Deep-learning-based out-of-hospital cardiac arrest prognostic system to predict clinical outcomes

Out-of-hospital cardiac arrest (OHCA) is a major healthcare burden, and prognosis is critical in decision-making for treatment and the withdrawal of life-sustaining therapy. This study aimed to develop and validate a deep-learning-based out-of-hospital cardiac arrest prognostic system (DCAPS) for pr...

Full description

Saved in:
Bibliographic Details
Published inResuscitation Vol. 139; pp. 84 - 91
Main Authors Kwon, Joon-myoung, Jeon, Ki-Hyun, Kim, Hyue Mee, Kim, Min Jeong, Lim, Sungmin, Kim, Kyung-Hee, Song, Pil Sang, Park, Jinsik, Choi, Rak Kyeong, Oh, Byung-Hee
Format Journal Article
LanguageEnglish
Published Ireland Elsevier B.V 01.06.2019
Subjects
Online AccessGet full text
ISSN0300-9572
1873-1570
1873-1570
DOI10.1016/j.resuscitation.2019.04.007

Cover

Abstract Out-of-hospital cardiac arrest (OHCA) is a major healthcare burden, and prognosis is critical in decision-making for treatment and the withdrawal of life-sustaining therapy. This study aimed to develop and validate a deep-learning-based out-of-hospital cardiac arrest prognostic system (DCAPS) for predicting neurologic recovery and survival to discharge. The study subjects were patients from the Korea OHCA registry who experienced return of spontaneous circulation (ROSC) after OHCA. A total of 36,190 patients were exclusively divided into a set of 28,045 subjects for derivation data and 8,145 subjects for validation data. We used information available for the time of ROSC as predictor variables, and the endpoints were neurologic recovery (cerebral performance category 1 or 2) and survival to discharge. The DCAPS was developed using the derivation data and represented the favorability of prognosis with a score between 0 and 100. The area under the receiver operating characteristic curve (AUROC) of DCAPS for predicting neurologic recovery for the validation data was 0.953 [95% confidence interval 0.952–0.954]; these results significantly outperformed those of logistic regression (0.947 [0.943–0.948]), random forest (0.943 [0.942–0.945]), support vector machine (0.930 [0.929–0.932]), and conventional methods of a previous study (0.817 [0.815–0.820]). The AUROC of the DCAPS for survival to discharge was 0.901 [0.900–0.903], and this result significantly outperformed those of other models as well. The DCAPS predicted neurologic recovery and survival to discharge of OHCA patients accurately and outperformed the conventional method and other machine-learning methods.
AbstractList Out-of-hospital cardiac arrest (OHCA) is a major healthcare burden, and prognosis is critical in decision-making for treatment and the withdrawal of life-sustaining therapy. This study aimed to develop and validate a deep-learning-based out-of-hospital cardiac arrest prognostic system (DCAPS) for predicting neurologic recovery and survival to discharge. The study subjects were patients from the Korea OHCA registry who experienced return of spontaneous circulation (ROSC) after OHCA. A total of 36,190 patients were exclusively divided into a set of 28,045 subjects for derivation data and 8,145 subjects for validation data. We used information available for the time of ROSC as predictor variables, and the endpoints were neurologic recovery (cerebral performance category 1 or 2) and survival to discharge. The DCAPS was developed using the derivation data and represented the favorability of prognosis with a score between 0 and 100. The area under the receiver operating characteristic curve (AUROC) of DCAPS for predicting neurologic recovery for the validation data was 0.953 [95% confidence interval 0.952–0.954]; these results significantly outperformed those of logistic regression (0.947 [0.943–0.948]), random forest (0.943 [0.942–0.945]), support vector machine (0.930 [0.929–0.932]), and conventional methods of a previous study (0.817 [0.815–0.820]). The AUROC of the DCAPS for survival to discharge was 0.901 [0.900–0.903], and this result significantly outperformed those of other models as well. The DCAPS predicted neurologic recovery and survival to discharge of OHCA patients accurately and outperformed the conventional method and other machine-learning methods.
