Enhanced Robot Motion Block of A-Star Algorithm for Robotic Path Planning
An optimized robot path-planning algorithm is required for various aspects of robot movements in applications. The efficacy of the robot path-planning model is vulnerable to the number of search nodes, path cost, and time complexity. The conventional A-star (A*) algorithm outperforms other grid-base...
Saved in:
| Published in | Sensors (Basel, Switzerland) Vol. 24; no. 5; p. 1422 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
MDPI AG
22.02.2024
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1424-8220 1424-8220 |
| DOI | 10.3390/s24051422 |
Cover
| Abstract | An optimized robot path-planning algorithm is required for various aspects of robot movements in applications. The efficacy of the robot path-planning model is vulnerable to the number of search nodes, path cost, and time complexity. The conventional A-star (A*) algorithm outperforms other grid-based algorithms because of its heuristic approach. However, the performance of the conventional A* algorithm is suboptimal for the time, space, and number of search nodes, depending on the robot motion block (RMB). To address these challenges, this paper proposes an optimal RMB with an adaptive cost function to improve performance. The proposed adaptive cost function keeps track of the goal node and adaptively calculates the movement costs for quickly arriving at the goal node. Incorporating the adaptive cost function with a selected optimal RMB significantly reduces the searches of less impactful and redundant nodes, which improves the performance of the A* algorithm in terms of the number of search nodes and time complexity. To validate the performance and robustness of the proposed model, an extensive experiment was conducted. In the experiment, an open-source dataset featuring various types of grid maps was customized to incorporate the multiple map sizes and sets of source-to-destination nodes. According to the experiments, the proposed method demonstrated a remarkable improvement of 93.98% in the number of search nodes and 98.94% in time complexity compared to the conventional A* algorithm. The proposed model outperforms other state-of-the-art algorithms by keeping the path cost largely comparable. Additionally, an ROS experiment using a robot and lidar sensor data shows the improvement of the proposed method in a simulated laboratory environment. |
|---|---|
| AbstractList | An optimized robot path-planning algorithm is required for various aspects of robot movements in applications. The efficacy of the robot path-planning model is vulnerable to the number of search nodes, path cost, and time complexity. The conventional A-star (A*) algorithm outperforms other grid-based algorithms because of its heuristic approach. However, the performance of the conventional A* algorithm is suboptimal for the time, space, and number of search nodes, depending on the robot motion block (RMB). To address these challenges, this paper proposes an optimal RMB with an adaptive cost function to improve performance. The proposed adaptive cost function keeps track of the goal node and adaptively calculates the movement costs for quickly arriving at the goal node. Incorporating the adaptive cost function with a selected optimal RMB significantly reduces the searches of less impactful and redundant nodes, which improves the performance of the A* algorithm in terms of the number of search nodes and time complexity. To validate the performance and robustness of the proposed model, an extensive experiment was conducted. In the experiment, an open-source dataset featuring various types of grid maps was customized to incorporate the multiple map sizes and sets of source-to-destination nodes. According to the experiments, the proposed method demonstrated a remarkable improvement of 93.98% in the number of search nodes and 98.94% in time complexity compared to the conventional A* algorithm. The proposed model outperforms other state-of-the-art algorithms by keeping the path cost largely comparable. Additionally, an ROS experiment using a robot and lidar sensor data shows the improvement of the proposed method in a simulated laboratory environment. An optimized robot path-planning algorithm is required for various aspects of robot movements in applications. The efficacy of the robot path-planning model is vulnerable to the number of search nodes, path cost, and time complexity. The conventional A-star (A*) algorithm outperforms other grid-based algorithms because of its heuristic approach. However, the performance of the conventional A* algorithm is suboptimal for the time, space, and number of search nodes, depending on the robot motion block (RMB). To address these challenges, this paper proposes an optimal RMB with an adaptive cost function to improve performance. The proposed adaptive cost function keeps track of the goal node and adaptively calculates the movement costs for quickly arriving at the goal node. Incorporating the adaptive cost function with a selected optimal RMB significantly reduces the searches of less impactful and redundant nodes, which improves the performance of the A* algorithm in terms of the number of search nodes and time complexity. To validate the performance and robustness of the proposed model, an extensive experiment was conducted. In the experiment, an open-source dataset featuring various types of grid maps was customized to incorporate the multiple map sizes and sets of source-to-destination nodes. According to the experiments, the proposed method demonstrated a remarkable improvement of 93.98% in the number of search nodes and 98.94% in time complexity compared to the conventional A* algorithm. The proposed model outperforms other state-of-the-art algorithms by keeping the path cost largely comparable. Additionally, an ROS experiment using a robot and lidar sensor data shows the improvement of the proposed method in a simulated laboratory environment.An optimized robot path-planning algorithm is required for various aspects of robot movements in applications. The efficacy of the robot path-planning model is vulnerable to the number of search nodes, path cost, and time complexity. The conventional A-star (A*) algorithm outperforms other grid-based algorithms because of its heuristic approach. However, the performance of the conventional A* algorithm is suboptimal for the time, space, and number of search nodes, depending on the robot motion block (RMB). To address these challenges, this paper proposes an optimal RMB with an adaptive cost function to improve performance. The proposed adaptive cost function keeps track of the goal node and adaptively calculates the movement costs for quickly arriving at the goal node. Incorporating the adaptive cost function with a selected optimal RMB significantly reduces the searches of less impactful and redundant nodes, which improves the performance of the A* algorithm in terms of the number of search nodes and time complexity. To validate the performance and robustness of the proposed model, an extensive experiment was conducted. In the experiment, an open-source dataset featuring various types of grid maps was customized to incorporate the multiple map sizes and sets of source-to-destination nodes. According to the experiments, the proposed method demonstrated a remarkable improvement of 93.98% in the number of search nodes and 98.94% in time complexity compared to the conventional A* algorithm. The proposed model outperforms other state-of-the-art algorithms by keeping the path cost largely comparable. Additionally, an ROS experiment using a robot and lidar sensor data shows the improvement of the proposed method in a simulated laboratory environment. |
| Audience | Academic |
| Author | Watanobe, Yutaka Islam, Md Rashedul Naruse, Keitaro Kabir, Raihan |
| AuthorAffiliation | 2 Division of Computer Vision and AI, Department of R&D, Chowagiken Corp., Sapporo 001-0021, Japan; rashed.cse@gmail.com 1 Department of Computer Science and Engineering, University of Aizu, Aizu-Wakamatsu 965-8580, Japan; raihan.kabir.cse@gmail.com (R.K.); naruse@u-aizu.ac.jp (K.N.) |
| AuthorAffiliation_xml | – name: 2 Division of Computer Vision and AI, Department of R&D, Chowagiken Corp., Sapporo 001-0021, Japan; rashed.cse@gmail.com – name: 1 Department of Computer Science and Engineering, University of Aizu, Aizu-Wakamatsu 965-8580, Japan; raihan.kabir.cse@gmail.com (R.K.); naruse@u-aizu.ac.jp (K.N.) |
| Author_xml | – sequence: 1 givenname: Raihan orcidid: 0000-0003-2031-8836 surname: Kabir fullname: Kabir, Raihan – sequence: 2 givenname: Yutaka surname: Watanobe fullname: Watanobe, Yutaka – sequence: 3 givenname: Md Rashedul orcidid: 0000-0001-8676-6338 surname: Islam fullname: Islam, Md Rashedul – sequence: 4 givenname: Keitaro orcidid: 0000-0002-2029-2472 surname: Naruse fullname: Naruse, Keitaro |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38474956$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kktv1DAUhS1URNuBBX8ARWJDkdL6kYe9qoaqwEhFVDzW0Y0fMx4y9uAkVP333CFl1FYIeWHL_nx87vE9JgchBkvIS0ZPhVD0rOcFLVnB-RNyhFORS87pwb31ITnu-zWlXAghn5FDIYu6UGV1RBaXYQVBW5N9iW0csk9x8DFk77qof2TRZfP86wApm3fLmPyw2mQupgn1OruGYZVddxCCD8vn5KmDrrcv7uYZ-f7-8tvFx_zq84fFxfwq1yVVQ24YNzWwqlSCOSkLECCZsSWj1AnFoGWmNJWslANtqlqbWlPZ1oq2ytLKOTEji0nXRFg32-Q3kG6bCL75sxHTsoGE7jrb6JpLje9YrK8QgrWO69aAKDiAa4VBrbeT1hi2cHsDXbcXZLTZZdvss0X4fIK3Y7uxRtswJOgeOHh4EvyqWcZfKKUw9qpGhTd3Cin-HG0_NBvfa9thgjaOfcPxSypZ4tcg-voRuo5jChjsjioVo6zcWTqdqCVguT64iA9rHMZuvMYmcR7357WsCqE4upiRV_dr2Jv_2xAInEyATrHvk3X_DeTsEav9ALv-QRe--8eN3_NO0n8 |
| CitedBy_id | crossref_primary_10_1177_09596518241280205 crossref_primary_10_3390_electronics13112057 crossref_primary_10_1016_j_enbuild_2024_114742 crossref_primary_10_3390_wevj15070292 crossref_primary_10_3390_app14178015 |
| Cites_doi | 10.1177/17298814211026449 10.3390/sym10100450 10.1016/j.cie.2022.108123 10.3390/vehicles3030027 10.1109/ACCESS.2021.3070054 10.1109/ACCESS.2019.2953496 10.1109/WF-IoT54382.2022.10152049 10.1016/B978-0-12-803730-0.00009-3 10.3390/s22166198 10.1109/TSSC.1968.300136 10.1109/LARS/SBR/WRE51543.2020.9307003 10.1109/LRA.2019.2901898 10.3390/s21237898 10.1007/s10846-019-01112-z 10.1016/j.dt.2019.04.011 10.1016/j.compeleceng.2021.107327 10.1146/annurev-control-061920-093753 10.1109/TVT.2020.2991220 10.1109/ICRA.2019.8793751 10.3389/fnbot.2020.00044 10.5220/0007747301590166 10.1016/j.compag.2018.10.031 10.3390/s22041352 10.1016/j.ins.2020.03.064 10.1109/PEMC48073.2021.9432570 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 by the authors. 2024 |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 by the authors. 2024 |
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3390/s24051422 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (Proquest) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database CrossRef PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_c728c931eced4331bf2cbda342aafb3d 10.3390/s24051422 PMC10933867 A786439293 38474956 10_3390_s24051422 |
| Genre | Journal Article |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M ALIPV NPM 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI 7X8 PUEGO 5PM ADRAZ ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c509t-d12d7a165931f884a3a81de5100f391ab1d5d6869facd67cd7c08b790b9e06ff3 |
| IEDL.DBID | M48 |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:52:11 EDT 2025 Sun Oct 26 04:06:09 EDT 2025 Tue Sep 30 17:09:52 EDT 2025 Fri Sep 05 08:09:29 EDT 2025 Tue Oct 07 07:10:02 EDT 2025 Mon Oct 20 17:10:26 EDT 2025 Mon Jul 21 05:46:34 EDT 2025 Thu Apr 24 23:00:01 EDT 2025 Thu Oct 16 04:32:55 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | A algorithm DFS SLAM ROS adaptive cost function path planning robot motion block (RMB) Gazebo simulator BFS Dijkstra TWA |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c509t-d12d7a165931f884a3a81de5100f391ab1d5d6869facd67cd7c08b790b9e06ff3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-2029-2472 0000-0003-2031-8836 0000-0001-8676-6338 0000-0002-0030-3859 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s24051422 |
| PMID | 38474956 |
| PQID | 2955910152 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c728c931eced4331bf2cbda342aafb3d unpaywall_primary_10_3390_s24051422 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10933867 proquest_miscellaneous_2956685749 proquest_journals_2955910152 gale_infotracacademiconefile_A786439293 pubmed_primary_38474956 crossref_primary_10_3390_s24051422 crossref_citationtrail_10_3390_s24051422 |
| PublicationCentury | 2000 |
| PublicationDate | 20240222 |
| PublicationDateYYYYMMDD | 2024-02-22 |
| PublicationDate_xml | – month: 2 year: 2024 text: 20240222 day: 22 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2024 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Raheem (ref_28) 2020; 15 Li (ref_13) 2022; 168 Zhong (ref_23) 2020; 99 Karur (ref_5) 2021; 3 ref_35 ref_34 ref_10 Panigrahi (ref_22) 2022; 34 Ichter (ref_30) 2019; 4 ref_19 Kabir (ref_12) 2022; 337 Tang (ref_11) 2021; 9 ref_16 ref_15 Ali (ref_24) 2020; 14 Abbyasov (ref_26) 2023; 10 BiBi (ref_14) 2019; 7 Gammell (ref_31) 2021; 4 ref_25 Gunawan (ref_18) 2019; 3 ref_1 ref_2 Tripathy (ref_21) 2021; 94 ref_29 Cao (ref_32) 2019; 156 Wang (ref_17) 2020; 527 ref_27 ref_9 ref_8 Wang (ref_3) 2020; 69 ref_4 ref_7 Patle (ref_20) 2019; 15 Hart (ref_33) 1968; 2 ref_6 |
| References_xml | – ident: ref_27 doi: 10.1177/17298814211026449 – ident: ref_9 – ident: ref_1 doi: 10.3390/sym10100450 – volume: 168 start-page: 108123 year: 2022 ident: ref_13 article-title: Global path planning based on a bidirectional alternating search A* algorithm for mobile robots publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2022.108123 – ident: ref_34 – volume: 3 start-page: 448 year: 2021 ident: ref_5 article-title: A Survey of Path Planning Algorithms for Mobile Robots publication-title: Vehicles doi: 10.3390/vehicles3030027 – volume: 337 start-page: 85 year: 2022 ident: ref_12 article-title: Effectiveness of Robot Motion Block on A-Star Algorithm for Robotic Path Planning publication-title: SoMeT – volume: 9 start-page: 59196 year: 2021 ident: ref_11 article-title: Geometric A-Star Algorithm: An Improved A-Star Algorithm for AGV Path Planning in a Port Environment publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3070054 – volume: 7 start-page: 165779 year: 2019 ident: ref_14 article-title: A Novel Approach of Hybrid Trigonometric Bézier Curve to the Modeling of Symmetric Revolutionary Curves and Symmetric Rotation Surfaces publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2953496 – ident: ref_8 doi: 10.1109/WF-IoT54382.2022.10152049 – volume: 10 start-page: 166 year: 2023 ident: ref_26 article-title: A Tutorial on Modelling a Real Office Environment in Gazebo Simulator publication-title: J. Robot. Netw. Artif. Life – ident: ref_10 doi: 10.1016/B978-0-12-803730-0.00009-3 – ident: ref_25 doi: 10.3390/s22166198 – volume: 2 start-page: 100 year: 1968 ident: ref_33 article-title: A formal basis for the heuristic determination of minimum cost paths in graphs publication-title: IEEE Trans. Syst. Sci. Cybern. doi: 10.1109/TSSC.1968.300136 – ident: ref_15 doi: 10.1109/LARS/SBR/WRE51543.2020.9307003 – ident: ref_35 – volume: 4 start-page: 2407 year: 2019 ident: ref_30 article-title: Robot Motion Planning in Learned Latent Spaces publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2019.2901898 – ident: ref_19 doi: 10.3390/s21237898 – volume: 99 start-page: 65 year: 2020 ident: ref_23 article-title: Hybrid path planning based on safe A* algorithm and adaptive window approach for mobile robot in large-scale dynamic environment publication-title: J. Intell. Robot. Syst. doi: 10.1007/s10846-019-01112-z – volume: 15 start-page: 582 year: 2019 ident: ref_20 article-title: A review: On path planning strategies for navigation of mobile robot publication-title: Def. Technol. doi: 10.1016/j.dt.2019.04.011 – volume: 94 start-page: 107327 year: 2021 ident: ref_21 article-title: CARE: A Collision-Aware Mobile Robot Navigation in Grid Environment using Improved Breadth First Search publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2021.107327 – volume: 15 start-page: 3034 year: 2020 ident: ref_28 article-title: Development of A* algorithm for robot path planning based on modified probabilistic road map and artificial potential field publication-title: J. Eng. Sci. Technol. – volume: 4 start-page: 295 year: 2021 ident: ref_31 article-title: Asymptotically optimal sampling-based motion planning methods publication-title: Annu. Rev. Control Robot. Auton. Syst. doi: 10.1146/annurev-control-061920-093753 – volume: 69 start-page: 6928 year: 2020 ident: ref_3 article-title: Dynamics-Constrained Global-Local Hybrid Path Planning of an Autonomous Surface Vehicle publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2020.2991220 – ident: ref_6 – ident: ref_7 doi: 10.1109/ICRA.2019.8793751 – ident: ref_4 – volume: 14 start-page: 44 year: 2020 ident: ref_24 article-title: Path Planning of mobile robot with improved ant colony algorithm and MDP to produce smooth trajectory in grid-based environment publication-title: Front. Neurorobot. doi: 10.3389/fnbot.2020.00044 – ident: ref_29 doi: 10.5220/0007747301590166 – volume: 34 start-page: 6019 year: 2022 ident: ref_22 article-title: Localization strategies for autonomous mobile robots: A review publication-title: J. King Saud Univ.-Comput. Inf. Sci. – volume: 156 start-page: 105 year: 2019 ident: ref_32 article-title: RRT-based path planning for an intelligent litchi-picking manipulator publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.10.031 – ident: ref_2 doi: 10.3390/s22041352 – volume: 527 start-page: 227 year: 2020 ident: ref_17 article-title: Improving artificial Bee colony algorithm using a new neighborhood selection mechanism publication-title: Inf. Sci. doi: 10.1016/j.ins.2020.03.064 – ident: ref_16 doi: 10.1109/PEMC48073.2021.9432570 – volume: 3 start-page: 98 year: 2019 ident: ref_18 article-title: Implementation Of Dijkstra’s Algorithm In Determining The Shortest Path Case Study: Specialist Doctor Search In Bandar Lampung publication-title: Int. J. Inf. Syst. Comput. Sci. |
| SSID | ssj0023338 |
| Score | 2.477042 |
| Snippet | An optimized robot path-planning algorithm is required for various aspects of robot movements in applications. The efficacy of the robot path-planning model is... |
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 1422 |
| SubjectTerms | A algorithm adaptive cost function Algorithms Analysis BFS DFS Dijkstra Efficiency Robotics Robots Technology application TWA |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2hXoAD4pvQgsyHBJeoiZ04znGLWhWkIoSo1Ftkj2N2xZJU26wq_j0zSTba5UNcuG6syHmeyby3jt8AvE6UY00YYodliDODOraBVEoSDLF7F1KNvKN79lGfnmcfLvKLrVZf_E3YYA88AHeIhTRYqrTG2vPpHhckOm9VJq0NTnl--yam3IipUWopUl6Dj5AiUX94RXUr5387dqpPb9L_-6t4qxb9-p3kzXVzaX9c2-Vyqwid3IU7I3sUs2HW9-BG3dyH21uegg_g_XEz73f1xefWtZ0469v0iCMqWt9EG8QsJn65ErPl13a16ObfBbHWYegCxSfig2LTx-ghnJ8cf3l3Go_9EmKkst_FPpW-sKnOCS6COrPKEhutKeuSoMrUutTnXhtdBoteF-gLTIwrysSVdaJDUI9gr2mb-gkIugURk5BaT4qllCSrEDFVTgYtM-sxgrcbHCsczcS5p8WyIlHBkFcT5BG8nIZeDg4afxp0xIsxDWDT6_4HCoVqDIXqX6EQwRteyopTkyaDdjxhQI_EJlfVrDDMv4jgRHCwWe1qzNmrSrIZHwVuTrN5MV2mbOMtFNvU7bofo7XJCZMIHg_BMc2ZECtYbkZgdsJm56F2rzSLee_ozZ5eyugigldThP0drKf_A6x9uCWJn_Wn8-UB7HWrdf2M-FXnnvep9BOfOCPh priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6V7QE4IJ4lpSDzkOASNbETJzkgtIu2KkhdVRWVeov8iLsVS7LdZoX498zkxS6vazyy7PGM55vY_gbgTSA05YTO1yZzfpQa6SuHWUrgUkT32oXS0InuyUwen0efL-KLHZj1b2HoWmW_JzYbta0M_SM_5ESVht3G_MPy2qeqUXS62pfQUF1pBfu-oRi7BbucmLFGsDuZzk7PhhRMYEbW8gsJTPYPbzCexfQXZCsqNeT9f27RGzHq9_uTt9flUv34rhaLjeB0dB_udaiSjVszeAA7RfkQ7m5wDT6CT9Ny3pz2s7NKVzU7acr3sAkGs6-scmzsI-5csfHiEmddz78xRLOt6JVhp4gTWV_f6DGcH02_fDz2uzoKvkE4UPs25DZRoYwzEeISREooRKkFemPgRBYqHdrYylRmThkrE2MTE6Q6yQKdFYF0TjyBUVmVxVNg2AUCFhcqi5lMxjHdMsaEQnMneaSs8eBdr8fcdCTjVOtikWOyQSrPB5V78GoQXbbMGn8TmtBiDAJEht18qFaXeedbuUl4anBuBeqQHoBpx422SkRcKaeF9eAtLWVOLouDMap7eYBTIvKrfJykhMsQ-Hhw0K923vnyTf7L8jx4OTSjF9LRiiqLat3ISJnGqBMP9lrjGMaMGksoDfUg3TKbrUltt5RX84bpm7i-RCoTD14PFvZvZe3_f_TP4A5HRNa8x-cHMKpX6-I5Iqpav-jc5CdmVCAM priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BeoAeeD8MBS0PCS5u7F17bZ-Qi1oVpFYVIlI5mX14m6ipHSUOiP76ztobKykgIXG0PbF2Z2d2vol3vgF4GzBpc0LjS5UZP0oV94XBLCUwKaJ7aUKu7Bfdo2N-OIo-n8anrs_pwh2rxFR80m7StgrLxwgWDGk0jO0lHc60-fDD_ZUUJpaeCxF-dBO2eIxgfABbo-OT_FtbU-R-3PEJMUzuhwuMX7F9zUYUasn6f9-S12LS9fOSt5bVTPz6KabTtWB0cBe-r6bRnUE53102clddXmN4_I953oM7DqiSvLOs-3CjrB7A9hp94UP4tF-N2wME5Est64YctR2ByB7Gx3NSG5L7CGXnJJ-e1fNJM74gCJA70YkiJwg9yapl0iMYHex__Xjou9YMvkKE0fg6pDoRIeqchbiqkWACgW-JDh4YloVChjrWPOWZEUrzROlEBalMskBmZcCNYY9hUNVV-RQIvgIxkAmFxuQoo5jBKaVCJqnhNBJaefB-tVSFcrzltn3GtMD8xa5q0a-qB6970VlH1vEnoT273r2A5ddub9Tzs8K5a6ESmiqcW4k6tDVl0lAltWARFcJIpj14Z62lsLsADkYJV8yAU7J8WkWepBbqIZbyYGdlUIXbHhYFtbx_6CMxjuZV_xgd236tEVVZL1sZztMYdeLBk87--jGjxhKb2XqQbljmxqQ2n1STcUsebunDWMoTD970Rvx3ZT37J6nncJsi1msr_ekODJr5snyBWK2RL50_XgHhWDdE priority: 102 providerName: Unpaywall |
| Title | Enhanced Robot Motion Block of A-Star Algorithm for Robotic Path Planning |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/38474956 https://www.proquest.com/docview/2955910152 https://www.proquest.com/docview/2956685749 https://pubmed.ncbi.nlm.nih.gov/PMC10933867 https://www.mdpi.com/1424-8220/24/5/1422/pdf?version=1708599564 https://doaj.org/article/c728c931eced4331bf2cbda342aafb3d |
| UnpaywallVersion | publishedVersion |
| Volume | 24 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: HH5 dateStart: 20010101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ADMLS dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1424-8220 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M48 dateStart: 20030101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dj5NAEJ_cx4P6YPwWPZv1I-oLJyywwIMx1LSeJm2ai03qE9ld2OtFhF6PRu-_d4ZS0urpCw_shOzOzjC_YdjfALxyPEU5obGVjo3tR1rY0mCW4pgI0b0yrtBU0R2NxcnU_zILZnuw-a25VeDltakd9ZOaLovjXxdXH9Dh31PGiSn7u0uMSgF9y3i9uLCpnxTVXdvmGvtwiKMxNXUY-V19gXuYma15hnafsBOdGhL_v1_VW7Hqz_8ob6zKhbz6KYtiK0gN78DtFl2yZG0Od2EvL-_BrS3OwfvweVDOm6o_O61UVbNR08aH9TGofWeVYYmN-HPJkuIM11jPfzBEtWvRc80miBfZps_RA5gOB18_nthtPwVbIyyo7czlWShdEcSei1vhS08iWs3RKx3jxa5UbhZkIhKxkToToc5C7UQqjB0V544wxnsIB2VV5o-B4SMQuBhXZpjRxBzTLq216yluBPdlpi14u9Fjqluycep5UaSYdJDK007lFrzoRBdrho3rhPq0GZ0AkWI3N6rlWdr6WKpDHmlcW446pINgynCtMun5XEqjvMyCN7SVKRkTTkbL9gQCLolIsNIkjAifIQCy4Giz2-nGJFNOZH1o2AHO5nk3jN5IJRZZ5tWqkREiClAnFjxaG0c3Z9RYSOmoBdGO2ewsanekPJ83jN_E-eVFIrTgZWdh_1bWk__P_inc5IjMmnP5_AgO6uUqf4bIqlY92A9nIV6j4aceHPYH48lpr_lK0WvcB-9Nx5Pk22-ipSh8 |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigcEG8CBcxL9BI1sRMnOSC0hVa7tFsh1Ep7C37E3arbZNnNquqf4jcyzqu7vG69xiPLnuc3sT0D8NZj0uaExpUqMW4QK-4Kg1mKZ2JE99L4XNkT3eEh7x8HX0bhaA1-tm9h7LXK1idWjloXyv4j36a2VBpOG9KP0x-u7RplT1fbFhq1WuxnlxeYss0_DD6jfN9Rurd79KnvNl0FXIXBsXS1T3UkfB4mzMcFBYIJxGwZ6qZnWOIL6etQ85gnRijNI6Uj5cUySjyZZB43huG8N-BmwNCXoP1Eo6sEj2G-V1cvYizxtucYLUP7j2Ul5lWtAf4MAEsR8PfbmRuLfCouL8RkshT69u7CnQazkl6tZPdgLcvvw-2lSoYPYLCbj6u7BORbIYuSDKvmQGQHQ-UZKQzpuYhqZ6Q3OUGeluNzgli5Jj1V5CuiUNJ2T3oIx9fCz0ewnhd59gQIToFwyPhCY56UUEzmlFI-k9RwGgitHNhq-ZiqpoS57aQxSTGVsSxPO5Y78LojndZ1O_5GtGOF0RHYUtvVh2J2kjaWm6qIxgr3liEP7fMyaaiSWrCACmEk0w68t6JMrUPAxSjRvGvALdnSWmkvii3qQ1jlwGYr7bTxFPP0Sq8deNUNo43bgxuRZ8WiouE8DpEnDjyulaNbM3IsskmuA_GK2qxsanUkPx1XdcRtJTEW88iBN52G_ZtZT_-_-pew0T8aHqQHg8P9Z3CLIvarXv7TTVgvZ4vsOWK3Ur6oDIbA9-u20F-WPlaT |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIkE5IN4NFDAvlUu0iZ04yQGhLe2qS2lVISrtLfgRdyuWZNnNqupf49cxzqu7vG69xpZlj2c838TjbwBee0zamNC4UiXGDWLFXWEwSvFMjOheGp8re6N7eMT3T4KPo3C0Bj_btzA2rbI9E6uDWhfK_iPvUUuVhsOGtGeatIjj3cH76Q_XVpCyN61tOY1aRQ6yi3MM3-bvhru4128oHex9-bDvNhUGXIWOsnS1T3UkfB4mzMfJBYIJxG8Z6qlnWOIL6etQ85gnRijNI6Uj5cUySjyZZB43huG41-B6xFhi0wmj0WWwxzD2q5mMsNHrzdFzhvZ_y4r_q8oE_OkMlrzh75maNxf5VFyci8lkyQ0O7sDtBr-Sfq1wd2Ety-_BrSVWw_sw3MvHVV4B-VzIoiSHVaEgsoNu8xspDOm7iHBnpD85RZmW4-8EcXPd9UyRY0SkpK2k9ABOrkSeD2E9L_JsEwgOgdDI-EJjzJRQDOyUUj6T1HAaCK0ceNvKMVUNnbmtqjFJMayxIk87kTvwsus6rTk8_tZpx25G18HSblcfitlp2lhxqiIaK1xbhjK0T82koUpqwQIqhJFMO7BttzK1hwNORonmjQMuydJspf0otggQIZYDW-1up82pMU8vddyBF10z2ru9xBF5ViyqPpzHIcrEgUe1cnRzRolFNuB1IF5Rm5VFrbbkZ-OKU9yyirGYRw686jTs38J6_P_ZP4cbaJvpp-HRwRPYoAgDKxIAugXr5WyRPUUYV8pnlb0Q-HrVBvoLuJ9a1g |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BeoAeeD8MBS0PCS5u7F17bZ-Qi1oVpFYVIlI5mX14m6ipHSUOiP76ztobKykgIXG0PbF2Z2d2vol3vgF4GzBpc0LjS5UZP0oV94XBLCUwKaJ7aUKu7Bfdo2N-OIo-n8anrs_pwh2rxFR80m7StgrLxwgWDGk0jO0lHc60-fDD_ZUUJpaeCxF-dBO2eIxgfABbo-OT_FtbU-R-3PEJMUzuhwuMX7F9zUYUasn6f9-S12LS9fOSt5bVTPz6KabTtWB0cBe-r6bRnUE53102clddXmN4_I953oM7DqiSvLOs-3CjrB7A9hp94UP4tF-N2wME5Est64YctR2ByB7Gx3NSG5L7CGXnJJ-e1fNJM74gCJA70YkiJwg9yapl0iMYHex__Xjou9YMvkKE0fg6pDoRIeqchbiqkWACgW-JDh4YloVChjrWPOWZEUrzROlEBalMskBmZcCNYY9hUNVV-RQIvgIxkAmFxuQoo5jBKaVCJqnhNBJaefB-tVSFcrzltn3GtMD8xa5q0a-qB6970VlH1vEnoT273r2A5ddub9Tzs8K5a6ESmiqcW4k6tDVl0lAltWARFcJIpj14Z62lsLsADkYJV8yAU7J8WkWepBbqIZbyYGdlUIXbHhYFtbx_6CMxjuZV_xgd236tEVVZL1sZztMYdeLBk87--jGjxhKb2XqQbljmxqQ2n1STcUsebunDWMoTD970Rvx3ZT37J6nncJsi1msr_ekODJr5snyBWK2RL50_XgHhWDdE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Robot+Motion+Block+of+A-Star+Algorithm+for+Robotic+Path+Planning&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Kabir%2C+Raihan&rft.au=Watanobe%2C+Yutaka&rft.au=Islam%2C+Md+Rashedul&rft.au=Naruse%2C+Keitaro&rft.date=2024-02-22&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=24&rft.issue=5&rft.spage=1422&rft_id=info:doi/10.3390%2Fs24051422&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |