Orexin-driven GAD65 network of the lateral hypothalamus sets physical activity in mice
Damage to the lateral hypothalamus (LH) causes profound physical inactivity in mammals. Several molecularly distinct types of LH neurons have been identified, including orexin cells and glutamic acid decarboxylase 65 (GAD65) cells, but their interplay in orchestrating physical activity is not fully...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 114; no. 17; pp. 4525 - 4530 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
25.04.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.1619700114 |
Cover
Abstract | Damage to the lateral hypothalamus (LH) causes profound physical inactivity in mammals. Several molecularly distinct types of LH neurons have been identified, including orexin cells and glutamic acid decarboxylase 65 (GAD65) cells, but their interplay in orchestrating physical activity is not fully understood. Here, using optogenetic circuit analysis and cell type-specific deep-brain recordings in behaving mice, we show that orexin cell activation rapidly recruits GAD65LH neurons. We demonstrate that internally initiated GAD65LH cell bursts precede and accompany spontaneous running bouts, that selective chemogenetic silencing of natural GAD65LH cell activity depresses voluntary locomotion, and that GAD65LH cell overactivation leads to hyperlocomotion. These results thus identify a molecularly distinct, orexin-activated LH submodule that governs physical activity in mice. |
---|---|
AbstractList | Damage to the lateral hypothalamus (LH) causes profound physical inactivity in mammals. Several molecularly distinct types of LH neurons have been identified, including orexin cells and glutamic acid decarboxylase 65 (GAD65) cells, but their interplay in orchestrating physical activity is not fully understood. Here, using optogenetic circuit analysis and cell type-specific deep-brain recordings in behaving mice, we show that orexin cell activation rapidly recruits GAD65LH neurons. We demonstrate that internally initiated GAD65LH cell bursts precede and accompany spontaneous running bouts, that selective chemogenetic silencing of natural GAD65LH cell activity depresses voluntary locomotion, and that GAD65LH cell overactivation leads to hyperlocomotion. These results thus identify a molecularly distinct, orexin-activated LH submodule that governs physical activity in mice.Damage to the lateral hypothalamus (LH) causes profound physical inactivity in mammals. Several molecularly distinct types of LH neurons have been identified, including orexin cells and glutamic acid decarboxylase 65 (GAD65) cells, but their interplay in orchestrating physical activity is not fully understood. Here, using optogenetic circuit analysis and cell type-specific deep-brain recordings in behaving mice, we show that orexin cell activation rapidly recruits GAD65LH neurons. We demonstrate that internally initiated GAD65LH cell bursts precede and accompany spontaneous running bouts, that selective chemogenetic silencing of natural GAD65LH cell activity depresses voluntary locomotion, and that GAD65LH cell overactivation leads to hyperlocomotion. These results thus identify a molecularly distinct, orexin-activated LH submodule that governs physical activity in mice. A century ago, it was noted that damage to the lateral hypothalamic (LH) brain area caused people to be motionless most of the time. Therefore, it is thought that this brain area emits essential signals for promoting physical activity. However, it remained a mystery what these signals are. Using newly developed genetic and deep-brain recording methods, we found that, unexpectedly, a critical signal for movement comes from a subset of LH cells that are molecularly distinct from neurons previously implicated in locomotion control. These movement-promoting cells were switched on by the local peptide orexin, a key signal of stress and hunger. These findings shed new light on deep-brain signals that maintain healthy levels of physical activity. Damage to the lateral hypothalamus (LH) causes profound physical inactivity in mammals. Several molecularly distinct types of LH neurons have been identified, including orexin cells and glutamic acid decarboxylase 65 (GAD65) cells, but their interplay in orchestrating physical activity is not fully understood. Here, using optogenetic circuit analysis and cell type-specific deep-brain recordings in behaving mice, we show that orexin cell activation rapidly recruits GAD65 LH neurons. We demonstrate that internally initiated GAD65 LH cell bursts precede and accompany spontaneous running bouts, that selective chemogenetic silencing of natural GAD65 LH cell activity depresses voluntary locomotion, and that GAD65 LH cell overactivation leads to hyperlocomotion. These results thus identify a molecularly distinct, orexin-activated LH submodule that governs physical activity in mice. Damage to the lateral hypothalamus (LH) causes profound physical inactivity in mammals. Several molecularly distinct types of LH neurons have been identified, including orexin cells and glutamic acid decarboxylase 65 (GAD65) cells, but their interplay in orchestrating physical activity is not fully understood. Here, using optogenetic circuit analysis and cell type-specific deep-brain recordings in behaving mice, we show that orexin cell activation rapidly recruits GAD65 neurons. We demonstrate that internally initiated GAD65 cell bursts precede and accompany spontaneous running bouts, that selective chemogenetic silencing of natural GAD65 cell activity depresses voluntary locomotion, and that GAD65 cell overactivation leads to hyperlocomotion. These results thus identify a molecularly distinct, orexin-activated LH submodule that governs physical activity in mice. Damage to the lateral hypothalamus (LH) causes profound physical inactivity in mammals. Several molecularly distinct types of LH neurons have been identified, including orexin cells and glutamic acid decarboxylase 65 (GAD65) cells, but their interplay in orchestrating physical activity is not fully understood. Here, using optogenetic circuit analysis and cell type-specific deep-brain recordings in behaving mice, we show that orexin cell activation rapidly recruits GAD65LH neurons. We demonstrate that internally initiated GAD65LH cell bursts precede and accompany spontaneous running bouts, that selective chemogenetic silencing of natural GAD65LH cell activity depresses voluntary locomotion, and that GAD65LH cell overactivation leads to hyperlocomotion. These results thus identify a molecularly distinct, orexin-activated LH submodule that governs physical activity in mice. Damage to the lateral hypothalamus (LH) causes profound physical inactivity in mammals. Several molecularly distinct types of LH neurons have been identified, including orexin cells and glutamic acid decarboxylase 65 (GAD65) cells, but their interplay in orchestrating physical activity is not fully understood. Here, using optogenetic circuit analysis and cell type-specific deep-brain recordings in behaving mice, we show that orexin cell activation rapidly recruits GAD65^sub LH^ neurons. We demonstrate that internally initiated GAD65^sub LH^ cell bursts precede and accompany spontaneous running bouts, that selective chemogenetic silencing of natural GAD65LH cell activity depresses voluntary locomotion, and that GAD65^sub LH^ cell overactivation leads to hyperlocomotion. These results thus identify a molecularly distinct, orexin-activated LH submodule that governs physical activity in mice. |
Author | Bracey, Edward Burdakov, Denis Schöne, Cornelia Kosse, Christin |
Author_xml | – sequence: 1 givenname: Christin surname: Kosse fullname: Kosse, Christin organization: The Francis Crick Institute, London NW1 1AT, United Kingdom – sequence: 2 givenname: Cornelia surname: Schöne fullname: Schöne, Cornelia organization: Centre for Experimental Neurology, Inselspital University Hospital, Bern 3010, Switzerland – sequence: 3 givenname: Edward surname: Bracey fullname: Bracey, Edward organization: The Francis Crick Institute, London NW1 1AT, United Kingdom – sequence: 4 givenname: Denis surname: Burdakov fullname: Burdakov, Denis organization: The Francis Crick Institute, London NW1 1AT, United Kingdom |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28396414$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUFv1DAQhS1URLctZ04gS71wSTuOndi5IFUFClKlXkqvluM4xEtiB9tZ2H-PV1ta6KEnS57vjd68d4QOnHcGoTcEzghwej47Fc9ITRoOQAh7gVYEGlLUrIEDtAIoeSFYyQ7RUYxrAGgqAa_QYSloUzPCVujuJpjf1hVdsBvj8NXFx7rCzqRfPvzAvsdpMHhUyQQ14mE7-zSoUU1LxNGkiOdhG63OI6WT3di0xdbhyWpzgl72aozm9f17jL59_nR7-aW4vrn6enlxXegKmlR0ogKmaduWpC-bWndlD53qFM9_oBWhQrG25aAJ1bzvS9Yq0bOeEqYE53VHj9GH_d55aSfTaeNSdirnYCcVttIrK_-fODvI734jK5bzE01e8P5-QfA_FxOTnGzUZhyVM36JkghR84owWmX09Am69ktw-TxJGihztrwkmXr3r6MHK38jz8D5HtDBxxhM_4AQkLtS5a5U-VhqVlRPFNomlazfnWTHZ3Rv97p1TD48OqmZAM4p_QNncLES |
CitedBy_id | crossref_primary_10_1007_s11906_018_0879_6 crossref_primary_10_1016_j_tins_2021_09_003 crossref_primary_10_1038_ijo_2017_276 crossref_primary_10_1038_s41467_023_37044_4 crossref_primary_10_3389_fnmol_2023_1140672 crossref_primary_10_3389_fcvm_2022_1016369 crossref_primary_10_1038_s41583_018_0097_x crossref_primary_10_3389_fpsyt_2022_1052233 crossref_primary_10_1038_s42255_023_00877_w crossref_primary_10_3389_fnins_2021_644313 crossref_primary_10_2478_rrlm_2019_0033 crossref_primary_10_1093_function_zqad059 crossref_primary_10_1371_journal_pbio_3001383 crossref_primary_10_1210_en_2018_00747 crossref_primary_10_1523_ENEURO_0012_18_2018 crossref_primary_10_1016_j_physbeh_2020_112952 crossref_primary_10_2147_NDT_S358373 crossref_primary_10_1073_pnas_2101580118 crossref_primary_10_1016_j_cophys_2020_04_001 crossref_primary_10_1016_j_neuropharm_2018_11_017 crossref_primary_10_1093_sleep_zsac242 crossref_primary_10_1016_j_isci_2024_109972 crossref_primary_10_1113_JP280158 crossref_primary_10_1038_s41380_020_0810_9 crossref_primary_10_1016_j_neubiorev_2023_105475 crossref_primary_10_1038_s41467_020_17401_3 crossref_primary_10_1016_j_tics_2024_01_003 crossref_primary_10_1038_s41467_019_10450_3 crossref_primary_10_1111_jne_13259 crossref_primary_10_3389_fnins_2019_00702 crossref_primary_10_1016_j_neuropharm_2018_09_034 crossref_primary_10_1016_j_cub_2020_07_061 crossref_primary_10_1016_j_nlm_2022_107657 crossref_primary_10_1016_j_cophys_2018_12_005 crossref_primary_10_1038_s41467_019_10484_7 crossref_primary_10_1073_pnas_2013411118 crossref_primary_10_1016_j_metabol_2018_04_005 crossref_primary_10_1016_j_brs_2020_04_006 crossref_primary_10_1038_s41593_019_0349_8 crossref_primary_10_1073_pnas_2316150121 crossref_primary_10_1016_j_brainres_2018_09_011 crossref_primary_10_1113_JP284602 crossref_primary_10_7554_eLife_36494 crossref_primary_10_1038_s12276_022_00741_z crossref_primary_10_1210_en_2018_00449 crossref_primary_10_3389_fnins_2017_00581 crossref_primary_10_1097_MED_0000000000000427 crossref_primary_10_3389_fnins_2021_639313 crossref_primary_10_1016_j_neuroscience_2021_11_032 crossref_primary_10_1016_j_peptides_2021_170713 crossref_primary_10_1111_jne_13433 crossref_primary_10_1016_j_neuropharm_2018_10_024 crossref_primary_10_1038_s41467_024_46430_5 crossref_primary_10_1021_acsomega_9b03106 crossref_primary_10_1038_s41593_024_01696_2 crossref_primary_10_1523_ENEURO_0228_18_2018 crossref_primary_10_1016_j_ibror_2018_05_001 crossref_primary_10_1016_j_physbeh_2020_112988 crossref_primary_10_1111_ejn_16151 crossref_primary_10_1126_science_abh3021 crossref_primary_10_1007_s13679_017_0288_1 crossref_primary_10_1038_s41593_018_0288_9 |
Cites_doi | 10.1073/pnas.0702676104 10.1016/j.neuron.2005.04.035 10.1016/j.cub.2016.07.013 10.1523/JNEUROSCI.21-18-07273.2001 10.1146/annurev-neuro-071013-014048 10.1016/j.neuron.2011.07.026 10.1016/j.neuron.2011.05.028 10.1038/nature12354 10.3181/00379727-77-18766 10.1016/S0896-6273(03)00331-3 10.1097/00005053-193003000-00001 10.1172/JCI46229 10.1523/JNEUROSCI.3249-08.2009 10.1038/sj.bjp.0703953 10.1016/S0166-2236(00)02002-6 10.1016/j.cmet.2009.06.011 10.1523/JNEUROSCI.1954-08.2008 10.1038/nature06310 10.1016/S0896-6273(01)00293-8 10.1523/JNEUROSCI.0706-12.2012 10.1210/en.2011-1307 10.1016/j.cell.2015.01.033 10.1016/j.cell.2014.05.017 10.1073/pnas.0700293104 10.1016/j.celrep.2014.03.055 10.1016/S0092-8674(00)80949-6 10.1016/S0306-4522(01)00167-1 10.1038/nrn808 10.1038/nn.4462 10.1073/pnas.96.19.10911 10.1038/nature11846 10.1523/JNEUROSCI.18-23-09996.1998 10.1038/nature04284 10.1038/nn.4209 10.1016/j.cell.2014.12.026 10.1016/j.cell.2015.01.003 10.1073/pnas.95.1.322 10.1371/journal.pone.0162839 10.1523/JNEUROSCI.3921-12.2013 10.1073/pnas.72.7.2819 10.1038/nn.2467 10.1038/npp.2015.304 10.1113/jphysiol.2012.243493 10.1038/nn.4220 10.1016/j.neuron.2011.08.027 10.1002/cne.23127 10.1016/S0896-6273(00)81084-3 10.1038/ncomms11395 10.1038/nrn2092 10.1210/en.2010-1143 |
ContentType | Journal Article |
Copyright | Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles Copyright National Academy of Sciences Apr 25, 2017 |
Copyright_xml | – notice: Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles – notice: Copyright National Academy of Sciences Apr 25, 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.1619700114 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Hypothalamic circuit driving voluntary movement |
EISSN | 1091-6490 |
EndPage | 4530 |
ExternalDocumentID | PMC5410789 28396414 10_1073_pnas_1619700114 26480773 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GrantInformation_xml | – fundername: Wellcome Trust – fundername: Cancer Research UK – fundername: Medical Research Council |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c509t-d8504c3bb21f296cd2f0dada7c3b0ca138a4bb70c13c7ff24ba8f4f314a8776d3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 14:06:50 EDT 2025 Thu Sep 04 18:05:17 EDT 2025 Mon Jun 30 08:20:47 EDT 2025 Thu Apr 03 07:01:32 EDT 2025 Tue Jul 01 03:19:33 EDT 2025 Thu Apr 24 22:51:45 EDT 2025 Fri May 30 11:46:34 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Keywords | hypocretin stress orexin GAD65 hypothalamus locomotion |
Language | English |
License | Freely available online through the PNAS open access option. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c509t-d8504c3bb21f296cd2f0dada7c3b0ca138a4bb70c13c7ff24ba8f4f314a8776d3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Author contributions: C.K. and D.B. designed research; C.K., C.S., and E.B. performed research; C.K. and D.B. analyzed data; and D.B. wrote the paper. Edited by Joseph S. Takahashi, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, and approved March 23, 2017 (received for review November 30, 2016) |
OpenAccessLink | http://www.pnas.org/lookup/doi/10.1073/pnas.1619700114 |
PMID | 28396414 |
PQID | 1902095721 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5410789 proquest_miscellaneous_1886751435 proquest_journals_1902095721 pubmed_primary_28396414 crossref_primary_10_1073_pnas_1619700114 crossref_citationtrail_10_1073_pnas_1619700114 jstor_primary_26480773 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-04-25 |
PublicationDateYYYYMMDD | 2017-04-25 |
PublicationDate_xml | – month: 04 year: 2017 text: 2017-04-25 day: 25 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2017 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_3_50_2 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_33_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_40_2 e_1_3_3_5_2 e_1_3_3_7_2 Sacks O (e_1_3_3_4_2) 1973 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_51_2 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_32_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_22_2 e_1_3_3_41_2 27991900 - Nat Neurosci. 2017 Feb;20(2):176-188 20023653 - Nat Neurosci. 2010 Jan;13(1):133-40 27102565 - Nat Commun. 2016 Apr 22;7:11395 11250867 - Br J Pharmacol. 2001 Mar;132(6):1179-82 11394998 - Neuron. 2001 May;30(2):345-54 22956835 - J Neurosci. 2012 Sep 5;32(36):12437-43 23184514 - J Physiol. 2013 Feb 15;591(4):933-53 17943086 - Nature. 2007 Nov 15;450(7168):420-4 12797956 - Neuron. 2003 Jun 5;38(5):701-13 27546579 - Curr Biol. 2016 Sep 26;26(18):2486-91 15924864 - Neuron. 2005 Jun 2;46(5):787-98 26691833 - Nat Neurosci. 2016 Feb;19(2):290-8 10485925 - Proc Natl Acad Sci U S A. 1999 Sep 14;96(19):10911-6 22522889 - J Comp Neurol. 2012 Dec 1;520(17):3863-76 17299454 - Nat Rev Neurosci. 2007 Mar;8(3):171-81 17563364 - Proc Natl Acad Sci U S A. 2007 Jun 19;104(25):10685-90 27611685 - PLoS One. 2016 Sep 09;11(9):e0162839 11718878 - Trends Neurosci. 2001 Dec;24(12):726-31 16251950 - Nature. 2005 Oct 27;437(7063):1257-63 11549737 - J Neurosci. 2001 Sep 15;21(18):7273-83 9491897 - Cell. 1998 Feb 20;92(4):573-85 26814589 - Nat Neurosci. 2016 Feb;19(2):198-205 11483306 - Neuroscience. 2001;105(1):121-30 24767990 - Cell Rep. 2014 May 8;7(3):697-704 25635460 - Cell. 2015 Jan 29;160(3):528-41 10069329 - Neuron. 1999 Feb;22(2):221-32 25703096 - Cell. 2015 Feb 26;160(5):829-41 23354054 - Nature. 2013 Feb 14;494(7436):238-42 18614669 - J Neurosci. 2008 Jul 9;28(28):7025-30 1101268 - Proc Natl Acad Sci U S A. 1975 Jul;72(7):2819-23 21914773 - Endocrinology. 2011 Nov;152(11):4046-52 14854036 - Proc Soc Exp Biol Med. 1951 Jun;77(2):323-4 9822755 - J Neurosci. 1998 Dec 1;18(23):9996-10015 21209012 - Endocrinology. 2011 Mar;152(3):979-88 24949967 - Cell. 2014 Jun 19;157(7):1535-51 23868258 - Nature. 2013 Jul 18;499(7458):295-300 19357287 - J Neurosci. 2009 Apr 8;29(14):4622-39 21745644 - Neuron. 2011 Jul 14;71(1):142-54 22099463 - Neuron. 2011 Nov 17;72(4):616-29 26442599 - Neuropsychopharmacology. 2016 May;41(6):1505-12 25002280 - Annu Rev Neurosci. 2014;37:387-407 21364278 - J Clin Invest. 2011 Apr;121(4):1424-8 23365238 - J Neurosci. 2013 Jan 30;33(5):2009-16 11988773 - Nat Rev Neurosci. 2002 May;3(5):339-49 17360345 - Proc Natl Acad Sci U S A. 2007 Mar 20;104(12):5163-8 21943598 - Neuron. 2011 Sep 22;71(6):995-1013 19656487 - Cell Metab. 2009 Aug;10(2):89-98 9419374 - Proc Natl Acad Sci U S A. 1998 Jan 6;95(1):322-7 25635459 - Cell. 2015 Jan 29;160(3):516-27 |
References_xml | – ident: e_1_3_3_11_2 doi: 10.1073/pnas.0702676104 – ident: e_1_3_3_10_2 doi: 10.1016/j.neuron.2005.04.035 – ident: e_1_3_3_12_2 doi: 10.1016/j.cub.2016.07.013 – ident: e_1_3_3_19_2 doi: 10.1523/JNEUROSCI.21-18-07273.2001 – ident: e_1_3_3_27_2 doi: 10.1146/annurev-neuro-071013-014048 – ident: e_1_3_3_43_2 doi: 10.1016/j.neuron.2011.07.026 – ident: e_1_3_3_45_2 doi: 10.1016/j.neuron.2011.05.028 – ident: e_1_3_3_23_2 doi: 10.1038/nature12354 – ident: e_1_3_3_17_2 doi: 10.3181/00379727-77-18766 – ident: e_1_3_3_3_2 doi: 10.1016/S0896-6273(03)00331-3 – ident: e_1_3_3_6_2 doi: 10.1097/00005053-193003000-00001 – ident: e_1_3_3_41_2 doi: 10.1172/JCI46229 – ident: e_1_3_3_44_2 doi: 10.1523/JNEUROSCI.3249-08.2009 – ident: e_1_3_3_47_2 doi: 10.1038/sj.bjp.0703953 – ident: e_1_3_3_1_2 doi: 10.1016/S0166-2236(00)02002-6 – ident: e_1_3_3_33_2 doi: 10.1016/j.cmet.2009.06.011 – ident: e_1_3_3_42_2 doi: 10.1523/JNEUROSCI.1954-08.2008 – ident: e_1_3_3_48_2 doi: 10.1038/nature06310 – ident: e_1_3_3_2_2 doi: 10.1016/S0896-6273(01)00293-8 – ident: e_1_3_3_22_2 doi: 10.1523/JNEUROSCI.0706-12.2012 – ident: e_1_3_3_34_2 doi: 10.1210/en.2011-1307 – ident: e_1_3_3_26_2 doi: 10.1016/j.cell.2015.01.033 – ident: e_1_3_3_25_2 doi: 10.1016/j.cell.2014.05.017 – ident: e_1_3_3_40_2 doi: 10.1073/pnas.0700293104 – ident: e_1_3_3_50_2 doi: 10.1016/j.celrep.2014.03.055 – ident: e_1_3_3_9_2 doi: 10.1016/S0092-8674(00)80949-6 – ident: e_1_3_3_28_2 doi: 10.1016/S0306-4522(01)00167-1 – ident: e_1_3_3_14_2 doi: 10.1038/nrn808 – ident: e_1_3_3_31_2 doi: 10.1038/nn.4462 – ident: e_1_3_3_16_2 doi: 10.1073/pnas.96.19.10911 – ident: e_1_3_3_24_2 doi: 10.1038/nature11846 – ident: e_1_3_3_15_2 doi: 10.1523/JNEUROSCI.18-23-09996.1998 – ident: e_1_3_3_30_2 doi: 10.1038/nature04284 – ident: e_1_3_3_38_2 doi: 10.1038/nn.4209 – ident: e_1_3_3_36_2 doi: 10.1016/j.cell.2014.12.026 – ident: e_1_3_3_37_2 doi: 10.1016/j.cell.2015.01.003 – ident: e_1_3_3_8_2 doi: 10.1073/pnas.95.1.322 – ident: e_1_3_3_32_2 doi: 10.1371/journal.pone.0162839 – ident: e_1_3_3_20_2 doi: 10.1523/JNEUROSCI.3921-12.2013 – ident: e_1_3_3_5_2 doi: 10.1073/pnas.72.7.2819 – ident: e_1_3_3_46_2 doi: 10.1038/nn.2467 – ident: e_1_3_3_39_2 doi: 10.1038/npp.2015.304 – ident: e_1_3_3_21_2 doi: 10.1113/jphysiol.2012.243493 – volume-title: Awakenings year: 1973 ident: e_1_3_3_4_2 – ident: e_1_3_3_7_2 doi: 10.1038/nn.4220 – ident: e_1_3_3_49_2 doi: 10.1016/j.neuron.2011.08.027 – ident: e_1_3_3_35_2 doi: 10.1002/cne.23127 – ident: e_1_3_3_29_2 doi: 10.1016/S0896-6273(00)81084-3 – ident: e_1_3_3_13_2 doi: 10.1038/ncomms11395 – ident: e_1_3_3_18_2 doi: 10.1038/nrn2092 – ident: e_1_3_3_51_2 doi: 10.1210/en.2010-1143 – reference: 27611685 - PLoS One. 2016 Sep 09;11(9):e0162839 – reference: 24949967 - Cell. 2014 Jun 19;157(7):1535-51 – reference: 10485925 - Proc Natl Acad Sci U S A. 1999 Sep 14;96(19):10911-6 – reference: 23354054 - Nature. 2013 Feb 14;494(7436):238-42 – reference: 11988773 - Nat Rev Neurosci. 2002 May;3(5):339-49 – reference: 23365238 - J Neurosci. 2013 Jan 30;33(5):2009-16 – reference: 23184514 - J Physiol. 2013 Feb 15;591(4):933-53 – reference: 9491897 - Cell. 1998 Feb 20;92(4):573-85 – reference: 21914773 - Endocrinology. 2011 Nov;152(11):4046-52 – reference: 14854036 - Proc Soc Exp Biol Med. 1951 Jun;77(2):323-4 – reference: 1101268 - Proc Natl Acad Sci U S A. 1975 Jul;72(7):2819-23 – reference: 25703096 - Cell. 2015 Feb 26;160(5):829-41 – reference: 17360345 - Proc Natl Acad Sci U S A. 2007 Mar 20;104(12):5163-8 – reference: 27102565 - Nat Commun. 2016 Apr 22;7:11395 – reference: 21364278 - J Clin Invest. 2011 Apr;121(4):1424-8 – reference: 22522889 - J Comp Neurol. 2012 Dec 1;520(17):3863-76 – reference: 10069329 - Neuron. 1999 Feb;22(2):221-32 – reference: 11718878 - Trends Neurosci. 2001 Dec;24(12):726-31 – reference: 20023653 - Nat Neurosci. 2010 Jan;13(1):133-40 – reference: 21209012 - Endocrinology. 2011 Mar;152(3):979-88 – reference: 25002280 - Annu Rev Neurosci. 2014;37:387-407 – reference: 16251950 - Nature. 2005 Oct 27;437(7063):1257-63 – reference: 11250867 - Br J Pharmacol. 2001 Mar;132(6):1179-82 – reference: 15924864 - Neuron. 2005 Jun 2;46(5):787-98 – reference: 26691833 - Nat Neurosci. 2016 Feb;19(2):290-8 – reference: 19656487 - Cell Metab. 2009 Aug;10(2):89-98 – reference: 11394998 - Neuron. 2001 May;30(2):345-54 – reference: 25635460 - Cell. 2015 Jan 29;160(3):528-41 – reference: 11483306 - Neuroscience. 2001;105(1):121-30 – reference: 22099463 - Neuron. 2011 Nov 17;72(4):616-29 – reference: 24767990 - Cell Rep. 2014 May 8;7(3):697-704 – reference: 9419374 - Proc Natl Acad Sci U S A. 1998 Jan 6;95(1):322-7 – reference: 22956835 - J Neurosci. 2012 Sep 5;32(36):12437-43 – reference: 26442599 - Neuropsychopharmacology. 2016 May;41(6):1505-12 – reference: 21745644 - Neuron. 2011 Jul 14;71(1):142-54 – reference: 26814589 - Nat Neurosci. 2016 Feb;19(2):198-205 – reference: 12797956 - Neuron. 2003 Jun 5;38(5):701-13 – reference: 27991900 - Nat Neurosci. 2017 Feb;20(2):176-188 – reference: 17299454 - Nat Rev Neurosci. 2007 Mar;8(3):171-81 – reference: 9822755 - J Neurosci. 1998 Dec 1;18(23):9996-10015 – reference: 17563364 - Proc Natl Acad Sci U S A. 2007 Jun 19;104(25):10685-90 – reference: 27546579 - Curr Biol. 2016 Sep 26;26(18):2486-91 – reference: 23868258 - Nature. 2013 Jul 18;499(7458):295-300 – reference: 17943086 - Nature. 2007 Nov 15;450(7168):420-4 – reference: 21943598 - Neuron. 2011 Sep 22;71(6):995-1013 – reference: 25635459 - Cell. 2015 Jan 29;160(3):516-27 – reference: 11549737 - J Neurosci. 2001 Sep 15;21(18):7273-83 – reference: 19357287 - J Neurosci. 2009 Apr 8;29(14):4622-39 – reference: 18614669 - J Neurosci. 2008 Jul 9;28(28):7025-30 |
SSID | ssj0009580 |
Score | 2.4842763 |
Snippet | Damage to the lateral hypothalamus (LH) causes profound physical inactivity in mammals. Several molecularly distinct types of LH neurons have been identified,... A century ago, it was noted that damage to the lateral hypothalamic (LH) brain area caused people to be motionless most of the time. Therefore, it is thought... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4525 |
SubjectTerms | Animals Biological Sciences Brain Bursts Cell activation Cells Electrocardiography Exercise Gene Transfer Techniques Glutamate decarboxylase Glutamate Decarboxylase - genetics Glutamate Decarboxylase - metabolism Glutamic acid Hypothalamic Area, Lateral - physiology Hypothalamus Hypothalamus (lateral) Locomotion Luteinizing hormone Male Mice Motor Activity - physiology Neurons Orexins Orexins - physiology Physical activity Rodents |
Title | Orexin-driven GAD65 network of the lateral hypothalamus sets physical activity in mice |
URI | https://www.jstor.org/stable/26480773 https://www.ncbi.nlm.nih.gov/pubmed/28396414 https://www.proquest.com/docview/1902095721 https://www.proquest.com/docview/1886751435 https://pubmed.ncbi.nlm.nih.gov/PMC5410789 |
Volume | 114 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbKeOEFMWBQGMhIPAxFKfnhxM5jGRsTjG4SLepbZDuJGq2kU9Mi4IG_nXNsJ-1UpMFLVDmOXeX7cr47--4Qes1pAXpGKF2RRdQlUjCXRSxx45glhUoR5zdVSz6P4rMJ-TiNpr3e783okpUYyF8740r-B1VoA1xVlOw_INsOCg3wG_CFKyAM11thfLHMf5SVmy2VyHI-DN_HkVPpc91273_OVYjx3Jn9vAZMOOC_rp06X9XGp6FSBUhTQaKsnG_mKJzVVy_b9a22I46s-3DYBaMYCVE7rnM56kobf4IVOO9SGJQtEb_Imdqhfxdrf-rxYlnl83LDN8CldqXrmtJt-3qZ8avFdy0odU6U1mcB66BHXB3fbMQsaCluTHSh0EG-o83KZh1haklIN0St2pDduQaA0FKFiyteD0CdTWgTL9wtd3aLf3SRnk7Oz9PxyXR8B90NKOhe1tvTJm1mOpuF-Wc2NRQN394Yfkur0Qdbd5ksN0_ebqgy4wfovrFB8FATah_18uoh2rcY4iOTivzNI_R1i2G4YRg2DMOLAgMfsGEY3mQYVgzDlmHYMgyXFVYMe4wmpyfj4zPXVOJwJSiUKzdjkUdkKETgF0ESyywovIxnnEKbJ7kfMk6EoJ70Q0mLIiCCs4IUoU84ozTOwgO0Vy2q_CnChRAyDDzOc1-SIpYi87hkoVfIMOGgq_bRwL7JVJo09apayjxtjkvQMFWvPu1efR8dtQ9c6wwtf-960EDT9lPHOz1KYdJDi1Vqvm94LgFTKolo4PfRq_Y2SF-1pcarfLGGPoyBxa1sjj56oqHtBgfbIyZqVroFettBZXbfvlOVsybDe0R8VQbi2S3mfY7udV_YIdpbLdf5C9CTV-JlQ-Y_C8PABg |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Orexin-driven+GAD65+network+of+the+lateral+hypothalamus+sets+physical+activity+in+mice&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Kosse%2C+Christin&rft.au=Sch%C3%B6ne%2C+Cornelia&rft.au=Bracey%2C+Edward&rft.au=Burdakov%2C+Denis&rft.date=2017-04-25&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=114&rft.issue=17&rft.spage=4525&rft_id=info:doi/10.1073%2Fpnas.1619700114&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |