Deep-learning-based out-of-hospital cardiac arrest prognostic system to predict clinical outcomes
Out-of-hospital cardiac arrest (OHCA) is a major healthcare burden, and prognosis is critical in decision-making for treatment and the withdrawal of life-sustaining therapy. This study aimed to develop and validate a deep-learning-based out-of-hospital cardiac arrest prognostic system (DCAPS) for pr...
Saved in:
Published in | Resuscitation Vol. 139; pp. 84 - 91 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Ireland
Elsevier B.V
01.06.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0300-9572 1873-1570 1873-1570 |
DOI | 10.1016/j.resuscitation.2019.04.007 |
Cover
Abstract | Out-of-hospital cardiac arrest (OHCA) is a major healthcare burden, and prognosis is critical in decision-making for treatment and the withdrawal of life-sustaining therapy. This study aimed to develop and validate a deep-learning-based out-of-hospital cardiac arrest prognostic system (DCAPS) for predicting neurologic recovery and survival to discharge.
The study subjects were patients from the Korea OHCA registry who experienced return of spontaneous circulation (ROSC) after OHCA. A total of 36,190 patients were exclusively divided into a set of 28,045 subjects for derivation data and 8,145 subjects for validation data. We used information available for the time of ROSC as predictor variables, and the endpoints were neurologic recovery (cerebral performance category 1 or 2) and survival to discharge. The DCAPS was developed using the derivation data and represented the favorability of prognosis with a score between 0 and 100.
The area under the receiver operating characteristic curve (AUROC) of DCAPS for predicting neurologic recovery for the validation data was 0.953 [95% confidence interval 0.952–0.954]; these results significantly outperformed those of logistic regression (0.947 [0.943–0.948]), random forest (0.943 [0.942–0.945]), support vector machine (0.930 [0.929–0.932]), and conventional methods of a previous study (0.817 [0.815–0.820]). The AUROC of the DCAPS for survival to discharge was 0.901 [0.900–0.903], and this result significantly outperformed those of other models as well.
The DCAPS predicted neurologic recovery and survival to discharge of OHCA patients accurately and outperformed the conventional method and other machine-learning methods. |
---|---|
AbstractList | Out-of-hospital cardiac arrest (OHCA) is a major healthcare burden, and prognosis is critical in decision-making for treatment and the withdrawal of life-sustaining therapy. This study aimed to develop and validate a deep-learning-based out-of-hospital cardiac arrest prognostic system (DCAPS) for predicting neurologic recovery and survival to discharge.
The study subjects were patients from the Korea OHCA registry who experienced return of spontaneous circulation (ROSC) after OHCA. A total of 36,190 patients were exclusively divided into a set of 28,045 subjects for derivation data and 8,145 subjects for validation data. We used information available for the time of ROSC as predictor variables, and the endpoints were neurologic recovery (cerebral performance category 1 or 2) and survival to discharge. The DCAPS was developed using the derivation data and represented the favorability of prognosis with a score between 0 and 100.
The area under the receiver operating characteristic curve (AUROC) of DCAPS for predicting neurologic recovery for the validation data was 0.953 [95% confidence interval 0.952–0.954]; these results significantly outperformed those of logistic regression (0.947 [0.943–0.948]), random forest (0.943 [0.942–0.945]), support vector machine (0.930 [0.929–0.932]), and conventional methods of a previous study (0.817 [0.815–0.820]). The AUROC of the DCAPS for survival to discharge was 0.901 [0.900–0.903], and this result significantly outperformed those of other models as well.
