Artificial neural networks and robust Bayesian classifiers for risk stratification following uncomplicated myocardial infarction

To compare artificial neural networks (ANN) and robust Bayesian classifiers (RBC) in predicting outcome following acute myocardial infarction (AMI). Clinical, exercise ECG and stress echo variables by 496 patients with AMI were used to predict the cumulative end-point of cardiac death, nonfatal rein...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of cardiology Vol. 101; no. 3; pp. 481 - 487
Main Authors Bigi, Riccardo, Gregori, Dario, Cortigiani, Lauro, Desideri, Alessandro, Chiarotto, Francesco A., Toffolo, Gianna M.
Format Journal Article
LanguageEnglish
Published Shannon Elsevier Ireland Ltd 08.06.2005
Elsevier Science
Subjects
Online AccessGet full text
ISSN0167-5273
1874-1754
DOI10.1016/j.ijcard.2004.07.008

Cover

Abstract To compare artificial neural networks (ANN) and robust Bayesian classifiers (RBC) in predicting outcome following acute myocardial infarction (AMI). Clinical, exercise ECG and stress echo variables by 496 patients with AMI were used to predict the cumulative end-point of cardiac death, nonfatal reinfarction and unstable angina. Revascularized patients were censored. Short (200 days)-, medium (400 days)- and long (1000 days)-term observation intervals, including 50%, 75% and 90% of the events, respectively, were considered. At each interval, any patient was binary assigned to the “event” or “no event” class. A multilayer feedforward ANN, trained by a back propagation algorithm, was used. RBC, using the leave-one-out technique, were derived. The accuracy of both techniques was compared to the default accuracy (DA) obtained by assigning all subjects to the largest class. 14 death, 27 reinfarction and 29 unstable angina were observed during a mean follow-up of 24 [95% confidence interval (CI) 19 to 22] months. The accuracy of ANN and RBC and DA were 70%, 81% and 74% at short, 67%, 73% and 56% at medium and 64%, 68% and 62% at long-term follow-up. (1) ANN do not improve the prognostic classification of patients with uncomplicated AMI as compared to RBC. (2) In particular, short-term prognostic accuracy seems insufficient.
AbstractList To compare artificial neural networks (ANN) and robust Bayesian classifiers (RBC) in predicting outcome following acute myocardial infarction (AMI). Clinical, exercise ECG and stress echo variables by 496 patients with AMI were used to predict the cumulative end-point of cardiac death, nonfatal reinfarction and unstable angina. Revascularized patients were censored. Short (200 days)-, medium (400 days)- and long (1000 days)-term observation intervals, including 50%, 75% and 90% of the events, respectively, were considered. At each interval, any patient was binary assigned to the “event” or “no event” class. A multilayer feedforward ANN, trained by a back propagation algorithm, was used. RBC, using the leave-one-out technique, were derived. The accuracy of both techniques was compared to the default accuracy (DA) obtained by assigning all subjects to the largest class. 14 death, 27 reinfarction and 29 unstable angina were observed during a mean follow-up of 24 [95% confidence interval (CI) 19 to 22] months. The accuracy of ANN and RBC and DA were 70%, 81% and 74% at short, 67%, 73% and 56% at medium and 64%, 68% and 62% at long-term follow-up. (1) ANN do not improve the prognostic classification of patients with uncomplicated AMI as compared to RBC. (2) In particular, short-term prognostic accuracy seems insufficient.
To compare artificial neural networks (ANN) and robust Bayesian classifiers (RBC) in predicting outcome following acute myocardial infarction (AMI).OBJECTIVETo compare artificial neural networks (ANN) and robust Bayesian classifiers (RBC) in predicting outcome following acute myocardial infarction (AMI).Clinical, exercise ECG and stress echo variables by 496 patients with AMI were used to predict the cumulative end-point of cardiac death, nonfatal reinfarction and unstable angina. Revascularized patients were censored. Short (200 days)-, medium (400 days)- and long (1000 days)-term observation intervals, including 50%, 75% and 90% of the events, respectively, were considered. At each interval, any patient was binary assigned to the "event" or "no event" class. A multilayer feedforward ANN, trained by a back propagation algorithm, was used. RBC, using the leave-one-out technique, were derived. The accuracy of both techniques was compared to the default accuracy (DA) obtained by assigning all subjects to the largest class.METHODSClinical, exercise ECG and stress echo variables by 496 patients with AMI were used to predict the cumulative end-point of cardiac death, nonfatal reinfarction and unstable angina. Revascularized patients were censored. Short (200 days)-, medium (400 days)- and long (1000 days)-term observation intervals, including 50%, 75% and 90% of the events, respectively, were considered. At each interval, any patient was binary assigned to the "event" or "no event" class. A multilayer feedforward ANN, trained by a back propagation algorithm, was used. RBC, using the leave-one-out technique, were derived. The accuracy of both techniques was compared to the default accuracy (DA) obtained by assigning all subjects to the largest class.14 death, 27 reinfarction and 29 unstable angina were observed during a mean follow-up of 24 [95% confidence interval (CI) 19 to 22] months. The accuracy of ANN and RBC and DA were 70%, 81% and 74% at short, 67%, 73% and 56% at medium and 64%, 68% and 62% at long-term follow-up.RESULTS14 death, 27 reinfarction and 29 unstable angina were observed during a mean follow-up of 24 [95% confidence interval (CI) 19 to 22] months. The accuracy of ANN and RBC and DA were 70%, 81% and 74% at short, 67%, 73% and 56% at medium and 64%, 68% and 62% at long-term follow-up.(1) ANN do not improve the prognostic classification of patients with uncomplicated AMI as compared to RBC. (2) In particular, short-term prognostic accuracy seems insufficient.CONCLUSIONS(1) ANN do not improve the prognostic classification of patients with uncomplicated AMI as compared to RBC. (2) In particular, short-term prognostic accuracy seems insufficient.
Author Desideri, Alessandro
Gregori, Dario
Toffolo, Gianna M.
Cortigiani, Lauro
Chiarotto, Francesco A.
Bigi, Riccardo
Author_xml – sequence: 1
  givenname: Riccardo
  surname: Bigi
  fullname: Bigi, Riccardo
  email: Riccardo.Bigi@unimi.it
  organization: CNR Clinical Physiology Institute Niguarda Ca' Granda Hospital P.zza Ospedale Maggiore, 3 20162 Milan, Italy
– sequence: 2
  givenname: Dario
  surname: Gregori
  fullname: Gregori, Dario
  organization: Department of Public Health and Microbiology, University of Turin, Italy
– sequence: 3
  givenname: Lauro
  surname: Cortigiani
  fullname: Cortigiani, Lauro
  organization: Cardiovascular Unit, “Campo di Marte” Hospital, Lucca, Italy
– sequence: 4
  givenname: Alessandro
  surname: Desideri
  fullname: Desideri, Alessandro
  organization: Cardiovascular Research Foundation, Castelfranco Veneto, Italy
– sequence: 5
  givenname: Francesco A.
  surname: Chiarotto
  fullname: Chiarotto, Francesco A.
  organization: Department of Electronics and Computer Science, University of Padua, Italy
– sequence: 6
  givenname: Gianna M.
  surname: Toffolo
  fullname: Toffolo, Gianna M.
  organization: Department of Electronics and Computer Science, University of Padua, Italy
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16811017$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/15907418$$D View this record in MEDLINE/PubMed
BookMark eNqFkUuLFDEUhYOMOD2j_0AkG91VmXRSnZSIMA6-YMCNrsPtPCTdqaRNqhx650831d0yMJve5ELynXPDOVfoIqZoEXpJSUsJXb3dtH6jIZt2SQhviWgJkU_QgkrBGyo6foEWFRNNtxTsEl2VsiEV7Hv5DF3SrieCU7lAf2_y6J3XHgKOdsqHMd6nvC0YosE5racy4o-wt8VDxDpAKVVgc8EuZZx92eIyZji41DPFeh9CuvfxF56iTsMuzA_W4GGf5g_Pq3x0kPVMP0dPHYRiX5zmNfr5-dOP26_N3fcv325v7hrdkX5sDOdScsd6bUXnlo4Ty8D0khomQUvN1qwDo43kwnBmBEDPOt6vJAjKgC_ZNXpz9N3l9HuyZVSDL9qGANGmqaiVkLwjoqvgqxM4rQdr1C77AfJe_c-sAq9PABQNwWWI2pcHbiVpLUhUjh85nVMp2boHhKi5QrVRxwrVXKEiQtUKq-zdI5n24yHYmrIP58QfjmJbo_xTW1JFexu1NT5bPSqT_DmD948MdPCxFhi2dn9e_g-sH9EE
CODEN IJCDD5
CitedBy_id crossref_primary_10_1007_s11936_008_0022_0
crossref_primary_10_1016_j_ijcard_2005_07_038
crossref_primary_10_1016_j_rccar_2013_10_001
crossref_primary_10_1177_10790632231210536
crossref_primary_10_1016_j_ijcard_2006_09_025
crossref_primary_10_1007_s12103_014_9246_6
crossref_primary_10_1080_01639625_2022_2059417
crossref_primary_10_1111_j_1542_474X_2008_00270_x
crossref_primary_10_1186_1471_2261_6_20
crossref_primary_10_1016_j_jflm_2023_102488
crossref_primary_10_1111_j_1365_2753_2008_01034_x
crossref_primary_10_1007_s11517_011_0785_4
crossref_primary_10_1016_j_eswa_2012_10_054
crossref_primary_10_1016_j_forsciint_2022_111446
crossref_primary_10_1038_s41598_017_12951_x
crossref_primary_10_1002_bsl_2661
crossref_primary_10_1001_jamacardio_2021_0122
crossref_primary_10_1371_journal_pone_0210103
crossref_primary_10_1007_s10940_011_9137_7
crossref_primary_10_1177_00938548211066911
crossref_primary_10_1371_journal_pone_0314018
crossref_primary_10_1016_j_compbiomed_2008_04_009
crossref_primary_10_4018_JOEUC_287574
crossref_primary_10_1161_JAHA_122_025812
crossref_primary_10_1080_15564886_2024_2362177
crossref_primary_10_1155_2017_8953083
Cites_doi 10.1006/cbmr.1993.1015
10.1097/00002060-199907000-00022
10.1093/ajcp/96.1.134
10.7326/0003-4819-115-11-843
10.1016/0735-1097(96)00174-X
10.1162/neco.1991.3.4.461
10.7326/0003-4819-115-11-906
10.1016/0002-9149(92)91387-J
10.1056/NEJM199309023291001
10.1161/01.CIR.88.2.416
10.1002/sim.1112
10.1016/0735-1097(95)00513-7
10.1016/S0090-4295(99)00327-1
10.1016/S0140-6736(95)92893-6
10.1111/j.1528-1157.1999.tb00867.x
10.1159/000012061
10.1093/eurheartj/14.9.1216
10.1016/S0140-6736(95)92904-5
10.1177/0272989X9601600409
10.1002/ssu.2980100111
10.1002/sim.4780140108
10.1055/s-0038-1634175
10.1016/S0140-6736(95)91746-2
10.1002/(SICI)1097-0258(20000229)19:4<541::AID-SIM355>3.0.CO;2-V
