Ocean currents and herbivory drive macroalgae-to-coral community shift under climate warming

Coral and macroalgal communities are threatened by global stressors. However, recently reported community shifts from temperate macroalgae to tropical corals offer conservation potential for corals at the expense of macroalgae under climate warming. Although such community shifts are expanding geogr...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 115; no. 36; pp. 8990 - 8995
Main Authors Kumagai, Naoki H., Molinos, Jorge García, Yamano, Hiroya, Takao, Shintaro, Fujii, Masahiko, Yamanaka, Yasuhiro
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 04.09.2018
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.1716826115

Cover

Abstract Coral and macroalgal communities are threatened by global stressors. However, recently reported community shifts from temperate macroalgae to tropical corals offer conservation potential for corals at the expense of macroalgae under climate warming. Although such community shifts are expanding geographically, our understanding of the driving processes is still limited. Here, we reconstruct long-term climate-driven range shifts in 45 species of macroalgae, corals, and herbivorous fishes from over 60 years of records (mainly 1950–2015), stretching across 3,000 km of the Japanese archipelago from tropical to subarctic zones. Based on a revised coastal version of climate velocity trajectories, we found that prediction models combining the effects of climate and ocean currents consistently explained observed community shifts significantly better than those relying on climate alone. Corals and herbivorous fishes performed better at exploiting opportunities offered by this interaction. The contrasting range dynamics for these taxa suggest that ocean warming is promoting macroalgal-to-coral shifts both directly by increased competition from the expansion of tropical corals into the contracting temperate macroalgae, and indirectly via deforestation by the expansion of tropical herbivorous fish. Beyond individual species’ effects, our results provide evidence on the important role that the interaction between climate warming and external forces conditioning the dispersal of organisms, such as ocean currents, can have in shaping community-level responses, with concomitant changes to ecosystem structure and functioning. Furthermore, we found that community shifts from macroalgae to corals might accelerate with future climate warming, highlighting the complexity of managing these evolving communities under future climate change.
AbstractList Coral and macroalgal communities are threatened by global stressors. However, recently reported community shifts from temperate macroalgae to tropical corals offer conservation potential for corals at the expense of macroalgae under climate warming. Although such community shifts are expanding geographically, our understanding of the driving processes is still limited. Here, we reconstruct long-term climate-driven range shifts in 45 species of macroalgae, corals, and herbivorous fishes from over 60 years of records (mainly 1950–2015), stretching across 3,000 km of the Japanese archipelago from tropical to subarctic zones. Based on a revised coastal version of climate velocity trajectories, we found that prediction models combining the effects of climate and ocean currents consistently explained observed community shifts significantly better than those relying on climate alone. Corals and herbivorous fishes performed better at exploiting opportunities offered by this interaction. The contrasting range dynamics for these taxa suggest that ocean warming is promoting macroalgal-to-coral shifts both directly by increased competition from the expansion of tropical corals into the contracting temperate macroalgae, and indirectly via deforestation by the expansion of tropical herbivorous fish. Beyond individual species’ effects, our results provide evidence on the important role that the interaction between climate warming and external forces conditioning the dispersal of organisms, such as ocean currents, can have in shaping community-level responses, with concomitant changes to ecosystem structure and functioning. Furthermore, we found that community shifts from macroalgae to corals might accelerate with future climate warming, highlighting the complexity of managing these evolving communities under future climate change.