The DCAPS predicted neurologic recovery and survival to discharge of OHCA patients accurately and outperformed the conventional method and other machine-learning methods. Out-of-hospital cardiac arrest (OHCA) is a major healthcare burden, and prognosis is critical in decision-making for treatment and the withdrawal of life-sustaining therapy. This study aimed to develop and validate a deep-learning-based out-of-hospital cardiac arrest prognostic system (DCAPS) for predicting neurologic recovery and survival to discharge.AIMOut-of-hospital cardiac arrest (OHCA) is a major healthcare burden, and prognosis is critical in decision-making for treatment and the withdrawal of life-sustaining therapy. This study aimed to develop and validate a deep-learning-based out-of-hospital cardiac arrest prognostic system (DCAPS) for predicting neurologic recovery and survival to discharge.The study subjects were patients from the Korea OHCA registry who experienced return of spontaneous circulation (ROSC) after OHCA. A total of 36,190 patients were exclusively divided into a set of 28,045 subjects for derivation data and 8,145 subjects for validation data. We used information available for the time of ROSC as predictor variables, and the endpoints were neurologic recovery (cerebral performance category 1 or 2) and survival to discharge. The DCAPS was developed using the derivation data and represented the favorability of prognosis with a score between 0 and 100.METHODSThe study subjects were patients from the Korea OHCA registry who experienced return of spontaneous circulation (ROSC) after OHCA. A total of 36,190 patients were exclusively divided into a set of 28,045 subjects for derivation data and 8,145 subjects for validation data. We used information available for the time of ROSC as predictor variables, and the endpoints were neurologic recovery (cerebral performance category 1 or 2) and survival to discharge. The DCAPS was developed using the derivation data and represented the favorability of prognosis with a score between 0 and 100.The area under the receiver operating characteristic curve (AUROC) of DCAPS for predicting neurologic recovery for the validation data was 0.953 [95% confidence interval 0.952-0.954]; these results significantly outperformed those of logistic regression (0.947 [0.943-0.948]), random forest (0.943 [0.942-0.945]), support vector machine (0.930 [0.929-0.932]), and conventional methods of a previous study (0.817 [0.815-0.820]). The AUROC of the DCAPS for survival to discharge was 0.901 [0.900-0.903], and this result significantly outperformed those of other models as well.RESULTSThe area under the receiver operating characteristic curve (AUROC) of DCAPS for predicting neurologic recovery for the validation data was 0.953 [95% confidence interval 0.952-0.954]; these results significantly outperformed those of logistic regression (0.947 [0.943-0.948]), random forest (0.943 [0.942-0.945]), support vector machine (0.930 [0.929-0.932]), and conventional methods of a previous study (0.817 [0.815-0.820]). The AUROC of the DCAPS for survival to discharge was 0.901 [0.900-0.903], and this result significantly outperformed those of other models as well.The DCAPS predicted neurologic recovery and survival to discharge of OHCA patients accurately and outperformed the conventional method and other machine-learning methods.CONCLUSIONSThe DCAPS predicted neurologic recovery and survival to discharge of OHCA patients accurately and outperformed the conventional method and other machine-learning methods. |
Author | Lim, Sungmin Park, Jinsik Kwon, Joon-myoung Jeon, Ki-Hyun Kim, Hyue Mee Kim, Kyung-Hee Choi, Rak Kyeong Oh, Byung-Hee Song, Pil Sang Kim, Min Jeong |
Author_xml | – sequence: 1 givenname: Joon-myoung orcidid: 0000-0001-6754-1010 surname: Kwon fullname: Kwon, Joon-myoung organization: Department of Emergency Medicine, Mediplex Sejong Hospital, Incheon, Republic of Korea – sequence: 2 givenname: Ki-Hyun orcidid: 0000-0002-6277-7697 surname: Jeon fullname: Jeon, Ki-Hyun email: imcardio@gmail.com organization: Division of Cardiology, Cardiovascular Center, Mediplex Sejong Hospital, Incheon, Republic of Korea – sequence: 3 givenname: Hyue Mee surname: Kim fullname: Kim, Hyue Mee organization: Division of Cardiology, Cardiovascular Center, Mediplex Sejong Hospital, Incheon, Republic of Korea – sequence: 4 givenname: Min Jeong surname: Kim fullname: Kim, Min Jeong organization: Division of Cardiology, Cardiovascular Center, Mediplex Sejong Hospital, Incheon, Republic of Korea – sequence: 5 givenname: Sungmin surname: Lim fullname: Lim, Sungmin organization: Division of Cardiology, Cardiovascular Center, Mediplex Sejong Hospital, Incheon, Republic of Korea – sequence: 6 givenname: Kyung-Hee surname: Kim fullname: Kim, Kyung-Hee organization: Division of Cardiology, Cardiovascular Center, Mediplex Sejong Hospital, Incheon, Republic of Korea – sequence: 7 givenname: Pil Sang surname: Song fullname: Song, Pil Sang organization: Division of Cardiology, Cardiovascular Center, Mediplex Sejong Hospital, Incheon, Republic of Korea – sequence: 8 givenname: Jinsik surname: Park fullname: Park, Jinsik organization: Division of Cardiology, Cardiovascular Center, Mediplex Sejong Hospital, Incheon, Republic of Korea – sequence: 9 givenname: Rak Kyeong surname: Choi fullname: Choi, Rak Kyeong organization: Division of Cardiology, Cardiovascular Center, Mediplex Sejong Hospital, Incheon, Republic of Korea – sequence: 10 givenname: Byung-Hee surname: Oh fullname: Oh, Byung-Hee organization: Division of Cardiology, Cardiovascular Center, Mediplex Sejong Hospital, Incheon, Republic of Korea |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30978378$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1u1DAURi1URKeFV0CR2LBxuLbjJBaraig_UiU2sLYc-6Z4SOLBdirN2-NqOkh0NStL1vnOte93RS6WsCAh7xjUDFj7YVdHTGuyPpvsw1JzYKqGpgboXpAN6ztBmezggmxAAFAlO35JrlLaAYCQqntFLgWorhddvyHmE-KeTmji4pd7OpiErgprpmGkv0LalyFTZU103tjKxDI5V_sY7peQsrdVOqSMc5VDuUTnba7s5BdvS6hIbJgxvSYvRzMlfPN0XpOfn29_bL_Su-9fvm1v7qiVoDLF1rY9CsEHaEE5wxswjWOM88ENTA4SAe0oRfmNk5KNgx1LBLmVqndOMXFN3h-95Xl_1vJOPftkcZrMgmFNmnNQLbCONQV9-4Suw4xO76OfTTzo01oK8PEI2BhSijj-QxjoxxL0Tv9Xgn4sQUOjSwklffMsfcJyNH4603F7dGBZ2YPHqAuHiy1LjmizdsGf6dk-85wK-o2Hsy1_AWFRyBs |
CitedBy_id | crossref_primary_10_1016_j_ajem_2023_07_044 crossref_primary_10_1016_j_jcrc_2022_153997 crossref_primary_10_1038_s41598_025_93182_3 crossref_primary_10_3390_jcdd9120430 crossref_primary_10_52148_ehta_1117769 crossref_primary_10_1016_j_cjca_2022_12_014 crossref_primary_10_1016_j_isci_2023_107407 crossref_primary_10_1016_j_compbiomed_2024_109439 crossref_primary_10_1016_j_procs_2024_12_040 crossref_primary_10_1016_j_ijmedinf_2024_105659 crossref_primary_10_2196_27405 crossref_primary_10_1371_journal_pone_0254894 crossref_primary_10_3390_jcm12062254 crossref_primary_10_1186_s12911_021_01730_4 crossref_primary_10_3390_jcm13247600 crossref_primary_10_1016_j_resuscitation_2020_01_029 crossref_primary_10_1016_j_neurot_2025_e00524 crossref_primary_10_7181_acfs_2021_00507 crossref_primary_10_1109_TII_2021_3123588 crossref_primary_10_1111_sdi_12915 crossref_primary_10_1016_j_resplu_2023_100491 crossref_primary_10_1016_j_resuscitation_2021_09_027 crossref_primary_10_1093_ehjdh_ztae016 crossref_primary_10_2139_ssrn_4088750 crossref_primary_10_1177_1024907920966912 crossref_primary_10_1186_s13049_020_0713_4 crossref_primary_10_1007_s12028_023_01688_3 crossref_primary_10_2196_19416 crossref_primary_10_1016_j_ajem_2022_10_011 crossref_primary_10_3390_jcm10051089 crossref_primary_10_1016_j_resuscitation_2023_109704 crossref_primary_10_1080_13658816_2024_2443757 crossref_primary_10_1186_s13054_020_03103_1 crossref_primary_10_1007_s10049_021_00885_x crossref_primary_10_1016_j_resuscitation_2022_04_028 crossref_primary_10_1186_s13054_021_03505_9 crossref_primary_10_1371_journal_pone_0291258 crossref_primary_10_3346_jkms_2021_36_e187 crossref_primary_10_1371_journal_pone_0273787 crossref_primary_10_1007_s11042_020_10150_x crossref_primary_10_1016_j_resuscitation_2020_11_020 crossref_primary_10_3389_fneur_2025_1512297 crossref_primary_10_4081_ecj_2020_8573 crossref_primary_10_1016_j_ijcard_2020_03_075 crossref_primary_10_1016_j_bj_2021_01_003 crossref_primary_10_1016_j_resplu_2024_100829 crossref_primary_10_1186_s12911_023_02149_9 crossref_primary_10_1186_s12911_021_01403_2 crossref_primary_10_1016_j_resuscitation_2021_02_009 crossref_primary_10_47992_IJHSP_2581_6411_0061 crossref_primary_10_1016_j_resuscitation_2019_06_006 crossref_primary_10_1136_emermed_2022_212853 crossref_primary_10_1371_journal_pone_0278944 crossref_primary_10_3390_math11092030 crossref_primary_10_1007_s11042_021_11176_5 crossref_primary_10_1016_j_resuscitation_2024_110165 crossref_primary_10_1016_j_resuscitation_2021_11_029 crossref_primary_10_1017_S1049023X24000414 crossref_primary_10_2196_67871 crossref_primary_10_1016_j_jemermed_2021_07_058 crossref_primary_10_3390_medicina60040558 crossref_primary_10_54912_jci_2022_0028 crossref_primary_10_1002_emp2_12277 crossref_primary_10_1038_s41598_021_03024_1 crossref_primary_10_1016_j_ebiom_2023_104464 |
Cites_doi | 10.1016/0895-4356(96)00025-X 10.1161/JAHA.118.008678 10.1016/j.resuscitation.2016.06.004 10.7763/IJCTE.2011.V3.288 10.1161/CIR.0000000000000558 10.1136/bmjopen-2017-016925 10.1016/S0140-6736(18)30315-5 10.1002/(SICI)1097-0258(20000515)19:9<1141::AID-SIM479>3.0.CO;2-F 10.1016/j.patrec.2005.10.010 10.1093/eurheartj/ehv556 10.1109/72.159058 10.1097/CCM.0000000000001571 10.7326/M13-1522 10.1186/1472-6947-11-51 10.1186/cc12812 10.1093/eurheartj/ehl335 10.18637/jss.v034.i12 10.1016/j.resuscitation.2016.10.030 10.1056/NEJMoa003289 10.1214/ss/1009213726 10.1098/rsif.2017.0387 10.1038/nature14539 10.1016/j.cmpb.2009.02.013 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. Copyright © 2019 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright © 2019 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.resuscitation.2019.04.007 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1873-1570 |
EndPage | 91 |
ExternalDocumentID | 30978378 10_1016_j_resuscitation_2019_04_007 S0300957219301212 |
Genre | Journal Article |
GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 123 1B1 1P~ 1RT 1~. 1~5 29P 4.4 457 4G. 53G 5RE 5VS 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQQT AAQXK AATTM AAWTL AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFFNX AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HDV HMK HMO HVGLF HZ~ IHE J1W J5H KOM LX1 M29 M41 MO0 N9A O-L O9- OAUVE OB~ OM0 OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SPCBC SSH SSZ T5K UHS UV1 WUQ XPP Z5R ZGI ZXP ~G- AACTN AAIAV ABLVK ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW EFLBG LCYCR RIG AAYXX AGRNS CITATION NPM 7X8 |
ID | FETCH-LOGICAL-c509t-e6c68e332b0609da240a4d1122bdb15b5e0ecf53572d551fbcfe6ce2c598dd913 |
IEDL.DBID | AIKHN |
ISSN | 0300-9572 1873-1570 |
IngestDate | Fri Sep 05 00:39:51 EDT 2025 Wed Feb 19 02:31:37 EST 2025 Thu Apr 24 23:03:02 EDT 2025 Tue Jul 01 04:01:27 EDT 2025 Fri Feb 23 02:30:32 EST 2024 Tue Aug 26 16:55:59 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Prognosis CPR KOHCAR LR ECG AUROC EMS ROSC SVM Decision support techniques OHCA RF Neural networks CPC Out-of-Hospital cardiac arrest Machine learning DCAPS Artificial intelligence ED |
Language | English |
License | Copyright © 2019 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c509t-e6c68e332b0609da240a4d1122bdb15b5e0ecf53572d551fbcfe6ce2c598dd913 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 |
ORCID | 0000-0001-6754-1010 0000-0002-6277-7697 |
PMID | 30978378 |
PQID | 2209601714 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2209601714 pubmed_primary_30978378 crossref_primary_10_1016_j_resuscitation_2019_04_007 crossref_citationtrail_10_1016_j_resuscitation_2019_04_007 elsevier_sciencedirect_doi_10_1016_j_resuscitation_2019_04_007 elsevier_clinicalkey_doi_10_1016_j_resuscitation_2019_04_007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2019 2019-06-00 20190601 |
PublicationDateYYYYMMDD | 2019-06-01 |
PublicationDate_xml | – month: 06 year: 2019 text: June 2019 |
PublicationDecade | 2010 |
PublicationPlace | Ireland |
PublicationPlace_xml | – name: Ireland |
PublicationTitle | Resuscitation |
PublicationTitleAlternate | Resuscitation |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Breiman (bib0040) 2001; 16 Jayalakshmi, Santhakumaran (bib0085) 2011; 3 Calcagno, De Mazancourt (bib0095) 2010; 34 Benjamin, Virani, Callaway (bib0010) 2018 Khalilia, Chakraborty, Popescu (bib0090) 2011; 11 Hassager, Nagao, Hildick-Smith (bib0020) 2018; 391 Ching, Himmelstein, Beaulieu-Jones (bib0045) 2018; 15 Adrie, Cariou, Mourvillier (bib0015) 2006; 27 Fong, Vedaldi (bib0145) 2017 Fawcett (bib0110) 2006; 27 Krizmaric, Verlic, Stiglic (bib0105) 2009; 95 Hawkes, Booth, Ji (bib0130) 2017; 110 Leening, Vedder, Witteman (bib0125) 2014; 160 Goto, Maeda, Goto (bib0120) 2013; 17 Kingma, Ba (bib0080) 2014 Maupain, Bougouin, Lamhaut (bib0025) 2016; 37 Sun, Shook, Kay (bib0035) 1996; 49 Kwon, Lee, Lee (bib0055) 2018; 7 Pal, Mitra (bib0065) 1992; 3 Abadi, Barham, Chen (bib0075) 2016 Gulshan, Peng, Coram (bib0050) 2016; 304 Nair, Hinton (bib0070) 2010 Carpenter, Bithell (bib0115) 2000; 19 LeCun, Bengio, Hinton (bib0140) 2015; 521 Bernard, Gray, Buist (bib0135) 2002; 346 Martinell, Nielsen, Herlitz (bib0030) 2017; 21 Gräsner, Lefering, Koster (bib0005) 2016; 105 Kim, Do, Hong (bib0060) 2017; 7 Churpek, Yuen, Winslow (bib0100) 2016; 44 Maupain (10.1016/j.resuscitation.2019.04.007_bib0025) 2016; 37 Martinell (10.1016/j.resuscitation.2019.04.007_bib0030) 2017; 21 Sun (10.1016/j.resuscitation.2019.04.007_bib0035) 1996; 49 Adrie (10.1016/j.resuscitation.2019.04.007_bib0015) 2006; 27 Krizmaric (10.1016/j.resuscitation.2019.04.007_bib0105) 2009; 95 Leening (10.1016/j.resuscitation.2019.04.007_bib0125) 2014; 160 Gulshan (10.1016/j.resuscitation.2019.04.007_bib0050) 2016; 304 Bernard (10.1016/j.resuscitation.2019.04.007_bib0135) 2002; 346 Carpenter (10.1016/j.resuscitation.2019.04.007_bib0115) 2000; 19 Hassager (10.1016/j.resuscitation.2019.04.007_bib0020) 2018; 391 Goto (10.1016/j.resuscitation.2019.04.007_bib0120) 2013; 17 Kim (10.1016/j.resuscitation.2019.04.007_bib0060) 2017; 7 Hawkes (10.1016/j.resuscitation.2019.04.007_bib0130) 2017; 110 Kwon (10.1016/j.resuscitation.2019.04.007_bib0055) 2018; 7 Fong (10.1016/j.resuscitation.2019.04.007_bib0145) 2017 Fawcett (10.1016/j.resuscitation.2019.04.007_bib0110) 2006; 27 Calcagno (10.1016/j.resuscitation.2019.04.007_bib0095) 2010; 34 Khalilia (10.1016/j.resuscitation.2019.04.007_bib0090) 2011; 11 LeCun (10.1016/j.resuscitation.2019.04.007_bib0140) 2015; 521 Kingma (10.1016/j.resuscitation.2019.04.007_bib0080) 2014 Ching (10.1016/j.resuscitation.2019.04.007_bib0045) 2018; 15 Breiman (10.1016/j.resuscitation.2019.04.007_bib0040) 2001; 16 Pal (10.1016/j.resuscitation.2019.04.007_bib0065) 1992; 3 Gräsner (10.1016/j.resuscitation.2019.04.007_bib0005) 2016; 105 Churpek (10.1016/j.resuscitation.2019.04.007_bib0100) 2016; 44 Benjamin (10.1016/j.resuscitation.2019.04.007_bib0010) 2018 Nair (10.1016/j.resuscitation.2019.04.007_bib0070) 2010 Abadi (10.1016/j.resuscitation.2019.04.007_bib0075) 2016 Jayalakshmi (10.1016/j.resuscitation.2019.04.007_bib0085) 2011; 3 |
References_xml | – volume: 27 start-page: 2840 year: 2006 end-page: 2845 ident: bib0015 article-title: Predicting survival with good neurological recovery at hospital admission after successful resuscitation of out-of-hospital cardiac arrest: The OHCA score publication-title: Eur Heart J – volume: 21 start-page: 1 year: 2017 end-page: 10 ident: bib0030 article-title: Early predictors of poor outcome after out-of-hospital cardiac arrest publication-title: Crit Care Critical Care – volume: 160 start-page: 122 year: 2014 end-page: 131 ident: bib0125 article-title: Net reclassification improvement: computation, interpretation, and controversies publication-title: Ann Intern Med – volume: 44 start-page: 368 year: 2016 end-page: 374 ident: bib0100 article-title: Multicenter comparison of machine learning methods and conventional regression for predicting clinical deterioration on the wards publication-title: Crit Care Med – start-page: 265 year: 2016 end-page: 284 ident: bib0075 article-title: TensorFlow: a system for large-scale machine learning tensorflow: a system for large-scale machine learning publication-title: 12th USENIX Symposium Operating System Design Implement (OSDI’ 16) – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: bib0140 article-title: Deep learning publication-title: Nature – year: 2018 ident: bib0010 article-title: Heart disease and stroke statistics—2018 update: a report from the American heart association publication-title: Circulation – volume: 7 year: 2018 ident: bib0055 article-title: An algorithm based on deep learning for predicting in-hospital cardiac arrest publication-title: J Am Heart Assoc – volume: 3 start-page: 683 year: 1992 end-page: 697 ident: bib0065 article-title: Multilayer perceptron, fuzzy sets, and classification publication-title: IEEE Trans Neural Networks – volume: 7 year: 2017 ident: bib0060 article-title: Effect of national implementation of utstein recommendation from the global resuscitation alliance on ten steps to improve outcomes from Out-of-Hospital cardiac arrest: a ten-year observational study in Korea publication-title: BMJ Open – volume: 16 start-page: 199 year: 2001 end-page: 231 ident: bib0040 article-title: Statistical modeling: the two cultures (with comments and a rejoinder by the author) publication-title: Stat Sci – volume: 3 start-page: 89 year: 2011 end-page: 93 ident: bib0085 article-title: Statistical normalization and backpropagation for classification publication-title: Int J Comput Theory Eng – volume: 11 start-page: 51 year: 2011 ident: bib0090 article-title: Predicting disease risks from highly imbalanced data using random forest publication-title: BMC Med Inform Decis Mak – start-page: 3449 year: 2017 end-page: 3457 ident: bib0145 article-title: Interpretable explanations of black boxes by meaningful perturbation publication-title: Proceeding IEEE International Conference on Computer Vision 2017 – volume: 27 start-page: 861 year: 2006 end-page: 874 ident: bib0110 article-title: An introduction to ROC analysis publication-title: Pattern Recognit Lett – volume: 15 year: 2018 ident: bib0045 article-title: Opportunities and obstacles for deep learning in biology and medicine publication-title: J R Soc Interface – volume: 17 start-page: R133 year: 2013 ident: bib0120 article-title: Decision-tree model for predicting outcomes after out-of-hospital cardiac arrest in the emergency department publication-title: Crit Care – volume: 110 start-page: 133 year: 2017 end-page: 140 ident: bib0130 article-title: Epidemiology and outcomes from out-of-hospital cardiac arrests in England publication-title: Resuscitation – volume: 34 start-page: 1 year: 2010 end-page: 29 ident: bib0095 article-title: Glmulti: an r package for easy automated model selection with (Generalized) linear models publication-title: J Stat Softw – volume: 95 year: 2009 ident: bib0105 article-title: Intelligent analysis in predicting outcome of out-of-hospital cardiac arrest publication-title: Comput Methods Programs Biomed – volume: 49 start-page: 907 year: 1996 end-page: 916 ident: bib0035 article-title: Inappropriate use of bivariable analysis to screen risk factors for use in multivariable analysis publication-title: J Clin Epidemiol – volume: 105 start-page: 188 year: 2016 end-page: 195 ident: bib0005 article-title: EuReCa ONE-27 Nations, ONE Europe, ONE Registry publication-title: Resuscitation – volume: 37 start-page: 3222 year: 2016 end-page: 3228 ident: bib0025 article-title: The CAHP (Cardiac Arrest Hospital Prognosis) score: a tool for risk stratification after out-of-hospital cardiac arrest publication-title: Eur Heart J – start-page: 434 year: 2014 end-page: 435 ident: bib0080 article-title: Adam: a method for stochastic optimization publication-title: 2017 IEEE International Conference Consumer Electronics ICCE 2017 – volume: 304 start-page: 649 year: 2016 end-page: 656 ident: bib0050 article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs publication-title: Jama – volume: 19 start-page: 1141 year: 2000 end-page: 1164 ident: bib0115 article-title: Bootstrap confidence intervals: when, which, what? A practical guide for medical statisticians publication-title: Stat Med – volume: 346 start-page: 557 year: 2002 end-page: 563 ident: bib0135 article-title: Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia publication-title: N Engl J Med – start-page: 807 year: 2010 end-page: 814 ident: bib0070 article-title: Rectified linear units improve restricted Boltzmann machines publication-title: Proceeding of the 27th International Conference Machine Learning – volume: 391 start-page: 989 year: 2018 end-page: 998 ident: bib0020 article-title: Out-of-hospital cardiac arrest: in-hospital intervention strategies publication-title: Lancet Elsevier Ltd – volume: 49 start-page: 907 year: 1996 ident: 10.1016/j.resuscitation.2019.04.007_bib0035 article-title: Inappropriate use of bivariable analysis to screen risk factors for use in multivariable analysis publication-title: J Clin Epidemiol doi: 10.1016/0895-4356(96)00025-X – start-page: 434 year: 2014 ident: 10.1016/j.resuscitation.2019.04.007_bib0080 article-title: Adam: a method for stochastic optimization – start-page: 807 year: 2010 ident: 10.1016/j.resuscitation.2019.04.007_bib0070 article-title: Rectified linear units improve restricted Boltzmann machines – volume: 7 year: 2018 ident: 10.1016/j.resuscitation.2019.04.007_bib0055 article-title: An algorithm based on deep learning for predicting in-hospital cardiac arrest publication-title: J Am Heart Assoc doi: 10.1161/JAHA.118.008678 – start-page: 3449 year: 2017 ident: 10.1016/j.resuscitation.2019.04.007_bib0145 article-title: Interpretable explanations of black boxes by meaningful perturbation publication-title: Proceeding IEEE International Conference on Computer Vision 2017 – volume: 105 start-page: 188 year: 2016 ident: 10.1016/j.resuscitation.2019.04.007_bib0005 article-title: EuReCa ONE-27 Nations, ONE Europe, ONE Registry publication-title: Resuscitation doi: 10.1016/j.resuscitation.2016.06.004 – volume: 3 start-page: 89 year: 2011 ident: 10.1016/j.resuscitation.2019.04.007_bib0085 article-title: Statistical normalization and backpropagation for classification publication-title: Int J Comput Theory Eng doi: 10.7763/IJCTE.2011.V3.288 – start-page: 265 year: 2016 ident: 10.1016/j.resuscitation.2019.04.007_bib0075 article-title: TensorFlow: a system for large-scale machine learning tensorflow: a system for large-scale machine learning – year: 2018 ident: 10.1016/j.resuscitation.2019.04.007_bib0010 article-title: Heart disease and stroke statistics—2018 update: a report from the American heart association publication-title: Circulation doi: 10.1161/CIR.0000000000000558 – volume: 7 year: 2017 ident: 10.1016/j.resuscitation.2019.04.007_bib0060 article-title: Effect of national implementation of utstein recommendation from the global resuscitation alliance on ten steps to improve outcomes from Out-of-Hospital cardiac arrest: a ten-year observational study in Korea publication-title: BMJ Open doi: 10.1136/bmjopen-2017-016925 – volume: 391 start-page: 989 year: 2018 ident: 10.1016/j.resuscitation.2019.04.007_bib0020 article-title: Out-of-hospital cardiac arrest: in-hospital intervention strategies publication-title: Lancet Elsevier Ltd doi: 10.1016/S0140-6736(18)30315-5 – volume: 19 start-page: 1141 year: 2000 ident: 10.1016/j.resuscitation.2019.04.007_bib0115 article-title: Bootstrap confidence intervals: when, which, what? A practical guide for medical statisticians publication-title: Stat Med doi: 10.1002/(SICI)1097-0258(20000515)19:9<1141::AID-SIM479>3.0.CO;2-F – volume: 27 start-page: 861 year: 2006 ident: 10.1016/j.resuscitation.2019.04.007_bib0110 article-title: An introduction to ROC analysis publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2005.10.010 – volume: 37 start-page: 3222 year: 2016 ident: 10.1016/j.resuscitation.2019.04.007_bib0025 article-title: The CAHP (Cardiac Arrest Hospital Prognosis) score: a tool for risk stratification after out-of-hospital cardiac arrest publication-title: Eur Heart J doi: 10.1093/eurheartj/ehv556 – volume: 21 start-page: 1 year: 2017 ident: 10.1016/j.resuscitation.2019.04.007_bib0030 article-title: Early predictors of poor outcome after out-of-hospital cardiac arrest publication-title: Crit Care Critical Care – volume: 3 start-page: 683 year: 1992 ident: 10.1016/j.resuscitation.2019.04.007_bib0065 article-title: Multilayer perceptron, fuzzy sets, and classification publication-title: IEEE Trans Neural Networks doi: 10.1109/72.159058 – volume: 44 start-page: 368 year: 2016 ident: 10.1016/j.resuscitation.2019.04.007_bib0100 article-title: Multicenter comparison of machine learning methods and conventional regression for predicting clinical deterioration on the wards publication-title: Crit Care Med doi: 10.1097/CCM.0000000000001571 – volume: 160 start-page: 122 year: 2014 ident: 10.1016/j.resuscitation.2019.04.007_bib0125 article-title: Net reclassification improvement: computation, interpretation, and controversies publication-title: Ann Intern Med doi: 10.7326/M13-1522 – volume: 11 start-page: 51 year: 2011 ident: 10.1016/j.resuscitation.2019.04.007_bib0090 article-title: Predicting disease risks from highly imbalanced data using random forest publication-title: BMC Med Inform Decis Mak doi: 10.1186/1472-6947-11-51 – volume: 17 start-page: R133 year: 2013 ident: 10.1016/j.resuscitation.2019.04.007_bib0120 article-title: Decision-tree model for predicting outcomes after out-of-hospital cardiac arrest in the emergency department publication-title: Crit Care doi: 10.1186/cc12812 – volume: 27 start-page: 2840 year: 2006 ident: 10.1016/j.resuscitation.2019.04.007_bib0015 article-title: Predicting survival with good neurological recovery at hospital admission after successful resuscitation of out-of-hospital cardiac arrest: The OHCA score publication-title: Eur Heart J doi: 10.1093/eurheartj/ehl335 – volume: 34 start-page: 1 year: 2010 ident: 10.1016/j.resuscitation.2019.04.007_bib0095 article-title: Glmulti: an r package for easy automated