10.1002/(SICI)1097-0258(19981115)17:21<2501::AID-SIM938>3.0.CO;2-M
10.1177/0272989X9801800212
10.1136/heart.85.4.417
10.1093/annonc/4.suppl_4.S31
10.1515/CCLM.1999.128
10.1007/BF02414891
10.1016/S0140-6736(95)91804-3
ContentType Journal Article
Copyright 2004
2005 INIST-CNRS
Copyright_xml – notice: 2004
– notice: 2005 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.ijcard.2004.07.008
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1874-1754
EndPage 487
ExternalDocumentID 15907418
16811017
10_1016_j_ijcard_2004_07_008
S0167527304006862
Genre Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GroupedDBID ---
--K
--M
.1-
.55
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29J
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABLJU
ABMAC
ABMZM
ABOCM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACLOT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEB
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
M29
M41
MO0
N9A
O-L
O9-
OA.
OAUVE
OL~
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SEL
SES
SEW
SPCBC
SSH
SSZ
T5K
UV1
WUQ
X7M
Z5R
ZGI
~G-
~HD
0SF
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AHPSJ
AJBFU
AJOXV
AMFUW
LCYCR
NCXOZ
RIG
ZA5
AAYXX
CITATION
AGCQF
AGRNS
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c509t-d44884f39ce75f2f40e3ad981d38ac8c3b35adcd847d43d7aa9354968a713a423
IEDL.DBID AIKHN
ISSN 0167-5273
IngestDate Sun Sep 28 01:46:21 EDT 2025
Wed Feb 19 01:40:24 EST 2025
Mon Jul 21 09:16:45 EDT 2025
Thu Apr 24 23:00:51 EDT 2025
Wed Oct 01 03:14:38 EDT 2025
Fri Feb 23 02:27:23 EST 2024
Tue Oct 14 19:35:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Myocardial infarction
Stress echocardiography
Prognosis
Neural network
Artificial intelligence
Exercise ECG
Sonography
Physical exercise
Echocardiography
Cardiovascular disease
Risk
Myocardial disease
Phlebology
Stress
Electrodiagnosis
Heart disease
Risk factor
Electrocardiography
Exercise tolerance test
Circulatory system
Cardiology
Stratification
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-d44884f39ce75f2f40e3ad981d38ac8c3b35adcd847d43d7aa9354968a713a423
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PMID 15907418
PQID 67845075
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_67845075
pubmed_primary_15907418
pascalfrancis_primary_16811017
crossref_primary_10_1016_j_ijcard_2004_07_008
crossref_citationtrail_10_1016_j_ijcard_2004_07_008
elsevier_sciencedirect_doi_10_1016_j_ijcard_2004_07_008
elsevier_clinicalkey_doi_10_1016_j_ijcard_2004_07_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2005-06-08
PublicationDateYYYYMMDD 2005-06-08
PublicationDate_xml – month: 06
  year: 2005
  text: 2005-06-08
  day: 08
PublicationDecade 2000
PublicationPlace Shannon
PublicationPlace_xml – name: Shannon
– name: Netherlands
PublicationTitle International journal of cardiology
PublicationTitleAlternate Int J Cardiol
PublicationYear 2005
Publisher Elsevier Ireland Ltd
Elsevier Science
Publisher_xml – name: Elsevier Ireland Ltd
– name: Elsevier Science
References Ohno-Machado, Rowland (bib19) 1999; 78
Baxt (bib2) 1995; 346
Dybowski, Gant (bib4) 1995; 346
Akay (bib9) 1992; 67
Penny, Frost (bib6) 1996; 16
Burke (bib12) 1994; 10
Snow, Rodvold, Brandt (bib17) 1999; 54
Malmgren (bib18) 1999; 40
McNeill, Fioretti, El-Said, Salustri, Forster, Roelandt (bib26) 1992; 70
(bib31) 1993; 329
Kappen, Neijt (bib15) 1993; 4
Laurikkala, Juhola, Lammi, Viikki (bib24) 1999; 38
Richard, Lippmann (bib28) 1991; 3
Tu, Weinstein, McNeill, Naylor (bib21) 1998; 18
Boracchi, Biganzoli, Marubini (bib32) 2001; 20
Furlong, Dupuy, Heinsimer (bib11) 1991; 96
Ennis, Hinton, Naylor, Revow, Tibshirani (bib20) 1998; 17
Volpi, DeVita, Franzosi, Geraci, Maggioni, Mauri (bib23) 1993; 88
Bigi, Galati, Desideri, Bax, Coletta, Fiorentini (bib25) 2001; 85
Baxt (bib10) 1991; 115
Hastie, Tibshirani, Friedman (bib30) 2001
Itchhaporia, Snow, Almassy, Oegten (bib8) 1996; 28
Faraggi, Simon (bib14) 1995; 14
Newby, Califf, Guerci, Weaver, Col, Horgan (bib29) 1996; 27
Wyatt (bib5) 1995; 346
Picano, Pingitore, Conti (bib27) 1993; 14
Tafeit, Reibnegger (bib16) 1999; 37
Cross, Harrison, Kennedy (bib3) 1995; 346
Schwarzer, Werner, Scumacher (bib7) 2000; 19
Lundin, Lundin, Burke, Toikkanen, Pylkkanen, Joensuu (bib13) 1999; 57
Tu, Guerriere (bib22) 1993; 26
Griffith, D'Agostino, Selker (bib33) 1992; 12
Guerriere, Detsky (bib1) 1991; 115
Cross (10.1016/j.ijcard.2004.07.008_bib3) 1995; 346
(10.1016/j.ijcard.2004.07.008_bib31) 1993; 329
Burke (10.1016/j.ijcard.2004.07.008_bib12) 1994; 10
Itchhaporia (10.1016/j.ijcard.2004.07.008_bib8) 1996; 28
Schwarzer (10.1016/j.ijcard.2004.07.008_bib7) 2000; 19
Baxt (10.1016/j.ijcard.2004.07.008_bib10) 1991; 115
Tafeit (10.1016/j.ijcard.2004.07.008_bib16) 1999; 37
Snow (10.1016/j.ijcard.2004.07.008_bib17) 1999; 54
Furlong (10.1016/j.ijcard.2004.07.008_bib11) 1991; 96
Faraggi (10.1016/j.ijcard.2004.07.008_bib14) 1995; 14
Ohno-Machado (10.1016/j.ijcard.2004.07.008_bib19) 1999; 78
Bigi (10.1016/j.ijcard.2004.07.008_bib25) 2001; 85
Ennis (10.1016/j.ijcard.2004.07.008_bib20) 1998; 17
Lundin (10.1016/j.ijcard.2004.07.008_bib13) 1999; 57
Baxt (10.1016/j.ijcard.2004.07.008_bib2) 1995; 346
Newby (10.1016/j.ijcard.2004.07.008_bib29) 1996; 27
Richard (10.1016/j.ijcard.2004.07.008_bib28) 1991; 3
Boracchi (10.1016/j.ijcard.2004.07.008_bib32) 2001; 20
McNeill (10.1016/j.ijcard.2004.07.008_bib26) 1992; 70
Picano (10.1016/j.ijcard.2004.07.008_bib27) 1993; 14
Guerriere (10.1016/j.ijcard.2004.07.008_bib1) 1991; 115
Penny (10.1016/j.ijcard.2004.07.008_bib6) 1996; 16
Malmgren (10.1016/j.ijcard.2004.07.008_bib18) 1999; 40
Wyatt (10.1016/j.ijcard.2004.07.008_bib5) 1995; 346
Volpi (10.1016/j.ijcard.2004.07.008_bib23) 1993; 88
Hastie (10.1016/j.ijcard.2004.07.008_bib30) 2001
Akay (10.1016/j.ijcard.2004.07.008_bib9) 1992; 67
Griffith (10.1016/j.ijcard.2004.07.008_bib33) 1992; 12
Dybowski (10.1016/j.ijcard.2004.07.008_bib4) 1995; 346
Tu (10.1016/j.ijcard.2004.07.008_bib21) 1998; 18
Laurikkala (10.1016/j.ijcard.2004.07.008_bib24) 1999; 38
Kappen (10.1016/j.ijcard.2004.07.008_bib15) 1993; 4
Tu (10.1016/j.ijcard.2004.07.008_bib22) 1993; 26
16256226 - Int J Cardiol. 2006 Sep 20;112(2):245-6
References_xml – volume: 54
  start-page: 787
  year: 1999
  end-page: 790
  ident: bib17
  article-title: Artificial neural networks in clinical urology
  publication-title: Urology
– volume: 28
  start-page: 515
  year: 1996
  end-page: 521
  ident: bib8
  article-title: Artificial neural networks: current status in cardiovascular medicine
  publication-title: J. Am. Coll. Cardiol.
– volume: 88
  start-page: 416
  year: 1993
  end-page: 429
  ident: bib23
  article-title: Determinants of 6-month mortality in survivors of myocardial infarction after thrombolysis
  publication-title: Circulation
– volume: 3
  start-page: 461
  year: 1991
  end-page: 483
  ident: bib28
  article-title: Neural network classifiers estimate Bayesian a posteriori probabilities
  publication-title: Neural Comput.
– volume: 12
  start-page: 343
  year: 1992
  ident: bib33
  article-title: Statistical regression techniques for the construction, interpretation and testing of computer neural networks
  publication-title: Med. Decis. Mak.
– volume: 78
  start-page: 392
  year: 1999
  end-page: 398
  ident: bib19
  article-title: Neural network applications in physical medicine and rehabilitation
  publication-title: Am. J. Phys. Med. Rehabil.
– volume: 20
  start-page: 3677
  year: 2001
  end-page: 3694
  ident: bib32
  article-title: Modelling cause-specific hazards with radial basis function artificial neural networks: application to 2233 breast cancer patients
  publication-title: Stat. Med.
– volume: 26
  start-page: 220
  year: 1993
  end-page: 229
  ident: bib22
  article-title: Use of a neural network as a predictive instrument for length of stay in the intensive care unit following cardiac surgery
  publication-title: Comput. Biomed. Res.
– volume: 115
  start-page: 843
  year: 1991
  end-page: 848
  ident: bib10
  article-title: Use of an artificial neural network for the diagnosis of myocardial infarction
  publication-title: ANN Intern. Med.
– volume: 37
  start-page: 845
  year: 1999
  end-page: 853
  ident: bib16
  article-title: Artificial neural networks in laboratory medicine and medical outcome prediction
  publication-title: Clin. Chem. Lab. Med.
– volume: 346
  start-page: 1203
  year: 1995
  end-page: 1207
  ident: bib4
  article-title: Artificial neural networks in pathology and medical laboratories
  publication-title: Lancet
– year: 2001
  ident: bib30
  article-title: The Elements of Statistical Learning
– volume: 115
  start-page: 906
  year: 1991
  end-page: 907
  ident: bib1
  article-title: Neural networks: what are they?
  publication-title: ANN Intern. Med.
– volume: 4
  start-page: S31
  year: 1993
  end-page: S34
  ident: bib15
  article-title: Neural network analysis to predict treatment outcome
  publication-title: Ann. Oncol.
– volume: 329
  start-page: 673
  year: 1993
  end-page: 682
  ident: bib31
  article-title: An international randomized trial comparing four thrombolytic strategies for acute myocardial infarction
  publication-title: N. Engl. J. Med.
– volume: 70
  start-page: 41
  year: 1992
  end-page: 46
  ident: bib26
  article-title: Enhanced sensitivity for detection of coronary artery disease by addition of atropine to dobutamine SE
  publication-title: Am. J. Cardiol.
– volume: 346
  start-page: 1075
  year: 1995
  end-page: 1079
  ident: bib3
  article-title: Introduction to neural networks
  publication-title: Lancet
– volume: 16
  start-page: 386
  year: 1996
  end-page: 398
  ident: bib6
  article-title: Neural networks in clinical medicine
  publication-title: Med. Decis. Mak.
– volume: 67
  start-page: 361
  year: 1992
  end-page: 367
  ident: bib9
  article-title: Noninvasive diagnosis of coronary artery disease using a neural network algorithm
  publication-title: Biol. Cybern.
– volume: 18
  start-page: 229
  year: 1998
  end-page: 235
  ident: bib21
  article-title: Predicting mortality after coronary artery bypass surgery: what do artificial neural networks learn
  publication-title: Med. Decis. Mak.
– volume: 346
  start-page: 1135
  year: 1995
  end-page: 1138
  ident: bib2
  article-title: Application of artificial neural networks to clinical medicine
  publication-title: Lancet
– volume: 40
  start-page: 1323
  year: 1999
  end-page: 1324
  ident: bib18
  article-title: For classification and predictive purposes, simulated neural networks (SNNs; more often called artificial neural networks, ANN) offer a powerful alternative to traditional statistical analyses
  publication-title: Epilepsia
– volume: 17
  start-page: 2501
  year: 1998
  end-page: 2508
  ident: bib20
  article-title: Comparison of statistical learning methods on the GUSTO database
  publication-title: Stat. Med.
– volume: 27
  start-page: 625
  year: 1996
  end-page: 632
  ident: bib29
  article-title: Early discharge in the thrombolytic era: an analysis of criteria for uncomplicated infarction from the global utilization of streptokinase and rt-PA for occluded coronary artery (GUSTO) trial
  publication-title: J. Am. Coll. Cardiol.
– volume: 346
  start-page: 1175
  year: 1995
  end-page: 1177
  ident: bib5
  article-title: Nervous about artificial neural networks?
  publication-title: Lancet
– volume: 38
  start-page: 125
  year: 1999
  end-page: 132
  ident: bib24
  article-title: Comparison of genetic algorithms and other classification methods in the diagnosis of female urinary incontinence
  publication-title: Meth. Inform. Med.
– volume: 19
  start-page: 541
  year: 2000
  end-page: 561
  ident: bib7
  article-title: On the misuses of artificial neural networks for prognostic and diagnostic classification in oncology
  publication-title: Stat. Med.
– volume: 85
  start-page: 417
  year: 2001
  end-page: 423
  ident: bib25
  article-title: Incremental prognostic value of SE as adjunctive test to exercise electrocardiography following uncomplicated myocardial infarction
  publication-title: Heart
– volume: 14
  start-page: 73
  year: 1995
  end-page: 82
  ident: bib14
  article-title: A neural network model for survival data
  publication-title: Stat. Med.
– volume: 14
  start-page: 1216
  year: 1993
  end-page: 1222
  ident: bib27
  article-title: Enhanced sensitivity for detection of coronary artery disease by addition of atropine to dipyridamole echocardiography
  publication-title: Eur. Heart J.
– volume: 10
  start-page: 73
  year: 1994
  end-page: 79
  ident: bib12
  article-title: Artificial neural networks for cancer research: outcome prediction
  publication-title: Sem. Surg. Oncol.
– volume: 96
  start-page: 134
  year: 1991
  end-page: 141
  ident: bib11
  article-title: Neural network analysis of serial cardiac enzyme data: a clinical application of artificial machine intelligence
  publication-title: Am. J. Clin. Pathol.
– volume: 57
  start-page: 281
  year: 1999
  end-page: 286
  ident: bib13
  article-title: Artificial neural networks applied to survival prediction in breast cancer
  publication-title: Oncology
– volume: 26
  start-page: 220
  year: 1993
  ident: 10.1016/j.ijcard.2004.07.008_bib22
  article-title: Use of a neural network as a predictive instrument for length of stay in the intensive care unit following cardiac surgery
  publication-title: Comput. Biomed. Res.
  doi: 10.1006/cbmr.1993.1015
– year: 2001
  ident: 10.1016/j.ijcard.2004.07.008_bib30
– volume: 78
  start-page: 392
  year: 1999
  ident: 10.1016/j.ijcard.2004.07.008_bib19
  article-title: Neural network applications in physical medicine and rehabilitation
  publication-title: Am. J. Phys. Med. Rehabil.
  doi: 10.1097/00002060-199907000-00022
– volume: 96
  start-page: 134
  year: 1991
  ident: 10.1016/j.ijcard.2004.07.008_bib11
  article-title: Neural network analysis of serial cardiac enzyme data: a clinical application of artificial machine intelligence
  publication-title: Am. J. Clin. Pathol.
  doi: 10.1093/ajcp/96.1.134
– volume: 115
  start-page: 843
  year: 1991
  ident: 10.1016/j.ijcard.2004.07.008_bib10
  article-title: Use of an artificial neural network for the diagnosis of myocardial infarction
  publication-title: ANN Intern. Med.
  doi: 10.7326/0003-4819-115-11-843
– volume: 28
  start-page: 515
  year: 1996
  ident: 10.1016/j.ijcard.2004.07.008_bib8
  article-title: Artificial neural networks: current status in cardiovascular medicine
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/0735-1097(96)00174-X
– volume: 3
  start-page: 461
  year: 1991
  ident: 10.1016/j.ijcard.2004.07.008_bib28
  article-title: Neural network classifiers estimate Bayesian a posteriori probabilities
  publication-title: Neural Comput.
  doi: 10.1162/neco.1991.3.4.461
– volume: 115
  start-page: 906
  year: 1991
  ident: 10.1016/j.ijcard.2004.07.008_bib1
  article-title: Neural networks: what are they?
  publication-title: ANN Intern. Med.
  doi: 10.7326/0003-4819-115-11-906
– volume: 70
  start-page: 41
  year: 1992
  ident: 10.1016/j.ijcard.2004.07.008_bib26
  article-title: Enhanced sensitivity for detection of coronary artery disease by addition of atropine to dobutamine SE
  publication-title: Am. J. Cardiol.
  doi: 10.1016/0002-9149(92)91387-J
– volume: 329
  start-page: 673
  year: 1993
  ident: 10.1016/j.ijcard.2004.07.008_bib31
  article-title: An international randomized trial comparing four thrombolytic strategies for acute myocardial infarction
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJM199309023291001
– volume: 88
  start-page: 416
  year: 1993
  ident: 10.1016/j.ijcard.2004.07.008_bib23
  article-title: Determinants of 6-month mortality in survivors of myocardial infarction after thrombolysis
  publication-title: Circulation
  doi: 10.1161/01.CIR.88.2.416
– volume: 20
  start-page: 3677
  year: 2001
  ident: 10.1016/j.ijcard.2004.07.008_bib32
  article-title: Modelling cause-specific hazards with radial basis function artificial neural networks: application to 2233 breast cancer patients
  publication-title: Stat. Med.
  doi: 10.1002/sim.1112
– volume: 27
  start-page: 625
  year: 1996
  ident: 10.1016/j.ijcard.2004.07.008_bib29
  article-title: Early discharge in the thrombolytic era: an analysis of criteria for uncomplicated infarction from the global utilization of streptokinase and rt-PA for occluded coronary artery (GUSTO) trial
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/0735-1097(95)00513-7
– volume: 54
  start-page: 787
  year: 1999
  ident: 10.1016/j.ijcard.2004.07.008_bib17
  article-title: Artificial neural networks in clinical urology
  publication-title: Urology
  doi: 10.1016/S0090-4295(99)00327-1
– volume: 346
  start-page: 1175
  year: 1995
  ident: 10.1016/j.ijcard.2004.07.008_bib5
  article-title: Nervous about artificial neural networks?
  publication-title: Lancet
  doi: 10.1016/S0140-6736(95)92893-6
– volume: 12
  start-page: 343
  year: 1992
  ident: 10.1016/j.ijcard.2004.07.008_bib33
  article-title: Statistical regression techniques for the construction, interpretation and testing of computer neural networks
  publication-title: Med. Decis. Mak.
– volume: 40
  start-page: 1323
  year: 1999
  ident: 10.1016/j.ijcard.2004.07.008_bib18
  article-title: For classification and predictive purposes, simulated neural networks (SNNs; more often called artificial neural networks, ANN) offer a powerful alternative to traditional statistical analyses
  publication-title: Epilepsia
  doi: 10.1111/j.1528-1157.1999.tb00867.x
– volume: 57
  start-page: 281
  year: 1999
  ident: 10.1016/j.ijcard.2004.07.008_bib13
  article-title: Artificial neural networks applied to survival prediction in breast cancer
  publication-title: Oncology
  doi: 10.1159/000012061
– volume: 14
  start-page: 1216
  year: 1993
  ident: 10.1016/j.ijcard.2004.07.008_bib27
  article-title: Enhanced sensitivity for detection of coronary artery disease by addition of atropine to dipyridamole echocardiography
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/14.9.1216
– volume: 346
  start-page: 1203
  year: 1995
  ident: 10.1016/j.ijcard.2004.07.008_bib4
  article-title: Artificial neural networks in pathology and medical laboratories
  publication-title: Lancet
  doi: 10.1016/S0140-6736(95)92904-5
– volume: 16
  start-page: 386
  year: 1996
  ident: 10.1016/j.ijcard.2004.07.008_bib6
  article-title: Neural networks in clinical medicine
  publication-title: Med. Decis. Mak.
  doi: 10.1177/0272989X9601600409
– volume: 10
  start-page: 73
  year: 1994
  ident: 10.1016/j.ijcard.2004.07.008_bib12
  article-title: Artificial neural networks for cancer research: outcome prediction
  publication-title: Sem. Surg. Oncol.
  doi: 10.1002/ssu.2980100111
– volume: 14
  start-page: 73
  year: 1995
  ident: 10.1016/j.ijcard.2004.07.008_bib14
  article-title: A neural network model for survival data
  publication-title: Stat. Med.
  doi: 10.1002/sim.4780140108
– volume: 38
  start-page: 125
  year: 1999
  ident: 10.1016/j.ijcard.2004.07.008_bib24
  article-title: Comparison of genetic algorithms and other classification methods in the diagnosis of female urinary incontinence
  publication-title: Meth. Inform. Med.
  doi: 10.1055/s-0038-1634175
– volume: 346
  start-page: 1075
  year: 1995
  ident: 10.1016/j.ijcard.2004.07.008_bib3
  article-title: Introduction to neural networks
  publication-title: Lancet
  doi: 10.1016/S0140-6736(95)91746-2
– volume: 19
  start-page: 541
  year: 2000
  ident: 10.1016/j.ijcard.2004.07.008_bib7
  article-title: On the misuses of artificial neural networks for prognostic and diagnostic classification in oncology
  publication-title: Stat. Med.
  doi: 10.1002/(SICI)1097-0258(20000229)19:4<541::AID-SIM355>3.0.CO;2-V
– volume: 17
  start-page: 2501
  year: 1998
  ident: 10.1016/j.ijcard.2004.07.008_bib20
  article-title: Comparison of statistical learning methods on the GUSTO database
  publication-title: Stat. Med.
  doi: 10.1002/(SICI)1097-0258(19981115)17:21<2501::AID-SIM938>3.0.CO;2-M
– volume: 18
  start-page: 229
  year: 1998
  ident: 10.1016/j.ijcard.2004.07.008_bib21
  article-title: Predicting mortality after coronary artery bypass surgery: what do artificial neural networks learn
  publication-title: Med. Decis. Mak.
  doi: 10.1177/0272989X9801800212
– volume: 85
  start-page: 417
  year: 2001
  ident: 10.1016/j.ijcard.2004.07.008_bib25
  article-title: Incremental prognostic value of SE as adjunctive test to exercise electrocardiography following uncomplicated myocardial infarction
  publication-title: Heart
  doi: 10.1136/heart.85.4.417
– volume: 4
  start-page: S31
  year: 1993
  ident: 10.1016/j.ijcard.2004.07.008_bib15
  article-title: Neural network analysis to predict treatment outcome
  publication-title: Ann. Oncol.
  doi: 10.1093/annonc/4.suppl_4.S31
– volume: 37
  start-page: 845
  year: 1999
  ident: 10.1016/j.ijcard.2004.07.008_bib16
  article-title: Artificial neural networks in laboratory medicine and medical outcome prediction
  publication-title: Clin. Chem. Lab. Med.
  doi: 10.1515/CCLM.1999.128
– volume: 67
  start-page: 361
  year: 1992
  ident: 10.1016/j.ijcard.2004.07.008_bib9
  article-title: Noninvasive diagnosis of coronary artery disease using a neural network algorithm
  publication-title: Biol. Cybern.
  doi: 10.1007/BF02414891
– volume: 346
  start-page: 1135
  year: 1995
  ident: 10.1016/j.ijcard.2004.07.008_bib2
  article-title: Application of artificial neural networks to clinical medicine
  publication-title: Lancet
  doi: 10.1016/S0140-6736(95)91804-3
– reference: 16256226 - Int J Cardiol. 2006 Sep 20;112(2):245-6
SSID ssj0004998
Score 1.8808882
Snippet To compare artificial neural networks (ANN) and robust Bayesian classifiers (RBC) in predicting outcome following acute myocardial infarction (AMI). Clinical,...
To compare artificial neural networks (ANN) and robust Bayesian classifiers (RBC) in predicting outcome following acute myocardial infarction (AMI).OBJECTIVETo...
SourceID proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 481
SubjectTerms Algorithms
Angina, Unstable - epidemiology
Angina, Unstable - prevention & control
Artificial intelligence
Bayes Theorem
Biological and medical sciences
Cardiology. Vascular system
Confidence Intervals
Coronary heart disease
Death, Sudden, Cardiac - epidemiology
Death, Sudden, Cardiac - prevention & control
Echocardiography, Stress
Electrocardiography
Exercise ECG
Female
Follow-Up Studies
Heart
Humans
Incidence
Male
Medical sciences
Middle Aged
Myocardial infarction
Myocardial Infarction - diagnosis
Myocardial Infarction - epidemiology
Myocarditis. Cardiomyopathies
Neural network
Neural Networks (Computer)
Predictive Value of Tests
Prognosis
Reproducibility of Results
Retrospective Studies
Risk Assessment - statistics & numerical data
Risk Factors
Secondary Prevention
Severity of Illness Index
Stress echocardiography
Survival Rate
Time Factors
Title Artificial neural networks and robust Bayesian classifiers for risk stratification following uncomplicated myocardial infarction
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0167527304006862
https://dx.doi.org/10.1016/j.ijcard.2004.07.008
https://www.ncbi.nlm.nih.gov/pubmed/15907418
https://www.proquest.com/docview/67845075
Volume 101
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1874-1754
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004998
  issn: 0167-5273
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1874-1754
  dateEnd: 20151215
  omitProxy: true
  ssIdentifier: ssj0004998
  issn: 0167-5273
  databaseCode: ACRLP
  dateStart: 19950127
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1874-1754
  dateEnd: 20151215
  omitProxy: true
  ssIdentifier: ssj0004998
  issn: 0167-5273
  databaseCode: AIKHN
  dateStart: 19950127
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1874-1754
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004998
  issn: 0167-5273
  databaseCode: AKRWK
  dateStart: 19810101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEB4SB0qhlL7rpnV16HVrryXtSsc0JLgtyaUN5LZo9QAHZ9fENiWX0p_eGa02JtCQktOCVgNCGs18kma-AfgkhQ3CeJ55WdeZcF5ndTENmQ21mPqyKJ2n5OST02J2Jr6dy_MdOOxzYSisMtn-zqZHa51axmk2x8v5fPyDAuiJPozUkPIcdmEP_Y9SA9g7-Pp9drpNj9SxJG6k-CaBPoMuhnnNLywuRTwoRhZPqjP5bw_1ZGlWOG-hK3hxNyKNnun4GTxNkJIddKN-Dju-eQGPTtKj-Uv4Q386oghG9JXxE4O_V8w0jl219Wa1Zl_MtaeMSmYJUKMAAkOGkJZR9Dnr6HVDuuHD9sWi_YVuj6Ff7KPSvWOX162NOrdgqLq4iaj3Kzg7Pvp5OMtS4YXMIn5YZw7PbEoErq0vZZgGMfHcOI3QlitjleU1l8ZZh57NCe5KYzTHc2ahDB55DQK01zBo2sa_BcYLTS9zZR2CEtoKEyYmt4ZraaSe2nwIvJ_syiZWciqOsaj68LOLqlsiKpgpqgk9l6shZDdSy46V457-sl_Hqs84RRtZodu4R668kbullf8hObqlLtthFionMziEj73-VLij6ZnGNL7drCqEDwJRuhzCm06ttrKSrjJy9e7Bw9qHx5F7lq6R1HsYrK82_gOiqnU9gt3Pv_NR2jt_Abn4JV4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6SFJpCKU2TtttHokOvzj4k2fKxDQ3bNptLEshNyHrAho29ZHcpuZT-9M7IVpZAS0JPxrYGhDSa-UbzAvgkhQ3CeJ55WVWZcL7MqnwUMhsqMfJFXjhPycmT03x8Ib5fyssNOEq5MBRW2cn-VqZHad196Xer2Z9Pp_0zCqCn8mHEhpTnsAlPBL6TBXb4ax3ngZBepQLfNDzlz8Ugr-mVxY2IZmKs4UldJv-un57PzQJXLbTtLv6NR6NeOn4JLzpAyT63c96BDV-_gqeTzmW-C7_pT1smglHxyviIod8LZmrHbppqtViyL-bWUz4lswSnkQBhIUNAyyj2nLXFdUN3v4ffZ7PmJyo9hloxxaR7x65vGxs5bsaQcfEI0eg9uDj-en40zrq2C5lF9LDMHFpsSgReWl_IMApi4LlxJQJbroxVlldcGmcd6jUnuCuMKTlambkyaPAahGevYatuav8WGM9L8ssVVQhKlFaYMDBDa3gpjSxHdtgDnhZb264mObXGmOkUfHal2y2idplCD8hZrnqQ3VHN25ocD4yXaR91yjdFCalRaTxAV9zR3ePJR1Du32OX9TRzNSQh2IODxD8azzM5aUztm9VCI3gQiNFlD960bLWmlXSRMVTv_ntaB7A9Pp-c6JNvpz_ew7NYhZYulNQH2FrerPxHxFfLaj-enz82FyYm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+neural+networks+and+robust+Bayesian+classifiers+for+risk+stratification+following+uncomplicated+myocardial+infarction&rft.jtitle=International+journal+of+cardiology&rft.au=Bigi%2C+Riccardo&rft.au=Gregori%2C+Dario&rft.au=Cortigiani%2C+Lauro&rft.au=Desideri%2C+Alessandro&rft.date=2005-06-08&rft.issn=0167-5273&rft.volume=101&rft.issue=3&rft.spage=481&rft.epage=487&rft_id=info:doi/10.1016%2Fj.ijcard.2004.07.008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijcard_2004_07_008
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-5273&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-5273&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-5273&client=summon