Out-of-hospital cardiac arrest (OHCA) is a major healthcare burden, and prognosis is critical in decision-making for treatment and the withdrawal of life-sustaining therapy. This study aimed to develop and validate a deep-learning-based out-of-hospital cardiac arrest prognostic system (DCAPS) for predicting neurologic recovery and survival to discharge.AIMOut-of-hospital cardiac arrest (OHCA) is a major healthcare burden, and prognosis is critical in decision-making for treatment and the withdrawal of life-sustaining therapy. This study aimed to develop and validate a deep-learning-based out-of-hospital cardiac arrest prognostic system (DCAPS) for predicting neurologic recovery and survival to discharge.The study subjects were patients from the Korea OHCA registry who experienced return of spontaneous circulation (ROSC) after OHCA. A total of 36,190 patients were exclusively divided into a set of 28,045 subjects for derivation data and 8,145 subjects for validation data. We used information available for the time of ROSC as predictor variables, and the endpoints were neurologic recovery (cerebral performance category 1 or 2) and survival to discharge. The DCAPS was developed using the derivation data and represented the favorability of prognosis with a score between 0 and 100.METHODSThe study subjects were patients from the Korea OHCA registry who experienced return of spontaneous circulation (ROSC) after OHCA. A total of 36,190 patients were exclusively divided into a set of 28,045 subjects for derivation data and 8,145 subjects for validation data. We used information available for the time of ROSC as predictor variables, and the endpoints were neurologic recovery (cerebral performance category 1 or 2) and survival to discharge. The DCAPS was developed using the derivation data and represented the favorability of prognosis with a score between 0 and 100.The area under the receiver operating characteristic curve (AUROC) of DCAPS for predicting neurologic recovery for the validation data was 0.953 [95% confidence interval 0.952-0.954]; these results significantly outperformed those of logistic regression (0.947 [0.943-0.948]), random forest (0.943 [0.942-0.945]), support vector machine (0.930 [0.929-0.932]), and conventional methods of a previous study (0.817 [0.815-0.820]). The AUROC of the DCAPS for survival to discharge was 0.901 [0.900-0.903], and this result significantly outperformed those of other models as well.RESULTSThe area under the receiver operating characteristic curve (AUROC) of DCAPS for predicting neurologic recovery for the validation data was 0.953 [95% confidence interval 0.952-0.954]; these results significantly outperformed those of logistic regression (0.947 [0.943-0.948]), random forest (0.943 [0.942-0.945]), support vector machine (0.930 [0.929-0.932]), and conventional methods of a previous study (0.817 [0.815-0.820]). The AUROC of the DCAPS for survival to discharge was 0.901 [0.900-0.903], and this result significantly outperformed those of other models as well.The DCAPS predicted neurologic recovery and survival to discharge of OHCA patients accurately and outperformed the conventional method and other machine-learning methods.CONCLUSIONSThe DCAPS predicted neurologic recovery and survival to discharge of OHCA patients accurately and outperformed the conventional method and other machine-learning methods.
Author Lim, Sungmin
Park, Jinsik
Kwon, Joon-myoung
Jeon, Ki-Hyun
Kim, Hyue Mee
Kim, Kyung-Hee
Choi, Rak Kyeong
Oh, Byung-Hee
Song, Pil Sang
Kim, Min Jeong
Author_xml – sequence: 1
  givenname: Joon-myoung
  orcidid: 0000-0001-6754-1010
  surname: Kwon
  fullname: Kwon, Joon-myoung
  organization: Department of Emergency Medicine, Mediplex Sejong Hospital, Incheon, Republic of Korea
– sequence: 2
  givenname: Ki-Hyun
  orcidid: 0000-0002-6277-7697
  surname: Jeon
  fullname: Jeon, Ki-Hyun
  email: imcardio@gmail.com
  organization: Division of Cardiology, Cardiovascular Center, Mediplex Sejong Hospital, Incheon, Republic of Korea
– sequence: 3
  givenname: Hyue Mee
  surname: Kim
  fullname: Kim, Hyue Mee
  organization: Division of Cardiology, Cardiovascular Center, Mediplex Sejong Hospital, Incheon, Republic of Korea
– sequence: 4
  givenname: Min Jeong
  surname: Kim
  fullname: Kim, Min Jeong
  organization: Division of Cardiology, Cardiovascular Center, Mediplex Sejong Hospital, Incheon, Republic of Korea
– sequence: 5
  givenname: Sungmin
  surname: Lim
  fullname: Lim, Sungmin
  organization: Division of Cardiology, Cardiovascular Center, Mediplex Sejong Hospital, Incheon, Republic of Korea
– sequence: 6
  givenname: Kyung-Hee
  surname: Kim
  fullname: Kim, Kyung-Hee
  organization: Division of Cardiology, Cardiovascular Center, Mediplex Sejong Hospital, Incheon, Republic of Korea
– sequence: 7
  givenname: Pil Sang
  surname: Song
  fullname: Song, Pil Sang
  organization: Division of Cardiology, Cardiovascular Center, Mediplex Sejong Hospital, Incheon, Republic of Korea
– sequence: 8
  givenname: Jinsik
  surname: Park
  fullname: Park, Jinsik
  organization: Division of Cardiology, Cardiovascular Center, Mediplex Sejong Hospital, Incheon, Republic of Korea
– sequence: 9
  givenname: Rak Kyeong
  surname: Choi
  fullname: Choi, Rak Kyeong
  organization: Division of Cardiology, Cardiovascular Center, Mediplex Sejong Hospital, Incheon, Republic of Korea
– sequence: 10
  givenname: Byung-Hee
  surname: Oh
  fullname: Oh, Byung-Hee
  organization: Division of Cardiology, Cardiovascular Center, Mediplex Sejong Hospital, Incheon, Republic of Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30978378$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1u1DAURi1URKeFV0CR2LBxuLbjJBaraig_UiU2sLYc-6Z4SOLBdirN2-NqOkh0NStL1vnOte93RS6WsCAh7xjUDFj7YVdHTGuyPpvsw1JzYKqGpgboXpAN6ztBmezggmxAAFAlO35JrlLaAYCQqntFLgWorhddvyHmE-KeTmji4pd7OpiErgprpmGkv0LalyFTZU103tjKxDI5V_sY7peQsrdVOqSMc5VDuUTnba7s5BdvS6hIbJgxvSYvRzMlfPN0XpOfn29_bL_Su-9fvm1v7qiVoDLF1rY9CsEHaEE5wxswjWOM88ENTA4SAe0oRfmNk5KNgx1LBLmVqndOMXFN3h-95Xl_1vJOPftkcZrMgmFNmnNQLbCONQV9-4Suw4xO76OfTTzo01oK8PEI2BhSijj-QxjoxxL0Tv9Xgn4sQUOjSwklffMsfcJyNH4603F7dGBZ2YPHqAuHiy1LjmizdsGf6dk-85wK-o2Hsy1_AWFRyBs
CitedBy_id crossref_primary_10_1016_j_ajem_2023_07_044
crossref_primary_10_1016_j_jcrc_2022_153997
crossref_primary_10_1038_s41598_025_93182_3
crossref_primary_10_3390_jcdd9120430
crossref_primary_10_52148_ehta_1117769
crossref_primary_10_1016_j_cjca_2022_12_014
crossref_primary_10_1016_j_isci_2023_107407
crossref_primary_10_1016_j_compbiomed_2024_109439
crossref_primary_10_1016_j_procs_2024_12_040
crossref_primary_10_1016_j_ijmedinf_2024_105659
crossref_primary_10_2196_27405
crossref_primary_10_1371_journal_pone_0254894
crossref_primary_10_3390_jcm12062254
crossref_primary_10_1186_s12911_021_01730_4
crossref_primary_10_3390_jcm13247600
crossref_primary_10_1016_j_resuscitation_2020_01_029
crossref_primary_10_1016_j_neurot_2025_e00524
crossref_primary_10_7181_acfs_2021_00507
crossref_primary_10_1109_TII_2021_3123588
crossref_primary_10_1111_sdi_12915
crossref_primary_10_1016_j_resplu_2023_100491
crossref_primary_10_1016_j_resuscitation_2021_09_027
crossref_primary_10_1093_ehjdh_ztae016
crossref_primary_10_2139_ssrn_4088750
crossref_primary_10_1177_1024907920966912
crossref_primary_10_1186_s13049_020_0713_4
crossref_primary_10_1007_s12028_023_01688_3
crossref_primary_10_2196_19416
crossref_primary_10_1016_j_ajem_2022_10_011
crossref_primary_10_3390_jcm10051089
crossref_primary_10_1016_j_resuscitation_2023_109704
crossref_primary_10_1080_13658816_2024_2443757
crossref_primary_10_1186_s13054_020_03103_1
crossref_primary_10_1007_s10049_021_00885_x
crossref_primary_10_1016_j_resuscitation_2022_04_028
crossref_primary_10_1186_s13054_021_03505_9
crossref_primary_10_1371_journal_pone_0291258
crossref_primary_10_3346_jkms_2021_36_e187
crossref_primary_10_1371_journal_pone_0273787
crossref_primary_10_1007_s11042_020_10150_x
crossref_primary_10_1016_j_resuscitation_2020_11_020
crossref_primary_10_3389_fneur_2025_1512297
crossref_primary_10_4081_ecj_2020_8573
crossref_primary_10_1016_j_ijcard_2020_03_075
crossref_primary_10_1016_j_bj_2021_01_003
crossref_primary_10_1016_j_resplu_2024_100829
crossref_primary_10_1186_s12911_023_02149_9
crossref_primary_10_1186_s12911_021_01403_2
crossref_primary_10_1016_j_resuscitation_2021_02_009
crossref_primary_10_47992_IJHSP_2581_6411_0061
crossref_primary_10_1016_j_resuscitation_2019_06_006
crossref_primary_10_1136_emermed_2022_212853
crossref_primary_10_1371_journal_pone_0278944
crossref_primary_10_3390_math11092030
crossref_primary_10_1007_s11042_021_11176_5
crossref_primary_10_1016_j_resuscitation_2024_110165
crossref_primary_10_1016_j_resuscitation_2021_11_029
crossref_primary_10_1017_S1049023X24000414
crossref_primary_10_2196_67871
crossref_primary_10_1016_j_jemermed_2021_07_058
crossref_primary_10_3390_medicina60040558
crossref_primary_10_54912_jci_2022_0028
crossref_primary_10_1002_emp2_12277
crossref_primary_10_1038_s41598_021_03024_1
crossref_primary_10_1016_j_ebiom_2023_104464
Cites_doi 10.1016/0895-4356(96)00025-X
10.1161/JAHA.118.008678
10.1016/j.resuscitation.2016.06.004
10.7763/IJCTE.2011.V3.288
10.1161/CIR.0000000000000558
10.1136/bmjopen-2017-016925
10.1016/S0140-6736(18)30315-5
10.1002/(SICI)1097-0258(20000515)19:9<1141::AID-SIM479>3.0.CO;2-F
10.1016/j.patrec.2005.10.010
10.1093/eurheartj/ehv556
10.1109/72.159058
10.1097/CCM.0000000000001571
10.7326/M13-1522
10.1186/1472-6947-11-51
10.1186/cc12812
10.1093/eurheartj/ehl335
10.18637/jss.v034.i12
10.1016/j.resuscitation.2016.10.030
10.1056/NEJMoa003289
10.1214/ss/1009213726
10.1098/rsif.2017.0387
10.1038/nature14539
10.1016/j.cmpb.2009.02.013
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright © 2019 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright © 2019 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.resuscitation.2019.04.007
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1873-1570
EndPage 91
ExternalDocumentID 30978378
10_1016_j_resuscitation_2019_04_007
S0300957219301212
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
123
1B1
1P~
1RT
1~.
