Orexin-driven GAD65 network of the lateral hypothalamus sets physical activity in mice

Damage to the lateral hypothalamus (LH) causes profound physical inactivity in mammals. Several molecularly distinct types of LH neurons have been identified, including orexin cells and glutamic acid decarboxylase 65 (GAD65) cells, but their interplay in orchestrating physical activity is not fully...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 114; no. 17; pp. 4525 - 4530
Main Authors Kosse, Christin, Schöne, Cornelia, Bracey, Edward, Burdakov, Denis
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 25.04.2017
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.1619700114

Cover

Abstract Damage to the lateral hypothalamus (LH) causes profound physical inactivity in mammals. Several molecularly distinct types of LH neurons have been identified, including orexin cells and glutamic acid decarboxylase 65 (GAD65) cells, but their interplay in orchestrating physical activity is not fully understood. Here, using optogenetic circuit analysis and cell type-specific deep-brain recordings in behaving mice, we show that orexin cell activation rapidly recruits GAD65LH neurons. We demonstrate that internally initiated GAD65LH cell bursts precede and accompany spontaneous running bouts, that selective chemogenetic silencing of natural GAD65LH cell activity depresses voluntary locomotion, and that GAD65LH cell overactivation leads to hyperlocomotion. These results thus identify a molecularly distinct, orexin-activated LH submodule that governs physical activity in mice.
AbstractList Damage to the lateral hypothalamus (LH) causes profound physical inactivity in mammals. Several molecularly distinct types of LH neurons have been identified, including orexin cells and glutamic acid decarboxylase 65 (GAD65) cells, but their interplay in orchestrating physical activity is not fully understood. Here, using optogenetic circuit analysis and cell type-specific deep-brain recordings in behaving mice, we show that orexin cell activation rapidly recruits GAD65LH neurons. We demonstrate that internally initiated GAD65LH cell bursts precede and accompany spontaneous running bouts, that selective chemogenetic silencing of natural GAD65LH cell activity depresses voluntary locomotion, and that GAD65LH cell overactivation leads to hyperlocomotion. These results thus identify a molecularly distinct, orexin-activated LH submodule that governs physical activity in mice.Damage to the lateral hypothalamus (LH) causes profound physical inactivity in mammals. Several molecularly distinct types of LH neurons have been identified, including orexin cells and glutamic acid decarboxylase 65 (GAD65) cells, but their interplay in orchestrating physical activity is not fully understood. Here, using optogenetic circuit analysis and cell type-specific deep-brain recordings in behaving mice, we show that orexin cell activation rapidly recruits GAD65LH neurons. We demonstrate that internally initiated GAD65LH cell bursts precede and accompany spontaneous running bouts, that selective chemogenetic silencing of natural GAD65LH cell activity depresses voluntary locomotion, and that GAD65LH cell overactivation leads to hyperlocomotion. These results thus identify a molecularly distinct, orexin-activated LH submodule that governs physical activity in mice.
A century ago, it was noted that damage to the lateral hypothalamic (LH) brain area caused people to be motionless most of the time. Therefore, it is thought that this brain area emits essential signals for promoting physical activity. However, it remained a mystery what these signals are. Using newly developed genetic and deep-brain recording methods, we found that, unexpectedly, a critical signal for movement comes from a subset of LH cells that are molecularly distinct from neurons previously implicated in locomotion control. These movement-promoting cells were switched on by the local peptide orexin, a key signal of stress and hunger. These findings shed new light on deep-brain signals that maintain healthy levels of physical activity. Damage to the lateral hypothalamus (LH) causes profound physical inactivity in mammals. Several molecularly distinct types of LH neurons have been identified, including orexin cells and glutamic acid decarboxylase 65 (GAD65) cells, but their interplay in orchestrating physical activity is not fully understood. Here, using optogenetic circuit analysis and cell type-specific deep-brain recordings in behaving mice, we show that orexin cell activation rapidly recruits GAD65 LH neurons. We demonstrate that internally initiated GAD65 LH cell bursts precede and accompany spontaneous running bouts, that selective chemogenetic silencing of natural GAD65 LH cell activity depresses voluntary locomotion, and that GAD65 LH cell overactivation leads to hyperlocomotion. These results thus identify a molecularly distinct, orexin-activated LH submodule that governs physical activity in mice.
Damage to the lateral hypothalamus (LH) causes profound physical inactivity in mammals. Several molecularly distinct types of LH neurons have been identified, including orexin cells and glutamic acid decarboxylase 65 (GAD65) cells, but their interplay in orchestrating physical activity is not fully understood. Here, using optogenetic circuit analysis and cell type-specific deep-brain recordings in behaving mice, we show that orexin cell activation rapidly recruits GAD65 neurons. We demonstrate that internally initiated GAD65 cell bursts precede and accompany spontaneous running bouts, that selective chemogenetic silencing of natural GAD65 cell activity depresses voluntary locomotion, and that GAD65 cell overactivation leads to hyperlocomotion. These results thus identify a molecularly distinct, orexin-activated LH submodule that governs physical activity in mice.
Damage to the lateral hypothalamus (LH) causes profound physical inactivity in mammals. Several molecularly distinct types of LH neurons have been identified, including orexin cells and glutamic acid decarboxylase 65 (GAD65) cells, but their interplay in orchestrating physical activity is not fully understood. Here, using optogenetic circuit analysis and cell type-specific deep-brain recordings in behaving mice, we show that orexin cell activation rapidly recruits GAD65LH neurons. We demonstrate that internally initiated GAD65LH cell bursts precede and accompany spontaneous running bouts, that selective chemogenetic silencing of natural GAD65LH cell activity depresses voluntary locomotion, and that GAD65LH cell overactivation leads to hyperlocomotion. These results thus identify a molecularly distinct, orexin-activated LH submodule that governs physical activity in mice.
Damage to the lateral hypothalamus (LH) causes profound physical inactivity in mammals. Several molecularly distinct types of LH neurons have been identified, including orexin cells and glutamic acid decarboxylase 65 (GAD65) cells, but their interplay in orchestrating physical activity is not fully understood. Here, using optogenetic circuit analysis and cell type-specific deep-brain recordings in behaving mice, we show that orexin cell activation rapidly recruits GAD65^sub LH^ neurons. We demonstrate that internally initiated GAD65^sub LH^ cell bursts precede and accompany spontaneous running bouts, that selective chemogenetic silencing of natural GAD65LH cell activity depresses voluntary locomotion, and that GAD65^sub LH^ cell overactivation leads to hyperlocomotion. These results thus identify a molecularly distinct, orexin-activated LH submodule that governs physical activity in mice.
Author Bracey, Edward
Burdakov, Denis
Schöne, Cornelia
Kosse, Christin
Author_xml – sequence: 1
  givenname: Christin
  surname: Kosse
  fullname: Kosse, Christin
  organization: The Francis Crick Institute, London NW1 1AT, United Kingdom
– sequence: 2
  givenname: Cornelia
  surname: Schöne
  fullname: Schöne, Cornelia
  organization: Centre for Experimental Neurology, Inselspital University Hospital, Bern 3010, Switzerland
– sequence: 3
  givenname: Edward
  surname: Bracey
  fullname: Bracey, Edward
  organization: The Francis Crick Institute, London NW1 1AT, United Kingdom
– sequence: 4
  givenname: Denis
  surname: Burdakov
  fullname: Burdakov, Denis
  organization: The Francis Crick Institute, London NW1 1AT, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28396414$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFv1DAQhS1URLctZ04gS71wSTuOndi5IFUFClKlXkqvluM4xEtiB9tZ2H-PV1ta6KEnS57vjd68d4QOnHcGoTcEzghwej47Fc9ITRoOQAh7gVYEGlLUrIEDtAIoeSFYyQ7RUYxrAGgqAa_QYSloUzPCVujuJpjf1hVdsBvj8NXFx7rCzqRfPvzAvsdpMHhUyQQ14mE7-zSoUU1LxNGkiOdhG63OI6WT3di0xdbhyWpzgl72aozm9f17jL59_nR7-aW4vrn6enlxXegKmlR0ogKmaduWpC-bWndlD53qFM9_oBWhQrG25aAJ1bzvS9Yq0bOeEqYE53VHj9GH_d55aSfTaeNSdirnYCcVttIrK_-fODvI734jK5bzE01e8P5-QfA_FxOTnGzUZhyVM36JkghR84owWmX09Am69ktw-TxJGihztrwkmXr3r6MHK38jz8D5HtDBxxhM_4AQkLtS5a5U-VhqVlRPFNomlazfnWTHZ3Rv97p1TD48OqmZAM4p_QNncLES
CitedBy_id crossref_primary_10_1007_s11906_018_0879_6
crossref_primary_10_1016_j_tins_2021_09_003
crossref_primary_10_1038_ijo_2017_276
crossref_primary_10_1038_s41467_023_37044_4
crossref_primary_10_3389_fnmol_2023_1140672
crossref_primary_10_3389_fcvm_2022_1016369
crossref_primary_10_1038_s41583_018_0097_x
crossref_primary_10_3389_fpsyt_2022_1052233
crossref_primary_10_1038_s42255_023_00877_w
crossref_primary_10_3389_fnins_2021_644313
crossref_primary_10_2478_rrlm_2019_0033
crossref_primary_10_1093_function_zqad059
crossref_primary_10_1371_journal_pbio_3001383
crossref_primary_10_1210_en_2018_00747
crossref_primary_10_1523_ENEURO_0012_18_2018
crossref_primary_10_1016_j_physbeh_2020_112952
crossref_primary_10_2147_NDT_S358373
crossref_primary_10_1073_pnas_2101580118
crossref_primary_10_1016_j_cophys_2020_04_001
crossref_primary_10_1016_j_neuropharm_2018_11_017
crossref_primary_10_1093_sleep_zsac242
crossref_primary_10_1016_j_isci_2024_109972
crossref_primary_10_1113_JP280158
crossref_primary_10_1038_s41380_020_0810_9
crossref_primary_10_1016_j_neubiorev_2023_105475
crossref_primary_10_1038_s41467_020_17401_3
crossref_primary_10_1016_j_tics_2024_01_003
crossref_primary_10_1038_s41467_019_10450_3
crossref_primary_10_1111_jne_13259
crossref_primary_10_3389_fnins_2019_00702
crossref_primary_10_1016_j_neuropharm_2018_09_034
crossref_primary_10_1016_j_cub_2020_07_061
crossref_primary_10_1016_j_nlm_2022_107657
crossref_primary_10_1016_j_cophys_2018_12_005
crossref_primary_10_1038_s41467_019_10484_7
crossref_primary_10_1073_pnas_2013411118
crossref_primary_10_1016_j_metabol_2018_04_005
crossref_primary_10_1016_j_brs_2020_04_006
crossref_primary_10_1038_s41593_019_0349_8
crossref_primary_10_1073_pnas_2316150121
crossref_primary_10_1016_j_brainres_2018_09_011
crossref_primary_10_1113_JP284602
crossref_primary_10_7554_eLife_36494
crossref_primary_10_1038_s12276_022_00741_z
crossref_primary_10_1210_en_2018_00449
crossref_primary_10_3389_fnins_2017_00581
crossref_primary_10_1097_MED_0000000000000427
crossref_primary_10_3389_fnins_2021_639313
crossref_primary_10_1016_j_neuroscience_2021_11_032
crossref_primary_10_1016_j_peptides_2021_170713
crossref_primary_10_1111_jne_13433
crossref_primary_10_1016_j_neuropharm_2018_10_024
crossref_primary_10_1038_s41467_024_46430_5
crossref_primary_10_1021_acsomega_9b03106
crossref_primary_10_1038_s41593_024_01696_2
crossref_primary_10_1523_ENEURO_0228_18_2018
crossref_primary_10_1016_j_ibror_2018_05_001
crossref_primary_10_1016_j_physbeh_2020_112988
crossref_primary_10_1111_ejn_16151
crossref_primary_10_1126_science_abh3021
crossref_primary_10_1007_s13679_017_0288_1
crossref_primary_10_1038_s41593_018_0288_9
Cites_doi 10.1073/pnas.0702676104
10.1016/j.neuron.2005.04.035
10.1016/j.cub.2016.07.013
10.1523/JNEUROSCI.21-18-07273.2001
10.1146/annurev-neuro-071013-014048
10.1016/j.neuron.2011.07.026
10.1016/j.neuron.2011.05.028
10.1038/nature12354
10.3181/00379727-77-18766
10.1016/S0896-6273(03)00331-3
10.1097/00005053-193003000-00001
10.1172/JCI46229
10.1523/JNEUROSCI.3249-08.2009
10.1038/sj.bjp.0703953
10.1016/S0166-2236(00)02002-6
10.1016/j.cmet.2009.06.011
10.1523/JNEUROSCI.1954-08.2008
10.1038/nature06310
10.1016/S0896-6273(01)00293-8
10.1523/JNEUROSCI.0706-12.2012
10.1210/en.2011-1307
10.1016/j.cell.2015.01.033
10.1016/j.cell.2014.05.017
10.1073/pnas.0700293104
10.1016/j.celrep.2014.03.055
10.1016/S0092-8674(00)80949-6
10.1016/S0306-4522(01)00167-1
10.1038/nrn808
10.1038/nn.4462
10.1073/pnas.96.19.10911
10.1038/nature11846
10.1523/JNEUROSCI.18-23-09996.1998
10.1038/nature04284
10.1038/nn.4209
10.1016/j.cell.2014.12.026
10.1016/j.cell.2015.01.003
10.1073/pnas.95.1.322
10.1371/journal.pone.0162839
10.1523/JNEUROSCI.3921-12.2013
10.1073/pnas.72.7.2819
10.1038/nn.2467
10.1038/npp.2015.304
10.1113/jphysiol.2012.243493
10.1038/nn.4220
10.1016/j.neuron.2011.08.027
10.1002/cne.23127
10.1016/S0896-6273(00)81084-3
10.1038/ncomms11395
10.1038/nrn2092
10.1210/en.2010-1143
ContentType Journal Article
Copyright Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright National Academy of Sciences Apr 25, 2017
Copyright_xml – notice: Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright National Academy of Sciences Apr 25, 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1619700114
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

MEDLINE

Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Hypothalamic circuit driving voluntary movement
EISSN 1091-6490
EndPage 4530
ExternalDocumentID PMC5410789
28396414
10_1073_pnas_1619700114
26480773
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GrantInformation_xml – fundername: Wellcome Trust
– fundername: Cancer Research UK
– fundername: Medical Research Council
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c509t-d8504c3bb21f296cd2f0dada7c3b0ca138a4bb70c13c7ff24ba8f4f314a8776d3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 14:06:50 EDT 2025
Thu Sep 04 18:05:17 EDT 2025
Mon Jun 30 08:20:47 EDT 2025
Thu Apr 03 07:01:32 EDT 2025
Tue Jul 01 03:19:33 EDT 2025
Thu Apr 24 22:51:45 EDT 2025
Fri May 30 11:46:34 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords hypocretin
stress
orexin
GAD65
hypothalamus
locomotion
Language English
License Freely available online through the PNAS open access option.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c509t-d8504c3bb21f296cd2f0dada7c3b0ca138a4bb70c13c7ff24ba8f4f314a8776d3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Author contributions: C.K. and D.B. designed research; C.K., C.S., and E.B. performed research; C.K. and D.B. analyzed data; and D.B. wrote the paper.
Edited by Joseph S. Takahashi, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, and approved March 23, 2017 (received for review November 30, 2016)
OpenAccessLink http://www.pnas.org/lookup/doi/10.1073/pnas.1619700114
PMID 28396414
PQID 1902095721
PQPubID 42026
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5410789
proquest_miscellaneous_1886751435
proquest_journals_1902095721
pubmed_primary_28396414
crossref_primary_10_1073_pnas_1619700114
crossref_citationtrail_10_1073_pnas_1619700114
jstor_primary_26480773
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-04-25
PublicationDateYYYYMMDD 2017-04-25
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-25
  day: 25
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2017
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_3_50_2
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_33_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_40_2
e_1_3_3_5_2
e_1_3_3_7_2
Sacks O (e_1_3_3_4_2) 1973
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_51_2
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_32_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_22_2
e_1_3_3_41_2
27991900 - Nat Neurosci. 2017 Feb;20(2):176-188
20023653 - Nat Neurosci. 2010 Jan;13(1):133-40
27102565 - Nat Commun. 2016 Apr 22;7:11395
11250867 - Br J Pharmacol. 2001 Mar;132(6):1179-82
11394998 - Neuron. 2001 May;30(2):345-54
22956835 - J Neurosci. 2012 Sep 5;32(36):12437-43
23184514 - J Physiol. 2013 Feb 15;591(4):933-53
17943086 - Nature. 2007 Nov 15;450(7168):420-4
12797956 - Neuron. 2003 Jun 5;38(5):701-13
27546579 - Curr Biol. 2016 Sep 26;26(18):2486-91
15924864 - Neuron. 2005 Jun 2;46(5):787-98
26691833 - Nat Neurosci. 2016 Feb;19(2):290-8
10485925 - Proc Natl Acad Sci U S A. 1999 Sep 14;96(19):10911-6
22522889 - J Comp Neurol. 2012 Dec 1;520(17):3863-76
17299454 - Nat Rev Neurosci. 2007 Mar;8(3):171-81
17563364 - Proc Natl Acad Sci U S A. 2007 Jun 19;104(25):10685-90
27611685 - PLoS One. 2016 Sep 09;11(9):e0162839
11718878 - Trends Neurosci. 2001 Dec;24(12):726-31
16251950 - Nature. 2005 Oct 27;437(7063):1257-63
11549737 - J Neurosci. 2001 Sep 15;21(18):7273-83
9491897 - Cell. 1998 Feb 20;92(4):573-85
26814589 - Nat Neurosci. 2016 Feb;19(2):198-205
11483306 - Neuroscience. 2001;105(1):121-30
24767990 - Cell Rep. 2014 May 8;7(3):697-704
25635460 - Cell. 2015 Jan 29;160(3):528-41
10069329 - Neuron. 1999 Feb;22(2):221-32
25703096 - Cell. 2015 Feb 26;160(5):829-41
23354054 - Nature. 2013 Feb 14;494(7436):238-42
18614669 - J Neurosci. 2008 Jul 9;28(28):7025-30
1101268 - Proc Natl Acad Sci U S A. 1975 Jul;72(7):2819-23
21914773 - Endocrinology. 2011 Nov;152(11):4046-52
14854036 - Proc Soc Exp Biol Med. 1951 Jun;77(2):323-4
9822755 - J Neurosci. 1998 Dec 1;18(23):9996-10015
21209012 - Endocrinology. 2011 Mar;152(3):979-88
24949967 - Cell. 2014 Jun 19;157(7):1535-51
23868258 - Nature. 2013 Jul 18;499(7458):295-300
19357287 - J Neurosci. 2009 Apr 8;29(14):4622-39
21745644 - Neuron. 2011 Jul 14;71(1):142-54
22099463 - Neuron. 2011 Nov 17;72(4):616-29
26442599 - Neuropsychopharmacology. 2016 May;41(6):1505-12
25002280 - Annu Rev Neurosci. 2014;37:387-407
21364278 - J Clin Invest. 2011 Apr;121(4):1424-8
23365238 - J Neurosci. 2013 Jan 30;33(5):2009-16
11988773 - Nat Rev Neurosci. 2002 May;3(5):339-49
17360345 - Proc Natl Acad Sci U S A. 2007 Mar 20;104(12):5163-8
21943598 - Neuron. 2011 Sep 22;71(6):995-1013
19656487 - Cell Metab. 2009 Aug;10(2):89-98
9419374 - Proc Natl Acad Sci U S A. 1998 Jan 6;95(1):322-7
25635459 - Cell. 2015 Jan 29;160(3):516-27
References_xml – ident: e_1_3_3_11_2
  doi: 10.1073/pnas.0702676104
– ident: e_1_3_3_10_2
  doi: 10.1016/j.neuron.2005.04.035
– ident: e_1_3_3_12_2
  doi: 10.1016/j.cub.2016.07.013
– ident: e_1_3_3_19_2
  doi: 10.1523/JNEUROSCI.21-18-07273.2001
– ident: e_1_3_3_27_2
  doi: 10.1146/annurev-neuro-071013-014048
– ident: e_1_3_3_43_2
  doi: 10.1016/j.neuron.2011.07.026
– ident: e_1_3_3_45_2
  doi: 10.1016/j.neuron.2011.05.028
– ident: e_1_3_3_23_2
  doi: 10.1038/nature12354
– ident: e_1_3_3_17_2
  doi: 10.3181/00379727-77-18766
– ident: e_1_3_3_3_2
  doi: 10.1016/S0896-6273(03)00331-3
– ident: e_1_3_3_6_2
  doi: 10.1097/00005053-193003000-00001
– ident: e_1_3_3_41_2
  doi: 10.1172/JCI46229
– ident: e_1_3_3_44_2
  doi: 10.1523/JNEUROSCI.3249-08.2009
– ident: e_1_3_3_47_2
  doi: 10.1038/sj.bjp.0703953
– ident: e_1_3_3_1_2
  doi: 10.1016/S0166-2236(00)02002-6
– ident: e_1_3_3_33_2
  doi: 10.1016/j.cmet.2009.06.011
– ident: e_1_3_3_42_2
  doi: 10.1523/JNEUROSCI.1954-08.2008
– ident: e_1_3_3_48_2
  doi: 10.1038/nature06310
– ident: e_1_3_3_2_2
  doi: 10.1016/S0896-6273(01)00293-8
– ident: e_1_3_3_22_2
  doi: 10.1523/JNEUROSCI.0706-12.2012
– ident: e_1_3_3_34_2
  doi: 10.1210/en.2011-1307
– ident: e_1_3_3_26_2
  doi: 10.1016/j.cell.2015.01.033
– ident: e_1_3_3_25_2
  doi: 10.1016/j.cell.2014.05.017
– ident: e_1_3_3_40_2
  doi: 10.1073/pnas.0700293104
– ident: e_1_3_3_50_2
  doi: 10.1016/j.celrep.2014.03.055
– ident: e_1_3_3_9_2
  doi: 10.1016/S0092-8674(00)80949-6
– ident: e_1_3_3_28_2
  doi: 10.1016/S0306-4522(01)00167-1
– ident: e_1_3_3_14_2
  doi: 10.1038/nrn808
– ident: e_1_3_3_31_2
  doi: 10.1038/nn.4462
– ident: e_1_3_3_16_2
  doi: 10.1073/pnas.96.19.10911
– ident: e_1_3_3_24_2
  doi: 10.1038/nature11846
– ident: e_1_3_3_15_2
  doi: 10.1523/JNEUROSCI.18-23-09996.1998
– ident: e_1_3_3_30_2
  doi: 10.1038/nature04284
– ident: e_1_3_3_38_2
  doi: 10.1038/nn.4209
– ident: e_1_3_3_36_2
  doi: 10.1016/j.cell.2014.12.026
– ident: e_1_3_3_37_2
  doi: 10.1016/j.cell.2015.01.003
– ident: e_1_3_3_8_2
  doi: 10.1073/pnas.95.1.322
– ident: e_1_3_3_32_2
  doi: 10.1371/journal.pone.0162839
– ident: e_1_3_3_20_2
  doi: 10.1523/JNEUROSCI.3921-12.2013
– ident: e_1_3_3_5_2
  doi: 10.1073/pnas.72.7.2819
– ident: e_1_3_3_46_2
  doi: 10.1038/nn.2467
– ident: e_1_3_3_39_2
  doi: 10.1038/npp.2015.304
– ident: e_1_3_3_21_2
  doi: 10.1113/jphysiol.2012.243493
– volume-title: Awakenings
  year: 1973
  ident: e_1_3_3_4_2
– ident: e_1_3_3_7_2
  doi: 10.1038/nn.4220
– ident: e_1_3_3_49_2
  doi: 10.1016/j.neuron.2011.08.027
– ident: e_1_3_3_35_2
  doi: 10.1002/cne.23127
– ident: e_1_3_3_29_2
  doi: 10.1016/S0896-6273(00)81084-3
– ident: e_1_3_3_13_2
  doi: 10.1038/ncomms11395
– ident: e_1_3_3_18_2
  doi: 10.1038/nrn2092
– ident: e_1_3_3_51_2
  doi: 10.1210/en.2010-1143
– reference: 27611685 - PLoS One. 2016 Sep 09;11(9):e0162839
– reference: 24949967 - Cell. 2014 Jun 19;157(7):1535-51
– reference: 10485925 - Proc Natl Acad Sci U S A. 1999 Sep 14;96(19):10911-6
– reference: 23354054 - Nature. 2013 Feb 14;494(7436):238-42
– reference: 11988773 - Nat Rev Neurosci. 2002 May;3(5):339-49
– reference: 23365238 - J Neurosci. 2013 Jan 30;33(5):2009-16
– reference: 23184514 - J Physiol. 2013 Feb 15;591(4):933-53
– reference: 9491897 - Cell. 1998 Feb 20;92(4):573-85
– reference: 21914773 - Endocrinology. 2011 Nov;152(11):4046-52
– reference: 14854036 - Proc Soc Exp Biol Med. 1951 Jun;77(2):323-4
– reference: 1101268 - Proc Natl Acad Sci U S A. 1975 Jul;72(7):2819-23
– reference: 25703096 - Cell. 2015 Feb 26;160(5):829-41
– reference: 17360345 - Proc Natl Acad Sci U S A. 2007 Mar 20;104(12):5163-8
– reference: 27102565 - Nat Commun. 2016 Apr 22;7:11395
– reference: 21364278 - J Clin Invest. 2011 Apr;121(4):1424-8
– reference: 22522889 - J Comp Neurol. 2012 Dec 1;520(17):3863-76
– reference: 10069329 - Neuron. 1999 Feb;22(2):221-32
– reference: 11718878 - Trends Neurosci. 2001 Dec;24(12):726-31
– reference: 20023653 - Nat Neurosci. 2010 Jan;13(1):133-40
– reference: 21209012 - Endocrinology. 2011 Mar;152(3):979-88
– reference: 25002280 - Annu Rev Neurosci. 2014;37:387-407
– reference: 16251950 - Nature. 2005 Oct 27;437(7063):1257-63
– reference: 11250867 - Br J Pharmacol. 2001 Mar;132(6):1179-82
– reference: 15924864 - Neuron. 2005 Jun 2;46(5):787-98
– reference: 26691833 - Nat Neurosci. 2016 Feb;19(2):290-8
– reference: 19656487 - Cell Metab. 2009 Aug;10(2):89-98
– reference: 11394998 - Neuron. 2001 May;30(2):345-54
– reference: 25635460 - Cell. 2015 Jan 29;160(3):528-41
– reference: 11483306 - Neuroscience. 2001;105(1):121-30
– reference: 22099463 - Neuron. 2011 Nov 17;72(4):616-29
– reference: 24767990 - Cell Rep. 2014 May 8;7(3):697-704
– reference: 9419374 - Proc Natl Acad Sci U S A. 1998 Jan 6;95(1):322-7
– reference: 22956835 - J Neurosci. 2012 Sep 5;32(36):12437-43
– reference: 26442599 - Neuropsychopharmacology. 2016 May;41(6):1505-12
– reference: 21745644 - Neuron. 2011 Jul 14;71(1):142-54
– reference: 26814589 - Nat Neurosci. 2016 Feb;19(2):198-205
– reference: 12797956 - Neuron. 2003 Jun 5;38(5):701-13
– reference: 27991900 - Nat Neurosci. 2017 Feb;20(2):176-188
– reference: 17299454 - Nat Rev Neurosci. 2007 Mar;8(3):171-81
– reference: 9822755 - J Neurosci. 1998 Dec 1;18(23):9996-10015
– reference: 17563364 - Proc Natl Acad Sci U S A. 2007 Jun 19;104(25):10685-90
– reference: 27546579 - Curr Biol. 2016 Sep 26;26(18):2486-91
– reference: 23868258 - Nature. 2013 Jul 18;499(7458):295-300
– reference: 17943086 - Nature. 2007 Nov 15;450(7168):420-4
– reference: 21943598 - Neuron. 2011 Sep 22;71(6):995-1013
– reference: 25635459 - Cell. 2015 Jan 29;160(3):516-27
– reference: 11549737 - J Neurosci. 2001 Sep 15;21(18):7273-83
– reference: 19357287 - J Neurosci. 2009 Apr 8;29(14):4622-39
– reference: 18614669 - J Neurosci. 2008 Jul 9;28(28):7025-30
SSID ssj0009580
Score 2.4842763
Snippet Damage to the lateral hypothalamus (LH) causes profound physical inactivity in mammals. Several molecularly distinct types of LH neurons have been identified,...
A century ago, it was noted that damage to the lateral hypothalamic (LH) brain area caused people to be motionless most of the time. Therefore, it is thought...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4525
SubjectTerms Animals
Biological Sciences
Brain
Bursts
Cell activation
Cells
Electrocardiography
Exercise
Gene Transfer Techniques
Glutamate decarboxylase
Glutamate Decarboxylase - genetics
Glutamate Decarboxylase - metabolism
Glutamic acid
Hypothalamic Area, Lateral - physiology
Hypothalamus
Hypothalamus (lateral)
Locomotion
Luteinizing hormone
Male
Mice
Motor Activity - physiology
Neurons
Orexins
Orexins - physiology
Physical activity
Rodents
Title Orexin-driven GAD65 network of the lateral hypothalamus sets physical activity in mice
URI https://www.jstor.org/stable/26480773
https://www.ncbi.nlm.nih.gov/pubmed/28396414
https://www.proquest.com/docview/1902095721
https://www.proquest.com/docview/1886751435
https://pubmed.ncbi.nlm.nih.gov/PMC5410789
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbKeOEFMWBQGMhIPAxFKfnhxM5jGRsTjG4SLepbZDuJGq2kU9Mi4IG_nXNsJ-1UpMFLVDmOXeX7cr47--4Qes1pAXpGKF2RRdQlUjCXRSxx45glhUoR5zdVSz6P4rMJ-TiNpr3e783okpUYyF8740r-B1VoA1xVlOw_INsOCg3wG_CFKyAM11thfLHMf5SVmy2VyHI-DN_HkVPpc91273_OVYjx3Jn9vAZMOOC_rp06X9XGp6FSBUhTQaKsnG_mKJzVVy_b9a22I46s-3DYBaMYCVE7rnM56kobf4IVOO9SGJQtEb_Imdqhfxdrf-rxYlnl83LDN8CldqXrmtJt-3qZ8avFdy0odU6U1mcB66BHXB3fbMQsaCluTHSh0EG-o83KZh1haklIN0St2pDduQaA0FKFiyteD0CdTWgTL9wtd3aLf3SRnk7Oz9PxyXR8B90NKOhe1tvTJm1mOpuF-Wc2NRQN394Yfkur0Qdbd5ksN0_ebqgy4wfovrFB8FATah_18uoh2rcY4iOTivzNI_R1i2G4YRg2DMOLAgMfsGEY3mQYVgzDlmHYMgyXFVYMe4wmpyfj4zPXVOJwJSiUKzdjkUdkKETgF0ESyywovIxnnEKbJ7kfMk6EoJ70Q0mLIiCCs4IUoU84ozTOwgO0Vy2q_CnChRAyDDzOc1-SIpYi87hkoVfIMOGgq_bRwL7JVJo09apayjxtjkvQMFWvPu1efR8dtQ9c6wwtf-960EDT9lPHOz1KYdJDi1Vqvm94LgFTKolo4PfRq_Y2SF-1pcarfLGGPoyBxa1sjj56oqHtBgfbIyZqVroFettBZXbfvlOVsybDe0R8VQbi2S3mfY7udV_YIdpbLdf5C9CTV-JlQ-Y_C8PABg
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Orexin-driven+GAD65+network+of+the+lateral+hypothalamus+sets+physical+activity+in+mice&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Kosse%2C+Christin&rft.au=Sch%C3%B6ne%2C+Cornelia&rft.au=Bracey%2C+Edward&rft.au=Burdakov%2C+Denis&rft.date=2017-04-25&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=114&rft.issue=17&rft.spage=4525&rft_id=info:doi/10.1073%2Fpnas.1619700114&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon