Topological and Functional Characterization of the ssSPTs, Small Activating Subunits of Serine Palmitoyltransferase

The topological and functional organization of the two isoforms of the small subunits of human serine palmitoyltransferase (hssSPTs) that activate the catalytic hLCB1/hLCB2 heterodimer was investigated. A variety of experimental approaches placed the N termini of the ssSPTs in the cytosol, their C t...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 288; no. 14; pp. 10144 - 10153
Main Authors Harmon, Jeffrey M., Bacikova, Dagmar, Gable, Kenneth, Gupta, Sita D., Han, Gongshe, Sengupta, Nivedita, Somashekarappa, Niranjanakumari, Dunn, Teresa M.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 05.04.2013
American Society for Biochemistry and Molecular Biology
Subjects
Online AccessGet full text
ISSN0021-9258
1083-351X
1083-351X
DOI10.1074/jbc.M113.451526

Cover

Abstract The topological and functional organization of the two isoforms of the small subunits of human serine palmitoyltransferase (hssSPTs) that activate the catalytic hLCB1/hLCB2 heterodimer was investigated. A variety of experimental approaches placed the N termini of the ssSPTs in the cytosol, their C termini in the lumen, and showed that they contain a single transmembrane domain. Deletion analysis revealed that the ability to activate the heterodimer is contained in a conserved 33-amino acid core domain that has the same membrane topology as the full-length protein. In combination with analysis of isoform chimera and site-directed mutagenesis, a single amino acid residue in this core (Met25 in ssSPTa and Val25 in ssSPTb) was identified which confers specificity for palmitoyl- or stearoyl-CoA, respectively, in both yeast and mammalian cells. This same residue also determines which isoform is a better activator of a mutant heterodimer, hLCB1S331F/hLCB2a, which has increased basal SPT activity and decreased amino acid substrate selectivity. This suggests that the role of the ssSPTs is to increase SPT activity without compromising substrate specificity. In addition, the observation that the C-terminal domains of ssSPTa and ssSPTb, which are highly conserved within each subfamily but are the most divergent regions between isoform subfamilies, are not required for activation of the heterodimer or for acyl-CoA selectivity suggests that the ssSPTs have additional roles that remain to be discovered. Background: The ssSPTs activate serine palmitoyltransferase and specify its acyl-CoA selectivity. Results: Both properties are contained within a 33-amino acid core that spans the membrane. Conclusion: A single amino acid difference between ssSPTa and ssSPTb is responsible for the acyl-CoA preference of heterotrimers containing each isoform. Significance: The ssSPTs are critical regulatory components of the rate-limiting enzyme in sphingolipid biosynthesis.
AbstractList The topological and functional organization of the two isoforms of the small subunits of human serine palmitoyltransferase (hssSPTs) that activate the catalytic hLCB1/hLCB2 heterodimer was investigated. A variety of experimental approaches placed the N termini of the ssSPTs in the cytosol, their C termini in the lumen, and showed that they contain a single transmembrane domain. Deletion analysis revealed that the ability to activate the heterodimer is contained in a conserved 33-amino acid core domain that has the same membrane topology as the full-length protein. In combination with analysis of isoform chimera and site-directed mutagenesis, a single amino acid residue in this core (Met25 in ssSPTa and Val25 in ssSPTb) was identified which confers specificity for palmitoyl- or stearoyl-CoA, respectively, in both yeast and mammalian cells. This same residue also determines which isoform is a better activator of a mutant heterodimer, hLCB1S331F/hLCB2a, which has increased basal SPT activity and decreased amino acid substrate selectivity. This suggests that the role of the ssSPTs is to increase SPT activity without compromising substrate specificity. In addition, the observation that the C-terminal domains of ssSPTa and ssSPTb, which are highly conserved within each subfamily but are the most divergent regions between isoform subfamilies, are not required for activation of the heterodimer or for acyl-CoA selectivity suggests that the ssSPTs have additional roles that remain to be discovered. Background: The ssSPTs activate serine palmitoyltransferase and specify its acyl-CoA selectivity. Results: Both properties are contained within a 33-amino acid core that spans the membrane. Conclusion: A single amino acid difference between ssSPTa and ssSPTb is responsible for the acyl-CoA preference of heterotrimers containing each isoform. Significance: The ssSPTs are critical regulatory components of the rate-limiting enzyme in sphingolipid biosynthesis.
Background: The ssSPTs activate serine palmitoyltransferase and specify its acyl-CoA selectivity. Results: Both properties are contained within a 33-amino acid core that spans the membrane. Conclusion: A single amino acid difference between ssSPTa and ssSPTb is responsible for the acyl-CoA preference of heterotrimers containing each isoform. Significance: The ssSPTs are critical regulatory components of the rate-limiting enzyme in sphingolipid biosynthesis. The topological and functional organization of the two isoforms of the small subunits of human serine palmitoyltransferase (hssSPTs) that activate the catalytic hLCB1/hLCB2 heterodimer was investigated. A variety of experimental approaches placed the N termini of the ssSPTs in the cytosol, their C termini in the lumen, and showed that they contain a single transmembrane domain. Deletion analysis revealed that the ability to activate the heterodimer is contained in a conserved 33-amino acid core domain that has the same membrane topology as the full-length protein. In combination with analysis of isoform chimera and site-directed mutagenesis, a single amino acid residue in this core (Met 25 in ssSPTa and Val 25 in ssSPTb) was identified which confers specificity for palmitoyl- or stearoyl-CoA, respectively, in both yeast and mammalian cells. This same residue also determines which isoform is a better activator of a mutant heterodimer, hLCB1 S331F /hLCB2a, which has increased basal SPT activity and decreased amino acid substrate selectivity. This suggests that the role of the ssSPTs is to increase SPT activity without compromising substrate specificity. In addition, the observation that the C-terminal domains of ssSPTa and ssSPTb, which are highly conserved within each subfamily but are the most divergent regions between isoform subfamilies, are not required for activation of the heterodimer or for acyl-CoA selectivity suggests that the ssSPTs have additional roles that remain to be discovered.
The topological and functional organization of the two isoforms of the small subunits of human serine palmitoyltransferase (hssSPTs) that activate the catalytic hLCB1/hLCB2 heterodimer was investigated. A variety of experimental approaches placed the N termini of the ssSPTs in the cytosol, their C termini in the lumen, and showed that they contain a single transmembrane domain. Deletion analysis revealed that the ability to activate the heterodimer is contained in a conserved 33-amino acid core domain that has the same membrane topology as the full-length protein. In combination with analysis of isoform chimera and site-directed mutagenesis, a single amino acid residue in this core (Met(25) in ssSPTa and Val(25) in ssSPTb) was identified which confers specificity for palmitoyl- or stearoyl-CoA, respectively, in both yeast and mammalian cells. This same residue also determines which isoform is a better activator of a mutant heterodimer, hLCB1(S331F)/hLCB2a, which has increased basal SPT activity and decreased amino acid substrate selectivity. This suggests that the role of the ssSPTs is to increase SPT activity without compromising substrate specificity. In addition, the observation that the C-terminal domains of ssSPTa and ssSPTb, which are highly conserved within each subfamily but are the most divergent regions between isoform subfamilies, are not required for activation of the heterodimer or for acyl-CoA selectivity suggests that the ssSPTs have additional roles that remain to be discovered.
The topological and functional organization of the two isoforms of the small subunits of human serine palmitoyltransferase (hssSPTs) that activate the catalytic hLCB1/hLCB2 heterodimer was investigated. A variety of experimental approaches placed the N termini of the ssSPTs in the cytosol, their C termini in the lumen, and showed that they contain a single transmembrane domain. Deletion analysis revealed that the ability to activate the heterodimer is contained in a conserved 33-amino acid core domain that has the same membrane topology as the full-length protein. In combination with analysis of isoform chimera and site-directed mutagenesis, a single amino acid residue in this core (Met(25) in ssSPTa and Val(25) in ssSPTb) was identified which confers specificity for palmitoyl- or stearoyl-CoA, respectively, in both yeast and mammalian cells. This same residue also determines which isoform is a better activator of a mutant heterodimer, hLCB1(S331F)/hLCB2a, which has increased basal SPT activity and decreased amino acid substrate selectivity. This suggests that the role of the ssSPTs is to increase SPT activity without compromising substrate specificity. In addition, the observation that the C-terminal domains of ssSPTa and ssSPTb, which are highly conserved within each subfamily but are the most divergent regions between isoform subfamilies, are not required for activation of the heterodimer or for acyl-CoA selectivity suggests that the ssSPTs have additional roles that remain to be discovered.The topological and functional organization of the two isoforms of the small subunits of human serine palmitoyltransferase (hssSPTs) that activate the catalytic hLCB1/hLCB2 heterodimer was investigated. A variety of experimental approaches placed the N termini of the ssSPTs in the cytosol, their C termini in the lumen, and showed that they contain a single transmembrane domain. Deletion analysis revealed that the ability to activate the heterodimer is contained in a conserved 33-amino acid core domain that has the same membrane topology as the full-length protein. In combination with analysis of isoform chimera and site-directed mutagenesis, a single amino acid residue in this core (Met(25) in ssSPTa and Val(25) in ssSPTb) was identified which confers specificity for palmitoyl- or stearoyl-CoA, respectively, in both yeast and mammalian cells. This same residue also determines which isoform is a better activator of a mutant heterodimer, hLCB1(S331F)/hLCB2a, which has increased basal SPT activity and decreased amino acid substrate selectivity. This suggests that the role of the ssSPTs is to increase SPT activity without compromising substrate specificity. In addition, the observation that the C-terminal domains of ssSPTa and ssSPTb, which are highly conserved within each subfamily but are the most divergent regions between isoform subfamilies, are not required for activation of the heterodimer or for acyl-CoA selectivity suggests that the ssSPTs have additional roles that remain to be discovered.
Author Bacikova, Dagmar
Somashekarappa, Niranjanakumari
Harmon, Jeffrey M.
Gupta, Sita D.
Dunn, Teresa M.
Sengupta, Nivedita
Han, Gongshe
Gable, Kenneth
Author_xml – sequence: 1
  givenname: Jeffrey M.
  surname: Harmon
  fullname: Harmon, Jeffrey M.
  organization: Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799
– sequence: 2
  givenname: Dagmar
  surname: Bacikova
  fullname: Bacikova, Dagmar
  organization: Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799
– sequence: 3
  givenname: Kenneth
  surname: Gable
  fullname: Gable, Kenneth
  organization: Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799
– sequence: 4
  givenname: Sita D.
  surname: Gupta
  fullname: Gupta, Sita D.
  organization: Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799
– sequence: 5
  givenname: Gongshe
  surname: Han
  fullname: Han, Gongshe
  organization: Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799
– sequence: 6
  givenname: Nivedita
  surname: Sengupta
  fullname: Sengupta, Nivedita
  organization: Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799
– sequence: 7
  givenname: Niranjanakumari
  surname: Somashekarappa
  fullname: Somashekarappa, Niranjanakumari
  organization: Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799
– sequence: 8
  givenname: Teresa M.
  surname: Dunn
  fullname: Dunn, Teresa M.
  email: tdunn@usuhs.edu
  organization: Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23426370$$D View this record in MEDLINE/PubMed
BookMark eNp9kc9rFDEUx4NU7LZ69iZz9OBs82tmNhehLLYKFQu7greQybzspmSSNcks1L_ebLcWFTSXkLzv5_se73uGTnzwgNBrgucEd_zirtfzz4SwOW9IQ9tnaEbwgtWsId9O0AxjSmpBm8UpOkvpDpfDBXmBTinjtGUdnqG0DrvgwsZq5Srlh-pq8jrb4MtzuVVR6QzR_lCHryqYKm-hSml1u07vqtWonKsui3xf6n5TraZ-8jang3BVMA_VrXKjzeHe5ah8MhBVgpfouVEuwavH-xx9vfqwXn6sb75cf1pe3tS6wSLXQ8ONMQIAsGIdo73g3BDc9oIJNmjRDQ1mLem5AEUFpwJEtzB93xhGtNKanaP3R9_d1I8waPBlCCd30Y4q3sugrPyz4u1WbsJeFteONl0xePtoEMP3CVKWo00anFMewpQkYZSLlmDCi_TN772emvzadBFcHAU6hpQimCcJwfKQpSxZykOW8phlIZq_CG3zQxBlWOv-w4kjB2W3ewtRJm3BaxhsBJ3lEOw_2Z9zobm-
CitedBy_id crossref_primary_10_1093_hmg_ddv611
crossref_primary_10_1038_nrm_2017_107
crossref_primary_10_1016_j_jlr_2022_100235
crossref_primary_10_1016_j_cclet_2022_107949
crossref_primary_10_1016_j_celrep_2024_113717
crossref_primary_10_18632_oncotarget_3743
crossref_primary_10_3390_cells10102507
crossref_primary_10_1016_j_bbalip_2023_159335
crossref_primary_10_1155_2013_194371
crossref_primary_10_1016_j_jbior_2023_101010
crossref_primary_10_1016_j_atherosclerosis_2024_119091
crossref_primary_10_1016_j_isci_2020_101855
crossref_primary_10_1038_s41591_021_01346_1
crossref_primary_10_1016_j_plipres_2017_01_002
crossref_primary_10_3389_fncel_2019_00246
crossref_primary_10_1074_jbc_M112_428185
crossref_primary_10_1097_MCO_0000000000000349
crossref_primary_10_3389_fnut_2022_1002574
crossref_primary_10_1038_s41594_020_00551_9
crossref_primary_10_1038_s41594_020_00553_7
crossref_primary_10_7554_eLife_51067
crossref_primary_10_1016_j_biopen_2015_06_001
crossref_primary_10_1016_j_jbior_2018_10_004
crossref_primary_10_1039_C8NP00019K
crossref_primary_10_1105_tpc_113_116145
crossref_primary_10_1194_jlr_M051839
crossref_primary_10_3389_fcell_2023_1302472
crossref_primary_10_1016_j_bbalip_2024_159462
crossref_primary_10_1038_s41594_021_00562_0
crossref_primary_10_1016_j_jbior_2022_100900
crossref_primary_10_1074_jbc_M114_588236
crossref_primary_10_1016_j_atherosclerosis_2015_03_011
crossref_primary_10_1093_brain_awac460
crossref_primary_10_1093_plphys_kiae460
crossref_primary_10_1194_jlr_M089367
crossref_primary_10_1016_j_celrep_2019_10_059
crossref_primary_10_3390_ijms232112745
crossref_primary_10_1074_jbc_RA118_007291
crossref_primary_10_1146_annurev_nutr_062220_112920
crossref_primary_10_12997_jla_2020_9_1_23
crossref_primary_10_1016_j_jbc_2021_100491
crossref_primary_10_1016_j_cellsig_2020_109890
crossref_primary_10_1016_j_bbalip_2018_11_007
crossref_primary_10_1016_j_jbior_2014_09_002
crossref_primary_10_1073_pnas_1522071113
crossref_primary_10_1016_j_jmb_2023_168000
crossref_primary_10_3389_fmolb_2022_884281
crossref_primary_10_1007_s12017_014_8339_1
crossref_primary_10_1016_j_tem_2016_07_005
crossref_primary_10_1093_cvr_cvac108
crossref_primary_10_26508_lsa_202101278
crossref_primary_10_1016_j_bbamem_2021_183701
crossref_primary_10_1016_j_colsurfb_2021_112224
crossref_primary_10_1002_1873_3468_13114
crossref_primary_10_1194_jlr_M051862
Cites_doi 10.1038/sj.emboj.7600792
10.1038/nature08787
10.1074/jbc.M110.122259
10.1016/S1570-9639(03)00074-8
10.1074/jbc.M609365200
10.1074/jbc.M109.008680
10.1002/yea.864
10.1002/humu.21481
10.1126/science.1113109
10.1074/jbc.M109.092973
10.1002/bip.21482
10.1016/S0076-6879(00)12917-9
10.1042/BST20110769
10.1074/jbc.M705074200
10.1016/j.ajhg.2010.09.010
10.1073/pnas.0911617107
10.1074/jbc.M410014200
10.1007/s11745-009-3316-4
10.1093/brain/awp198
10.1074/jbc.C112.404012
10.1074/jbc.M608066200
10.1074/jbc.M107873200
10.1073/pnas.0811269106
10.1016/S1388-1981(03)00059-3
10.1016/j.jmb.2007.04.086
10.1006/jmbi.1998.2086
10.1016/S0021-9258(17)31829-X
10.1074/jbc.M101550200
10.1074/jbc.275.11.7597
10.1021/bi002204y
ContentType Journal Article
Copyright 2013 © 2013 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.
2013 by The American Society for Biochemistry and Molecular Biology, Inc. 2013
Copyright_xml – notice: 2013 © 2013 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.
– notice: 2013 by The American Society for Biochemistry and Molecular Biology, Inc. 2013
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1074/jbc.M113.451526
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
DocumentTitleAlternate Role of ssSPTS in SPT Activation and Acyl-CoA Selectivity
EISSN 1083-351X
EndPage 10153
ExternalDocumentID PMC3617257
23426370
10_1074_jbc_M113_451526
S0021925820673781
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R01NS072446
– fundername: NINDS NIH HHS
  grantid: R01 NS072446
– fundername: National Institutes of Health
  grantid: R01NS072446
GroupedDBID ---
-DZ
-ET
-~X
0SF
18M
29J
2WC
34G
39C
4.4
53G
5BI
5GY
5RE
5VS
6I.
79B
85S
AAEDW
AAFTH
AAFWJ
AARDX
AAXUO
ABDNZ
ABOCM
ABPPZ
ABRJW
ACGFO
ACNCT
ADBBV
ADIYS
ADNWM
AENEX
AEXQZ
AFOSN
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BAWUL
BTFSW
CJ0
CS3
DIK
DU5
E.L
E3Z
EBS
EJD
F5P
FDB
FRP
GROUPED_DOAJ
GX1
HH5
HYE
IH2
KQ8
L7B
N9A
OK1
P0W
P2P
R.V
RHF
RHI
RNS
ROL
RPM
SJN
TBC
TN5
TR2
UHB
UKR
UPT
VQA
W8F
WH7
WOQ
XSW
YQT
YSK
YWH
YZZ
ZA5
~02
~KM
.55
.7T
.GJ
0R~
186
3O-
41~
6TJ
AALRI
AAYJJ
AAYOK
AAYWO
AAYXX
ABFSI
ACSFO
ACVFH
ACYGS
ADCNI
ADVLN
ADXHL
AEUPX
AFFNX
AFPUW
AI.
AIGII
AITUG
AKBMS
AKRWK
AKYEP
C1A
CITATION
FA8
H13
J5H
MVM
NHB
OHT
P-O
QZG
UQL
VH1
WHG
X7M
XJT
Y6R
YYP
ZE2
ZGI
ZY4
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c509t-d54fff9eee0a3732b944f106b9393dc97d50361b49ea29429e978fbb5f31cacc3
ISSN 0021-9258
1083-351X
IngestDate Thu Aug 21 18:04:53 EDT 2025
Fri Sep 05 10:09:06 EDT 2025
Thu Apr 03 07:04:20 EDT 2025
Tue Jul 01 00:41:02 EDT 2025
Thu Apr 24 23:05:15 EDT 2025
Fri Feb 23 02:45:30 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords Long Chain Bases
Membrane Enzymes
HSAN1
ssSPTs
Sphingolipid
Lipids
Enzyme Mutation
Membrane Lipids
Serine Palmitoyltransferase
Language English
License This is an open access article under the CC BY license.
http://creativecommons.org/licenses/by/4.0
https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c509t-d54fff9eee0a3732b944f106b9393dc97d50361b49ea29429e978fbb5f31cacc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://dx.doi.org/10.1074/jbc.M113.451526
PMID 23426370
PQID 1324961014
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3617257
proquest_miscellaneous_1324961014
pubmed_primary_23426370
crossref_primary_10_1074_jbc_M113_451526
crossref_citationtrail_10_1074_jbc_M113_451526
elsevier_sciencedirect_doi_10_1074_jbc_M113_451526
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-04-05
PublicationDateYYYYMMDD 2013-04-05
PublicationDate_xml – month: 04
  year: 2013
  text: 2013-04-05
  day: 05
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 9650 Rockville Pike, Bethesda, MD 20814, U.S.A
PublicationTitle The Journal of biological chemistry
PublicationTitleAlternate J Biol Chem
PublicationYear 2013
Publisher Elsevier Inc
American Society for Biochemistry and Molecular Biology
Publisher_xml – name: Elsevier Inc
– name: American Society for Biochemistry and Molecular Biology
References Rotthier, Auer-Grumbach, Janssens, Baets, Penno, Almeida-Souza, Van Hoof, Jacobs, De Vriendt, Schlotter-Weigel, Loscher, Vondráček, Seeman, De Jonghe, Van Dijck, Jordanova, Hornemann, Timmerman (bib28) 2010; 87
Raman, Johnson, Yard, Lowther, Carter, Naismith, Campopiano (bib8) 2009; 284
Hanada (bib11) 2003; 1632
Rotthier, Baets, De Vriendt, Jacobs, Auer-Grumbach, Lévy, Bonello-Palot, Kilic, Weis, Nascimento, Swinkels, Kruyt, Jordanova, De Jonghe, Timmerman (bib27) 2009; 132
Wilson, Schroeder, Allen, Holden, Parkhill, Barrell, Churcher, Hamlin, Mungall, Norbertczak, Quail, Price, Rabbinowitsch, Walker, Craigon, Roy, Ghazal (bib20) 2005; 309
Monaghan, Gable, Dunn (bib29) 2002; 19
Hanada, Nishijima (bib22) 2000; 312
Han, Gable, Yan, Allen, Wilson, Moitra, Harmon, Dunn (bib19) 2006; 281
Zhao, Beeler, Dunn (bib12) 1994; 269
Ikushiro, Hayashi, Kagamiyama (bib4) 2001; 276
Tsegaye, Richardson, Bravo, Mulcahy, Lynch, Markham, Jaworski, Chen, Cahoon, Dunn (bib25) 2007; 282
Han, Lone, Schneiter, Chang (bib15) 2010; 107
Gable, Gupta, Han, Niranjanakumari, Harmon, Dunn (bib21) 2010; 285
Gable, Slife, Bacikova, Monaghan, Dunn (bib13) 2000; 275
Gable, Han, Monaghan, Bacikova, Natarajan, Williams, Dunn (bib10) 2002; 277
Siow, Wattenberg (bib17) 2012; 287
Hornemann, Richard, Rütti, Wei, von Eckardstein (bib18) 2006; 281
Schmidt, Sivaraman, Li, Larocque, Barbosa, Smith, Matte, Schrag, Cygler (bib3) 2001; 40
Han, Gable, Yan, Natarajan, Krishnamurthy, Gupta, Borovitskaya, Harmon, Dunn (bib24) 2004; 279
Raman, Johnson, Clarke, Naismith, Campopiano (bib7) 2010; 93
Penno, Reilly, Houlden, Laurá, Rentsch, Niederkofler, Stoeckli, Nicholson, Eichler, Brown, von Eckardstein, Hornemann (bib26) 2010; 285
Breslow, Collins, Bodenmiller, Aebersold, Simons, Shevchenko, Ejsing, Weissman (bib14) 2010; 463
Lowther, Naismith, Dunn, Campopiano (bib6) 2012; 40
Alexeev, Alexeeva, Baxter, Campopiano, Webster, Sawyer (bib1) 1998; 284
Astner, Schulze, van den Heuvel, Jahn, Schubert, Heinz (bib2) 2005; 24
Ikushiro, Hayashi, Kagamiyama (bib5) 2003; 1647
Yard, Carter, Johnson, Overton, Dorward, Liu, McMahon, Oke, Puech, Barton, Naismith, Campopiano (bib9) 2007; 370
Rotthier, Penno, Rautenstrauss, Auer-Grumbach, Stettner, Asselbergh, Van Hoof, Sticht, Lévy, Timmerman, Hornemann, Janssens (bib30) 2011; 32
Momin, Park, Allegood, Leipelt, Kelly, Merrill, Hanada (bib23) 2009; 44
Han, Gupta, Gable, Niranjanakumari, Moitra, Eichler, Brown, Harmon, Dunn (bib16) 2009; 106
Hanada (10.1074/jbc.M113.451526_bib22) 2000; 312
Gable (10.1074/jbc.M113.451526_bib10) 2002; 277
Han (10.1074/jbc.M113.451526_bib15) 2010; 107
Hornemann (10.1074/jbc.M113.451526_bib18) 2006; 281
Han (10.1074/jbc.M113.451526_bib19) 2006; 281
Momin (10.1074/jbc.M113.451526_bib23) 2009; 44
Rotthier (10.1074/jbc.M113.451526_bib27) 2009; 132
Lowther (10.1074/jbc.M113.451526_bib6) 2012; 40
Raman (10.1074/jbc.M113.451526_bib8) 2009; 284
Penno (10.1074/jbc.M113.451526_bib26) 2010; 285
Monaghan (10.1074/jbc.M113.451526_bib29) 2002; 19
Raman (10.1074/jbc.M113.451526_bib7) 2010; 93
Gable (10.1074/jbc.M113.451526_bib21) 2010; 285
Han (10.1074/jbc.M113.451526_bib24) 2004; 279
Tsegaye (10.1074/jbc.M113.451526_bib25) 2007; 282
Rotthier (10.1074/jbc.M113.451526_bib30) 2011; 32
Zhao (10.1074/jbc.M113.451526_bib12) 1994; 269
Schmidt (10.1074/jbc.M113.451526_bib3) 2001; 40
Ikushiro (10.1074/jbc.M113.451526_bib4) 2001; 276
Ikushiro (10.1074/jbc.M113.451526_bib5) 2003; 1647
Siow (10.1074/jbc.M113.451526_bib17) 2012; 287
Yard (10.1074/jbc.M113.451526_bib9) 2007; 370
Rotthier (10.1074/jbc.M113.451526_bib28) 2010; 87
Wilson (10.1074/jbc.M113.451526_bib20) 2005; 309
Gable (10.1074/jbc.M113.451526_bib13) 2000; 275
Breslow (10.1074/jbc.M113.451526_bib14) 2010; 463
Astner (10.1074/jbc.M113.451526_bib2) 2005; 24
Alexeev (10.1074/jbc.M113.451526_bib1) 1998; 284
Hanada (10.1074/jbc.M113.451526_bib11) 2003; 1632
Han (10.1074/jbc.M113.451526_bib16) 2009; 106
References_xml – volume: 287
  start-page: 40198
  year: 2012
  end-page: 40204
  ident: bib17
  article-title: Mammalian ORMDL proteins mediate the feedback response in ceramide biosynthesis
  publication-title: J. Biol. Chem.
– volume: 279
  start-page: 53707
  year: 2004
  end-page: 53716
  ident: bib24
  article-title: The topology of the Lcb1p subunit of yeast serine palmitoyltransferase
  publication-title: J. Biol. Chem.
– volume: 132
  start-page: 2699
  year: 2009
  end-page: 2711
  ident: bib27
  article-title: Genes for hereditary sensory and autonomic neuropathies: a genotype-phenotype correlation
  publication-title: Brain
– volume: 285
  start-page: 11178
  year: 2010
  end-page: 11187
  ident: bib26
  article-title: Hereditary sensory neuropathy type 1 is caused by the accumulation of two neurotoxic sphingolipids
  publication-title: J. Biol. Chem.
– volume: 93
  start-page: 811
  year: 2010
  end-page: 822
  ident: bib7
  article-title: The serine palmitoyltransferase from S
  publication-title: Biopolymers
– volume: 463
  start-page: 1048
  year: 2010
  end-page: 1053
  ident: bib14
  article-title: Orm family proteins mediate sphingolipid homeostasis
  publication-title: Nature
– volume: 277
  start-page: 10194
  year: 2002
  end-page: 10200
  ident: bib10
  article-title: Mutations in the yeast
  publication-title: J. Biol. Chem.
– volume: 281
  start-page: 37275
  year: 2006
  end-page: 37281
  ident: bib18
  article-title: Cloning and initial characterization of a new subunit for mammalian serine-palmitoyltransferase
  publication-title: J. Biol. Chem.
– volume: 312
  start-page: 304
  year: 2000
  end-page: 317
  ident: bib22
  article-title: Selection of mammalian cell mutants in sphingolipid biosynthesis
  publication-title: Methods Enzymol.
– volume: 276
  start-page: 18249
  year: 2001
  end-page: 18256
  ident: bib4
  article-title: A water-soluble homodimeric serine palmitoyltransferase from
  publication-title: J. Biol. Chem.
– volume: 1632
  start-page: 16
  year: 2003
  end-page: 30
  ident: bib11
  article-title: Serine palmitoyltransferase, a key enzyme of sphingolipid metabolism
  publication-title: Biochim. Biophys. Acta
– volume: 284
  start-page: 17328
  year: 2009
  end-page: 17339
  ident: bib8
  article-title: The external aldimine form of serine palmitoyltransferase: structural, kinetic, and spectroscopic analysis of the wild-type enzyme and HSAN1 mutant mimics
  publication-title: J. Biol. Chem.
– volume: 87
  start-page: 513
  year: 2010
  end-page: 522
  ident: bib28
  article-title: Mutations in the SPTLC2 subunit of serine palmitoyltransferase cause hereditary sensory and autonomic neuropathy type I
  publication-title: Am. J. Hum. Genet.
– volume: 269
  start-page: 21480
  year: 1994
  end-page: 21488
  ident: bib12
  article-title: Suppressors of the Ca
  publication-title: J. Biol. Chem.
– volume: 19
  start-page: 659
  year: 2002
  end-page: 670
  ident: bib29
  article-title: Mutations in the Lcb2p subunit of serine palmitoyltransferase eliminate the requirement for the
  publication-title: Yeast
– volume: 24
  start-page: 3166
  year: 2005
  end-page: 3177
  ident: bib2
  article-title: Crystal structure of 5-aminolevulinate synthase, the first enzyme of heme biosynthesis, and its link to XLSA in humans
  publication-title: EMBO J.
– volume: 309
  start-page: 1090
  year: 2005
  end-page: 1092
  ident: bib20
  article-title: Complete genome sequence and lytic phase transcription profile of a
  publication-title: Science
– volume: 281
  start-page: 39935
  year: 2006
  end-page: 39942
  ident: bib19
  article-title: Expression of a novel marine viral single-chain serine palmitoyltransferase and construction of yeast and mammalian single-chain chimera
  publication-title: J. Biol. Chem.
– volume: 32
  start-page: E2211
  year: 2011
  end-page: E2225
  ident: bib30
  article-title: Characterization of two mutations in the SPTLC1 subunit of serine palmitoyltransferase associated with hereditary sensory and autonomic neuropathy type I
  publication-title: Hum. Mutat.
– volume: 40
  start-page: 547
  year: 2012
  end-page: 554
  ident: bib6
  article-title: Structural, mechanistic and regulatory studies of serine palmitoyltransferase
  publication-title: Biochem. Soc. Trans.
– volume: 107
  start-page: 5851
  year: 2010
  end-page: 5856
  ident: bib15
  article-title: Orm1 and Orm2 are conserved endoplasmic reticulum membrane proteins regulating lipid homeostasis and protein quality control
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 40
  start-page: 5151
  year: 2001
  end-page: 5160
  ident: bib3
  article-title: Three-dimensional structure of 2-amino-3-ketobutyrate CoA ligase from
  publication-title: Biochemistry
– volume: 275
  start-page: 7597
  year: 2000
  end-page: 7603
  ident: bib13
  article-title: Tsc3p is an 80-amino acid protein associated with serine palmitoyltransferase and required for optimal enzyme activity
  publication-title: J. Biol. Chem.
– volume: 282
  start-page: 28195
  year: 2007
  end-page: 28206
  ident: bib25
  article-title: mutants lacking long chain base phosphate lyase are fumonisin-sensitive and accumulate trihydroxy-18:1 long chain base phosphate
  publication-title: J. Biol. Chem.
– volume: 1647
  start-page: 116
  year: 2003
  end-page: 120
  ident: bib5
  article-title: Bacterial serine palmitoyltransferase: a water-soluble homodimeric prototype of the eukaryotic enzyme
  publication-title: Biochim. Biophys. Acta
– volume: 370
  start-page: 870
  year: 2007
  end-page: 886
  ident: bib9
  article-title: The structure of serine palmitoyltransferase: gateway to sphingolipid biosynthesis
  publication-title: J. Mol. Biol.
– volume: 284
  start-page: 401
  year: 1998
  end-page: 419
  ident: bib1
  article-title: The crystal structure of 8-amino-7-oxononanoate synthase: a bacterial PLP-dependent, acyl-CoA-condensing enzyme
  publication-title: J. Mol. Biol.
– volume: 44
  start-page: 725
  year: 2009
  end-page: 732
  ident: bib23
  article-title: Characterization of mutant serine palmitoyltransferase 1 in LY-B cells
  publication-title: Lipids
– volume: 106
  start-page: 8186
  year: 2009
  end-page: 8191
  ident: bib16
  article-title: Identification of small subunits of mammalian serine palmitoyltransferase that confer distinct acyl-CoA substrate specificities
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 285
  start-page: 22846
  year: 2010
  end-page: 22852
  ident: bib21
  article-title: A disease-causing mutation in the active site of serine palmitoyltransferase causes catalytic promiscuity
  publication-title: J. Biol. Chem.
– volume: 24
  start-page: 3166
  year: 2005
  ident: 10.1074/jbc.M113.451526_bib2
  article-title: Crystal structure of 5-aminolevulinate synthase, the first enzyme of heme biosynthesis, and its link to XLSA in humans
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7600792
– volume: 463
  start-page: 1048
  year: 2010
  ident: 10.1074/jbc.M113.451526_bib14
  article-title: Orm family proteins mediate sphingolipid homeostasis
  publication-title: Nature
  doi: 10.1038/nature08787
– volume: 285
  start-page: 22846
  year: 2010
  ident: 10.1074/jbc.M113.451526_bib21
  article-title: A disease-causing mutation in the active site of serine palmitoyltransferase causes catalytic promiscuity
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.122259
– volume: 1647
  start-page: 116
  year: 2003
  ident: 10.1074/jbc.M113.451526_bib5
  article-title: Bacterial serine palmitoyltransferase: a water-soluble homodimeric prototype of the eukaryotic enzyme
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/S1570-9639(03)00074-8
– volume: 281
  start-page: 39935
  year: 2006
  ident: 10.1074/jbc.M113.451526_bib19
  article-title: Expression of a novel marine viral single-chain serine palmitoyltransferase and construction of yeast and mammalian single-chain chimera
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M609365200
– volume: 284
  start-page: 17328
  year: 2009
  ident: 10.1074/jbc.M113.451526_bib8
  article-title: The external aldimine form of serine palmitoyltransferase: structural, kinetic, and spectroscopic analysis of the wild-type enzyme and HSAN1 mutant mimics
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.008680
– volume: 19
  start-page: 659
  year: 2002
  ident: 10.1074/jbc.M113.451526_bib29
  article-title: Mutations in the Lcb2p subunit of serine palmitoyltransferase eliminate the requirement for the TSC3 gene in Saccharomyces cerevisiae
  publication-title: Yeast
  doi: 10.1002/yea.864
– volume: 32
  start-page: E2211
  year: 2011
  ident: 10.1074/jbc.M113.451526_bib30
  article-title: Characterization of two mutations in the SPTLC1 subunit of serine palmitoyltransferase associated with hereditary sensory and autonomic neuropathy type I
  publication-title: Hum. Mutat.
  doi: 10.1002/humu.21481
– volume: 309
  start-page: 1090
  year: 2005
  ident: 10.1074/jbc.M113.451526_bib20
  article-title: Complete genome sequence and lytic phase transcription profile of a Coccolithovirus
  publication-title: Science
  doi: 10.1126/science.1113109
– volume: 285
  start-page: 11178
  year: 2010
  ident: 10.1074/jbc.M113.451526_bib26
  article-title: Hereditary sensory neuropathy type 1 is caused by the accumulation of two neurotoxic sphingolipids
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.092973
– volume: 93
  start-page: 811
  year: 2010
  ident: 10.1074/jbc.M113.451526_bib7
  article-title: The serine palmitoyltransferase from Sphingomonas wittichii RW1: an interesting link to an unusual acyl carrier protein
  publication-title: Biopolymers
  doi: 10.1002/bip.21482
– volume: 312
  start-page: 304
  year: 2000
  ident: 10.1074/jbc.M113.451526_bib22
  article-title: Selection of mammalian cell mutants in sphingolipid biosynthesis
  publication-title: Methods Enzymol.
  doi: 10.1016/S0076-6879(00)12917-9
– volume: 40
  start-page: 547
  year: 2012
  ident: 10.1074/jbc.M113.451526_bib6
  article-title: Structural, mechanistic and regulatory studies of serine palmitoyltransferase
  publication-title: Biochem. Soc. Trans.
  doi: 10.1042/BST20110769
– volume: 282
  start-page: 28195
  year: 2007
  ident: 10.1074/jbc.M113.451526_bib25
  article-title: Arabidopsis mutants lacking long chain base phosphate lyase are fumonisin-sensitive and accumulate trihydroxy-18:1 long chain base phosphate
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M705074200
– volume: 87
  start-page: 513
  year: 2010
  ident: 10.1074/jbc.M113.451526_bib28
  article-title: Mutations in the SPTLC2 subunit of serine palmitoyltransferase cause hereditary sensory and autonomic neuropathy type I
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2010.09.010
– volume: 107
  start-page: 5851
  year: 2010
  ident: 10.1074/jbc.M113.451526_bib15
  article-title: Orm1 and Orm2 are conserved endoplasmic reticulum membrane proteins regulating lipid homeostasis and protein quality control
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0911617107
– volume: 279
  start-page: 53707
  year: 2004
  ident: 10.1074/jbc.M113.451526_bib24
  article-title: The topology of the Lcb1p subunit of yeast serine palmitoyltransferase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M410014200
– volume: 44
  start-page: 725
  year: 2009
  ident: 10.1074/jbc.M113.451526_bib23
  article-title: Characterization of mutant serine palmitoyltransferase 1 in LY-B cells
  publication-title: Lipids
  doi: 10.1007/s11745-009-3316-4
– volume: 132
  start-page: 2699
  year: 2009
  ident: 10.1074/jbc.M113.451526_bib27
  article-title: Genes for hereditary sensory and autonomic neuropathies: a genotype-phenotype correlation
  publication-title: Brain
  doi: 10.1093/brain/awp198
– volume: 287
  start-page: 40198
  year: 2012
  ident: 10.1074/jbc.M113.451526_bib17
  article-title: Mammalian ORMDL proteins mediate the feedback response in ceramide biosynthesis
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.C112.404012
– volume: 281
  start-page: 37275
  year: 2006
  ident: 10.1074/jbc.M113.451526_bib18
  article-title: Cloning and initial characterization of a new subunit for mammalian serine-palmitoyltransferase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M608066200
– volume: 277
  start-page: 10194
  year: 2002
  ident: 10.1074/jbc.M113.451526_bib10
  article-title: Mutations in the yeast LCB1LCB2 genes, including those corresponding to the hereditary sensory neuropathy type I mutations, dominantly inactivate serine palmitoyltransferase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M107873200
– volume: 106
  start-page: 8186
  year: 2009
  ident: 10.1074/jbc.M113.451526_bib16
  article-title: Identification of small subunits of mammalian serine palmitoyltransferase that confer distinct acyl-CoA substrate specificities
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0811269106
– volume: 1632
  start-page: 16
  year: 2003
  ident: 10.1074/jbc.M113.451526_bib11
  article-title: Serine palmitoyltransferase, a key enzyme of sphingolipid metabolism
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/S1388-1981(03)00059-3
– volume: 370
  start-page: 870
  year: 2007
  ident: 10.1074/jbc.M113.451526_bib9
  article-title: The structure of serine palmitoyltransferase: gateway to sphingolipid biosynthesis
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2007.04.086
– volume: 284
  start-page: 401
  year: 1998
  ident: 10.1074/jbc.M113.451526_bib1
  article-title: The crystal structure of 8-amino-7-oxononanoate synthase: a bacterial PLP-dependent, acyl-CoA-condensing enzyme
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1998.2086
– volume: 269
  start-page: 21480
  year: 1994
  ident: 10.1074/jbc.M113.451526_bib12
  article-title: Suppressors of the Ca2+-sensitive yeast mutant (csg2) identify genes involved in sphingolipid biosynthesis: cloning and characterization of SCS1, a gene required for serine palmitoyltransferase activity
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)31829-X
– volume: 276
  start-page: 18249
  year: 2001
  ident: 10.1074/jbc.M113.451526_bib4
  article-title: A water-soluble homodimeric serine palmitoyltransferase from Sphingomonas paucimobilis EY2395T strain: purification, characterization, cloning, and overproduction
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M101550200
– volume: 275
  start-page: 7597
  year: 2000
  ident: 10.1074/jbc.M113.451526_bib13
  article-title: Tsc3p is an 80-amino acid protein associated with serine palmitoyltransferase and required for optimal enzyme activity
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.275.11.7597
– volume: 40
  start-page: 5151
  year: 2001
  ident: 10.1074/jbc.M113.451526_bib3
  article-title: Three-dimensional structure of 2-amino-3-ketobutyrate CoA ligase from Escherichia coli complexed with a PLP-substrate intermediate: inferred reaction mechanism
  publication-title: Biochemistry
  doi: 10.1021/bi002204y
SSID ssj0000491
Score 2.3391478
Snippet The topological and functional organization of the two isoforms of the small subunits of human serine palmitoyltransferase (hssSPTs) that activate the...
Background: The ssSPTs activate serine palmitoyltransferase and specify its acyl-CoA selectivity. Results: Both properties are contained within a 33-amino acid...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 10144
SubjectTerms Amino Acid Sequence
Amino Acids - chemistry
Animals
Cell Membrane - metabolism
Dimerization
Enzyme Activation
Enzyme Mutation
Genes, Fungal
Glycosylation
HSAN1
Humans
Lipids
Lipids - chemistry
Long Chain Bases
Membrane Enzymes
Membrane Lipids
Microsomes - metabolism
Molecular Sequence Data
Mutation
Plasmids - metabolism
Protein Structure, Tertiary
Sequence Homology, Amino Acid
Serine C-Palmitoyltransferase - chemistry
Serine C-Palmitoyltransferase - physiology
Serine Palmitoyltransferase
Sphingolipid
Sphingolipids - chemistry
ssSPTs
Substrate Specificity
Title Topological and Functional Characterization of the ssSPTs, Small Activating Subunits of Serine Palmitoyltransferase
URI https://dx.doi.org/10.1074/jbc.M113.451526
https://www.ncbi.nlm.nih.gov/pubmed/23426370
https://www.proquest.com/docview/1324961014
https://pubmed.ncbi.nlm.nih.gov/PMC3617257
Volume 288
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwGLXKeIAXBBuXcpOREEIaCfEldf1YFcaEVARqJ-0tih0HCms6tQnS9of4m3yOc1vXSoOXqM3FSnJO7GN_N4Re68EgoFIrb0iE9nisUvjmCPUMyAMKA47kzAYnT74Mjk_459PwtNf70_FaKnLl68utcSX_gyrsA1xtlOw_INs0CjvgN-ALW0AYtjfD2FU4aAL-j2CQqtb2xk0i5stGFFqNuV5Pv85K7KYLa5UeaVffzOblLlSRzZ1vx7SMCjy01VXgk784y0t9a1a1LednS7KOpHUZnVzOkbqQXNvFrRbOwl8Fjx1O_HYZVc9_LX8701P8fRE3HsOfbGRXJ36o2V-cO9k7nefx4Qe_u3hhC0lwLwi7HbL1EKEue3vdIdPhsMs83ulfbWVh3hms4b_LNXxtJABpZEcCpf0JIcznoNvolpzbG2Nh46FY2uYFj6CByDYQuQZuodtUgEiz1v9vbVp6mGa50ozV09Q5pAR_v3EHu-TP9enNppduR_bM7qN7Fbh45Mj3APVMto8ORlmcLxcX-A0uPYhL08w-ujOuQT9A6w43MXATt9zEm9zEyxQDN7Hj5jtcMhO3zMQ1M-2Jjpl4GzMfopOjj7PxsVcV-PA06NTcS0Kepqk0xgQxE4wqyXlKgoGSTLJES5GEILCI4tLEVIJyMlIMU6XClBEda80eob1smZknCJOEwlQiMEEiFFdw1AwJS5LQEE4J07SP_Pq9R7rKfm-LsJxFO5Duo7fNBecu8cvuU2kNZFTpVqdHIyDj7ote1ZBHAI0108WZWRbriMAcRw4s0_vosaNAcweU2QILIugjcYUczQk2W_zVI9n8R5k1ntm5Siie3vy5nqG77Tf7HO3lq8K8AAmeq5cl_f8CyY7fGg
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topological+and+Functional+Characterization+of+the+ssSPTs%2C+Small+Activating+Subunits+of+Serine+Palmitoyltransferase&rft.jtitle=The+Journal+of+biological+chemistry&rft.au=Harmon%2C+Jeffrey+M.&rft.au=Bacikova%2C+Dagmar&rft.au=Gable%2C+Kenneth&rft.au=Gupta%2C+Sita+D.&rft.date=2013-04-05&rft.issn=0021-9258&rft.volume=288&rft.issue=14&rft.spage=10144&rft.epage=10153&rft_id=info:doi/10.1074%2Fjbc.M113.451526&rft.externalDBID=n%2Fa&rft.externalDocID=10_1074_jbc_M113_451526
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9258&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9258&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9258&client=summon