Artificial neural networks and robust Bayesian classifiers for risk stratification following uncomplicated myocardial infarction
To compare artificial neural networks (ANN) and robust Bayesian classifiers (RBC) in predicting outcome following acute myocardial infarction (AMI). Clinical, exercise ECG and stress echo variables by 496 patients with AMI were used to predict the cumulative end-point of cardiac death, nonfatal rein...
Saved in:
| Published in | International journal of cardiology Vol. 101; no. 3; pp. 481 - 487 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Shannon
Elsevier Ireland Ltd
08.06.2005
Elsevier Science |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0167-5273 1874-1754 |
| DOI | 10.1016/j.ijcard.2004.07.008 |
Cover
| Abstract | To compare artificial neural networks (ANN) and robust Bayesian classifiers (RBC) in predicting outcome following acute myocardial infarction (AMI).
Clinical, exercise ECG and stress echo variables by 496 patients with AMI were used to predict the cumulative end-point of cardiac death, nonfatal reinfarction and unstable angina. Revascularized patients were censored. Short (200 days)-, medium (400 days)- and long (1000 days)-term observation intervals, including 50%, 75% and 90% of the events, respectively, were considered. At each interval, any patient was binary assigned to the “event” or “no event” class. A multilayer feedforward ANN, trained by a back propagation algorithm, was used. RBC, using the leave-one-out technique, were derived. The accuracy of both techniques was compared to the default accuracy (DA) obtained by assigning all subjects to the largest class.
14 death, 27 reinfarction and 29 unstable angina were observed during a mean follow-up of 24 [95% confidence interval (CI) 19 to 22] months. The accuracy of ANN and RBC and DA were 70%, 81% and 74% at short, 67%, 73% and 56% at medium and 64%, 68% and 62% at long-term follow-up.
(1) ANN do not improve the prognostic classification of patients with uncomplicated AMI as compared to RBC. (2) In particular, short-term prognostic accuracy seems insufficient. |
|---|---|
| AbstractList | To compare artificial neural networks (ANN) and robust Bayesian classifiers (RBC) in predicting outcome following acute myocardial infarction (AMI).
Clinical, exercise ECG and stress echo variables by 496 patients with AMI were used to predict the cumulative end-point of cardiac death, nonfatal reinfarction and unstable angina. Revascularized patients were censored. Short (200 days)-, medium (400 days)- and long (1000 days)-term observation intervals, including 50%, 75% and 90% of the events, respectively, were considered. At each interval, any patient was binary assigned to the “event” or “no event” class. A multilayer feedforward ANN, trained by a back propagation algorithm, was used. RBC, using the leave-one-out technique, were derived. The accuracy of both techniques was compared to the default accuracy (DA) obtained by assigning all subjects to the largest class.
14 death, 27 reinfarction and 29 unstable angina were observed during a mean follow-up of 24 [95% confidence interval (CI) 19 to 22] months. The accuracy of ANN and RBC and DA were 70%, 81% and 74% at short, 67%, 73% and 56% at medium and 64%, 68% and 62% at long-term follow-up.
(1) ANN do not improve the prognostic classification of patients with uncomplicated AMI as compared to RBC. (2) In particular, short-term prognostic accuracy seems insufficient. To compare artificial neural networks (ANN) and robust Bayesian classifiers (RBC) in predicting outcome following acute myocardial infarction (AMI).OBJECTIVETo compare artificial neural networks (ANN) and robust Bayesian classifiers (RBC) in predicting outcome following acute myocardial infarction (AMI).Clinical, exercise ECG and stress echo variables by 496 patients with AMI were used to predict the cumulative end-point of cardiac death, nonfatal reinfarction and unstable angina. Revascularized patients were censored. Short (200 days)-, medium (400 days)- and long (1000 days)-term observation intervals, including 50%, 75% and 90% of the events, respectively, were considered. At each interval, any patient was binary assigned to the "event" or "no event" class. A multilayer feedforward ANN, trained by a back propagation algorithm, was used. RBC, using the leave-one-out technique, were derived. The accuracy of both techniques was compared to the default accuracy (DA) obtained by assigning all subjects to the largest class.METHODSClinical, exercise ECG and stress echo variables by 496 patients with AMI were used to predict the cumulative end-point of cardiac death, nonfatal reinfarction and unstable angina. Revascularized patients were censored. Short (200 days)-, medium (400 days)- and long (1000 days)-term observation intervals, including 50%, 75% and 90% of the events, respectively, were considered. At each interval, any patient was binary assigned to the "event" or "no event" class. A multilayer feedforward ANN, trained by a back propagation algorithm, was used. RBC, using the leave-one-out technique, were derived. The accuracy of both techniques was compared to the default accuracy (DA) obtained by assigning all subjects to the largest class.14 death, 27 reinfarction and 29 unstable angina were observed during a mean follow-up of 24 [95% confidence interval (CI) 19 to 22] months. The accuracy of ANN and RBC and DA were 70%, 81% and 74% at short, 67%, 73% and 56% at medium and 64%, 68% and 62% at long-term follow-up.RESULTS14 death, 27 reinfarction and 29 unstable angina were observed during a mean follow-up of 24 [95% confidence interval (CI) 19 to 22] months. The accuracy of ANN and RBC and DA were 70%, 81% and 74% at short, 67%, 73% and 56% at medium and 64%, 68% and 62% at long-term follow-up.(1) ANN do not improve the prognostic classification of patients with uncomplicated AMI as compared to RBC. (2) In particular, short-term prognostic accuracy seems insufficient.CONCLUSIONS(1) ANN do not improve the prognostic classification of patients with uncomplicated AMI as compared to RBC. (2) In particular, short-term prognostic accuracy seems insufficient. |
| Author | Desideri, Alessandro Gregori, Dario Toffolo, Gianna M. Cortigiani, Lauro Chiarotto, Francesco A. Bigi, Riccardo |
| Author_xml | – sequence: 1 givenname: Riccardo surname: Bigi fullname: Bigi, Riccardo email: Riccardo.Bigi@unimi.it organization: CNR Clinical Physiology Institute Niguarda Ca' Granda Hospital P.zza Ospedale Maggiore, 3 20162 Milan, Italy – sequence: 2 givenname: Dario surname: Gregori fullname: Gregori, Dario organization: Department of Public Health and Microbiology, University of Turin, Italy – sequence: 3 givenname: Lauro surname: Cortigiani fullname: Cortigiani, Lauro organization: Cardiovascular Unit, “Campo di Marte” Hospital, Lucca, Italy – sequence: 4 givenname: Alessandro surname: Desideri fullname: Desideri, Alessandro organization: Cardiovascular Research Foundation, Castelfranco Veneto, Italy – sequence: 5 givenname: Francesco A. surname: Chiarotto fullname: Chiarotto, Francesco A. organization: Department of Electronics and Computer Science, University of Padua, Italy – sequence: 6 givenname: Gianna M. surname: Toffolo fullname: Toffolo, Gianna M. organization: Department of Electronics and Computer Science, University of Padua, Italy |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16811017$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/15907418$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkUuLFDEUhYOMOD2j_0AkG91VmXRSnZSIMA6-YMCNrsPtPCTdqaRNqhx650831d0yMJve5ELynXPDOVfoIqZoEXpJSUsJXb3dtH6jIZt2SQhviWgJkU_QgkrBGyo6foEWFRNNtxTsEl2VsiEV7Hv5DF3SrieCU7lAf2_y6J3XHgKOdsqHMd6nvC0YosE5racy4o-wt8VDxDpAKVVgc8EuZZx92eIyZji41DPFeh9CuvfxF56iTsMuzA_W4GGf5g_Pq3x0kPVMP0dPHYRiX5zmNfr5-dOP26_N3fcv325v7hrdkX5sDOdScsd6bUXnlo4Ty8D0khomQUvN1qwDo43kwnBmBEDPOt6vJAjKgC_ZNXpz9N3l9HuyZVSDL9qGANGmqaiVkLwjoqvgqxM4rQdr1C77AfJe_c-sAq9PABQNwWWI2pcHbiVpLUhUjh85nVMp2boHhKi5QrVRxwrVXKEiQtUKq-zdI5n24yHYmrIP58QfjmJbo_xTW1JFexu1NT5bPSqT_DmD948MdPCxFhi2dn9e_g-sH9EE |
| CODEN | IJCDD5 |
| CitedBy_id | crossref_primary_10_1007_s11936_008_0022_0 crossref_primary_10_1016_j_ijcard_2005_07_038 crossref_primary_10_1016_j_rccar_2013_10_001 crossref_primary_10_1177_10790632231210536 crossref_primary_10_1016_j_ijcard_2006_09_025 crossref_primary_10_1007_s12103_014_9246_6 crossref_primary_10_1080_01639625_2022_2059417 crossref_primary_10_1111_j_1542_474X_2008_00270_x crossref_primary_10_1186_1471_2261_6_20 crossref_primary_10_1016_j_jflm_2023_102488 crossref_primary_10_1111_j_1365_2753_2008_01034_x crossref_primary_10_1007_s11517_011_0785_4 crossref_primary_10_1016_j_eswa_2012_10_054 crossref_primary_10_1016_j_forsciint_2022_111446 crossref_primary_10_1038_s41598_017_12951_x crossref_primary_10_1002_bsl_2661 crossref_primary_10_1001_jamacardio_2021_0122 crossref_primary_10_1371_journal_pone_0210103 crossref_primary_10_1007_s10940_011_9137_7 crossref_primary_10_1177_00938548211066911 crossref_primary_10_1371_journal_pone_0314018 crossref_primary_10_1016_j_compbiomed_2008_04_009 crossref_primary_10_4018_JOEUC_287574 crossref_primary_10_1161_JAHA_122_025812 crossref_primary_10_1080_15564886_2024_2362177 crossref_primary_10_1155_2017_8953083 |
| Cites_doi | 10.1006/cbmr.1993.1015 10.1097/00002060-199907000-00022 10.1093/ajcp/96.1.134 10.7326/0003-4819-115-11-843 10.1016/0735-1097(96)00174-X 10.1162/neco.1991.3.4.461 10.7326/0003-4819-115-11-906 10.1016/0002-9149(92)91387-J 10.1056/NEJM199309023291001 10.1161/01.CIR.88.2.416 10.1002/sim.1112 10.1016/0735-1097(95)00513-7 10.1016/S0090-4295(99)00327-1 10.1016/S0140-6736(95)92893-6 10.1111/j.1528-1157.1999.tb00867.x 10.1159/000012061 10.1093/eurheartj/14.9.1216 10.1016/S0140-6736(95)92904-5 10.1177/0272989X9601600409 10.1002/ssu.2980100111 10.1002/sim.4780140108 10.1055/s-0038-1634175 10.1016/S0140-6736(95)91746-2 10.1002/(SICI)1097-0258(20000229)19:4<541::AID-SIM355>3.0.CO;2-V 10.1002/(SICI)1097-0258(19981115)17:21<2501::AID-SIM938>3.0.CO;2-M 10.1177/0272989X9801800212 10.1136/heart.85.4.417 10.1093/annonc/4.suppl_4.S31 10.1515/CCLM.1999.128 10.1007/BF02414891 10.1016/S0140-6736(95)91804-3 |
| ContentType | Journal Article |
| Copyright | 2004 2005 INIST-CNRS |
| Copyright_xml | – notice: 2004 – notice: 2005 INIST-CNRS |
| DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.ijcard.2004.07.008 |
| DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1874-1754 |
| EndPage | 487 |
| ExternalDocumentID | 15907418 16811017 10_1016_j_ijcard_2004_07_008 S0167527304006862 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Comparative Study |
| GroupedDBID | --- --K --M .1- .55 .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29J 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABLJU ABMAC ABMZM ABOCM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACLOT ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADVLN AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFFNX AFJKZ AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEB HMK HMO HVGLF HZ~ IHE J1W KOM M29 M41 MO0 N9A O-L O9- OA. OAUVE OL~ OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SEL SES SEW SPCBC SSH SSZ T5K UV1 WUQ X7M Z5R ZGI ~G- ~HD 0SF AACTN AAIAV ABLVK ABYKQ AFCTW AFKWA AHPSJ AJBFU AJOXV AMFUW LCYCR NCXOZ RIG ZA5 AAYXX CITATION AGCQF AGRNS IQODW CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c509t-d44884f39ce75f2f40e3ad981d38ac8c3b35adcd847d43d7aa9354968a713a423 |
| IEDL.DBID | AIKHN |
| ISSN | 0167-5273 |
| IngestDate | Sun Sep 28 01:46:21 EDT 2025 Wed Feb 19 01:40:24 EST 2025 Mon Jul 21 09:16:45 EDT 2025 Thu Apr 24 23:00:51 EDT 2025 Wed Oct 01 03:14:38 EDT 2025 Fri Feb 23 02:27:23 EST 2024 Tue Oct 14 19:35:30 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Myocardial infarction Stress echocardiography Prognosis Neural network Artificial intelligence Exercise ECG Sonography Physical exercise Echocardiography Cardiovascular disease Risk Myocardial disease Phlebology Stress Electrodiagnosis Heart disease Risk factor Electrocardiography Exercise tolerance test Circulatory system Cardiology Stratification |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c509t-d44884f39ce75f2f40e3ad981d38ac8c3b35adcd847d43d7aa9354968a713a423 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| PMID | 15907418 |
| PQID | 67845075 |
| PQPubID | 23479 |
| PageCount | 7 |
| ParticipantIDs | proquest_miscellaneous_67845075 pubmed_primary_15907418 pascalfrancis_primary_16811017 crossref_primary_10_1016_j_ijcard_2004_07_008 crossref_citationtrail_10_1016_j_ijcard_2004_07_008 elsevier_sciencedirect_doi_10_1016_j_ijcard_2004_07_008 elsevier_clinicalkey_doi_10_1016_j_ijcard_2004_07_008 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2005-06-08 |
| PublicationDateYYYYMMDD | 2005-06-08 |
| PublicationDate_xml | – month: 06 year: 2005 text: 2005-06-08 day: 08 |
| PublicationDecade | 2000 |
| PublicationPlace | Shannon |
| PublicationPlace_xml | – name: Shannon – name: Netherlands |
| PublicationTitle | International journal of cardiology |
| PublicationTitleAlternate | Int J Cardiol |
| PublicationYear | 2005 |
| Publisher | Elsevier Ireland Ltd Elsevier Science |
| Publisher_xml | – name: Elsevier Ireland Ltd – name: Elsevier Science |
| References | Ohno-Machado, Rowland (bib19) 1999; 78 Baxt (bib2) 1995; 346 Dybowski, Gant (bib4) 1995; 346 Akay (bib9) 1992; 67 Penny, Frost (bib6) 1996; 16 Burke (bib12) 1994; 10 Snow, Rodvold, Brandt (bib17) 1999; 54 Malmgren (bib18) 1999; 40 McNeill, Fioretti, El-Said, Salustri, Forster, Roelandt (bib26) 1992; 70 (bib31) 1993; 329 Kappen, Neijt (bib15) 1993; 4 Laurikkala, Juhola, Lammi, Viikki (bib24) 1999; 38 Richard, Lippmann (bib28) 1991; 3 Tu, Weinstein, McNeill, Naylor (bib21) 1998; 18 Boracchi, Biganzoli, Marubini (bib32) 2001; 20 Furlong, Dupuy, Heinsimer (bib11) 1991; 96 Ennis, Hinton, Naylor, Revow, Tibshirani (bib20) 1998; 17 Volpi, DeVita, Franzosi, Geraci, Maggioni, Mauri (bib23) 1993; 88 Bigi, Galati, Desideri, Bax, Coletta, Fiorentini (bib25) 2001; 85 Baxt (bib10) 1991; 115 Hastie, Tibshirani, Friedman (bib30) 2001 Itchhaporia, Snow, Almassy, Oegten (bib8) 1996; 28 Faraggi, Simon (bib14) 1995; 14 Newby, Califf, Guerci, Weaver, Col, Horgan (bib29) 1996; 27 Wyatt (bib5) 1995; 346 Picano, Pingitore, Conti (bib27) 1993; 14 Tafeit, Reibnegger (bib16) 1999; 37 Cross, Harrison, Kennedy (bib3) 1995; 346 Schwarzer, Werner, Scumacher (bib7) 2000; 19 Lundin, Lundin, Burke, Toikkanen, Pylkkanen, Joensuu (bib13) 1999; 57 Tu, Guerriere (bib22) 1993; 26 Griffith, D'Agostino, Selker (bib33) 1992; 12 Guerriere, Detsky (bib1) 1991; 115 Cross (10.1016/j.ijcard.2004.07.008_bib3) 1995; 346 (10.1016/j.ijcard.2004.07.008_bib31) 1993; 329 Burke (10.1016/j.ijcard.2004.07.008_bib12) 1994; 10 Itchhaporia (10.1016/j.ijcard.2004.07.008_bib8) 1996; 28 Schwarzer (10.1016/j.ijcard.2004.07.008_bib7) 2000; 19 Baxt (10.1016/j.ijcard.2004.07.008_bib10) 1991; 115 Tafeit (10.1016/j.ijcard.2004.07.008_bib16) 1999; 37 Snow (10.1016/j.ijcard.2004.07.008_bib17) 1999; 54 Furlong (10.1016/j.ijcard.2004.07.008_bib11) 1991; 96 Faraggi (10.1016/j.ijcard.2004.07.008_bib14) 1995; 14 Ohno-Machado (10.1016/j.ijcard.2004.07.008_bib19) 1999; 78 Bigi (10.1016/j.ijcard.2004.07.008_bib25) 2001; 85 Ennis (10.1016/j.ijcard.2004.07.008_bib20) 1998; 17 Lundin (10.1016/j.ijcard.2004.07.008_bib13) 1999; 57 Baxt (10.1016/j.ijcard.2004.07.008_bib2) 1995; 346 Newby (10.1016/j.ijcard.2004.07.008_bib29) 1996; 27 Richard (10.1016/j.ijcard.2004.07.008_bib28) 1991; 3 Boracchi (10.1016/j.ijcard.2004.07.008_bib32) 2001; 20 McNeill (10.1016/j.ijcard.2004.07.008_bib26) 1992; 70 Picano (10.1016/j.ijcard.2004.07.008_bib27) 1993; 14 Guerriere (10.1016/j.ijcard.2004.07.008_bib1) 1991; 115 Penny (10.1016/j.ijcard.2004.07.008_bib6) 1996; 16 Malmgren (10.1016/j.ijcard.2004.07.008_bib18) 1999; 40 Wyatt (10.1016/j.ijcard.2004.07.008_bib5) 1995; 346 Volpi (10.1016/j.ijcard.2004.07.008_bib23) 1993; 88 Hastie (10.1016/j.ijcard.2004.07.008_bib30) 2001 Akay (10.1016/j.ijcard.2004.07.008_bib9) 1992; 67 Griffith (10.1016/j.ijcard.2004.07.008_bib33) 1992; 12 Dybowski (10.1016/j.ijcard.2004.07.008_bib4) 1995; 346 Tu (10.1016/j.ijcard.2004.07.008_bib21) 1998; 18 Laurikkala (10.1016/j.ijcard.2004.07.008_bib24) 1999; 38 Kappen (10.1016/j.ijcard.2004.07.008_bib15) 1993; 4 Tu (10.1016/j.ijcard.2004.07.008_bib22) 1993; 26 16256226 - Int J Cardiol. 2006 Sep 20;112(2):245-6 |
| References_xml | – volume: 54 start-page: 787 year: 1999 end-page: 790 ident: bib17 article-title: Artificial neural networks in clinical urology publication-title: Urology – volume: 28 start-page: 515 year: 1996 end-page: 521 ident: bib8 article-title: Artificial neural networks: current status in cardiovascular medicine publication-title: J. Am. Coll. Cardiol. – volume: 88 start-page: 416 year: 1993 end-page: 429 ident: bib23 article-title: Determinants of 6-month mortality in survivors of myocardial infarction after thrombolysis publication-title: Circulation – volume: 3 start-page: 461 year: 1991 end-page: 483 ident: bib28 article-title: Neural network classifiers estimate Bayesian a posteriori probabilities publication-title: Neural Comput. – volume: 12 start-page: 343 year: 1992 ident: bib33 article-title: Statistical regression techniques for the construction, interpretation and testing of computer neural networks publication-title: Med. Decis. Mak. – volume: 78 start-page: 392 year: 1999 end-page: 398 ident: bib19 article-title: Neural network applications in physical medicine and rehabilitation publication-title: Am. J. Phys. Med. Rehabil. – volume: 20 start-page: 3677 year: 2001 end-page: 3694 ident: bib32 article-title: Modelling cause-specific hazards with radial basis function artificial neural networks: application to 2233 breast cancer patients publication-title: Stat. Med. – volume: 26 start-page: 220 year: 1993 end-page: 229 ident: bib22 article-title: Use of a neural network as a predictive instrument for length of stay in the intensive care unit following cardiac surgery publication-title: Comput. Biomed. Res. – volume: 115 start-page: 843 year: 1991 end-page: 848 ident: bib10 article-title: Use of an artificial neural network for the diagnosis of myocardial infarction publication-title: ANN Intern. Med. – volume: 37 start-page: 845 year: 1999 end-page: 853 ident: bib16 article-title: Artificial neural networks in laboratory medicine and medical outcome prediction publication-title: Clin. Chem. Lab. Med. – volume: 346 start-page: 1203 year: 1995 end-page: 1207 ident: bib4 article-title: Artificial neural networks in pathology and medical laboratories publication-title: Lancet – year: 2001 ident: bib30 article-title: The Elements of Statistical Learning – volume: 115 start-page: 906 year: 1991 end-page: 907 ident: bib1 article-title: Neural networks: what are they? publication-title: ANN Intern. Med. – volume: 4 start-page: S31 year: 1993 end-page: S34 ident: bib15 article-title: Neural network analysis to predict treatment outcome publication-title: Ann. Oncol. – volume: 329 start-page: 673 year: 1993 end-page: 682 ident: bib31 article-title: An international randomized trial comparing four thrombolytic strategies for acute myocardial infarction publication-title: N. Engl. J. Med. – volume: 70 start-page: 41 year: 1992 end-page: 46 ident: bib26 article-title: Enhanced sensitivity for detection of coronary artery disease by addition of atropine to dobutamine SE publication-title: Am. J. Cardiol. – volume: 346 start-page: 1075 year: 1995 end-page: 1079 ident: bib3 article-title: Introduction to neural networks publication-title: Lancet – volume: 16 start-page: 386 year: 1996 end-page: 398 ident: bib6 article-title: Neural networks in clinical medicine publication-title: Med. Decis. Mak. – volume: 67 start-page: 361 year: 1992 end-page: 367 ident: bib9 article-title: Noninvasive diagnosis of coronary artery disease using a neural network algorithm publication-title: Biol. Cybern. – volume: 18 start-page: 229 year: 1998 end-page: 235 ident: bib21 article-title: Predicting mortality after coronary artery bypass surgery: what do artificial neural networks learn publication-title: Med. Decis. Mak. – volume: 346 start-page: 1135 year: 1995 end-page: 1138 ident: bib2 article-title: Application of artificial neural networks to clinical medicine publication-title: Lancet – volume: 40 start-page: 1323 year: 1999 end-page: 1324 ident: bib18 article-title: For classification and predictive purposes, simulated neural networks (SNNs; more often called artificial neural networks, ANN) offer a powerful alternative to traditional statistical analyses publication-title: Epilepsia – volume: 17 start-page: 2501 year: 1998 end-page: 2508 ident: bib20 article-title: Comparison of statistical learning methods on the GUSTO database publication-title: Stat. Med. – volume: 27 start-page: 625 year: 1996 end-page: 632 ident: bib29 article-title: Early discharge in the thrombolytic era: an analysis of criteria for uncomplicated infarction from the global utilization of streptokinase and rt-PA for occluded coronary artery (GUSTO) trial publication-title: J. Am. Coll. Cardiol. – volume: 346 start-page: 1175 year: 1995 end-page: 1177 ident: bib5 article-title: Nervous about artificial neural networks? publication-title: Lancet – volume: 38 start-page: 125 year: 1999 end-page: 132 ident: bib24 article-title: Comparison of genetic algorithms and other classification methods in the diagnosis of female urinary incontinence publication-title: Meth. Inform. Med. – volume: 19 start-page: 541 year: 2000 end-page: 561 ident: bib7 article-title: On the misuses of artificial neural networks for prognostic and diagnostic classification in oncology publication-title: Stat. Med. – volume: 85 start-page: 417 year: 2001 end-page: 423 ident: bib25 article-title: Incremental prognostic value of SE as adjunctive test to exercise electrocardiography following uncomplicated myocardial infarction publication-title: Heart – volume: 14 start-page: 73 year: 1995 end-page: 82 ident: bib14 article-title: A neural network model for survival data publication-title: Stat. Med. – volume: 14 start-page: 1216 year: 1993 end-page: 1222 ident: bib27 article-title: Enhanced sensitivity for detection of coronary artery disease by addition of atropine to dipyridamole echocardiography publication-title: Eur. Heart J. – volume: 10 start-page: 73 year: 1994 end-page: 79 ident: bib12 article-title: Artificial neural networks for cancer research: outcome prediction publication-title: Sem. Surg. Oncol. – volume: 96 start-page: 134 year: 1991 end-page: 141 ident: bib11 article-title: Neural network analysis of serial cardiac enzyme data: a clinical application of artificial machine intelligence publication-title: Am. J. Clin. Pathol. – volume: 57 start-page: 281 year: 1999 end-page: 286 ident: bib13 article-title: Artificial neural networks applied to survival prediction in breast cancer publication-title: Oncology – volume: 26 start-page: 220 year: 1993 ident: 10.1016/j.ijcard.2004.07.008_bib22 article-title: Use of a neural network as a predictive instrument for length of stay in the intensive care unit following cardiac surgery publication-title: Comput. Biomed. Res. doi: 10.1006/cbmr.1993.1015 – year: 2001 ident: 10.1016/j.ijcard.2004.07.008_bib30 – volume: 78 start-page: 392 year: 1999 ident: 10.1016/j.ijcard.2004.07.008_bib19 article-title: Neural network applications in physical medicine and rehabilitation publication-title: Am. J. Phys. Med. Rehabil. doi: 10.1097/00002060-199907000-00022 – volume: 96 start-page: 134 year: 1991 ident: 10.1016/j.ijcard.2004.07.008_bib11 article-title: Neural network analysis of serial cardiac enzyme data: a clinical application of artificial machine intelligence publication-title: Am. J. Clin. Pathol. doi: 10.1093/ajcp/96.1.134 – volume: 115 start-page: 843 year: 1991 ident: 10.1016/j.ijcard.2004.07.008_bib10 article-title: Use of an artificial neural network for the diagnosis of myocardial infarction publication-title: ANN Intern. Med. doi: 10.7326/0003-4819-115-11-843 – volume: 28 start-page: 515 year: 1996 ident: 10.1016/j.ijcard.2004.07.008_bib8 article-title: Artificial neural networks: current status in cardiovascular medicine publication-title: J. Am. Coll. Cardiol. doi: 10.1016/0735-1097(96)00174-X – volume: 3 start-page: 461 year: 1991 ident: 10.1016/j.ijcard.2004.07.008_bib28 article-title: Neural network classifiers estimate Bayesian a posteriori probabilities publication-title: Neural Comput. doi: 10.1162/neco.1991.3.4.461 – volume: 115 start-page: 906 year: 1991 ident: 10.1016/j.ijcard.2004.07.008_bib1 article-title: Neural networks: what are they? publication-title: ANN Intern. Med. doi: 10.7326/0003-4819-115-11-906 – volume: 70 start-page: 41 year: 1992 ident: 10.1016/j.ijcard.2004.07.008_bib26 article-title: Enhanced sensitivity for detection of coronary artery disease by addition of atropine to dobutamine SE publication-title: Am. J. Cardiol. doi: 10.1016/0002-9149(92)91387-J – volume: 329 start-page: 673 year: 1993 ident: 10.1016/j.ijcard.2004.07.008_bib31 article-title: An international randomized trial comparing four thrombolytic strategies for acute myocardial infarction publication-title: N. Engl. J. Med. doi: 10.1056/NEJM199309023291001 – volume: 88 start-page: 416 year: 1993 ident: 10.1016/j.ijcard.2004.07.008_bib23 article-title: Determinants of 6-month mortality in survivors of myocardial infarction after thrombolysis publication-title: Circulation doi: 10.1161/01.CIR.88.2.416 – volume: 20 start-page: 3677 year: 2001 ident: 10.1016/j.ijcard.2004.07.008_bib32 article-title: Modelling cause-specific hazards with radial basis function artificial neural networks: application to 2233 breast cancer patients publication-title: Stat. Med. doi: 10.1002/sim.1112 – volume: 27 start-page: 625 year: 1996 ident: 10.1016/j.ijcard.2004.07.008_bib29 article-title: Early discharge in the thrombolytic era: an analysis of criteria for uncomplicated infarction from the global utilization of streptokinase and rt-PA for occluded coronary artery (GUSTO) trial publication-title: J. Am. Coll. Cardiol. doi: 10.1016/0735-1097(95)00513-7 – volume: 54 start-page: 787 year: 1999 ident: 10.1016/j.ijcard.2004.07.008_bib17 article-title: Artificial neural networks in clinical urology publication-title: Urology doi: 10.1016/S0090-4295(99)00327-1 – volume: 346 start-page: 1175 year: 1995 ident: 10.1016/j.ijcard.2004.07.008_bib5 article-title: Nervous about artificial neural networks? publication-title: Lancet doi: 10.1016/S0140-6736(95)92893-6 – volume: 12 start-page: 343 year: 1992 ident: 10.1016/j.ijcard.2004.07.008_bib33 article-title: Statistical regression techniques for the construction, interpretation and testing of computer neural networks publication-title: Med. Decis. Mak. – volume: 40 start-page: 1323 year: 1999 ident: 10.1016/j.ijcard.2004.07.008_bib18 article-title: For classification and predictive purposes, simulated neural networks (SNNs; more often called artificial neural networks, ANN) offer a powerful alternative to traditional statistical analyses publication-title: Epilepsia doi: 10.1111/j.1528-1157.1999.tb00867.x – volume: 57 start-page: 281 year: 1999 ident: 10.1016/j.ijcard.2004.07.008_bib13 article-title: Artificial neural networks applied to survival prediction in breast cancer publication-title: Oncology doi: 10.1159/000012061 – volume: 14 start-page: 1216 year: 1993 ident: 10.1016/j.ijcard.2004.07.008_bib27 article-title: Enhanced sensitivity for detection of coronary artery disease by addition of atropine to dipyridamole echocardiography publication-title: Eur. Heart J. doi: 10.1093/eurheartj/14.9.1216 – volume: 346 start-page: 1203 year: 1995 ident: 10.1016/j.ijcard.2004.07.008_bib4 article-title: Artificial neural networks in pathology and medical laboratories publication-title: Lancet doi: 10.1016/S0140-6736(95)92904-5 – volume: 16 start-page: 386 year: 1996 ident: 10.1016/j.ijcard.2004.07.008_bib6 article-title: Neural networks in clinical medicine publication-title: Med. Decis. Mak. doi: 10.1177/0272989X9601600409 – volume: 10 start-page: 73 year: 1994 ident: 10.1016/j.ijcard.2004.07.008_bib12 article-title: Artificial neural networks for cancer research: outcome prediction publication-title: Sem. Surg. Oncol. doi: 10.1002/ssu.2980100111 – volume: 14 start-page: 73 year: 1995 ident: 10.1016/j.ijcard.2004.07.008_bib14 article-title: A neural network model for survival data publication-title: Stat. Med. doi: 10.1002/sim.4780140108 – volume: 38 start-page: 125 year: 1999 ident: 10.1016/j.ijcard.2004.07.008_bib24 article-title: Comparison of genetic algorithms and other classification methods in the diagnosis of female urinary incontinence publication-title: Meth. Inform. Med. doi: 10.1055/s-0038-1634175 – volume: 346 start-page: 1075 year: 1995 ident: 10.1016/j.ijcard.2004.07.008_bib3 article-title: Introduction to neural networks publication-title: Lancet doi: 10.1016/S0140-6736(95)91746-2 – volume: 19 start-page: 541 year: 2000 ident: 10.1016/j.ijcard.2004.07.008_bib7 article-title: On the misuses of artificial neural networks for prognostic and diagnostic classification in oncology publication-title: Stat. Med. doi: 10.1002/(SICI)1097-0258(20000229)19:4<541::AID-SIM355>3.0.CO;2-V – volume: 17 start-page: 2501 year: 1998 ident: 10.1016/j.ijcard.2004.07.008_bib20 article-title: Comparison of statistical learning methods on the GUSTO database publication-title: Stat. Med. doi: 10.1002/(SICI)1097-0258(19981115)17:21<2501::AID-SIM938>3.0.CO;2-M – volume: 18 start-page: 229 year: 1998 ident: 10.1016/j.ijcard.2004.07.008_bib21 article-title: Predicting mortality after coronary artery bypass surgery: what do artificial neural networks learn publication-title: Med. Decis. Mak. doi: 10.1177/0272989X9801800212 – volume: 85 start-page: 417 year: 2001 ident: 10.1016/j.ijcard.2004.07.008_bib25 article-title: Incremental prognostic value of SE as adjunctive test to exercise electrocardiography following uncomplicated myocardial infarction publication-title: Heart doi: 10.1136/heart.85.4.417 – volume: 4 start-page: S31 year: 1993 ident: 10.1016/j.ijcard.2004.07.008_bib15 article-title: Neural network analysis to predict treatment outcome publication-title: Ann. Oncol. doi: 10.1093/annonc/4.suppl_4.S31 – volume: 37 start-page: 845 year: 1999 ident: 10.1016/j.ijcard.2004.07.008_bib16 article-title: Artificial neural networks in laboratory medicine and medical outcome prediction publication-title: Clin. Chem. Lab. Med. doi: 10.1515/CCLM.1999.128 – volume: 67 start-page: 361 year: 1992 ident: 10.1016/j.ijcard.2004.07.008_bib9 article-title: Noninvasive diagnosis of coronary artery disease using a neural network algorithm publication-title: Biol. Cybern. doi: 10.1007/BF02414891 – volume: 346 start-page: 1135 year: 1995 ident: 10.1016/j.ijcard.2004.07.008_bib2 article-title: Application of artificial neural networks to clinical medicine publication-title: Lancet doi: 10.1016/S0140-6736(95)91804-3 – reference: 16256226 - Int J Cardiol. 2006 Sep 20;112(2):245-6 |
| SSID | ssj0004998 |
| Score | 1.8808882 |
| Snippet | To compare artificial neural networks (ANN) and robust Bayesian classifiers (RBC) in predicting outcome following acute myocardial infarction (AMI).
Clinical,... To compare artificial neural networks (ANN) and robust Bayesian classifiers (RBC) in predicting outcome following acute myocardial infarction (AMI).OBJECTIVETo... |
| SourceID | proquest pubmed pascalfrancis crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 481 |
| SubjectTerms | Algorithms Angina, Unstable - epidemiology Angina, Unstable - prevention & control Artificial intelligence Bayes Theorem Biological and medical sciences Cardiology. Vascular system Confidence Intervals Coronary heart disease Death, Sudden, Cardiac - epidemiology Death, Sudden, Cardiac - prevention & control Echocardiography, Stress Electrocardiography Exercise ECG Female Follow-Up Studies Heart Humans Incidence Male Medical sciences Middle Aged Myocardial infarction Myocardial Infarction - diagnosis Myocardial Infarction - epidemiology Myocarditis. Cardiomyopathies Neural network Neural Networks (Computer) Predictive Value of Tests Prognosis Reproducibility of Results Retrospective Studies Risk Assessment - statistics & numerical data Risk Factors Secondary Prevention Severity of Illness Index Stress echocardiography Survival Rate Time Factors |
| Title | Artificial neural networks and robust Bayesian classifiers for risk stratification following uncomplicated myocardial infarction |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0167527304006862 https://dx.doi.org/10.1016/j.ijcard.2004.07.008 https://www.ncbi.nlm.nih.gov/pubmed/15907418 https://www.proquest.com/docview/67845075 |
| Volume | 101 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1874-1754 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004998 issn: 0167-5273 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1874-1754 dateEnd: 20151215 omitProxy: true ssIdentifier: ssj0004998 issn: 0167-5273 databaseCode: ACRLP dateStart: 19950127 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1874-1754 dateEnd: 20151215 omitProxy: true ssIdentifier: ssj0004998 issn: 0167-5273 databaseCode: AIKHN dateStart: 19950127 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1874-1754 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004998 issn: 0167-5273 databaseCode: AKRWK dateStart: 19810101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEB4SB0qhlL7rpnV16HVrryXtSsc0JLgtyaUN5LZo9QAHZ9fENiWX0p_eGa02JtCQktOCVgNCGs18kma-AfgkhQ3CeJ55WdeZcF5ndTENmQ21mPqyKJ2n5OST02J2Jr6dy_MdOOxzYSisMtn-zqZHa51axmk2x8v5fPyDAuiJPozUkPIcdmEP_Y9SA9g7-Pp9drpNj9SxJG6k-CaBPoMuhnnNLywuRTwoRhZPqjP5bw_1ZGlWOG-hK3hxNyKNnun4GTxNkJIddKN-Dju-eQGPTtKj-Uv4Q386oghG9JXxE4O_V8w0jl219Wa1Zl_MtaeMSmYJUKMAAkOGkJZR9Dnr6HVDuuHD9sWi_YVuj6Ff7KPSvWOX162NOrdgqLq4iaj3Kzg7Pvp5OMtS4YXMIn5YZw7PbEoErq0vZZgGMfHcOI3QlitjleU1l8ZZh57NCe5KYzTHc2ahDB55DQK01zBo2sa_BcYLTS9zZR2CEtoKEyYmt4ZraaSe2nwIvJ_syiZWciqOsaj68LOLqlsiKpgpqgk9l6shZDdSy46V457-sl_Hqs84RRtZodu4R668kbullf8hObqlLtthFionMziEj73-VLij6ZnGNL7drCqEDwJRuhzCm06ttrKSrjJy9e7Bw9qHx5F7lq6R1HsYrK82_gOiqnU9gt3Pv_NR2jt_Abn4JV4 |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6SFJpCKU2TtttHokOvzj4k2fKxDQ3bNptLEshNyHrAho29ZHcpuZT-9M7IVpZAS0JPxrYGhDSa-UbzAvgkhQ3CeJ55WVWZcL7MqnwUMhsqMfJFXjhPycmT03x8Ib5fyssNOEq5MBRW2cn-VqZHad196Xer2Z9Pp_0zCqCn8mHEhpTnsAlPBL6TBXb4ax3ngZBepQLfNDzlz8Ugr-mVxY2IZmKs4UldJv-un57PzQJXLbTtLv6NR6NeOn4JLzpAyT63c96BDV-_gqeTzmW-C7_pT1smglHxyviIod8LZmrHbppqtViyL-bWUz4lswSnkQBhIUNAyyj2nLXFdUN3v4ffZ7PmJyo9hloxxaR7x65vGxs5bsaQcfEI0eg9uDj-en40zrq2C5lF9LDMHFpsSgReWl_IMApi4LlxJQJbroxVlldcGmcd6jUnuCuMKTlambkyaPAahGevYatuav8WGM9L8ssVVQhKlFaYMDBDa3gpjSxHdtgDnhZb264mObXGmOkUfHal2y2idplCD8hZrnqQ3VHN25ocD4yXaR91yjdFCalRaTxAV9zR3ePJR1Du32OX9TRzNSQh2IODxD8azzM5aUztm9VCI3gQiNFlD960bLWmlXSRMVTv_ntaB7A9Pp-c6JNvpz_ew7NYhZYulNQH2FrerPxHxFfLaj-enz82FyYm |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+neural+networks+and+robust+Bayesian+classifiers+for+risk+stratification+following+uncomplicated+myocardial+infarction&rft.jtitle=International+journal+of+cardiology&rft.au=Bigi%2C+Riccardo&rft.au=Gregori%2C+Dario&rft.au=Cortigiani%2C+Lauro&rft.au=Desideri%2C+Alessandro&rft.date=2005-06-08&rft.issn=0167-5273&rft.volume=101&rft.issue=3&rft.spage=481&rft.epage=487&rft_id=info:doi/10.1016%2Fj.ijcard.2004.07.008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijcard_2004_07_008 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-5273&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-5273&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-5273&client=summon |