model selection with (Generalized) linear models publication-title: J Stat Softw doi: 10.18637/jss.v034.i12 – volume: 110 start-page: 133 year: 2017 ident: 10.1016/j.resuscitation.2019.04.007_bib0130 article-title: Epidemiology and outcomes from out-of-hospital cardiac arrests in England publication-title: Resuscitation doi: 10.1016/j.resuscitation.2016.10.030 – volume: 346 start-page: 557 year: 2002 ident: 10.1016/j.resuscitation.2019.04.007_bib0135 article-title: Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia publication-title: N Engl J Med doi: 10.1056/NEJMoa003289 – volume: 304 start-page: 649 year: 2016 ident: 10.1016/j.resuscitation.2019.04.007_bib0050 article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs publication-title: Jama – volume: 16 start-page: 199 year: 2001 ident: 10.1016/j.resuscitation.2019.04.007_bib0040 article-title: Statistical modeling: the two cultures (with comments and a rejoinder by the author) publication-title: Stat Sci doi: 10.1214/ss/1009213726 – volume: 15 year: 2018 ident: 10.1016/j.resuscitation.2019.04.007_bib0045 article-title: Opportunities and obstacles for deep learning in biology and medicine publication-title: J R Soc Interface doi: 10.1098/rsif.2017.0387 – volume: 521 start-page: 436 year: 2015 ident: 10.1016/j.resuscitation.2019.04.007_bib0140 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 95 year: 2009 ident: 10.1016/j.resuscitation.2019.04.007_bib0105 article-title: Intelligent analysis in predicting outcome of out-of-hospital cardiac arrest publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2009.02.013 |
SSID | ssj0003597 |
Score | 2.5004456 |
Snippet | Out-of-hospital cardiac arrest (OHCA) is a major healthcare burden, and prognosis is critical in decision-making for treatment and the withdrawal of... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 84 |
SubjectTerms | Artificial intelligence Decision support techniques Machine learning Neural networks Out-of-Hospital cardiac arrest Prognosis |
Title | Deep-learning-based out-of-hospital cardiac arrest prognostic system to predict clinical outcomes |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0300957219301212 https://dx.doi.org/10.1016/j.resuscitation.2019.04.007 https://www.ncbi.nlm.nih.gov/pubmed/30978378 https://www.proquest.com/docview/2209601714 |
Volume | 139 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS9xAEB_OOxBfpGrVa1W21Nf18v1RRJCrx7WHPlhF35bsl1pKcmjutX97Z5LNiQ_CQZ-WLJlJ8svsfLCzMwDHqW-U1tZyGnmkMNwpdCK5Z0M06GigkI6yLa6S6W308z6-78G4OwtDaZVO97c6vdHWbmbk0BzNn55Gv1A8kR1GMHlIhclQDw8CtPZZHwbnP2bTq6VCDuOmxwrdz4lgHb6-pnlhULtA9u2-N6V65SdtQe33DNV7jmhjkCYfYNN5kuy8fdkt6JlyG9Yv3V75DhTfjZlz1xXigZO50qxa1Lyy_NF1C2GqERDFiqZHB6NsrbKi0s2sLfHM6goniWfNukOUxAThMi8f4XZycTOectdQgSuEveYmUUlmwjCQXuLlukBrXkQaPa5AaunHMjaeUTYOESONnpSVyhrqGKbiPNM698Nd6JdVafaBpTL3PKWtLHwbFakvA-vnWYDBV5ykOkmG8K1DT3ToUtOLP6JLK_st3kAvCHrhRQKhH0K0JJ63RTdWIzvtfpPoIEFNKNA4rEZ-tiR_I4KrM_jSyYbARUo7L0VpqsWLCAKKFKnX_BD2WqFZfljYnKRJs0__-_jPsEFXbR7bAfTr54U5RI-plkewdvLXP3LrgsbZ9d3sHxHxHS0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB6hRIJeEJRS0tJ2UXtd4rdjhCohWpQ0IRdA4rbyvngI2VFj___O2OtUOSBF4mRpnZk4X8bz0M7OB_Aj9Y3S2lpOVx4pLHdynUju2RADOgYolKNui3kyvov-3Mf3W3DZnYWhtkrn-1uf3nhrtzJ0aA4XT0_DGzRPVIcVTBbSYDL0w_2ISK170L-YTMfzlUMO44ZjhT7PSWAbvv9v88Kitkb17b43tXplp-1A7dcC1WuJaBOQrvZg12WS7KJ92H3YMsV72L52e-UHkP8yZsEdK8QDp3ClWVlXvLT80bGFMNUYiGJ5w9HBqFurKGl0M2tHPLOqxEXSWbHuECUpQbjM8gPcXf2-vRxzR6jAFcJecZOoZGTCMJBe4mU6x2ieRxozrkBq6ccyNp5RNg4RI42ZlJXKGmIMU3E20jrzw0PoFWVhjoClMvM8pa3MfRvlqS8D62ejAIuvOEl1kgzgrENPdOgS6cWL6NrKnsUa9IKgF14kEPoBRCvhRTt0YzOx8-5vEh0k6AkFBofNxH-uxNdMcHMFJ51tCHxJaeclL0xZL0UQUKVIXPMD-NgazeqHhc1JmnT06a1f_w12xrfXMzGbzKef4R3daXvajqFX_a3NF8yeKvnVvR3_ANsoHXA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep-learning-based+out-of-hospital+cardiac+arrest+prognostic+system+to+predict+clinical+outcomes&rft.jtitle=Resuscitation&rft.au=Kwon%2C+Joon-myoung&rft.au=Jeon%2C+Ki-Hyun&rft.au=Kim%2C+Hyue+Mee&rft.au=Kim%2C+Min+Jeong&rft.date=2019-06-01&rft.pub=Elsevier+B.V&rft.issn=0300-9572&rft.eissn=1873-1570&rft.volume=139&rft.spage=84&rft.epage=91&rft_id=info:doi/10.1016%2Fj.resuscitation.2019.04.007&rft.externalDocID=S0300957219301212 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0300-9572&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0300-9572&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0300-9572&client=summon |