1~5
29P
4.4
457
4G.
53G
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQQT
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HDV
HMK
HMO
HVGLF
HZ~
IHE
J1W
J5H
KOM
LX1
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OB~
OM0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPCBC
SSH
SSZ
T5K
UHS
UV1
WUQ
XPP
Z5R
ZGI
ZXP
~G-
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
EFLBG
LCYCR
RIG
AAYXX
AGRNS
CITATION
NPM
7X8
ID FETCH-LOGICAL-c509t-e6c68e332b0609da240a4d1122bdb15b5e0ecf53572d551fbcfe6ce2c598dd913
IEDL.DBID AIKHN
ISSN 0300-9572
1873-1570
IngestDate Fri Sep 05 00:39:51 EDT 2025
Wed Feb 19 02:31:37 EST 2025
Thu Apr 24 23:03:02 EDT 2025
Tue Jul 01 04:01:27 EDT 2025
Fri Feb 23 02:30:32 EST 2024
Tue Aug 26 16:55:59 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Prognosis
CPR
KOHCAR
LR
ECG
AUROC
EMS
ROSC
SVM
Decision support techniques
OHCA
RF
Neural networks
CPC
Out-of-Hospital cardiac arrest
Machine learning
DCAPS
Artificial intelligence
ED
Language English
License Copyright © 2019 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-e6c68e332b0609da240a4d1122bdb15b5e0ecf53572d551fbcfe6ce2c598dd913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
ORCID 0000-0001-6754-1010
0000-0002-6277-7697
PMID 30978378
PQID 2209601714
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2209601714
pubmed_primary_30978378
crossref_primary_10_1016_j_resuscitation_2019_04_007
crossref_citationtrail_10_1016_j_resuscitation_2019_04_007
elsevier_sciencedirect_doi_10_1016_j_resuscitation_2019_04_007
elsevier_clinicalkey_doi_10_1016_j_resuscitation_2019_04_007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2019
2019-06-00
20190601
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: June 2019
PublicationDecade 2010
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
PublicationTitle Resuscitation
PublicationTitleAlternate Resuscitation
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Breiman (bib0040) 2001; 16
Jayalakshmi, Santhakumaran (bib0085) 2011; 3
Calcagno, De Mazancourt (bib0095) 2010; 34
Benjamin, Virani, Callaway (bib0010) 2018
Khalilia, Chakraborty, Popescu (bib0090) 2011; 11
Hassager, Nagao, Hildick-Smith (bib0020) 2018; 391
Ching, Himmelstein, Beaulieu-Jones (bib0045) 2018; 15
Adrie, Cariou, Mourvillier (bib0015) 2006; 27
Fong, Vedaldi (bib0145) 2017
Fawcett (bib0110) 2006; 27
Krizmaric, Verlic, Stiglic (bib0105) 2009; 95
Hawkes, Booth, Ji (bib0130) 2017; 110
Leening, Vedder, Witteman (bib0125) 2014; 160
Goto, Maeda, Goto (bib0120) 2013; 17
Kingma, Ba (bib0080) 2014
Maupain, Bougouin, Lamhaut (bib0025) 2016; 37
Sun, Shook, Kay (bib0035) 1996; 49
Kwon, Lee, Lee (bib0055) 2018; 7
Pal, Mitra (bib0065) 1992; 3
Abadi, Barham, Chen (bib0075) 2016
Gulshan, Peng, Coram (bib0050) 2016; 304
Nair, Hinton (bib0070) 2010
Carpenter, Bithell (bib0115) 2000; 19
LeCun, Bengio, Hinton (bib0140) 2015; 521
Bernard, Gray, Buist (bib0135) 2002; 346
Martinell, Nielsen, Herlitz (bib0030) 2017; 21
Gräsner, Lefering, Koster (bib0005) 2016; 105
Kim, Do, Hong (bib0060) 2017; 7
Churpek, Yuen, Winslow (bib0100) 2016; 44
Maupain (10.1016/j.resuscitation.2019.04.007_bib0025) 2016; 37
Martinell (10.1016/j.resuscitation.2019.04.007_bib0030) 2017; 21
Sun (10.1016/j.resuscitation.2019.04.007_bib0035) 1996; 49
Adrie (10.1016/j.resuscitation.2019.04.007_bib0015) 2006; 27
Krizmaric (10.1016/j.resuscitation.2019.04.007_bib0105) 2009; 95
Leening (10.1016/j.resuscitation.2019.04.007_bib0125) 2014; 160
Gulshan (10.1016/j.resuscitation.2019.04.007_bib0050) 2016; 304
Bernard (10.1016/j.resuscitation.2019.04.007_bib0135) 2002; 346
Carpenter (10.1016/j.resuscitation.2019.04.007_bib0115) 2000; 19
Hassager (10.1016/j.resuscitation.2019.04.007_bib0020) 2018; 391
Goto (10.1016/j.resuscitation.2019.04.007_bib0120) 2013; 17
Kim (10.1016/j.resuscitation.2019.04.007_bib0060) 2017; 7
Hawkes (10.1016/j.resuscitation.2019.04.007_bib0130) 2017; 110
Kwon (10.1016/j.resuscitation.2019.04.007_bib0055) 2018; 7
Fong (10.1016/j.resuscitation.2019.04.007_bib0145) 2017
Fawcett (10.1016/j.resuscitation.2019.04.007_bib0110) 2006; 27
Calcagno (10.1016/j.resuscitation.2019.04.007_bib0095) 2010; 34
Khalilia (10.1016/j.resuscitation.2019.04.007_bib0090) 2011; 11
LeCun (10.1016/j.resuscitation.2019.04.007_bib0140) 2015; 521
Kingma (10.1016/j.resuscitation.2019.04.007_bib0080) 2014
Ching (10.1016/j.resuscitation.2019.04.007_bib0045) 2018; 15
Breiman (10.1016/j.resuscitation.2019.04.007_bib0040) 2001; 16
Pal (10.1016/j.resuscitation.2019.04.007_bib0065) 1992; 3
Gräsner (10.1016/j.resuscitation.2019.04.007_bib0005) 2016; 105
Churpek (10.1016/j.resuscitation.2019.04.007_bib0100) 2016; 44
Benjamin (10.1016/j.resuscitation.2019.04.007_bib0010) 2018
Nair (10.1016/j.resuscitation.2019.04.007_bib0070) 2010
Abadi (10.1016/j.resuscitation.2019.04.007_bib0075) 2016
Jayalakshmi (10.1016/j.resuscitation.2019.04.007_bib0085) 2011; 3
References_xml – volume: 27
  start-page: 2840
  year: 2006
  end-page: 2845
  ident: bib0015
  article-title: Predicting survival with good neurological recovery at hospital admission after successful resuscitation of out-of-hospital cardiac arrest: The OHCA score
  publication-title: Eur Heart J
– volume: 21
  start-page: 1
  year: 2017
  end-page: 10
  ident: bib0030
  article-title: Early predictors of poor outcome after out-of-hospital cardiac arrest
  publication-title: Crit Care Critical Care
– volume: 160
  start-page: 122
  year: 2014
  end-page: 131
  ident: bib0125
  article-title: Net reclassification improvement: computation, interpretation, and controversies
  publication-title: Ann Intern Med
– volume: 44
  start-page: 368
  year: 2016
  end-page: 374
  ident: bib0100
  article-title: Multicenter comparison of machine learning methods and conventional regression for predicting clinical deterioration on the wards
  publication-title: Crit Care Med
– start-page: 265
  year: 2016
  end-page: 284
  ident: bib0075
  article-title: TensorFlow: a system for large-scale machine learning tensorflow: a system for large-scale machine learning
  publication-title: 12th USENIX Symposium Operating System Design Implement (OSDI’ 16)
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: bib0140
  article-title: Deep learning
  publication-title: Nature
– year: 2018
  ident: bib0010
  article-title: Heart disease and stroke statistics—2018 update: a report from the American heart association
  publication-title: Circulation
– volume: 7
  year: 2018
  ident: bib0055
  article-title: An algorithm based on deep learning for predicting in-hospital cardiac arrest
  publication-title: J Am Heart Assoc
– volume: 3
  start-page: 683
  year: 1992
  end-page: 697
  ident: bib0065
  article-title: Multilayer perceptron, fuzzy sets, and classification
  publication-title: IEEE Trans Neural Networks
– volume: 7
  year: 2017
  ident: bib0060
  article-title: Effect of national implementation of utstein recommendation from the global resuscitation alliance on ten steps to improve outcomes from Out-of-Hospital cardiac arrest: a ten-year observational study in Korea
  publication-title: BMJ Open
– volume: 16
  start-page: 199
  year: 2001
  end-page: 231
  ident: bib0040
  article-title: Statistical modeling: the two cultures (with comments and a rejoinder by the author)
  publication-title: Stat Sci
– volume: 3
  start-page: 89
  year: 2011
  end-page: 93
  ident: bib0085
  article-title: Statistical normalization and backpropagation for classification
  publication-title: Int J Comput Theory Eng
– volume: 11
  start-page: 51
  year: 2011
  ident: bib0090
  article-title: Predicting disease risks from highly imbalanced data using random forest
  publication-title: BMC Med Inform Decis Mak
– start-page: 3449
  year: 2017
  end-page: 3457
  ident: bib0145
  article-title: Interpretable explanations of black boxes by meaningful perturbation
  publication-title: Proceeding IEEE International Conference on Computer Vision 2017
– volume: 27
  start-page: 861
  year: 2006
  end-page: 874
  ident: bib0110
  article-title: An introduction to ROC analysis
  publication-title: Pattern Recognit Lett
– volume: 15
  year: 2018
  ident: bib0045
  article-title: Opportunities and obstacles for deep learning in biology and medicine
  publication-title: J R Soc Interface
– volume: 17
  start-page: R133
  year: 2013
  ident: bib0120
  article-title: Decision-tree model for predicting outcomes after out-of-hospital cardiac arrest in the emergency department
  publication-title: Crit Care
– volume: 110
  start-page: 133
  year: 2017
  end-page: 140
  ident: bib0130
  article-title: Epidemiology and outcomes from out-of-hospital cardiac arrests in England
  publication-title: Resuscitation
– volume: 34
  start-page: 1
  year: 2010
  end-page: 29
  ident: bib0095
  article-title: Glmulti: an r package for easy automated model selection with (Generalized) linear models
  publication-title: J Stat Softw
– volume: 95
  year: 2009
  ident: bib0105
  article-title: Intelligent analysis in predicting outcome of out-of-hospital cardiac arrest
  publication-title: Comput Methods Programs Biomed
– volume: 49
  start-page: 907
  year: 1996
  end-page: 916
  ident: bib0035
  article-title: Inappropriate use of bivariable analysis to screen risk factors for use in multivariable analysis
  publication-title: J Clin Epidemiol
– volume: 105
  start-page: 188
  year: 2016
  end-page: 195
  ident: bib0005
  article-title: EuReCa ONE-27 Nations, ONE Europe, ONE Registry
  publication-title: Resuscitation
– volume: 37
  start-page: 3222
  year: 2016
  end-page: 3228
  ident: bib0025
  article-title: The CAHP (Cardiac Arrest Hospital Prognosis) score: a tool for risk stratification after out-of-hospital cardiac arrest
  publication-title: Eur Heart J
– start-page: 434
  year: 2014
  end-page: 435
  ident: bib0080
  article-title: Adam: a method for stochastic optimization
  publication-title: 2017 IEEE International Conference Consumer Electronics ICCE 2017
– volume: 304
  start-page: 649
  year: 2016
  end-page: 656
  ident: bib0050
  article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
  publication-title: Jama
– volume: 19
  start-page: 1141
  year: 2000
  end-page: 1164
  ident: bib0115
  article-title: Bootstrap confidence intervals: when, which, what? A practical guide for medical statisticians
  publication-title: Stat Med
– volume: 346
  start-page: 557
  year: 2002
  end-page: 563
  ident: bib0135
  article-title: Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia
  publication-title: N Engl J Med
– start-page: 807
  year: 2010
  end-page: 814
  ident: bib0070
  article-title: Rectified linear units improve restricted Boltzmann machines
  publication-title: Proceeding of the 27th International Conference Machine Learning
– volume: 391
  start-page: 989
  year: 2018
  end-page: 998
  ident: bib0020
  article-title: Out-of-hospital cardiac arrest: in-hospital intervention strategies
  publication-title: Lancet Elsevier Ltd
– volume: 49
  start-page: 907
  year: 1996
  ident: 10.1016/j.resuscitation.2019.04.007_bib0035
  article-title: Inappropriate use of bivariable analysis to screen risk factors for use in multivariable analysis
  publication-title: J Clin Epidemiol
  doi: 10.1016/0895-4356(96)00025-X
– start-page: 434
  year: 2014
  ident: 10.1016/j.resuscitation.2019.04.007_bib0080
  article-title: Adam: a method for stochastic optimization
– start-page: 807
  year: 2010
  ident: 10.1016/j.resuscitation.2019.04.007_bib0070
  article-title: Rectified linear units improve restricted Boltzmann machines
– volume: 7
  year: 2018
  ident: 10.1016/j.resuscitation.2019.04.007_bib0055
  article-title: An algorithm based on deep learning for predicting in-hospital cardiac arrest
  publication-title: J Am Heart Assoc
  doi: 10.1161/JAHA.118.008678
– start-page: 3449
  year: 2017
  ident: 10.1016/j.resuscitation.2019.04.007_bib0145
  article-title: Interpretable explanations of black boxes by meaningful perturbation
  publication-title: Proceeding IEEE International Conference on Computer Vision 2017
– volume: 105
  start-page: 188
  year: 2016
  ident: 10.1016/j.resuscitation.2019.04.007_bib0005
  article-title: EuReCa ONE-27 Nations, ONE Europe, ONE Registry
  publication-title: Resuscitation
  doi: 10.1016/j.resuscitation.2016.06.004
– volume: 3
  start-page: 89
  year: 2011
  ident: 10.1016/j.resuscitation.2019.04.007_bib0085
  article-title: Statistical normalization and backpropagation for classification
  publication-title: Int J Comput Theory Eng
  doi: 10.7763/IJCTE.2011.V3.288
– start-page: 265
  year: 2016
  ident: 10.1016/j.resuscitation.2019.04.007_bib0075
  article-title: TensorFlow: a system for large-scale machine learning tensorflow: a system for large-scale machine learning
– year: 2018
  ident: 10.1016/j.resuscitation.2019.04.007_bib0010
  article-title: Heart disease and stroke statistics—2018 update: a report from the American heart association
  publication-title: Circulation
  doi: 10.1161/CIR.0000000000000558
– volume: 7
  year: 2017
  ident: 10.1016/j.resuscitation.2019.04.007_bib0060
  article-title: Effect of national implementation of utstein recommendation from the global resuscitation alliance on ten steps to improve outcomes from Out-of-Hospital cardiac arrest: a ten-year observational study in Korea
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2017-016925
– volume: 391
  start-page: 989
  year: 2018
  ident: 10.1016/j.resuscitation.2019.04.007_bib0020
  article-title: Out-of-hospital cardiac arrest: in-hospital intervention strategies
  publication-title: Lancet Elsevier Ltd
  doi: 10.1016/S0140-6736(18)30315-5
– volume: 19
  start-page: 1141
  year: 2000
  ident: 10.1016/j.resuscitation.2019.04.007_bib0115
  article-title: Bootstrap confidence intervals: when, which, what? A practical guide for medical statisticians
  publication-title: Stat Med
  doi: 10.1002/(SICI)1097-0258(20000515)19:9<1141::AID-SIM479>3.0.CO;2-F
– volume: 27
  start-page: 861
  year: 2006
  ident: 10.1016/j.resuscitation.2019.04.007_bib0110
  article-title: An introduction to ROC analysis
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2005.10.010
– volume: 37
  start-page: 3222
  year: 2016
  ident: 10.1016/j.resuscitation.2019.04.007_bib0025
  article-title: The CAHP (Cardiac Arrest Hospital Prognosis) score: a tool for risk stratification after out-of-hospital cardiac arrest
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/ehv556
– volume: 21
  start-page: 1
  year: 2017
  ident: 10.1016/j.resuscitation.2019.04.007_bib0030
  article-title: Early predictors of poor outcome after out-of-hospital cardiac arrest
  publication-title: Crit Care Critical Care
– volume: 3
  start-page: 683
  year: 1992
  ident: 10.1016/j.resuscitation.2019.04.007_bib0065
  article-title: Multilayer perceptron, fuzzy sets, and classification
  publication-title: IEEE Trans Neural Networks
  doi: 10.1109/72.159058
– volume: 44
  start-page: 368
  year: 2016
  ident: 10.1016/j.resuscitation.2019.04.007_bib0100
  article-title: Multicenter comparison of machine learning methods and conventional regression for predicting clinical deterioration on the wards
  publication-title: Crit Care Med
  doi: 10.1097/CCM.0000000000001571
– volume: 160
  start-page: 122
  year: 2014
  ident: 10.1016/j.resuscitation.2019.04.007_bib0125
  article-title: Net reclassification improvement: computation, interpretation, and controversies
  publication-title: Ann Intern Med
  doi: 10.7326/M13-1522
– volume: 11
  start-page: 51
  year: 2011
  ident: 10.1016/j.resuscitation.2019.04.007_bib0090
  article-title: Predicting disease risks from highly imbalanced data using random forest
  publication-title: BMC Med Inform Decis Mak
  doi: 10.1186/1472-6947-11-51
– volume: 17
  start-page: R133
  year: 2013
  ident: 10.1016/j.resuscitation.2019.04.007_bib0120
  article-title: Decision-tree model for predicting outcomes after out-of-hospital cardiac arrest in the emergency department
  publication-title: Crit Care
  doi: 10.1186/cc12812
– volume: 27
  start-page: 2840
  year: 2006
  ident: 10.1016/j.resuscitation.2019.04.007_bib0015
  article-title: Predicting survival with good neurological recovery at hospital admission after successful resuscitation of out-of-hospital cardiac arrest: The OHCA score
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/ehl335
– volume: 34
  start-page: 1
  year: 2010
  ident: 10.1016/j.resuscitation.2019.04.007_bib0095
  article-title: Glmulti: an r package for easy automated model selection with (Generalized) linear models
  publication-title: J Stat Softw
  doi: 10.18637/jss.v034.i12
– volume: 110
  start-page: 133
  year: 2017
  ident: 10.1016/j.resuscitation.2019.04.007_bib0130
  article-title: Epidemiology and outcomes from out-of-hospital cardiac arrests in England
  publication-title: Resuscitation
  doi: 10.1016/j.resuscitation.2016.10.030
– volume: 346
  start-page: 557
  year: 2002
  ident: 10.1016/j.resuscitation.2019.04.007_bib0135
  article-title: Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa003289
– volume: 304
  start-page: 649
  year: 2016
  ident: 10.1016/j.resuscitation.2019.04.007_bib0050
  article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
  publication-title: Jama
– volume: 16
  start-page: 199
  year: 2001
  ident: 10.1016/j.resuscitation.2019.04.007_bib0040
  article-title: Statistical modeling: the two cultures (with comments and a rejoinder by the author)
  publication-title: Stat Sci
  doi: 10.1214/ss/1009213726
– volume: 15
  year: 2018
  ident: 10.1016/j.resuscitation.2019.04.007_bib0045
  article-title: Opportunities and obstacles for deep learning in biology and medicine
  publication-title: J R Soc Interface
  doi: 10.1098/rsif.2017.0387
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.resuscitation.2019.04.007_bib0140
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 95
  year: 2009
  ident: 10.1016/j.resuscitation.2019.04.007_bib0105
  article-title: Intelligent analysis in predicting outcome of out-of-hospital cardiac arrest
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2009.02.013
SSID ssj0003597
Score 2.5004456
Snippet Out-of-hospital cardiac arrest (OHCA) is a major healthcare burden, and prognosis is critical in decision-making for treatment and the withdrawal of...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 84
SubjectTerms Artificial intelligence
Decision support techniques
Machine learning
Neural networks
Out-of-Hospital cardiac arrest
Prognosis
Title Deep-learning-based out-of-hospital cardiac arrest prognostic system to predict clinical outcomes
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0300957219301212
https://dx.doi.org/10.1016/j.resuscitation.2019.04.007
https://www.ncbi.nlm.nih.gov/pubmed/30978378
https://www.proquest.com/docview/2209601714
Volume 139
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS9xAEB_OOxBfpGrVa1W21Nf18v1RRJCrx7WHPlhF35bsl1pKcmjutX97Z5LNiQ_CQZ-WLJlJ8svsfLCzMwDHqW-U1tZyGnmkMNwpdCK5Z0M06GigkI6yLa6S6W308z6-78G4OwtDaZVO97c6vdHWbmbk0BzNn55Gv1A8kR1GMHlIhclQDw8CtPZZHwbnP2bTq6VCDuOmxwrdz4lgHb6-pnlhULtA9u2-N6V65SdtQe33DNV7jmhjkCYfYNN5kuy8fdkt6JlyG9Yv3V75DhTfjZlz1xXigZO50qxa1Lyy_NF1C2GqERDFiqZHB6NsrbKi0s2sLfHM6goniWfNukOUxAThMi8f4XZycTOectdQgSuEveYmUUlmwjCQXuLlukBrXkQaPa5AaunHMjaeUTYOESONnpSVyhrqGKbiPNM698Nd6JdVafaBpTL3PKWtLHwbFakvA-vnWYDBV5ykOkmG8K1DT3ToUtOLP6JLK_st3kAvCHrhRQKhH0K0JJ63RTdWIzvtfpPoIEFNKNA4rEZ-tiR_I4KrM_jSyYbARUo7L0VpqsWLCAKKFKnX_BD2WqFZfljYnKRJs0__-_jPsEFXbR7bAfTr54U5RI-plkewdvLXP3LrgsbZ9d3sHxHxHS0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB6hRIJeEJRS0tJ2UXtd4rdjhCohWpQ0IRdA4rbyvngI2VFj___O2OtUOSBF4mRpnZk4X8bz0M7OB_Aj9Y3S2lpOVx4pLHdynUju2RADOgYolKNui3kyvov-3Mf3W3DZnYWhtkrn-1uf3nhrtzJ0aA4XT0_DGzRPVIcVTBbSYDL0w_2ISK170L-YTMfzlUMO44ZjhT7PSWAbvv9v88Kitkb17b43tXplp-1A7dcC1WuJaBOQrvZg12WS7KJ92H3YMsV72L52e-UHkP8yZsEdK8QDp3ClWVlXvLT80bGFMNUYiGJ5w9HBqFurKGl0M2tHPLOqxEXSWbHuECUpQbjM8gPcXf2-vRxzR6jAFcJecZOoZGTCMJBe4mU6x2ieRxozrkBq6ccyNp5RNg4RI42ZlJXKGmIMU3E20jrzw0PoFWVhjoClMvM8pa3MfRvlqS8D62ejAIuvOEl1kgzgrENPdOgS6cWL6NrKnsUa9IKgF14kEPoBRCvhRTt0YzOx8-5vEh0k6AkFBofNxH-uxNdMcHMFJ51tCHxJaeclL0xZL0UQUKVIXPMD-NgazeqHhc1JmnT06a1f_w12xrfXMzGbzKef4R3daXvajqFX_a3NF8yeKvnVvR3_ANsoHXA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep-learning-based+out-of-hospital+cardiac+arrest+prognostic+system+to+predict+clinical+outcomes&rft.jtitle=Resuscitation&rft.au=Kwon%2C+Joon-myoung&rft.au=Jeon%2C+Ki-Hyun&rft.au=Kim%2C+Hyue+Mee&rft.au=Kim%2C+Min+Jeong&rft.date=2019-06-01&rft.pub=Elsevier+B.V&rft.issn=0300-9572&rft.eissn=1873-1570&rft.volume=139&rft.spage=84&rft.epage=91&rft_id=info:doi/10.1016%2Fj.resuscitation.2019.04.007&rft.externalDocID=S0300957219301212
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0300-9572&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0300-9572&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0300-9572&client=summon