Global degradation of coral reefs and macroalgal beds can have ecosystem-wide implications for biodiversity, ecological functioning, and ocean resources. However, recent studies in warm temperate zones have documented community shifts from macroalgae to corals, signaling a potential mechanism for coral conservation under climate warming. Here, we present evidence that warming, aided by the dominant poleward-flowing current system, is facilitating the expansion of tropical corals and herbivorous fishes into existing temperate Japanese macroalgae communities, which are contracting faster than they are expanding. Furthermore, our results suggest future climate change may exacerbate this process, potentially compromising the long-term stability of these communities. Future conservation of these communities might require of a more proactive management toward climate adaptation. Coral and macroalgal communities are threatened by global stressors. However, recently reported community shifts from temperate macroalgae to tropical corals offer conservation potential for corals at the expense of macroalgae under climate warming. Although such community shifts are expanding geographically, our understanding of the driving processes is still limited. Here, we reconstruct long-term climate-driven range shifts in 45 species of macroalgae, corals, and herbivorous fishes from over 60 years of records (mainly 1950–2015), stretching across 3,000 km of the Japanese archipelago from tropical to subarctic zones. Based on a revised coastal version of climate velocity trajectories, we found that prediction models combining the effects of climate and ocean currents consistently explained observed community shifts significantly better than those relying on climate alone. Corals and herbivorous fishes performed better at exploiting opportunities offered by this interaction. The contrasting range dynamics for these taxa suggest that ocean warming is promoting macroalgal-to-coral shifts both directly by increased competition from the expansion of tropical corals into the contracting temperate macroalgae, and indirectly via deforestation by the expansion of tropical herbivorous fish. Beyond individual species’ effects, our results provide evidence on the important role that the interaction between climate warming and external forces conditioning the dispersal of organisms, such as ocean currents, can have in shaping community-level responses, with concomitant changes to ecosystem structure and functioning. Furthermore, we found that community shifts from macroalgae to corals might accelerate with future climate warming, highlighting the complexity of managing these evolving communities under future climate change.
Coral and macroalgal communities are threatened by global stressors. However, recently reported community shifts from temperate macroalgae to tropical corals offer conservation potential for corals at the expense of macroalgae under climate warming. Although such community shifts are expanding geographically, our understanding of the driving processes is still limited. Here, we reconstruct long-term climate-driven range shifts in 45 species of macroalgae, corals, and herbivorous fishes from over 60 years of records (mainly 1950-2015), stretching across 3,000 km of the Japanese archipelago from tropical to subarctic zones. Based on a revised coastal version of climate velocity trajectories, we found that prediction models combining the effects of climate and ocean currents consistently explained observed community shifts significantly better than those relying on climate alone. Corals and herbivorous fishes performed better at exploiting opportunities offered by this interaction. The contrasting range dynamics for these taxa suggest that ocean warming is promoting macroalgal-to-coral shifts both directly by increased competition from the expansion of tropical corals into the contracting temperate macroalgae, and indirectly via deforestation by the expansion of tropical herbivorous fish. Beyond individual species' effects, our results provide evidence on the important role that the interaction between climate warming and external forces conditioning the dispersal of organisms, such as ocean currents, can have in shaping community-level responses, with concomitant changes to ecosystem structure and functioning. Furthermore, we found that community shifts from macroalgae to corals might accelerate with future climate warming, highlighting the complexity of managing these evolving communities under future climate change.Coral and macroalgal communities are threatened by global stressors. However, recently reported community shifts from temperate macroalgae to tropical corals offer conservation potential for corals at the expense of macroalgae under climate warming. Although such community shifts are expanding geographically, our understanding of the driving processes is still limited. Here, we reconstruct long-term climate-driven range shifts in 45 species of macroalgae, corals, and herbivorous fishes from over 60 years of records (mainly 1950-2015), stretching across 3,000 km of the Japanese archipelago from tropical to subarctic zones. Based on a revised coastal version of climate velocity trajectories, we found that prediction models combining the effects of climate and ocean currents consistently explained observed community shifts significantly better than those relying on climate alone. Corals and herbivorous fishes performed better at exploiting opportunities offered by this interaction. The contrasting range dynamics for these taxa suggest that ocean warming is promoting macroalgal-to-coral shifts both directly by increased competition from the expansion of tropical corals into the contracting temperate macroalgae, and indirectly via deforestation by the expansion of tropical herbivorous fish. Beyond individual species' effects, our results provide evidence on the important role that the interaction between climate warming and external forces conditioning the dispersal of organisms, such as ocean currents, can have in shaping community-level responses, with concomitant changes to ecosystem structure and functioning. Furthermore, we found that community shifts from macroalgae to corals might accelerate with future climate warming, highlighting the complexity of managing these evolving communities under future climate change.
Author Takao, Shintaro
Yamano, Hiroya
Kumagai, Naoki H.
Fujii, Masahiko
Molinos, Jorge García
Yamanaka, Yasuhiro
Author_xml – sequence: 1
  givenname: Naoki H.
  surname: Kumagai
  fullname: Kumagai, Naoki H.
  organization: Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Tsukuba, 305-8506 Ibaraki, Japan
– sequence: 2
  givenname: Jorge García
  surname: Molinos
  fullname: Molinos, Jorge García
  organization: Graduate School of Environmental Science, Hokkaido University, Sapporo, 060-0810 Hokkaido, Japan
– sequence: 3
  givenname: Hiroya
  surname: Yamano
  fullname: Yamano, Hiroya
  organization: Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Tsukuba, 305-8506 Ibaraki, Japan
– sequence: 4
  givenname: Shintaro
  surname: Takao
  fullname: Takao, Shintaro
  organization: Graduate School of Environmental Science, Hokkaido University, Sapporo, 060-0810 Hokkaido, Japan
– sequence: 5
  givenname: Masahiko
  surname: Fujii
  fullname: Fujii, Masahiko
  organization: Graduate School of Environmental Science, Hokkaido University, Sapporo, 060-0810 Hokkaido, Japan
– sequence: 6
  givenname: Yasuhiro
  surname: Yamanaka
  fullname: Yamanaka, Yasuhiro
  organization: Graduate School of Environmental Science, Hokkaido University, Sapporo, 060-0810 Hokkaido, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30126981$$D View this record in MEDLINE/PubMed
BookMark eNp9UUmLFDEYDTLiLHr2pAS8eKmZfNmqchFkcIOBuehNCKlUqjtNVdImqZb-96bpsdU5eMrhe-_lLZfoLMTgEHoJ5BpIy262weRraEF2VAKIJ-gCiIJGckXO0AUhtG06Tvk5usx5QwhRoiPP0DkjQKXq4AJ9v7fOBGyXlFwoGZsw4LVLvd_FtMdD8juHZ2NTNNPKuKbExsZkJmzjPC_Blz3Oaz8WvITBJWwnP5vi8E-TZh9Wz9HT0UzZvXh4r9C3jx--3n5u7u4_fbl9f9dYQVRpht5SA7IljHLbWtaDhX60gnLDa7DWieqRC9UPBCSTdDRDJ-ToSKtc18LArtC7o-526Wc32JqketTbVN2kvY7G638vwa_1Ku60BEYYV1Xg7YNAij8Wl4uefbZumkxwccma1lIpEwpIhb55BN3EJYUaT1MAwiXhlFbU678dnaz8Lr4Cbo6AWm3OyY0nCBB9mFYfptV_pq0M8YhhfTHFx0MkP_2H9-rI2-QS0-kbKgUDCor9AgVus3Y
CitedBy_id crossref_primary_10_1002_ece3_10203
crossref_primary_10_1016_j_marenvres_2020_105074
crossref_primary_10_1016_j_ocecoaman_2021_105744
crossref_primary_10_1016_j_marenvres_2022_105592
crossref_primary_10_1111_cobi_14291
crossref_primary_10_2331_suisan_22_00054
crossref_primary_10_3755_jcrs_26_59
crossref_primary_10_3354_meps14730
crossref_primary_10_1017_pab_2024_20
crossref_primary_10_4236_ojms_2021_114012
crossref_primary_10_3389_fmars_2022_817021
crossref_primary_10_1111_jfb_14912
crossref_primary_10_1016_j_scitotenv_2020_138501
crossref_primary_10_1016_j_ocecoaman_2022_106042
crossref_primary_10_1007_s00338_023_02400_9
crossref_primary_10_1111_pre_12395
crossref_primary_10_1111_pre_12398
crossref_primary_10_1007_s00338_024_02487_8
crossref_primary_10_1007_s10811_019_01790_0
crossref_primary_10_1111_pre_12433
crossref_primary_10_1007_s00338_024_02471_2
crossref_primary_10_1007_s00338_021_02167_x
crossref_primary_10_1016_j_rsma_2020_101526
crossref_primary_10_1098_rstb_2022_0192
crossref_primary_10_2331_suisan_WA2867_3
crossref_primary_10_1098_rspb_2022_1744
crossref_primary_10_1111_gcb_16770
crossref_primary_10_1111_ddi_12980
crossref_primary_10_1016_j_rsma_2024_103755
crossref_primary_10_1016_j_scitotenv_2021_152423
crossref_primary_10_1038_s41598_022_24666_9
crossref_primary_10_1038_s43247_022_00577_5
crossref_primary_10_1007_s10641_021_01205_5
crossref_primary_10_1111_1440_1703_12053
crossref_primary_10_1111_mec_16665
crossref_primary_10_1002_cli2_66
crossref_primary_10_3354_meps13730
crossref_primary_10_1002_ece3_70561
crossref_primary_10_1007_s00227_022_04036_9
crossref_primary_10_6090_jarq_55_85
crossref_primary_10_1111_1440_1703_12212
crossref_primary_10_1111_2041_210X_13295
crossref_primary_10_1111_gcb_15749
crossref_primary_10_1139_cjfas_2020_0327
crossref_primary_10_1111_1365_2435_13310
crossref_primary_10_3390_d13120632
crossref_primary_10_1111_gcb_15346
crossref_primary_10_1016_j_zool_2021_125893
crossref_primary_10_2750_arp_42_75
crossref_primary_10_1016_j_marenvres_2023_106098
crossref_primary_10_4236_ojms_2024_144004
crossref_primary_10_1016_j_marenvres_2023_106013
crossref_primary_10_1098_rspb_2019_2046
crossref_primary_10_1111_faf_12488
crossref_primary_10_2139_ssrn_3869113
crossref_primary_10_1007_s10811_021_02425_z
crossref_primary_10_1111_ecog_06156
crossref_primary_10_1038_s41558_020_0894_x
crossref_primary_10_1016_j_scitotenv_2022_159513
crossref_primary_10_1111_gcb_14772
crossref_primary_10_1111_nph_16107
crossref_primary_10_1007_s00338_024_02564_y
crossref_primary_10_1111_ddi_13851
crossref_primary_10_1038_s41559_019_1037_5
crossref_primary_10_3390_plants10081522
crossref_primary_10_3390_jmse11030574
crossref_primary_10_1007_s00338_024_02601_w
crossref_primary_10_1016_j_tim_2023_07_015
crossref_primary_10_1007_s10872_020_00543_9
crossref_primary_10_1038_s43017_024_00527_z
crossref_primary_10_1111_pre_12508
crossref_primary_10_1088_2752_5295_ad9f90
crossref_primary_10_1038_s41467_023_37550_5
crossref_primary_10_1111_faf_12613
crossref_primary_10_1007_s11160_021_09678_4
crossref_primary_10_1002_ecs2_4938
crossref_primary_10_1111_ddi_13462
crossref_primary_10_1016_j_ecss_2025_109160
crossref_primary_10_1371_journal_pone_0309354
crossref_primary_10_1016_j_marchem_2020_103870
crossref_primary_10_1002_pan3_10727
crossref_primary_10_1146_annurev_marine_010419_010916
crossref_primary_10_2331_suisan_21_00023
crossref_primary_10_3390_plants13121689
crossref_primary_10_1111_1440_1703_12362
crossref_primary_10_1111_jbi_14744
crossref_primary_10_3390_rs15051276
crossref_primary_10_3354_meps14705
crossref_primary_10_1007_s13131_022_2130_1
crossref_primary_10_1111_1365_2435_14141
crossref_primary_10_3389_fbuil_2021_788700
crossref_primary_10_1111_1440_1703_12128
crossref_primary_10_1007_s10811_023_03096_8
crossref_primary_10_1016_j_ecolind_2024_111741
crossref_primary_10_1016_j_tree_2023_10_006
crossref_primary_10_1016_j_scitotenv_2020_140913
crossref_primary_10_1111_1365_2745_13329
crossref_primary_10_1016_j_ecss_2020_107144
crossref_primary_10_1016_j_tree_2019_07_003
crossref_primary_10_1007_s10228_024_00963_3
crossref_primary_10_1016_j_jcis_2022_09_002
crossref_primary_10_1016_j_ecolmodel_2022_110220
crossref_primary_10_1016_j_scitotenv_2023_163688
crossref_primary_10_3354_meps14715
crossref_primary_10_1111_1440_1703_12138
crossref_primary_10_1111_jbi_14058
crossref_primary_10_1111_1440_1703_12136
crossref_primary_10_1038_s41559_024_02336_5
crossref_primary_10_1111_jpy_13366
crossref_primary_10_3755_jcrs_23_1
crossref_primary_10_1111_ddi_13765
crossref_primary_10_1111_ddi_13484
crossref_primary_10_1016_j_marpolbul_2021_113238
crossref_primary_10_1016_j_marpol_2020_103954
crossref_primary_10_1209_0295_5075_ad89f6
crossref_primary_10_3389_fmars_2019_00763
crossref_primary_10_1016_j_ecolind_2024_111917
crossref_primary_10_1111_1365_2656_13739
crossref_primary_10_1016_j_marpol_2022_105090
crossref_primary_10_1111_jpy_13233
crossref_primary_10_1016_j_rsma_2022_102431
Cites_doi 10.1111/ele.12474
10.1016/j.gloenvcha.2014.03.009
10.5194/bg-9-4955-2012
10.1002/ece3.391
10.1111/ddi.12140
10.1007/BF00008211
10.1007/s00338-012-0893-0
10.1016/j.cub.2006.12.049
10.1111/j.2041-210x.2012.00261.x
10.1111/j.1600-0706.2012.00066.x
10.1098/rspb.2014.0846
10.3755/galaxea.13.11
10.18637/jss.v076.i13
10.1016/j.asr.2005.09.022
10.1890/09-0173.1
10.1073/pnas.1422301112
10.1038/s41598-017-01309-y
10.1029/2010GL046474
10.1023/A:1008929526011
10.3354/meps10262
10.1038/nature14140
10.1038/nclimate1958
10.5343/bms.2014.1032
10.1038/nature12976
10.1007/s00338-017-1586-5
10.1890/13-1445.1
10.1111/ele.12450
10.1007/s00338-012-0939-3
10.1007/s00227-005-0027-0
10.1007/978-94-017-7534-2_3
10.1126/science.1189930
10.3755/jcrs.11.39
10.1073/pnas.1610725113
10.2151/jmsj.2012-301
10.1371/journal.pone.0081107
10.1007/s11284-016-1404-5
10.1201/b16018
10.1515/botm.1998.41.1-6.113
10.2331/suisan.74.884
10.1126/science.aad8745
10.1073/pnas.091092998
10.1126/science.1085706
10.1016/j.tree.2009.04.011
10.1111/j.0919-9268.2004.00788.x
10.1038/nclimate1353
10.1086/303357
ContentType Journal Article
Copyright Volumes 1–89 and 106–115, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright National Academy of Sciences Sep 4, 2018
2018
Copyright_xml – notice: Volumes 1–89 and 106–115, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright National Academy of Sciences Sep 4, 2018
– notice: 2018
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1716826115
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts

MEDLINE - Academic
MEDLINE

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 8995
ExternalDocumentID PMC6130349
30126981
10_1073_pnas_1716826115
26531219
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c509t-dbc2a1670324c7c3b1c1bfc524a46827e5cea459bd016362fad856fe079e871d3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 14:05:11 EDT 2025
Fri Sep 05 08:09:04 EDT 2025
Mon Jun 30 08:12:36 EDT 2025
Thu Apr 03 07:03:06 EDT 2025
Thu Apr 24 22:53:18 EDT 2025
Tue Jul 01 03:19:53 EDT 2025
Fri May 30 11:17:11 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 36
Keywords community phase shifts
climate velocity
range shifts
global change
coastal tropicalization
Language English
License Published under the PNAS license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c509t-dbc2a1670324c7c3b1c1bfc524a46827e5cea459bd016362fad856fe079e871d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Author contributions: N.H.K. and J.G.M. designed research; N.H.K. performed research; N.H.K. and J.G.M. contributed new reagents/analytic tools; N.H.K. analyzed data; and N.H.K., J.G.M., H.Y., S.T., M.F., and Y.Y. wrote the paper.
Edited by Nancy Knowlton, Smithsonian Institution, Washington, DC, and approved July 16, 2018 (received for review September 26, 2017)
ORCID 0000-0003-1144-4339
0000-0001-7516-1835
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/6130349
PMID 30126981
PQID 2110460422
PQPubID 42026
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6130349
proquest_miscellaneous_2091235910
proquest_journals_2110460422
pubmed_primary_30126981
crossref_primary_10_1073_pnas_1716826115
crossref_citationtrail_10_1073_pnas_1716826115
jstor_primary_26531219
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-09-04
PublicationDateYYYYMMDD 2018-09-04
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-04
  day: 04
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2018
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_3_50_2
Mezaki T (e_1_3_3_13_2) 2012; 201
Thomson D (e_1_3_3_22_2) 2010; 93
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_40_2
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_25_2
e_1_3_3_1_2
e_1_3_3_44_2
Noda M (e_1_3_3_47_2) 2006
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
Kéry M (e_1_3_3_51_2) 2010
Yamaguchi A (e_1_3_3_46_2) 2010; 32
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_36_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_53_2
Rothäusler E (e_1_3_3_26_2) 2012
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_45_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_4_2
e_1_3_3_41_2
References_xml – ident: e_1_3_3_29_2
  doi: 10.1111/ele.12474
– ident: e_1_3_3_31_2
  doi: 10.1016/j.gloenvcha.2014.03.009
– ident: e_1_3_3_34_2
  doi: 10.5194/bg-9-4955-2012
– ident: e_1_3_3_32_2
  doi: 10.1002/ece3.391
– ident: e_1_3_3_17_2
  doi: 10.1111/ddi.12140
– ident: e_1_3_3_9_2
  doi: 10.1007/BF00008211
– ident: e_1_3_3_38_2
  doi: 10.1007/s00338-012-0893-0
– ident: e_1_3_3_10_2
  doi: 10.1016/j.cub.2006.12.049
– ident: e_1_3_3_52_2
  doi: 10.1111/j.2041-210x.2012.00261.x
– ident: e_1_3_3_24_2
  doi: 10.1111/j.1600-0706.2012.00066.x
– ident: e_1_3_3_27_2
  doi: 10.1098/rspb.2014.0846
– ident: e_1_3_3_42_2
  doi: 10.3755/galaxea.13.11
– ident: e_1_3_3_50_2
  doi: 10.18637/jss.v076.i13
– ident: e_1_3_3_44_2
  doi: 10.1016/j.asr.2005.09.022
– ident: e_1_3_3_41_2
  doi: 10.1890/09-0173.1
– volume: 93
  start-page: 81
  year: 2010
  ident: e_1_3_3_22_2
  article-title: Range extension of the hard coral Goniopora norfolkensis (Veron & Pichon 1982) to the south-east Indian Ocean
  publication-title: J R Soc West Aust
– start-page: 403
  volume-title: Seaweed Biology
  year: 2012
  ident: e_1_3_3_26_2
– ident: e_1_3_3_40_2
  doi: 10.1073/pnas.1422301112
– ident: e_1_3_3_25_2
  doi: 10.1038/s41598-017-01309-y
– ident: e_1_3_3_1_2
  doi: 10.1029/2010GL046474
– ident: e_1_3_3_53_2
  doi: 10.1023/A:1008929526011
– ident: e_1_3_3_48_2
  doi: 10.3354/meps10262
– volume-title: Introduction to WinBUGS for Ecologists: Bayesian Approach to Regression, ANOVA, Mixed Models and Related Analyses
  year: 2010
  ident: e_1_3_3_51_2
– ident: e_1_3_3_11_2
  doi: 10.1038/nature14140
– ident: e_1_3_3_2_2
  doi: 10.1038/nclimate1958
– ident: e_1_3_3_15_2
  doi: 10.5343/bms.2014.1032
– ident: e_1_3_3_30_2
  doi: 10.1038/nature12976
– ident: e_1_3_3_16_2
  doi: 10.1007/s00338-017-1586-5
– ident: e_1_3_3_35_2
  doi: 10.1890/13-1445.1
– ident: e_1_3_3_19_2
  doi: 10.1111/ele.12450
– ident: e_1_3_3_49_2
– volume: 32
  start-page: 89
  year: 2010
  ident: e_1_3_3_46_2
  article-title: Biological aspects of herbivorous fishes in the coastal areas of western Japan
  publication-title: Bull Fish Res Agen
– ident: e_1_3_3_14_2
  doi: 10.1007/s00338-012-0939-3
– ident: e_1_3_3_21_2
  doi: 10.1007/s00227-005-0027-0
– ident: e_1_3_3_3_2
  doi: 10.1007/978-94-017-7534-2_3
– ident: e_1_3_3_7_2
  doi: 10.1126/science.1189930
– volume: 201
  start-page: 332
  year: 2012
  ident: e_1_3_3_13_2
  article-title: Changes of hermatypic coral community in coastal sea area of Kochi, high-latitude, Japan
  publication-title: Aquabiology
– ident: e_1_3_3_39_2
  doi: 10.3755/jcrs.11.39
– ident: e_1_3_3_20_2
  doi: 10.1073/pnas.1610725113
– ident: e_1_3_3_43_2
  doi: 10.2151/jmsj.2012-301
– ident: e_1_3_3_37_2
  doi: 10.1371/journal.pone.0081107
– ident: e_1_3_3_45_2
  doi: 10.1007/s11284-016-1404-5
– ident: e_1_3_3_54_2
  doi: 10.1201/b16018
– ident: e_1_3_3_8_2
– ident: e_1_3_3_33_2
  doi: 10.1515/botm.1998.41.1-6.113
– ident: e_1_3_3_55_2
– ident: e_1_3_3_12_2
  doi: 10.2331/suisan.74.884
– ident: e_1_3_3_4_2
  doi: 10.1126/science.aad8745
– ident: e_1_3_3_5_2
  doi: 10.1073/pnas.091092998
– ident: e_1_3_3_6_2
  doi: 10.1126/science.1085706
– ident: e_1_3_3_36_2
  doi: 10.1016/j.tree.2009.04.011
– start-page: 114
  volume-title: Marine Herbivorous Fish—Ecology, Fishery and Utilization
  year: 2006
  ident: e_1_3_3_47_2
– ident: e_1_3_3_18_2
  doi: 10.1111/j.0919-9268.2004.00788.x
– ident: e_1_3_3_28_2
  doi: 10.1038/nclimate1353
– ident: e_1_3_3_23_2
  doi: 10.1086/303357
SSID ssj0009580
Score 2.599062
Snippet Coral and macroalgal communities are threatened by global stressors. However, recently reported community shifts from temperate macroalgae to tropical corals...
Global degradation of coral reefs and macroalgal beds can have ecosystem-wide implications for biodiversity, ecological functioning, and ocean resources....
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8990
SubjectTerms Algae
Animals
Anthozoa - physiology
Archipelagoes
Biological Sciences
Climate change
Climate effects
Climate models
Communities
Coral reefs
Corals
Deforestation
Dispersal
Ecosystem structure
Fishes - physiology
Global Warming
Herbivorous fish
Herbivory
Ocean currents
Ocean models
Ocean warming
Oceans and Seas
Physical Sciences
Prediction models
Seaweed - physiology
Seaweeds
Tropical fish
Title Ocean currents and herbivory drive macroalgae-to-coral community shift under climate warming
URI https://www.jstor.org/stable/26531219
https://www.ncbi.nlm.nih.gov/pubmed/30126981
https://www.proquest.com/docview/2110460422
https://www.proquest.com/docview/2091235910
https://pubmed.ncbi.nlm.nih.gov/PMC6130349
Volume 115
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKeOEFMWAQGMhIPAxVKU3i3B4n2KjQyCbRSkVCihzHaaNtCUpTEPwEfjXHl7jtFKTBS1Q5rhPl-3zOsX0uCL0Gm8NlQZTZGfW4TfIwtrMcJl7OnYjGEfeVV-WnJJjMyMe5Px8Mfm95La3bbMR-9caV_A-q0Aa4iijZf0DWDAoN8BvwhSsgDNdbYXzOxD46UymWVLJlgCArv4uD87wRTkHXFCStiNfgdlvbTMbjMxUUAub3alkWrSyF24gYSbBe-fAHFe4xi22r9cJouVXnU5B0m4jHm5AULSdWQ3t4kWwKHAsv7oWqep3Q-rLcxEN8gFkmT-rfUxAuYPDW-lSiWRi-faHXVJYHH07Kpv5ptMiUXlLZ_HlZVi1t6u39C0c6W6iKw1rkgsViB0QVDR3xnrZOTqu4T01Ib1vswqJx3KsPQICJIsYVXY1EXiBYS3Wj7GTeTs7T09nZWTo9mU_voLtuCHZYt_NjEjhHKrOFfrMuTVTovb0x_I6Fo5xc-5YvN71wt8ya6QN0X69H8LEi1z4a8Ooh2u-QxEc6LfmbR-irZBvu2IaBbdiwDUu24R62YcM2LNmGJduwZhvWbHuMZqcn03cTW9fmsBmYmK2dZ8ylTgD6wiUsZF7mMCcrmO8SSuA7hNyHdyJ-DBMfLP7ALWge-UHBx2HMYY2eewdor6or_hRhQsMiKorMKfwxIcKADsa5KBNAijhkxdhCo-57pkwnrhf1U65S6UAReqkAIN0AYKEj84dvKmfL37seSIBMPzcApQRa3EKHHWKpnvGrVGyWkEBkzbPQK3Mb5LE4ZKMVr9fQBwjiej5Y4RZ6ogA2g4MydYM4ciwU7kBvOohc77t3qnIpc76LZb5H4me3eO5zdG8zzw7RXtus-QuwnNvspaT0H3TmxyQ
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ocean+currents+and+herbivory+drive+macroalgae-to-coral+community+shift+under+climate+warming&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Kumagai%2C+Naoki+H&rft.au=Garc%C3%ADa+Molinos%2C+Jorge&rft.au=Yamano%2C+Hiroya&rft.au=Takao%2C+Shintaro&rft.date=2018-09-04&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=115&rft.issue=36&rft.spage=8990&rft_id=info:doi/10.1073%2Fpnas.1716826115&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon