10_3390_cells12101378 crossref_primary_10_4236_jbbs_2022_124008 crossref_primary_10_1007_s00018_019_03314_y crossref_primary_10_1016_j_sleep_2023_12_010 crossref_primary_10_1016_j_neurobiolaging_2021_09_013 crossref_primary_10_3233_JAD_191122 crossref_primary_10_20517_and_2023_56 crossref_primary_10_1016_j_arr_2024_102307 crossref_primary_10_1097_HTR_0000000000000701 crossref_primary_10_1016_j_pneurobio_2019_101644 crossref_primary_10_1186_s12974_023_02944_1 crossref_primary_10_1093_cei_uxab017 crossref_primary_10_1186_s13195_019_0547_3 crossref_primary_10_1159_000509585 crossref_primary_10_1016_j_neulet_2021_136247 crossref_primary_10_1007_s11033_023_08459_5 crossref_primary_10_1016_j_smrv_2022_101592 crossref_primary_10_1177_10998004221081044 crossref_primary_10_1007_s13311_020_00959_7 crossref_primary_10_1002_mdc3_14254 crossref_primary_10_1016_j_nbd_2023_106120 crossref_primary_10_1186_s13024_023_00617_4 crossref_primary_10_1016_j_neubiorev_2021_06_039 crossref_primary_10_23868_gc546022 crossref_primary_10_1093_gerona_glae115 crossref_primary_10_54097_hset_v8i_1184 crossref_primary_10_1016_j_isci_2021_102386 crossref_primary_10_1177_00368504231189536 crossref_primary_10_1016_j_brainresbull_2022_07_002 crossref_primary_10_1038_s41593_024_01638_y crossref_primary_10_1140_epjp_s13360_021_01491_z crossref_primary_10_1152_physiol_00015_2022 crossref_primary_10_1523_ENEURO_0004_24_2024 crossref_primary_10_1016_j_immuni_2019_12_003 crossref_primary_10_3389_fgene_2021_777926 crossref_primary_10_3390_ijms251910535 crossref_primary_10_3390_biom10111487 crossref_primary_10_1186_s12877_023_04288_0 crossref_primary_10_1186_s13024_020_00391_7 crossref_primary_10_1126_science_aaw5583 crossref_primary_10_1111_jsr_13362 crossref_primary_10_1016_j_neubiorev_2022_104999 crossref_primary_10_1016_j_tins_2022_02_001 crossref_primary_10_1016_j_jnutbio_2022_109128 crossref_primary_10_1172_jci_insight_142514 crossref_primary_10_3389_fnagi_2019_00320 crossref_primary_10_1007_s00415_019_09651_z crossref_primary_10_1016_j_pneurobio_2020_101902 crossref_primary_10_1212_WNL_0000000000011377 crossref_primary_10_1186_s13024_021_00424_9 crossref_primary_10_1016_j_neuroscience_2021_11_042 crossref_primary_10_1186_s13024_023_00618_3 crossref_primary_10_1016_j_brainres_2024_149016 crossref_primary_10_1186_s13062_023_00387_5 crossref_primary_10_1093_brain_awz113 crossref_primary_10_3389_fphys_2024_1456690 crossref_primary_10_1002_alz_12117 crossref_primary_10_1016_j_arr_2024_102232 crossref_primary_10_1186_s13195_023_01365_9 crossref_primary_10_1002_acn3_51975 crossref_primary_10_2196_55575 crossref_primary_10_1093_braincomms_fcac192 crossref_primary_10_4103_1673_5374_272579 crossref_primary_10_3390_ijms23062975 crossref_primary_10_3389_fneur_2021_618101 crossref_primary_10_3233_JAD_180291 crossref_primary_10_1111_jsr_14316 crossref_primary_10_32607_actanaturae_11415 crossref_primary_10_1038_s41598_020_77830_4 crossref_primary_10_1097_01_NT_0000655404_75632_ef crossref_primary_10_3389_fnagi_2020_00272 crossref_primary_10_1021_acs_jproteome_3c00269 crossref_primary_10_1097_WNR_0000000000001592 crossref_primary_10_1001_jamaneurol_2022_0429 crossref_primary_10_1038_s41582_020_0333_7 crossref_primary_10_1016_j_ypmed_2023_107830 crossref_primary_10_1038_s41580_024_00753_9 crossref_primary_10_13104_imri_2023_0032 crossref_primary_10_1093_procel_pwae026 crossref_primary_10_1080_00140139_2021_1882705 crossref_primary_10_1007_s00018_023_04736_5 crossref_primary_10_3390_ijms24010878 crossref_primary_10_1016_j_mad_2023_111899 crossref_primary_10_1038_s41467_023_42721_5 crossref_primary_10_1002_lipd_12428 crossref_primary_10_1073_pnas_1914017117 crossref_primary_10_3174_ajnr_A6941 crossref_primary_10_1016_j_neuron_2024_08_006 crossref_primary_10_1038_s41598_023_28832_5 crossref_primary_10_1097_WNP_0000000000000818 crossref_primary_10_1172_jci_insight_162454 crossref_primary_10_1371_journal_pgen_1010681 crossref_primary_10_1016_j_medcle_2021_03_003 crossref_primary_10_15212_CVIA_2024_0068 crossref_primary_10_3389_fphys_2023_1146096 crossref_primary_10_7555_JBR_37_20230264 crossref_primary_10_1016_j_neuropharm_2020_108104 crossref_primary_10_1038_s41583_023_00723_8 crossref_primary_10_1093_brain_awz087 crossref_primary_10_17352_ojc_000012 crossref_primary_10_5607_en22019 crossref_primary_10_1126_scitranslmed_ade6285 crossref_primary_10_1186_s12916_023_02910_x crossref_primary_10_1186_s13073_019_0704_0 crossref_primary_10_1111_ane_13573 crossref_primary_10_1089_ars_2020_8134 crossref_primary_10_1186_s12987_021_00296_7 crossref_primary_10_1016_j_chemosphere_2020_126762 crossref_primary_10_1136_bmjopen_2022_067159 crossref_primary_10_1016_j_tins_2020_04_003 crossref_primary_10_1111_bpa_13028 crossref_primary_10_5812_ijpbs_126596 crossref_primary_10_1016_j_smrv_2020_101409 crossref_primary_10_1016_j_neuron_2025_02_004 crossref_primary_10_1007_s13311_019_00769_6 crossref_primary_10_1093_sleep_zsae082 crossref_primary_10_3390_brainsci14010008 crossref_primary_10_1002_alz_12035 crossref_primary_10_3233_ADR_230187 crossref_primary_10_3390_neuroglia6010001 crossref_primary_10_1038_s41598_022_25364_2 crossref_primary_10_24188_recia_v15_n1_2023_985 crossref_primary_10_1038_s41386_019_0490_9 crossref_primary_10_3389_fnagi_2019_00258 crossref_primary_10_3390_biomedicines11082296 crossref_primary_10_1007_s12035_025_04851_3 crossref_primary_10_1016_j_sleep_2024_11_009 crossref_primary_10_3389_fneur_2022_1038735 crossref_primary_10_1016_j_bbi_2022_11_013 crossref_primary_10_1126_scitranslmed_abh4284 crossref_primary_10_1016_j_nbd_2023_106378 crossref_primary_10_1126_science_abb8739 crossref_primary_10_1016_j_preteyeres_2024_101273 crossref_primary_10_1016_j_cellsig_2019_109420 crossref_primary_10_3389_fnagi_2019_00146 crossref_primary_10_1007_s10072_023_07232_7 crossref_primary_10_1093_sleep_zsae076 crossref_primary_10_4103_1673_5374_371370 crossref_primary_10_1111_jsr_13538 crossref_primary_10_1016_j_molmed_2020_03_012 crossref_primary_10_17116_jnevro202312309131 crossref_primary_10_1038_s41598_023_27913_9 crossref_primary_10_1016_j_bbrc_2020_11_064 crossref_primary_10_3233_JAD_230527 crossref_primary_10_1001_jama_2021_5631 crossref_primary_10_1007_s11357_023_00886_3 crossref_primary_10_1038_s41398_024_02985_x crossref_primary_10_1111_cns_13194 crossref_primary_10_3389_fphar_2023_1112743 crossref_primary_10_1155_2019_4569614 crossref_primary_10_1093_sleep_zsae145 crossref_primary_10_1038_s41593_023_01548_5 crossref_primary_10_1038_s41380_024_02691_6 crossref_primary_10_1093_sleep_zsae007 crossref_primary_10_1177_01939459211041163 crossref_primary_10_1016_j_jsmc_2022_02_003 crossref_primary_10_1007_s12035_021_02425_7 crossref_primary_10_17116_jnevro202412404169 crossref_primary_10_1016_j_brs_2024_06_007 crossref_primary_10_1038_s41582_020_0312_z crossref_primary_10_1002_jev2_12398 crossref_primary_10_3390_ijms242417458 crossref_primary_10_17116_jnevro202312310142 crossref_primary_10_1126_science_adp1705 crossref_primary_10_1007_s40265_021_01546_6 crossref_primary_10_1111_bph_16212 crossref_primary_10_1111_apha_13966 crossref_primary_10_1097_GME_0000000000001414 crossref_primary_10_1002_alz_14495 crossref_primary_10_1038_s41433_024_03341_5 crossref_primary_10_1126_science_aax5440 crossref_primary_10_1093_cercor_bhad253 crossref_primary_10_1159_000504020 crossref_primary_10_3389_fnagi_2022_800278 crossref_primary_10_1523_JNEUROSCI_1929_23_2024 crossref_primary_10_1021_acschemneuro_2c00097 crossref_primary_10_1016_j_ebiom_2022_104249 crossref_primary_10_1007_s41105_024_00568_3 crossref_primary_10_1016_j_celrep_2021_108899 crossref_primary_10_1177_0271678X20982388 crossref_primary_10_1007_s12264_019_00453_x crossref_primary_10_1523_JNEUROSCI_0241_23_2023 crossref_primary_10_1016_j_cub_2024_05_005 crossref_primary_10_1007_s40265_024_02096_3 crossref_primary_10_1021_acs_jpcb_2c06375 crossref_primary_10_1254_fpj_154_306 crossref_primary_10_3390_ijms20040803 crossref_primary_10_1016_j_medcli_2020_08_020 crossref_primary_10_1002_mds_28643 crossref_primary_10_1016_j_jns_2024_122900 crossref_primary_10_1212_WNL_0000000000009315 crossref_primary_10_3390_ijms24076528 crossref_primary_10_1126_scitranslmed_abe7099 crossref_primary_10_1371_journal_pbio_3001812 crossref_primary_10_3390_biom14030274 crossref_primary_10_3233_JAD_190501 crossref_primary_10_3389_fncel_2021_695479 crossref_primary_10_1186_s40478_022_01359_y crossref_primary_10_1002_mds_28558 crossref_primary_10_1038_s41386_019_0478_5 crossref_primary_10_1016_j_neuroimage_2024_120905 crossref_primary_10_1038_s41467_023_40546_w crossref_primary_10_1186_s12987_020_00181_9 crossref_primary_10_1038_s43587_022_00210_2 crossref_primary_10_1001_jamanetworkopen_2020_13573 crossref_primary_10_1016_j_smrv_2019_101250 crossref_primary_10_2174_0115672050336499240903113255 crossref_primary_10_1093_sleepadvances_zpab007 crossref_primary_10_1093_sleep_zsab057 crossref_primary_10_1016_j_sleep_2024_02_003 crossref_primary_10_3390_biology10080707 crossref_primary_10_1016_j_chest_2020_09_006 crossref_primary_10_1038_s41398_023_02553_9 crossref_primary_10_1016_j_biopsych_2023_09_003 crossref_primary_10_1111_bph_15813 crossref_primary_10_1186_s12942_024_00384_5 crossref_primary_10_1177_0271678X221090747 crossref_primary_10_3389_fneur_2022_1053942 crossref_primary_10_2147_NSS_S254449 crossref_primary_10_3389_fnagi_2022_998292 crossref_primary_10_3389_fnins_2024_1390216 crossref_primary_10_1186_s12951_021_00814_7 crossref_primary_10_4103_1673_5374_346484 crossref_primary_10_1136_jmg_2023_109508 crossref_primary_10_3389_fnins_2023_1160805 crossref_primary_10_53053_EWGZ1877 crossref_primary_10_3389_fphar_2022_881385 crossref_primary_10_1371_journal_pbio_3000623 crossref_primary_10_3389_fcimb_2023_1159771 crossref_primary_10_14336_AD_2020_0103 crossref_primary_10_1172_JCI148288 crossref_primary_10_1177_10738584241309850 crossref_primary_10_1126_scitranslmed_aaw3210 crossref_primary_10_3389_fnagi_2022_1055170 crossref_primary_10_3390_biom12020196 crossref_primary_10_1124_pharmrev_123_000953 crossref_primary_10_3233_JHD_230567 crossref_primary_10_1016_j_neubiorev_2019_07_019 crossref_primary_10_1093_sleep_zsae245 crossref_primary_10_1093_sleep_zsad274 crossref_primary_10_1016_j_celrep_2021_110268 crossref_primary_10_1038_s41531_022_00431_7 crossref_primary_10_1002_alz_14296 crossref_primary_10_1038_s41582_021_00577_7 crossref_primary_10_38053_acmj_1309367 crossref_primary_10_1016_j_mrl_2024_200154 crossref_primary_10_1093_sleep_zsae226 crossref_primary_10_1007_s11064_022_03578_0 crossref_primary_10_1038_s41598_022_19967_y crossref_primary_10_1126_scitranslmed_aba6334 crossref_primary_10_1096_fj_202202040RR crossref_primary_10_3233_JAD_215460 crossref_primary_10_3389_fnagi_2021_759983 crossref_primary_10_1016_j_arr_2022_101775 crossref_primary_10_1152_jn_00118_2019 crossref_primary_10_3389_fnagi_2025_1560032 crossref_primary_10_1007_s41105_022_00439_9 crossref_primary_10_1016_j_genhosppsych_2024_08_001 crossref_primary_10_1038_s44323_025_00025_5 crossref_primary_10_3233_JHD_230574 crossref_primary_10_4236_aad_2020_93003 crossref_primary_10_1002_mds_28562 crossref_primary_10_1007_s00415_020_10334_3 crossref_primary_10_1016_j_jns_2024_122927 crossref_primary_10_3390_ijms252111634 crossref_primary_10_3390_ijms23010504 crossref_primary_10_1016_j_neuron_2024_09_017 crossref_primary_10_1017_S1041610219000462 crossref_primary_10_1016_j_bios_2022_114821 crossref_primary_10_1016_j_nbd_2020_105031 crossref_primary_10_1111_psyg_13056 crossref_primary_10_1016_j_arr_2023_101885 crossref_primary_10_1080_08820139_2024_2358446 crossref_primary_10_1002_alz_12930 crossref_primary_10_1016_j_cccb_2021_100025 crossref_primary_10_1016_j_cell_2019_09_001 crossref_primary_10_3233_JAD_215417 crossref_primary_10_1016_j_brainresbull_2024_111181 crossref_primary_10_2147_NSS_S336318 crossref_primary_10_3389_fneur_2024_1430989 crossref_primary_10_1016_j_jep_2024_118939 crossref_primary_10_1126_sciadv_abf6935 crossref_primary_10_3390_biomedicines10092261 crossref_primary_10_1007_s11064_021_03325_x crossref_primary_10_1186_s13195_020_00668_5 crossref_primary_10_1038_s41583_019_0255_9 crossref_primary_10_3233_JAD_201378 crossref_primary_10_2147_NDT_S388832 crossref_primary_10_1007_s13311_019_00755_y crossref_primary_10_1093_pnasnexus_pgae548 crossref_primary_10_3233_NRE_230380 crossref_primary_10_12688_hrbopenres_13988_1 crossref_primary_10_1007_s00018_024_05225_z crossref_primary_10_1002_ana_26641 crossref_primary_10_3390_ph14040383 crossref_primary_10_1007_s10571_022_01228_1 crossref_primary_10_1093_sleepadvances_zpac022 crossref_primary_10_1126_science_abi8375 crossref_primary_10_3390_brainsci11020229 crossref_primary_10_1186_s12974_020_01960_9 crossref_primary_10_1002_brb3_3270 crossref_primary_10_1016_j_sleep_2020_07_048 crossref_primary_10_3390_ctn8020023 crossref_primary_10_1016_j_ncl_2022_05_001 crossref_primary_10_1016_j_nbd_2022_105748 crossref_primary_10_3389_fneur_2022_927994 crossref_primary_10_1093_sleep_zsac123 crossref_primary_10_1016_j_cell_2024_08_046 crossref_primary_10_1111_nyas_14371 crossref_primary_10_1186_s12883_021_02521_0 crossref_primary_10_14336_AD_2023_1229 crossref_primary_10_1111_jnc_15883 crossref_primary_10_1186_s13041_021_00835_1 crossref_primary_10_1111_cns_14592 crossref_primary_10_1002_ibra_12167 crossref_primary_10_1134_S2079057025600053 crossref_primary_10_1002_ana_25459 crossref_primary_10_1002_mds_28006 crossref_primary_10_1007_s40675_024_00316_6 crossref_primary_10_1126_sciadv_adj4457 |
Cites_doi | 10.1093/brain/awx243 10.1016/j.brainres.2004.01.019 10.1038/ncb1901 10.1126/scitranslmed.aal2029 10.1038/nrn2786 10.1038/s41593-018-0289-8 10.1016/j.pbb.2008.04.001 10.1002/ana.25117 10.1016/j.neuron.2013.07.046 10.1038/s41467-017-01004-6 10.1016/j.neuron.2018.04.035 10.1523/JNEUROSCI.2569-11.2011 10.1093/hmg/ddh019 10.1016/S1474-4422(13)70090-5 10.1126/science.1241224 10.1523/JNEUROSCI.0275-18.2018 10.1523/JNEUROSCI.2642-12.2013 10.1371/journal.pone.0031302 10.1084/jem.20131685 10.1186/s13024-018-0241-0 10.1038/nn2035 10.1126/science.1180962 10.1002/ana.24454 10.1038/embor.2013.15 10.1523/JNEUROSCI.23-26-08844.2003 10.1016/j.neuron.2011.11.033 10.1038/nn.4328 10.1126/scitranslmed.3004291 10.1186/s13024-015-0052-5 10.1172/JCI79742 10.1038/nn.2801 |
ContentType | Journal Article |
Copyright | Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
Copyright_xml | – notice: Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. – notice: Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 5PM |
DOI | 10.1126/science.aav2546 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 884 |
ExternalDocumentID | PMC6410369 30679382 10_1126_science_aav2546 26762241 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R01 NS103161 – fundername: NIA NIH HHS grantid: R03 AG047999 – fundername: NINDS NIH HHS grantid: R01 NS092652 – fundername: NINDS NIH HHS grantid: K08 NS105929 – fundername: NIA NIH HHS grantid: K76 AG054863 – fundername: NCATS NIH HHS grantid: UL1 TR002345 – fundername: NIA NIH HHS grantid: P01 AG026276 – fundername: NCATS NIH HHS grantid: UL1 TR000448 – fundername: NINDS NIH HHS grantid: F32 NS089381 – fundername: NINDS NIH HHS grantid: P01 NS074969 |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO ABBHK ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADUKH ADXHL AEGBM AENEX AETEA AEUPB AEXZC AFBNE AFFDN AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ASPBG AVWKF BKF BLC C45 CS3 DB2 DCCCD DU5 EBS EJD EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPSME IPY ISE JAAYA JBMMH JCF JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ QS- RHI RXW SA0 SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ AAYXX ABCQX CITATION K-O 0B8 CGR CUY CVF ECM EIF ESX GX1 IGG NPM OK1 PKN RHF UIG VQA YCJ YIF YIN ZKG 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c509t-edaeb9c08cfbe89a95fefa5d8d088f99c270e2f8bc6635334942bf5fd228eb803 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Thu Aug 21 18:02:52 EDT 2025 Sun Sep 28 09:23:56 EDT 2025 Fri Jul 25 19:11:48 EDT 2025 Wed Feb 19 02:31:21 EST 2025 Thu Apr 24 23:07:38 EDT 2025 Tue Jul 01 01:51:28 EDT 2025 Thu Jul 03 21:38:05 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6429 |
Language | English |
License | Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c509t-edaeb9c08cfbe89a95fefa5d8d088f99c270e2f8bc6635334942bf5fd228eb803 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. Author contributions: JKH, SKF, NPP, JRC, JCG, CBP, PMF, BPL, and DMH designed the research studies. JKH, SKF, CW, TEM, MBF, and MM conducted experiments and acquired data. JKH, SKF, and DMH wrote the first version of the manuscript, JKH, SKF, CW, NPP, JRC, TEM, MBF, MM, JCG, CBS, PMF, BPL, and DMH edited the manuscript. |
ORCID | 0000-0003-3980-9221 0000-0001-5400-825X 0000-0003-4665-7203 0000-0002-6418-3809 0000-0001-9811-7490 0000-0001-5930-6555 0000-0002-3400-0856 0000-0002-8494-0635 0000-0001-7912-2016 0000-0001-9956-4006 |
OpenAccessLink | https://escholarship.org/content/qt7k7772nd/qt7k7772nd.pdf |
PMID | 30679382 |
PQID | 2184544557 |
PQPubID | 1256 |
PageCount | 5 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6410369 proquest_miscellaneous_2179473424 proquest_journals_2184544557 pubmed_primary_30679382 crossref_primary_10_1126_science_aav2546 crossref_citationtrail_10_1126_science_aav2546 jstor_primary_26762241 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-02-22 |
PublicationDateYYYYMMDD | 2019-02-22 |
PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-22 day: 22 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2019 |
Publisher | American Association for the Advancement of Science The American Association for the Advancement of Science |
Publisher_xml | – name: American Association for the Advancement of Science – name: The American Association for the Advancement of Science |
References | e_1_3_2_26_2 e_1_3_2_27_2 e_1_3_2_28_2 e_1_3_2_29_2 e_1_3_2_20_2 e_1_3_2_21_2 e_1_3_2_22_2 e_1_3_2_23_2 e_1_3_2_24_2 e_1_3_2_25_2 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_2_2 e_1_3_2_14_2 30792288 - Science. 2019 Feb 22;363(6429):813-814 |
References_xml | – ident: e_1_3_2_3_2 doi: 10.1093/brain/awx243 – ident: e_1_3_2_32_2 doi: 10.1016/j.brainres.2004.01.019 – ident: e_1_3_2_4_2 doi: 10.1038/ncb1901 – ident: e_1_3_2_25_2 doi: 10.1126/scitranslmed.aal2029 – ident: e_1_3_2_5_2 doi: 10.1038/nrn2786 – ident: e_1_3_2_20_2 doi: 10.1038/s41593-018-0289-8 – ident: e_1_3_2_14_2 doi: 10.1016/j.pbb.2008.04.001 – ident: e_1_3_2_17_2 doi: 10.1002/ana.25117 – ident: e_1_3_2_19_2 doi: 10.1016/j.neuron.2013.07.046 – ident: e_1_3_2_21_2 doi: 10.1038/s41467-017-01004-6 – ident: e_1_3_2_24_2 doi: 10.1016/j.neuron.2018.04.035 – ident: e_1_3_2_28_2 doi: 10.1523/JNEUROSCI.2569-11.2011 – ident: e_1_3_2_22_2 doi: 10.1093/hmg/ddh019 – ident: e_1_3_2_2_2 doi: 10.1016/S1474-4422(13)70090-5 – ident: e_1_3_2_26_2 doi: 10.1126/science.1241224 – ident: e_1_3_2_27_2 doi: 10.1523/JNEUROSCI.0275-18.2018 – ident: e_1_3_2_6_2 doi: 10.1523/JNEUROSCI.2642-12.2013 – ident: e_1_3_2_8_2 doi: 10.1371/journal.pone.0031302 – ident: e_1_3_2_10_2 doi: 10.1084/jem.20131685 – ident: e_1_3_2_18_2 doi: 10.1186/s13024-018-0241-0 – ident: e_1_3_2_12_2 doi: 10.1038/nn2035 – ident: e_1_3_2_16_2 doi: 10.1126/science.1180962 – ident: e_1_3_2_31_2 doi: 10.1002/ana.24454 – ident: e_1_3_2_9_2 doi: 10.1038/embor.2013.15 – ident: e_1_3_2_29_2 doi: 10.1523/JNEUROSCI.23-26-08844.2003 – ident: e_1_3_2_7_2 doi: 10.1016/j.neuron.2011.11.033 – ident: e_1_3_2_11_2 doi: 10.1038/nn.4328 – ident: e_1_3_2_15_2 doi: 10.1126/scitranslmed.3004291 – ident: e_1_3_2_23_2 doi: 10.1186/s13024-015-0052-5 – ident: e_1_3_2_30_2 doi: 10.1172/JCI79742 – ident: e_1_3_2_13_2 doi: 10.1038/nn.2801 – reference: 30792288 - Science. 2019 Feb 22;363(6429):813-814 |
SSID | ssj0009593 |
Score | 2.702348 |
Snippet | The sleep-wake cycle regulates interstitial fluid (ISF) and cerebrospinal fluid (CSF) levels of β-amyloid (Aβ) that accumulates in Alzheimer’s disease (AD).... Two main proteins accumulate in the brain in Alzheimer's disease (AD), β-amyloid (Aβ) and tau. Aβ appears to instigate AD, but tau appears to drive brain... The sleep-wake cycle regulates interstitial fluid (ISF) and cerebrospinal fluid (CSF) levels of β-amyloid (Aβ) that accumulates in Alzheimer's disease (AD).... Sleep may protect the brain from ADTwo main proteins accumulate in the brain in Alzheimer's disease (AD), β-amyloid (Aβ) and tau. Aβ appears to instigate AD,... The sleep-wake cycle regulates interstitial fluid (ISF) and cerebrospinal (CSF) levels of amyloid-β (Aβ) that accumulates in Alzheimer disease (AD) and chronic... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 880 |
SubjectTerms | Alzheimer's disease Amyloid beta-Peptides - analysis Amyloid beta-Peptides - cerebrospinal fluid Amyloid beta-Peptides - metabolism Animals Brain Brain - metabolism Brain damage Brain injury Cerebrospinal fluid Circadian Rhythm Cognitive ability Extracellular Fluid - chemistry Extracellular Fluid - metabolism Female Male Mice Mice, Transgenic Neurodegeneration Neurodegenerative diseases Neurological Impairments Pathology Proteins Senile plaques Sleep Sleep - physiology Sleep and wakefulness Sleep deprivation Sleep Deprivation - cerebrospinal fluid Sleep Deprivation - metabolism Spires Spreading Tau protein tau Proteins - analysis tau Proteins - cerebrospinal fluid tau Proteins - metabolism Wakefulness Wakefulness - genetics Wakefulness - physiology β-Amyloid |
Title | The sleep-wake cycle regulates brain interstitial fluid tau in mice and CSF tau in humans |
URI | https://www.jstor.org/stable/26762241 https://www.ncbi.nlm.nih.gov/pubmed/30679382 https://www.proquest.com/docview/2184544557 https://www.proquest.com/docview/2179473424 https://pubmed.ncbi.nlm.nih.gov/PMC6410369 |
Volume | 363 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdKJ9BeEBsMAgMZiYehKFXmfD92hWoa2jSJTYynKE5sqCht1Sag8Zfx53EX25k7Ngn2ElX-SKLeL-e78_l-hLwJq1jGUSbBN_ELL0yi0Et55XusKoMyBvuex3ga-fgkPjwPjy6ii17vt5W11NR8UP668VzJXaQKbSBXPCX7H5LtbgoN8BvkC1eQMFz_WcarqRAL72fxTbjlJfS7S8UuL1YuR_qHtiDEEjMCMDYup82kcuuiwTgHMtG3mwejj2PT1nL2rWyT1Xz9YIp22zuWULs8xaHKJjDJBXqaFWk4nE9VEOdILEHFuR8GHXiWkxq87EkXorb6PumANh6DaPQy26pyzMBWOvNk8kVM3dOBHcHAQ1PMY3ZQ0xRFVmuSUsQ-ckgyP7A1daB1oYIkeE6ZpXpTxQhlVnFFPPf3AmFRWopBUfxAPgB7JEh48b3FCzpTWaCoka7V5D49HsXhPrx2do9ssASstj7ZGB68OxjfWvBZl5WyDmyZp2-SB-ZRa8aRyo-9yfO5nsBrWURnj8hD7crQocLlFumJ2Ta5r8hNL7fJlkbAiu7p2uZvH5PPAFl6BVnaQpZ2kKUtZKkNWdpClgI8oZkiZClAlgJkTZuC7BNyPn5_Njr0NLuHV4KRWnuiKgTPSj8tJRdpVmSRFLKIqrSChU9mWckSXzCZ8hKN4gDLKDEuI1kxlgqe-sEO6c_mM_GMUCRfi1gohS_iUO4XnAdpEYaBjBMWVFngkIH5W_NSl75HBpZp3rrALM61SHItEofsdRMWqurL7UN3Wjl141gM9gXYxQ7ZNYLLtc5Y5RhQwfJXUeKQ1103aHTcpitmYt7gGFgjkyBkoUOeKjl3NzdAcUiyhoBuAFaLX--ZTb62VeM1YJ_feeYLsnn19e6Sfr1sxEuwyGv-SoP_D7Li5PI |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+sleep-wake+cycle+regulates+brain+interstitial+fluid+tau+in+mice+and+CSF+tau+in+humans&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Holth%2C+Jerrah+K.&rft.au=Fritschi%2C+Sarah+K.&rft.au=Wang%2C+Chanung&rft.au=Pedersen%2C+Nigel+P.&rft.date=2019-02-22&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=363&rft.issue=6429&rft.spage=880&rft.epage=884&rft_id=info:doi/10.1126%2Fscience.aav2546&rft_id=info%3Apmid%2F30679382&rft.externalDocID=PMC6410369 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |