Ocean currents and herbivory drive macroalgae-to-coral community shift under climate warming
Coral and macroalgal communities are threatened by global stressors. However, recently reported community shifts from temperate macroalgae to tropical corals offer conservation potential for corals at the expense of macroalgae under climate warming. Although such community shifts are expanding geogr...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 115; no. 36; pp. 8990 - 8995 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
04.09.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.1716826115 |
Cover
Abstract | Coral and macroalgal communities are threatened by global stressors. However, recently reported community shifts from temperate macroalgae to tropical corals offer conservation potential for corals at the expense of macroalgae under climate warming. Although such community shifts are expanding geographically, our understanding of the driving processes is still limited. Here, we reconstruct long-term climate-driven range shifts in 45 species of macroalgae, corals, and herbivorous fishes from over 60 years of records (mainly 1950–2015), stretching across 3,000 km of the Japanese archipelago from tropical to subarctic zones. Based on a revised coastal version of climate velocity trajectories, we found that prediction models combining the effects of climate and ocean currents consistently explained observed community shifts significantly better than those relying on climate alone. Corals and herbivorous fishes performed better at exploiting opportunities offered by this interaction. The contrasting range dynamics for these taxa suggest that ocean warming is promoting macroalgal-to-coral shifts both directly by increased competition from the expansion of tropical corals into the contracting temperate macroalgae, and indirectly via deforestation by the expansion of tropical herbivorous fish. Beyond individual species’ effects, our results provide evidence on the important role that the interaction between climate warming and external forces conditioning the dispersal of organisms, such as ocean currents, can have in shaping community-level responses, with concomitant changes to ecosystem structure and functioning. Furthermore, we found that community shifts from macroalgae to corals might accelerate with future climate warming, highlighting the complexity of managing these evolving communities under future climate change. |
---|---|
AbstractList | Coral and macroalgal communities are threatened by global stressors. However, recently reported community shifts from temperate macroalgae to tropical corals offer conservation potential for corals at the expense of macroalgae under climate warming. Although such community shifts are expanding geographically, our understanding of the driving processes is still limited. Here, we reconstruct long-term climate-driven range shifts in 45 species of macroalgae, corals, and herbivorous fishes from over 60 years of records (mainly 1950–2015), stretching across 3,000 km of the Japanese archipelago from tropical to subarctic zones. Based on a revised coastal version of climate velocity trajectories, we found that prediction models combining the effects of climate and ocean currents consistently explained observed community shifts significantly better than those relying on climate alone. Corals and herbivorous fishes performed better at exploiting opportunities offered by this interaction. The contrasting range dynamics for these taxa suggest that ocean warming is promoting macroalgal-to-coral shifts both directly by increased competition from the expansion of tropical corals into the contracting temperate macroalgae, and indirectly via deforestation by the expansion of tropical herbivorous fish. Beyond individual species’ effects, our results provide evidence on the important role that the interaction between climate warming and external forces conditioning the dispersal of organisms, such as ocean currents, can have in shaping community-level responses, with concomitant changes to ecosystem structure and functioning. Furthermore, we found that community shifts from macroalgae to corals might accelerate with future climate warming, highlighting the complexity of managing these evolving communities under future climate change. Global degradation of coral reefs and macroalgal beds can have ecosystem-wide implications for biodiversity, ecological functioning, and ocean resources. However, recent studies in warm temperate zones have documented community shifts from macroalgae to corals, signaling a potential mechanism for coral conservation under climate warming. Here, we present evidence that warming, aided by the dominant poleward-flowing current system, is facilitating the expansion of tropical corals and herbivorous fishes into existing temperate Japanese macroalgae communities, which are contracting faster than they are expanding. Furthermore, our results suggest future climate change may exacerbate this process, potentially compromising the long-term stability of these communities. Future conservation of these communities might require of a more proactive management toward climate adaptation. Coral and macroalgal communities are threatened by global stressors. However, recently reported community shifts from temperate macroalgae to tropical corals offer conservation potential for corals at the expense of macroalgae under climate warming. Although such community shifts are expanding geographically, our understanding of the driving processes is still limited. Here, we reconstruct long-term climate-driven range shifts in 45 species of macroalgae, corals, and herbivorous fishes from over 60 years of records (mainly 1950–2015), stretching across 3,000 km of the Japanese archipelago from tropical to subarctic zones. Based on a revised coastal version of climate velocity trajectories, we found that prediction models combining the effects of climate and ocean currents consistently explained observed community shifts significantly better than those relying on climate alone. Corals and herbivorous fishes performed better at exploiting opportunities offered by this interaction. The contrasting range dynamics for these taxa suggest that ocean warming is promoting macroalgal-to-coral shifts both directly by increased competition from the expansion of tropical corals into the contracting temperate macroalgae, and indirectly via deforestation by the expansion of tropical herbivorous fish. Beyond individual species’ effects, our results provide evidence on the important role that the interaction between climate warming and external forces conditioning the dispersal of organisms, such as ocean currents, can have in shaping community-level responses, with concomitant changes to ecosystem structure and functioning. Furthermore, we found that community shifts from macroalgae to corals might accelerate with future climate warming, highlighting the complexity of managing these evolving communities under future climate change. Coral and macroalgal communities are threatened by global stressors. However, recently reported community shifts from temperate macroalgae to tropical corals offer conservation potential for corals at the expense of macroalgae under climate warming. Although such community shifts are expanding geographically, our understanding of the driving processes is still limited. Here, we reconstruct long-term climate-driven range shifts in 45 species of macroalgae, corals, and herbivorous fishes from over 60 years of records (mainly 1950-2015), stretching across 3,000 km of the Japanese archipelago from tropical to subarctic zones. Based on a revised coastal version of climate velocity trajectories, we found that prediction models combining the effects of climate and ocean currents consistently explained observed community shifts significantly better than those relying on climate alone. Corals and herbivorous fishes performed better at exploiting opportunities offered by this interaction. The contrasting range dynamics for these taxa suggest that ocean warming is promoting macroalgal-to-coral shifts both directly by increased competition from the expansion of tropical corals into the contracting temperate macroalgae, and indirectly via deforestation by the expansion of tropical herbivorous fish. Beyond individual species' effects, our results provide evidence on the important role that the interaction between climate warming and external forces conditioning the dispersal of organisms, such as ocean currents, can have in shaping community-level responses, with concomitant changes to ecosystem structure and functioning. Furthermore, we found that community shifts from macroalgae to corals might accelerate with future climate warming, highlighting the complexity of managing these evolving communities under future climate change.Coral and macroalgal communities are threatened by global stressors. However, recently reported community shifts from temperate macroalgae to tropical corals offer conservation potential for corals at the expense of macroalgae under climate warming. Although such community shifts are expanding geographically, our understanding of the driving processes is still limited. Here, we reconstruct long-term climate-driven range shifts in 45 species of macroalgae, corals, and herbivorous fishes from over 60 years of records (mainly 1950-2015), stretching across 3,000 km of the Japanese archipelago from tropical to subarctic zones. Based on a revised coastal version of climate velocity trajectories, we found that prediction models combining the effects of climate and ocean currents consistently explained observed community shifts significantly better than those relying on climate alone. Corals and herbivorous fishes performed better at exploiting opportunities offered by this interaction. The contrasting range dynamics for these taxa suggest that ocean warming is promoting macroalgal-to-coral shifts both directly by increased competition from the expansion of tropical corals into the contracting temperate macroalgae, and indirectly via deforestation by the expansion of tropical herbivorous fish. Beyond individual species' effects, our results provide evidence on the important role that the interaction between climate warming and external forces conditioning the dispersal of organisms, such as ocean currents, can have in shaping community-level responses, with concomitant changes to ecosystem structure and functioning. Furthermore, we found that community shifts from macroalgae to corals might accelerate with future climate warming, highlighting the complexity of managing these evolving communities under future climate change. |
Author | Takao, Shintaro Yamano, Hiroya Kumagai, Naoki H. Fujii, Masahiko Molinos, Jorge García Yamanaka, Yasuhiro |
Author_xml | – sequence: 1 givenname: Naoki H. surname: Kumagai fullname: Kumagai, Naoki H. organization: Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Tsukuba, 305-8506 Ibaraki, Japan – sequence: 2 givenname: Jorge García surname: Molinos fullname: Molinos, Jorge García organization: Graduate School of Environmental Science, Hokkaido University, Sapporo, 060-0810 Hokkaido, Japan – sequence: 3 givenname: Hiroya surname: Yamano fullname: Yamano, Hiroya organization: Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Tsukuba, 305-8506 Ibaraki, Japan – sequence: 4 givenname: Shintaro surname: Takao fullname: Takao, Shintaro organization: Graduate School of Environmental Science, Hokkaido University, Sapporo, 060-0810 Hokkaido, Japan – sequence: 5 givenname: Masahiko surname: Fujii fullname: Fujii, Masahiko organization: Graduate School of Environmental Science, Hokkaido University, Sapporo, 060-0810 Hokkaido, Japan – sequence: 6 givenname: Yasuhiro surname: Yamanaka fullname: Yamanaka, Yasuhiro organization: Graduate School of Environmental Science, Hokkaido University, Sapporo, 060-0810 Hokkaido, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30126981$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UUmLFDEYDTLiLHr2pAS8eKmZfNmqchFkcIOBuehNCKlUqjtNVdImqZb-96bpsdU5eMrhe-_lLZfoLMTgEHoJ5BpIy262weRraEF2VAKIJ-gCiIJGckXO0AUhtG06Tvk5usx5QwhRoiPP0DkjQKXq4AJ9v7fOBGyXlFwoGZsw4LVLvd_FtMdD8juHZ2NTNNPKuKbExsZkJmzjPC_Blz3Oaz8WvITBJWwnP5vi8E-TZh9Wz9HT0UzZvXh4r9C3jx--3n5u7u4_fbl9f9dYQVRpht5SA7IljHLbWtaDhX60gnLDa7DWieqRC9UPBCSTdDRDJ-ToSKtc18LArtC7o-526Wc32JqketTbVN2kvY7G638vwa_1Ku60BEYYV1Xg7YNAij8Wl4uefbZumkxwccma1lIpEwpIhb55BN3EJYUaT1MAwiXhlFbU678dnaz8Lr4Cbo6AWm3OyY0nCBB9mFYfptV_pq0M8YhhfTHFx0MkP_2H9-rI2-QS0-kbKgUDCor9AgVus3Y |
CitedBy_id | crossref_primary_10_1002_ece3_10203 crossref_primary_10_1016_j_marenvres_2020_105074 crossref_primary_10_1016_j_ocecoaman_2021_105744 crossref_primary_10_1016_j_marenvres_2022_105592 crossref_primary_10_1111_cobi_14291 crossref_primary_10_2331_suisan_22_00054 crossref_primary_10_3755_jcrs_26_59 crossref_primary_10_3354_meps14730 crossref_primary_10_1017_pab_2024_20 crossref_primary_10_4236_ojms_2021_114012 crossref_primary_10_3389_fmars_2022_817021 crossref_primary_10_1111_jfb_14912 crossref_primary_10_1016_j_scitotenv_2020_138501 crossref_primary_10_1016_j_ocecoaman_2022_106042 crossref_primary_10_1007_s00338_023_02400_9 crossref_primary_10_1111_pre_12395 crossref_primary_10_1111_pre_12398 crossref_primary_10_1007_s00338_024_02487_8 crossref_primary_10_1007_s10811_019_01790_0 crossref_primary_10_1111_pre_12433 crossref_primary_10_1007_s00338_024_02471_2 crossref_primary_10_1007_s00338_021_02167_x crossref_primary_10_1016_j_rsma_2020_101526 crossref_primary_10_1098_rstb_2022_0192 crossref_primary_10_2331_suisan_WA2867_3 crossref_primary_10_1098_rspb_2022_1744 crossref_primary_10_1111_gcb_16770 crossref_primary_10_1111_ddi_12980 crossref_primary_10_1016_j_rsma_2024_103755 crossref_primary_10_1016_j_scitotenv_2021_152423 crossref_primary_10_1038_s41598_022_24666_9 crossref_primary_10_1038_s43247_022_00577_5 crossref_primary_10_1007_s10641_021_01205_5 crossref_primary_10_1111_1440_1703_12053 crossref_primary_10_1111_mec_16665 crossref_primary_10_1002_cli2_66 crossref_primary_10_3354_meps13730 crossref_primary_10_1002_ece3_70561 crossref_primary_10_1007_s00227_022_04036_9 crossref_primary_10_6090_jarq_55_85 crossref_primary_10_1111_1440_1703_12212 crossref_primary_10_1111_2041_210X_13295 crossref_primary_10_1111_gcb_15749 crossref_primary_10_1139_cjfas_2020_0327 crossref_primary_10_1111_1365_2435_13310 crossref_primary_10_3390_d13120632 crossref_primary_10_1111_gcb_15346 crossref_primary_10_1016_j_zool_2021_125893 crossref_primary_10_2750_arp_42_75 crossref_primary_10_1016_j_marenvres_2023_106098 crossref_primary_10_4236_ojms_2024_144004 crossref_primary_10_1016_j_marenvres_2023_106013 crossref_primary_10_1098_rspb_2019_2046 crossref_primary_10_1111_faf_12488 crossref_primary_10_2139_ssrn_3869113 crossref_primary_10_1007_s10811_021_02425_z crossref_primary_10_1111_ecog_06156 crossref_primary_10_1038_s41558_020_0894_x crossref_primary_10_1016_j_scitotenv_2022_159513 crossref_primary_10_1111_gcb_14772 crossref_primary_10_1111_nph_16107 crossref_primary_10_1007_s00338_024_02564_y crossref_primary_10_1111_ddi_13851 crossref_primary_10_1038_s41559_019_1037_5 crossref_primary_10_3390_plants10081522 crossref_primary_10_3390_jmse11030574 crossref_primary_10_1007_s00338_024_02601_w crossref_primary_10_1016_j_tim_2023_07_015 crossref_primary_10_1007_s10872_020_00543_9 crossref_primary_10_1038_s43017_024_00527_z crossref_primary_10_1111_pre_12508 crossref_primary_10_1088_2752_5295_ad9f90 crossref_primary_10_1038_s41467_023_37550_5 crossref_primary_10_1111_faf_12613 crossref_primary_10_1007_s11160_021_09678_4 crossref_primary_10_1002_ecs2_4938 crossref_primary_10_1111_ddi_13462 crossref_primary_10_1016_j_ecss_2025_109160 crossref_primary_10_1371_journal_pone_0309354 crossref_primary_10_1016_j_marchem_2020_103870 crossref_primary_10_1002_pan3_10727 crossref_primary_10_1146_annurev_marine_010419_010916 crossref_primary_10_2331_suisan_21_00023 crossref_primary_10_3390_plants13121689 crossref_primary_10_1111_1440_1703_12362 crossref_primary_10_1111_jbi_14744 crossref_primary_10_3390_rs15051276 crossref_primary_10_3354_meps14705 crossref_primary_10_1007_s13131_022_2130_1 crossref_primary_10_1111_1365_2435_14141 crossref_primary_10_3389_fbuil_2021_788700 crossref_primary_10_1111_1440_1703_12128 crossref_primary_10_1007_s10811_023_03096_8 crossref_primary_10_1016_j_ecolind_2024_111741 crossref_primary_10_1016_j_tree_2023_10_006 crossref_primary_10_1016_j_scitotenv_2020_140913 crossref_primary_10_1111_1365_2745_13329 crossref_primary_10_1016_j_ecss_2020_107144 crossref_primary_10_1016_j_tree_2019_07_003 crossref_primary_10_1007_s10228_024_00963_3 crossref_primary_10_1016_j_jcis_2022_09_002 crossref_primary_10_1016_j_ecolmodel_2022_110220 crossref_primary_10_1016_j_scitotenv_2023_163688 crossref_primary_10_3354_meps14715 crossref_primary_10_1111_1440_1703_12138 crossref_primary_10_1111_jbi_14058 crossref_primary_10_1111_1440_1703_12136 crossref_primary_10_1038_s41559_024_02336_5 crossref_primary_10_1111_jpy_13366 crossref_primary_10_3755_jcrs_23_1 crossref_primary_10_1111_ddi_13765 crossref_primary_10_1111_ddi_13484 crossref_primary_10_1016_j_marpolbul_2021_113238 crossref_primary_10_1016_j_marpol_2020_103954 crossref_primary_10_1209_0295_5075_ad89f6 crossref_primary_10_3389_fmars_2019_00763 crossref_primary_10_1016_j_ecolind_2024_111917 crossref_primary_10_1111_1365_2656_13739 crossref_primary_10_1016_j_marpol_2022_105090 crossref_primary_10_1111_jpy_13233 crossref_primary_10_1016_j_rsma_2022_102431 |
Cites_doi | 10.1111/ele.12474 10.1016/j.gloenvcha.2014.03.009 10.5194/bg-9-4955-2012 10.1002/ece3.391 10.1111/ddi.12140 10.1007/BF00008211 10.1007/s00338-012-0893-0 10.1016/j.cub.2006.12.049 10.1111/j.2041-210x.2012.00261.x 10.1111/j.1600-0706.2012.00066.x 10.1098/rspb.2014.0846 10.3755/galaxea.13.11 10.18637/jss.v076.i13 10.1016/j.asr.2005.09.022 10.1890/09-0173.1 10.1073/pnas.1422301112 10.1038/s41598-017-01309-y 10.1029/2010GL046474 10.1023/A:1008929526011 10.3354/meps10262 10.1038/nature14140 10.1038/nclimate1958 10.5343/bms.2014.1032 10.1038/nature12976 10.1007/s00338-017-1586-5 10.1890/13-1445.1 10.1111/ele.12450 10.1007/s00338-012-0939-3 10.1007/s00227-005-0027-0 10.1007/978-94-017-7534-2_3 10.1126/science.1189930 10.3755/jcrs.11.39 10.1073/pnas.1610725113 10.2151/jmsj.2012-301 10.1371/journal.pone.0081107 10.1007/s11284-016-1404-5 10.1201/b16018 10.1515/botm.1998.41.1-6.113 10.2331/suisan.74.884 10.1126/science.aad8745 10.1073/pnas.091092998 10.1126/science.1085706 10.1016/j.tree.2009.04.011 10.1111/j.0919-9268.2004.00788.x 10.1038/nclimate1353 10.1086/303357 |
ContentType | Journal Article |
Copyright | Volumes 1–89 and 106–115, copyright as a collective work only; author(s) retains copyright to individual articles Copyright National Academy of Sciences Sep 4, 2018 2018 |
Copyright_xml | – notice: Volumes 1–89 and 106–115, copyright as a collective work only; author(s) retains copyright to individual articles – notice: Copyright National Academy of Sciences Sep 4, 2018 – notice: 2018 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.1716826115 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 8995 |
ExternalDocumentID | PMC6130349 30126981 10_1073_pnas_1716826115 26531219 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c509t-dbc2a1670324c7c3b1c1bfc524a46827e5cea459bd016362fad856fe079e871d3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 14:05:11 EDT 2025 Fri Sep 05 08:09:04 EDT 2025 Mon Jun 30 08:12:36 EDT 2025 Thu Apr 03 07:03:06 EDT 2025 Thu Apr 24 22:53:18 EDT 2025 Tue Jul 01 03:19:53 EDT 2025 Fri May 30 11:17:11 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 36 |
Keywords | community phase shifts climate velocity range shifts global change coastal tropicalization |
Language | English |
License | Published under the PNAS license. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c509t-dbc2a1670324c7c3b1c1bfc524a46827e5cea459bd016362fad856fe079e871d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Author contributions: N.H.K. and J.G.M. designed research; N.H.K. performed research; N.H.K. and J.G.M. contributed new reagents/analytic tools; N.H.K. analyzed data; and N.H.K., J.G.M., H.Y., S.T., M.F., and Y.Y. wrote the paper. Edited by Nancy Knowlton, Smithsonian Institution, Washington, DC, and approved July 16, 2018 (received for review September 26, 2017) |
ORCID | 0000-0003-1144-4339 0000-0001-7516-1835 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/6130349 |
PMID | 30126981 |
PQID | 2110460422 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6130349 proquest_miscellaneous_2091235910 proquest_journals_2110460422 pubmed_primary_30126981 crossref_primary_10_1073_pnas_1716826115 crossref_citationtrail_10_1073_pnas_1716826115 jstor_primary_26531219 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-09-04 |
PublicationDateYYYYMMDD | 2018-09-04 |
PublicationDate_xml | – month: 09 year: 2018 text: 2018-09-04 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2018 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_3_50_2 Mezaki T (e_1_3_3_13_2) 2012; 201 Thomson D (e_1_3_3_22_2) 2010; 93 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_33_2 e_1_3_3_54_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_40_2 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_25_2 e_1_3_3_1_2 e_1_3_3_44_2 Noda M (e_1_3_3_47_2) 2006 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 Kéry M (e_1_3_3_51_2) 2010 Yamaguchi A (e_1_3_3_46_2) 2010; 32 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_36_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_32_2 e_1_3_3_55_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_53_2 Rothäusler E (e_1_3_3_26_2) 2012 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_45_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_4_2 e_1_3_3_41_2 |
References_xml | – ident: e_1_3_3_29_2 doi: 10.1111/ele.12474 – ident: e_1_3_3_31_2 doi: 10.1016/j.gloenvcha.2014.03.009 – ident: e_1_3_3_34_2 doi: 10.5194/bg-9-4955-2012 – ident: e_1_3_3_32_2 doi: 10.1002/ece3.391 – ident: e_1_3_3_17_2 doi: 10.1111/ddi.12140 – ident: e_1_3_3_9_2 doi: 10.1007/BF00008211 – ident: e_1_3_3_38_2 doi: 10.1007/s00338-012-0893-0 – ident: e_1_3_3_10_2 doi: 10.1016/j.cub.2006.12.049 – ident: e_1_3_3_52_2 doi: 10.1111/j.2041-210x.2012.00261.x – ident: e_1_3_3_24_2 doi: 10.1111/j.1600-0706.2012.00066.x – ident: e_1_3_3_27_2 doi: 10.1098/rspb.2014.0846 – ident: e_1_3_3_42_2 doi: 10.3755/galaxea.13.11 – ident: e_1_3_3_50_2 doi: 10.18637/jss.v076.i13 – ident: e_1_3_3_44_2 doi: 10.1016/j.asr.2005.09.022 – ident: e_1_3_3_41_2 doi: 10.1890/09-0173.1 – volume: 93 start-page: 81 year: 2010 ident: e_1_3_3_22_2 article-title: Range extension of the hard coral Goniopora norfolkensis (Veron & Pichon 1982) to the south-east Indian Ocean publication-title: J R Soc West Aust – start-page: 403 volume-title: Seaweed Biology year: 2012 ident: e_1_3_3_26_2 – ident: e_1_3_3_40_2 doi: 10.1073/pnas.1422301112 – ident: e_1_3_3_25_2 doi: 10.1038/s41598-017-01309-y – ident: e_1_3_3_1_2 doi: 10.1029/2010GL046474 – ident: e_1_3_3_53_2 doi: 10.1023/A:1008929526011 – ident: e_1_3_3_48_2 doi: 10.3354/meps10262 – volume-title: Introduction to WinBUGS for Ecologists: Bayesian Approach to Regression, ANOVA, Mixed Models and Related Analyses year: 2010 ident: e_1_3_3_51_2 – ident: e_1_3_3_11_2 doi: 10.1038/nature14140 – ident: e_1_3_3_2_2 doi: 10.1038/nclimate1958 – ident: e_1_3_3_15_2 doi: 10.5343/bms.2014.1032 – ident: e_1_3_3_30_2 doi: 10.1038/nature12976 – ident: e_1_3_3_16_2 doi: 10.1007/s00338-017-1586-5 – ident: e_1_3_3_35_2 doi: 10.1890/13-1445.1 – ident: e_1_3_3_19_2 doi: 10.1111/ele.12450 – ident: e_1_3_3_49_2 – volume: 32 start-page: 89 year: 2010 ident: e_1_3_3_46_2 article-title: Biological aspects of herbivorous fishes in the coastal areas of western Japan publication-title: Bull Fish Res Agen – ident: e_1_3_3_14_2 doi: 10.1007/s00338-012-0939-3 – ident: e_1_3_3_21_2 doi: 10.1007/s00227-005-0027-0 – ident: e_1_3_3_3_2 doi: 10.1007/978-94-017-7534-2_3 – ident: e_1_3_3_7_2 doi: 10.1126/science.1189930 – volume: 201 start-page: 332 year: 2012 ident: e_1_3_3_13_2 article-title: Changes of hermatypic coral community in coastal sea area of Kochi, high-latitude, Japan publication-title: Aquabiology – ident: e_1_3_3_39_2 doi: 10.3755/jcrs.11.39 – ident: e_1_3_3_20_2 doi: 10.1073/pnas.1610725113 – ident: e_1_3_3_43_2 doi: 10.2151/jmsj.2012-301 – ident: e_1_3_3_37_2 doi: 10.1371/journal.pone.0081107 – ident: e_1_3_3_45_2 doi: 10.1007/s11284-016-1404-5 – ident: e_1_3_3_54_2 doi: 10.1201/b16018 – ident: e_1_3_3_8_2 – ident: e_1_3_3_33_2 doi: 10.1515/botm.1998.41.1-6.113 – ident: e_1_3_3_55_2 – ident: e_1_3_3_12_2 doi: 10.2331/suisan.74.884 – ident: e_1_3_3_4_2 doi: 10.1126/science.aad8745 – ident: e_1_3_3_5_2 doi: 10.1073/pnas.091092998 – ident: e_1_3_3_6_2 doi: 10.1126/science.1085706 – ident: e_1_3_3_36_2 doi: 10.1016/j.tree.2009.04.011 – start-page: 114 volume-title: Marine Herbivorous Fish—Ecology, Fishery and Utilization year: 2006 ident: e_1_3_3_47_2 – ident: e_1_3_3_18_2 doi: 10.1111/j.0919-9268.2004.00788.x – ident: e_1_3_3_28_2 doi: 10.1038/nclimate1353 – ident: e_1_3_3_23_2 doi: 10.1086/303357 |
SSID | ssj0009580 |
Score | 2.599062 |
Snippet | Coral and macroalgal communities are threatened by global stressors. However, recently reported community shifts from temperate macroalgae to tropical corals... Global degradation of coral reefs and macroalgal beds can have ecosystem-wide implications for biodiversity, ecological functioning, and ocean resources.... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8990 |
SubjectTerms | Algae Animals Anthozoa - physiology Archipelagoes Biological Sciences Climate change Climate effects Climate models Communities Coral reefs Corals Deforestation Dispersal Ecosystem structure Fishes - physiology Global Warming Herbivorous fish Herbivory Ocean currents Ocean models Ocean warming Oceans and Seas Physical Sciences Prediction models Seaweed - physiology Seaweeds Tropical fish |
Title | Ocean currents and herbivory drive macroalgae-to-coral community shift under climate warming |
URI | https://www.jstor.org/stable/26531219 https://www.ncbi.nlm.nih.gov/pubmed/30126981 https://www.proquest.com/docview/2110460422 https://www.proquest.com/docview/2091235910 https://pubmed.ncbi.nlm.nih.gov/PMC6130349 |
Volume | 115 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKeOEFMWAQGMhIPAxVKU3i3B4n2KjQyCbRSkVCihzHaaNtCUpTEPwEfjXHl7jtFKTBS1Q5rhPl-3zOsX0uCL0Gm8NlQZTZGfW4TfIwtrMcJl7OnYjGEfeVV-WnJJjMyMe5Px8Mfm95La3bbMR-9caV_A-q0Aa4iijZf0DWDAoN8BvwhSsgDNdbYXzOxD46UymWVLJlgCArv4uD87wRTkHXFCStiNfgdlvbTMbjMxUUAub3alkWrSyF24gYSbBe-fAHFe4xi22r9cJouVXnU5B0m4jHm5AULSdWQ3t4kWwKHAsv7oWqep3Q-rLcxEN8gFkmT-rfUxAuYPDW-lSiWRi-faHXVJYHH07Kpv5ptMiUXlLZ_HlZVi1t6u39C0c6W6iKw1rkgsViB0QVDR3xnrZOTqu4T01Ib1vswqJx3KsPQICJIsYVXY1EXiBYS3Wj7GTeTs7T09nZWTo9mU_voLtuCHZYt_NjEjhHKrOFfrMuTVTovb0x_I6Fo5xc-5YvN71wt8ya6QN0X69H8LEi1z4a8Ooh2u-QxEc6LfmbR-irZBvu2IaBbdiwDUu24R62YcM2LNmGJduwZhvWbHuMZqcn03cTW9fmsBmYmK2dZ8ylTgD6wiUsZF7mMCcrmO8SSuA7hNyHdyJ-DBMfLP7ALWge-UHBx2HMYY2eewdor6or_hRhQsMiKorMKfwxIcKADsa5KBNAijhkxdhCo-57pkwnrhf1U65S6UAReqkAIN0AYKEj84dvKmfL37seSIBMPzcApQRa3EKHHWKpnvGrVGyWkEBkzbPQK3Mb5LE4ZKMVr9fQBwjiej5Y4RZ6ogA2g4MydYM4ciwU7kBvOohc77t3qnIpc76LZb5H4me3eO5zdG8zzw7RXtus-QuwnNvspaT0H3TmxyQ |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ocean+currents+and+herbivory+drive+macroalgae-to-coral+community+shift+under+climate+warming&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Kumagai%2C+Naoki+H&rft.au=Garc%C3%ADa+Molinos%2C+Jorge&rft.au=Yamano%2C+Hiroya&rft.au=Takao%2C+Shintaro&rft.date=2018-09-04&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=115&rft.issue=36&rft.spage=8990&rft_id=info:doi/10.1073%2Fpnas.1716826115&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |