Impact of gap size and groove design of hydrodynamic bearing on plasma skimming effect for use in rotary blood pump

Plasma skimming can exclude red blood cells from high shear regions in the gaps formed by hydrodynamic bearings in rotary blood pumps. We investigated the effect of the gap size and groove design on the plasma skimming efficiency. Spiral groove bearings (SGBs) were installed into a specially designe...

Full description

Saved in:
Bibliographic Details
Published inJournal of artificial organs Vol. 25; no. 3; pp. 195 - 203
Main Authors Jiang, Ming, Sakota, Daisuke, Kosaka, Ryo, Hijikata, Wataru
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 01.09.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1434-7229
1619-0904
1619-0904
DOI10.1007/s10047-021-01308-x

Cover

Abstract Plasma skimming can exclude red blood cells from high shear regions in the gaps formed by hydrodynamic bearings in rotary blood pumps. We investigated the effect of the gap size and groove design on the plasma skimming efficiency. Spiral groove bearings (SGBs) were installed into a specially designed test rig for in vitro experiments performed using human blood. The measured gap between the ridges of the bearing and the rotor surface was 17–26 µm at a flow rate of 150 ml/min and a rotor speed of 2400 rpm. Three different patterns of SGBs were designed (SGB-0, SGB-30, and SGB-60) with various degrees of the circumferential component. The hematocrit measured by a high-speed camera was compared with the hematocrit in the circuit, and the plasma skimming efficiency for the three bearing patterns was evaluated at hematocrits of 20%, 25%, and 30%. SGB-60, which had the strongest circumferential component, provided the best plasma skimming efficiency. When the gap size was less than 20 µm, the red blood cells in the gaps between the ridges of the bearing and rotor surface reduced significantly and the efficiency became higher than 90%. The gap size had the strongest effect on producing a significant plasma skimming. The plasma skimming efficiency can be significantly improved by optimizing the bearing gap size and groove design, which facilitates the further development of SGBs for use in applications such as rotary blood pumps.
AbstractList Plasma skimming can exclude red blood cells from high shear regions in the gaps formed by hydrodynamic bearings in rotary blood pumps. We investigated the effect of the gap size and groove design on the plasma skimming efficiency. Spiral groove bearings (SGBs) were installed into a specially designed test rig for in vitro experiments performed using human blood. The measured gap between the ridges of the bearing and the rotor surface was 17–26 µm at a flow rate of 150 ml/min and a rotor speed of 2400 rpm. Three different patterns of SGBs were designed (SGB-0, SGB-30, and SGB-60) with various degrees of the circumferential component. The hematocrit measured by a high-speed camera was compared with the hematocrit in the circuit, and the plasma skimming efficiency for the three bearing patterns was evaluated at hematocrits of 20%, 25%, and 30%. SGB-60, which had the strongest circumferential component, provided the best plasma skimming efficiency. When the gap size was less than 20 µm, the red blood cells in the gaps between the ridges of the bearing and rotor surface reduced significantly and the efficiency became higher than 90%. The gap size had the strongest effect on producing a significant plasma skimming. The plasma skimming efficiency can be significantly improved by optimizing the bearing gap size and groove design, which facilitates the further development of SGBs for use in applications such as rotary blood pumps.
Plasma skimming can exclude red blood cells from high shear regions in the gaps formed by hydrodynamic bearings in rotary blood pumps. We investigated the effect of the gap size and groove design on the plasma skimming efficiency. Spiral groove bearings (SGBs) were installed into a specially designed test rig for in vitro experiments performed using human blood. The measured gap between the ridges of the bearing and the rotor surface was 17–26 µm at a flow rate of 150 ml/min and a rotor speed of 2400 rpm. Three different patterns of SGBs were designed (SGB-0, SGB-30, and SGB-60) with various degrees of the circumferential component. The hematocrit measured by a high-speed camera was compared with the hematocrit in the circuit, and the plasma skimming efficiency for the three bearing patterns was evaluated at hematocrits of 20%, 25%, and 30%. SGB-60, which had the strongest circumferential component, provided the best plasma skimming efficiency. When the gap size was less than 20 µm, the red blood cells in the gaps between the ridges of the bearing and rotor surface reduced significantly and the efficiency became higher than 90%. The gap size had the strongest effect on producing a significant plasma skimming. The plasma skimming efficiency can be significantly improved by optimizing the bearing gap size and groove design, which facilitates the further development of SGBs for use in applications such as rotary blood pumps.
Plasma skimming can exclude red blood cells from high shear regions in the gaps formed by hydrodynamic bearings in rotary blood pumps. We investigated the effect of the gap size and groove design on the plasma skimming efficiency. Spiral groove bearings (SGBs) were installed into a specially designed test rig for in vitro experiments performed using human blood. The measured gap between the ridges of the bearing and the rotor surface was 17-26 µm at a flow rate of 150 ml/min and a rotor speed of 2400 rpm. Three different patterns of SGBs were designed (SGB-0, SGB-30, and SGB-60) with various degrees of the circumferential component. The hematocrit measured by a high-speed camera was compared with the hematocrit in the circuit, and the plasma skimming efficiency for the three bearing patterns was evaluated at hematocrits of 20%, 25%, and 30%. SGB-60, which had the strongest circumferential component, provided the best plasma skimming efficiency. When the gap size was less than 20 µm, the red blood cells in the gaps between the ridges of the bearing and rotor surface reduced significantly and the efficiency became higher than 90%. The gap size had the strongest effect on producing a significant plasma skimming. The plasma skimming efficiency can be significantly improved by optimizing the bearing gap size and groove design, which facilitates the further development of SGBs for use in applications such as rotary blood pumps.Plasma skimming can exclude red blood cells from high shear regions in the gaps formed by hydrodynamic bearings in rotary blood pumps. We investigated the effect of the gap size and groove design on the plasma skimming efficiency. Spiral groove bearings (SGBs) were installed into a specially designed test rig for in vitro experiments performed using human blood. The measured gap between the ridges of the bearing and the rotor surface was 17-26 µm at a flow rate of 150 ml/min and a rotor speed of 2400 rpm. Three different patterns of SGBs were designed (SGB-0, SGB-30, and SGB-60) with various degrees of the circumferential component. The hematocrit measured by a high-speed camera was compared with the hematocrit in the circuit, and the plasma skimming efficiency for the three bearing patterns was evaluated at hematocrits of 20%, 25%, and 30%. SGB-60, which had the strongest circumferential component, provided the best plasma skimming efficiency. When the gap size was less than 20 µm, the red blood cells in the gaps between the ridges of the bearing and rotor surface reduced significantly and the efficiency became higher than 90%. The gap size had the strongest effect on producing a significant plasma skimming. The plasma skimming efficiency can be significantly improved by optimizing the bearing gap size and groove design, which facilitates the further development of SGBs for use in applications such as rotary blood pumps.
Author Kosaka, Ryo
Hijikata, Wataru
Sakota, Daisuke
Jiang, Ming
Author_xml – sequence: 1
  givenname: Ming
  surname: Jiang
  fullname: Jiang, Ming
  organization: Department of Mechanical Engineering, School of Engineering, Tokyo Institute of Technology, Artificial Organ Research Group, Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
– sequence: 2
  givenname: Daisuke
  orcidid: 0000-0002-7480-6213
  surname: Sakota
  fullname: Sakota, Daisuke
  email: sakota.ao@aist.go.jp
  organization: Artificial Organ Research Group, Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
– sequence: 3
  givenname: Ryo
  surname: Kosaka
  fullname: Kosaka, Ryo
  organization: Artificial Organ Research Group, Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
– sequence: 4
  givenname: Wataru
  surname: Hijikata
  fullname: Hijikata, Wataru
  organization: Department of Mechanical Engineering, School of Engineering, Tokyo Institute of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35088287$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9vFSEUxYmpsX_0C7gwJG7cjHKBGWBpmqpNmrjRNWGGO0_qDIwwY_r89PJ8bUy66AbI5XdO7r3nnJzEFJGQ18DeA2PqQ6mnVA3j0DAQTDd3z8gZdGAaZpg8qW8pZKM4N6fkvJRbxkC1ir0gp6JlWnOtzki5nhc3rDSNdOcWWsIfpC56ussp_UbqsYRdPPz-2Puc_D66OQy0R5dD3NEU6TK5MjtafoZ5PpRwHLH6jSnTrSANkea0uryn_ZSSp8s2Ly_J89FNBV_d3xfk-6erb5dfmpuvn68vP940Q8vM2vRjrzvwoJgcQMjOgepb7YxEUEb1RkOL0nSSAyIXrvceuAboRqERNO_EBXl39F1y-rVhWe0cyoDT5CKmrVjecaENa42p6NtH6G3acqzdWa5YXaGSna7Um3tq62f0dslhrqPZh3VWQB-BIadSMo52CKtbQ4prdmGywOwhOXtMztbk7L_k7F2V8kfSB_cnReIoKsshD8z_235C9Re9bKqJ
CitedBy_id crossref_primary_10_1007_s10047_023_01422_y
crossref_primary_10_1115_1_4063026
Cites_doi 10.1007/s10047-020-01240-6
10.1111/aor.12888
10.1213/00000539-200009000-00007
10.1108/eb052769
10.1111/aor.12383
10.1007/s10237-016-0832-z
10.1111/aor.13632
10.1111/j.1525-1594.2012.01561.x
10.1155/2014/157615
10.1007/s10047-020-01221-9
10.1111/j.1525-1594.2012.01467.x
10.1111/aor.12799
10.1111/j.1525-1594.2004.07387.x
10.1007/s10047-015-0842-0
10.1111/aor.12546
10.1111/aor.12081
10.1152/ajplegacy.1965.209.6.1115
10.1111/aor.13471
10.1111/j.1525-1594.2009.00817.x
10.1098/rsta.2013.0389
10.1111/aor.12114
ContentType Journal Article
Copyright The Japanese Society for Artificial Organs 2021
2021. The Japanese Society for Artificial Organs.
The Japanese Society for Artificial Organs 2021.
Copyright_xml – notice: The Japanese Society for Artificial Organs 2021
– notice: 2021. The Japanese Society for Artificial Organs.
– notice: The Japanese Society for Artificial Organs 2021.
DBID AAYXX
CITATION
NPM
7QO
8FD
FR3
K9.
NAPCQ
P64
7X8
DOI 10.1007/s10047-021-01308-x
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1619-0904
EndPage 203
ExternalDocumentID 35088287
10_1007_s10047_021_01308_x
Genre Journal Article
GrantInformation_xml – fundername: Japan Society for the Promotion of Science
  grantid: 20H02098; 20J14805
  funderid: http://dx.doi.org/10.13039/501100001691
– fundername: Japan Society for the Promotion of Science
  grantid: 20H02098
– fundername: Japan Society for the Promotion of Science
  grantid: 20J14805
GroupedDBID ---
-5E
-5G
-BR
-EM
-Y2
-~C
.55
.86
.VR
06C
06D
0R~
0VY
1N0
1SB
203
29J
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
53G
5GY
5VS
67Z
6NX
7RV
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBNVY
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKEYQ
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
EN4
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KPH
LAS
LK8
LLZTM
M1P
M4Y
M7P
MA-
N2Q
N9A
NAPCQ
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9I
O9J
OAM
P62
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
QOR
QOS
R89
R9I
RIG
RNI
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S27
S37
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
WOW
X7M
YLTOR
Z45
Z7U
Z87
ZJWQK
ZMTXR
ZOVNA
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
NPM
7QO
8FD
FR3
K9.
P64
7X8
ID FETCH-LOGICAL-c509t-bfb861d1704c1346a17b58a94e1797b9815e496421ee23abdd128116f38e18263
IEDL.DBID AGYKE
ISSN 1434-7229
1619-0904
IngestDate Fri Sep 05 09:19:30 EDT 2025
Tue Oct 07 06:15:36 EDT 2025
Wed Feb 19 02:27:01 EST 2025
Thu Apr 24 23:05:51 EDT 2025
Wed Oct 01 04:07:15 EDT 2025
Fri Feb 21 02:45:04 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Hemolysis
Hydrodynamic bearing
Spiral groove pattern
Plasma skimming
Rotary blood pump
Language English
License 2021. The Japanese Society for Artificial Organs.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-bfb861d1704c1346a17b58a94e1797b9815e496421ee23abdd128116f38e18263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7480-6213
PMID 35088287
PQID 2707227468
PQPubID 1456335
PageCount 9
ParticipantIDs proquest_miscellaneous_2623890599
proquest_journals_2707227468
pubmed_primary_35088287
crossref_citationtrail_10_1007_s10047_021_01308_x
crossref_primary_10_1007_s10047_021_01308_x
springer_journals_10_1007_s10047_021_01308_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Japan
– name: Tokyo
PublicationSubtitle The Official Journal of the Japanese Society for Artificial Organs
PublicationTitle Journal of artificial organs
PublicationTitleAbbrev J Artif Organs
PublicationTitleAlternate J Artif Organs
PublicationYear 2022
Publisher Springer Nature Singapore
Springer Nature B.V
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
References Lee, Yoo, Yang (CR23) 2017; 16
Palmer (CR10) 1965; 209
Kink, Reul (CR6) 2004; 28
Leslie, Marshall, Devitt, Hilton, Tansley (CR11) 2013; 37
Murashige, Kosaka, Sakota, Nishida, Kawaguchi, Yamane, Maruyama (CR19) 2015; 39
Hijikata, Maruyama, Murashige, Sakota, Maruyama (CR2) 2020; 44
Kosaka, Yasui, Nishida, Kawaguchi, Maruyama, Yamane (CR7) 2014; 38
Murashige, Sakota, Kosaka, Nishida, Kawaguchi, Yamane, Maruyama (CR12) 2016; 40
Kosaka, Sakota, Nishida, Maruyama, Yamane (CR9) 2021; 24
Kosaka, Maruyama, Nishida, Yada, Saito, Hirai, Yamane (CR5) 2009; 33
Najar, Harmain (CR18) 2014
Amaral, Gross-Hardt, Timms, Egger, Steinseifer, Schmitz-Rode (CR20) 2013; 37
Li, Peng, Lei, Dao, Karniadakis (CR22) 2014; 372
Han, Zou, Ruan, Fu, Yang (CR8) 2012; 36
Sakota, Kondo, Kosaka, Nishida, Maruyama (CR13) 2021; 24
Eckmann, Bowers, Stecker, Cheung (CR15) 2000; 91
Amaral, Egger, Steinseifer, Schmitz-Rode (CR16) 2013; 37
Hori (CR17) 2006
Tsukiya, Mizuno, Takewa, Tatsumi, Taenaka (CR3) 2015; 18
Berk, Zhang, Chen, Tran, Griffith, Wu (CR1) 2019; 43
Kosaka, Yada, Nishida, Maruyama, Yamane (CR4) 2013; 37
Muijderman (CR14) 1965; 17
Wu, Zhu, Luo (CR21) 2017; 41
LJ Leslie (1308_CR11) 2013; 37
T Tsukiya (1308_CR3) 2015; 18
X Li (1308_CR22) 2014; 372
R Kosaka (1308_CR7) 2014; 38
R Kosaka (1308_CR5) 2009; 33
R Kosaka (1308_CR9) 2021; 24
T Murashige (1308_CR12) 2016; 40
FA Najar (1308_CR18) 2014
T Murashige (1308_CR19) 2015; 39
T Kink (1308_CR6) 2004; 28
F Amaral (1308_CR16) 2013; 37
TR Lee (1308_CR23) 2017; 16
W Hijikata (1308_CR2) 2020; 44
AA Palmer (1308_CR10) 1965; 209
ZBK Berk (1308_CR1) 2019; 43
D Sakota (1308_CR13) 2021; 24
EA Muijderman (1308_CR14) 1965; 17
R Kosaka (1308_CR4) 2013; 37
Y Hori (1308_CR17) 2006
DM Eckmann (1308_CR15) 2000; 91
F Amaral (1308_CR20) 2013; 37
Q Han (1308_CR8) 2012; 36
Y Wu (1308_CR21) 2017; 41
References_xml – volume: 24
  start-page: 157
  year: 2021
  end-page: 163
  ident: CR9
  article-title: Improvement of hemolysis performance in a hydrodynamically levitated centrifugal blood pump by optimizing a shroud size
  publication-title: J Artif Organs
  doi: 10.1007/s10047-020-01240-6
– volume: 41
  start-page: 979
  year: 2017
  end-page: 987
  ident: CR21
  article-title: Design and hemocompatibility analysis of a double-suction injection suspension blood pump using computational fluid dynamics methods
  publication-title: Artif Organs
  doi: 10.1111/aor.12888
– volume: 91
  start-page: 539
  year: 2000
  end-page: 545
  ident: CR15
  article-title: Hematocrit, volume expander, temperature, and shear rate effects on blood viscosity
  publication-title: Anesth Analg
  doi: 10.1213/00000539-200009000-00007
– volume: 17
  start-page: 12
  year: 1965
  end-page: 17
  ident: CR14
  article-title: Spiral groove bearings
  publication-title: Ind Lubr Tribol
  doi: 10.1108/eb052769
– volume: 38
  start-page: 818
  year: 2014
  end-page: 822
  ident: CR7
  article-title: Optimal bearing gap of a multiarc radial bearing in a hydrodynamically levitated centrifugal blood pump for the reduction of hemolysis
  publication-title: Artif Organs
  doi: 10.1111/aor.12383
– volume: 16
  start-page: 497
  issue: 2
  year: 2017
  end-page: 507
  ident: CR23
  article-title: Generalized plasma skimming model for cells and drug carriers in the microvasculature
  publication-title: Biomech Model Mechanobiol
  doi: 10.1007/s10237-016-0832-z
– volume: 44
  start-page: 594
  year: 2020
  end-page: 603
  ident: CR2
  article-title: Detection of thrombosis in a magnetically levitated blood pump by vibrational excitation of the impeller
  publication-title: Artif Organs
  doi: 10.1111/aor.13632
– volume: 37
  start-page: 267
  year: 2013
  end-page: 275
  ident: CR11
  article-title: Cell exclusion in Couette flow: evaluation through flow visualization and mechanical forces
  publication-title: Artif Organs
  doi: 10.1111/j.1525-1594.2012.01561.x
– year: 2014
  ident: CR18
  article-title: Numerical investigation of pressure profile in hydrodynamic lubrication thrust bearing
  publication-title: Int Sch Res Notices
  doi: 10.1155/2014/157615
– volume: 24
  start-page: 126
  year: 2021
  end-page: 134
  ident: CR13
  article-title: Plasma skimming efficiency of human blood in the spiral groove bearing of a centrifugal blood pump
  publication-title: J Artif Organs
  doi: 10.1007/s10047-020-01221-9
– volume: 36
  start-page: 739
  year: 2012
  end-page: 746
  ident: CR8
  article-title: A novel design of spiral groove bearing in a hydrodynamically levitated centrifugal rotary blood pump
  publication-title: Artif Organs
  doi: 10.1111/j.1525-1594.2012.01467.x
– volume: 40
  start-page: 856
  year: 2016
  end-page: 866
  ident: CR12
  article-title: Plasma skimming in a spiral groove bearing of a centrifugal blood pump
  publication-title: Artif Organs
  doi: 10.1111/aor.12799
– volume: 28
  start-page: 916
  year: 2004
  end-page: 920
  ident: CR6
  article-title: Concept for a new hydrodynamic blood bearing for miniature blood pumps
  publication-title: Artif Organs
  doi: 10.1111/j.1525-1594.2004.07387.x
– volume: 18
  start-page: 300
  year: 2015
  end-page: 306
  ident: CR3
  article-title: Preclinical study of a novel hydrodynamically levitated centrifugal pump for long-term cardiopulmonary support: in vivo performance during percutaneous cardiopulmonary support
  publication-title: J Artif Organs
  doi: 10.1007/s10047-015-0842-0
– volume: 39
  start-page: 710
  year: 2015
  end-page: 714
  ident: CR19
  article-title: Evaluation of a spiral groove geometry for improvement of hemolysis level in a hydrodynamically levitated centrifugal blood pump
  publication-title: Artif Organs
  doi: 10.1111/aor.12546
– volume: 37
  start-page: 866
  year: 2013
  end-page: 874
  ident: CR20
  article-title: The spiral groove bearing as a mechanism for enhancing the secondary flow in a centrifugal rotary blood pump
  publication-title: Artif Organs
  doi: 10.1111/aor.12081
– volume: 37
  start-page: 778
  year: 2013
  end-page: 785
  ident: CR4
  article-title: Geometric optimization of a step bearing for a hydrodynamically levitated centrifugal blood pump for the reduction of hemolysis
  publication-title: Artif Organs
– year: 2006
  ident: CR17
  publication-title: Hydrodynamic lubrication
– volume: 209
  start-page: 1115
  year: 1965
  end-page: 1122
  ident: CR10
  article-title: Axial drift of cells and partial plasma skimming in blood flowing through glass slits
  publication-title: Am J Physiol
  doi: 10.1152/ajplegacy.1965.209.6.1115
– volume: 37
  start-page: 9786
  year: 2013
  end-page: 9792
  ident: CR16
  article-title: Differences between blood and a Newtonian fluid on the performance of a hydrodynamic bearing for rotary blood pumps
  publication-title: Artif Organs
  doi: 10.1111/aor.12081
– volume: 43
  start-page: 870
  year: 2019
  end-page: 879
  ident: CR1
  article-title: Evaluation of in vitro hemolysis and platelet activation of a newly developed maglev LVAD and two clinically used LVADs with human blood
  publication-title: Artif Organs
  doi: 10.1111/aor.13471
– volume: 33
  start-page: 798
  year: 2009
  end-page: 804
  ident: CR5
  article-title: Improvement of hemocompatibility in centrifugal blood pump with hydrodynamic bearings and semi-open impeller: in vitro evaluation
  publication-title: Artif Organs
  doi: 10.1111/j.1525-1594.2009.00817.x
– volume: 372
  start-page: 20130389
  year: 2014
  ident: CR22
  article-title: Probing red blood cell mechanics, rheology and dynamics with a two-component multi-scale model
  publication-title: Philos Trans A Math Phys Eng Sci
  doi: 10.1098/rsta.2013.0389
– volume: 38
  start-page: 818
  year: 2014
  ident: 1308_CR7
  publication-title: Artif Organs
  doi: 10.1111/aor.12383
– year: 2014
  ident: 1308_CR18
  publication-title: Int Sch Res Notices
  doi: 10.1155/2014/157615
– volume: 36
  start-page: 739
  year: 2012
  ident: 1308_CR8
  publication-title: Artif Organs
  doi: 10.1111/j.1525-1594.2012.01467.x
– volume: 37
  start-page: 267
  year: 2013
  ident: 1308_CR11
  publication-title: Artif Organs
  doi: 10.1111/j.1525-1594.2012.01561.x
– volume: 37
  start-page: 866
  year: 2013
  ident: 1308_CR20
  publication-title: Artif Organs
  doi: 10.1111/aor.12081
– volume: 40
  start-page: 856
  year: 2016
  ident: 1308_CR12
  publication-title: Artif Organs
  doi: 10.1111/aor.12799
– volume: 39
  start-page: 710
  year: 2015
  ident: 1308_CR19
  publication-title: Artif Organs
  doi: 10.1111/aor.12546
– volume: 43
  start-page: 870
  year: 2019
  ident: 1308_CR1
  publication-title: Artif Organs
  doi: 10.1111/aor.13471
– volume: 18
  start-page: 300
  year: 2015
  ident: 1308_CR3
  publication-title: J Artif Organs
  doi: 10.1007/s10047-015-0842-0
– volume: 17
  start-page: 12
  year: 1965
  ident: 1308_CR14
  publication-title: Ind Lubr Tribol
  doi: 10.1108/eb052769
– volume-title: Hydrodynamic lubrication
  year: 2006
  ident: 1308_CR17
– volume: 37
  start-page: 778
  year: 2013
  ident: 1308_CR4
  publication-title: Artif Organs
  doi: 10.1111/aor.12114
– volume: 24
  start-page: 157
  year: 2021
  ident: 1308_CR9
  publication-title: J Artif Organs
  doi: 10.1007/s10047-020-01240-6
– volume: 16
  start-page: 497
  issue: 2
  year: 2017
  ident: 1308_CR23
  publication-title: Biomech Model Mechanobiol
  doi: 10.1007/s10237-016-0832-z
– volume: 209
  start-page: 1115
  year: 1965
  ident: 1308_CR10
  publication-title: Am J Physiol
  doi: 10.1152/ajplegacy.1965.209.6.1115
– volume: 37
  start-page: 9786
  year: 2013
  ident: 1308_CR16
  publication-title: Artif Organs
  doi: 10.1111/aor.12081
– volume: 44
  start-page: 594
  year: 2020
  ident: 1308_CR2
  publication-title: Artif Organs
  doi: 10.1111/aor.13632
– volume: 372
  start-page: 20130389
  year: 2014
  ident: 1308_CR22
  publication-title: Philos Trans A Math Phys Eng Sci
  doi: 10.1098/rsta.2013.0389
– volume: 33
  start-page: 798
  year: 2009
  ident: 1308_CR5
  publication-title: Artif Organs
  doi: 10.1111/j.1525-1594.2009.00817.x
– volume: 28
  start-page: 916
  year: 2004
  ident: 1308_CR6
  publication-title: Artif Organs
  doi: 10.1111/j.1525-1594.2004.07387.x
– volume: 24
  start-page: 126
  year: 2021
  ident: 1308_CR13
  publication-title: J Artif Organs
  doi: 10.1007/s10047-020-01221-9
– volume: 91
  start-page: 539
  year: 2000
  ident: 1308_CR15
  publication-title: Anesth Analg
  doi: 10.1213/00000539-200009000-00007
– volume: 41
  start-page: 979
  year: 2017
  ident: 1308_CR21
  publication-title: Artif Organs
  doi: 10.1111/aor.12888
SSID ssj0017570
Score 2.2841601
Snippet Plasma skimming can exclude red blood cells from high shear regions in the gaps formed by hydrodynamic bearings in rotary blood pumps. We investigated the...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 195
SubjectTerms Biomedical Engineering and Bioengineering
Blood pumps
Cardiac Surgery
Circuits
Design
Efficiency
Erythrocytes
Flow velocity
Grooves
Hematocrit
High speed cameras
Human performance
In vitro methods and tests
Medicine
Medicine & Public Health
Nephrology
Original Article
Plasma
Pumps
Rotor speed
Skimming
Title Impact of gap size and groove design of hydrodynamic bearing on plasma skimming effect for use in rotary blood pump
URI https://link.springer.com/article/10.1007/s10047-021-01308-x
https://www.ncbi.nlm.nih.gov/pubmed/35088287
https://www.proquest.com/docview/2707227468
https://www.proquest.com/docview/2623890599
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1619-0904
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017570
  issn: 1434-7229
  databaseCode: AFBBN
  dateStart: 19980301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1619-0904
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017570
  issn: 1434-7229
  databaseCode: AGYKE
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1619-0904
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017570
  issn: 1434-7229
  databaseCode: U2A
  dateStart: 19980329
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7BVkJceD9SSjVI3MBV4zhxclyhlgIqJ1Yqp8ivlFXZZLXJora_nrGTbIECUq_xxHHsmfFnzcxngNfGg4aqSpjhLmHCKMdyxQ2rdJqY2Om0CmQ6x5-zo5n4eJKeDEVh7ZjtPoYkg6f-pdjNswr4lAIfbcsZIcetwLc1ga3p-6-fDjbRA5mGS-IICggmOS-GYpm_9_L7hnQNZV6LkIaN5_A-zMYh9_kmZ3vrTu-Zyz_YHG_6Tw_g3oBEcdqrzkO45epHcOd4iLU_hvZDKKDEpsJTtcR2fulQ1RZPCWv_cGhD6odv_XZhyQv3N9ujJsuhEWBT45KA-UJhezZfLPyjPnUECSXjunU4r3HVdGp1gSF5HpekWE9gdnjw5d0RG65oYIaQRsd0pfMstrHcFyZORKZiqdNcFcLRwkhd5HHqROGLaZ3jidLW-shdnJEGOH-ySZ7CpG5q9xxQFoWstFI201wklpP3c1lKooL8kM3jCOJxnUoz8Jf7azS-l1fMy342S5rNMsxmeR7Bm807y56947_SO-Pyl4MltyWX-6RCUmR5BK82zWSDPrCiatesSYYwZF54ppsInvVqs_lc4hEwHUsjeDuqwFXn_x7L9s3EX8Bd7usyQvLbDky61dq9JLTU6d3BOHbh9oxPfwIREAog
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2hIlEuFdBCAy1MJW5gqXacODlWVavtx_bUlXqL7NgpK9hktdlFlF_P2Em2RQUkrvHEjvLs8bNm5hngY-lJQ1XFrBQuZrLUjmValKwySVxyZ5IqiOmMr9LRRJ7fJDd9UVg7ZLsPIcngqR8Uu3lVAZ9S4KNtGSPm-NQLWHnF_Ik4WscOVBKuiCMiIJkSIu9LZf7cx-_b0SOO-Sg-Grad0xew1fNFPOoAfglPXP0Kno37iPg2tGehzBGbCm_1HNvpT4e6tnhLjPi7QxsSNHzrlztLvrK7fx4NzW8aDpsa50SfZxrbr9PZzD_qEjyQuCyuWofTGhfNUi_uMKS445zg34HJ6cn18Yj1FymwkvjAkpnKZCm3XB3Kkscy1VyZJNO5dLQclckznjiZ-5JX50SsjbU-vsZTwsn580f8Gjbqpna7gCrPVWW0tqkRMraCfJRLEzKV5C1sxiPgw_8syl5l3F928a2410f2GBSEQREwKH5E8Gn9zrzT2Pin9d4AU9Gvt7YQ6pCgVjLNIjhYN9NK8eEPXbtmRTbE9LLc69FE8KaDdz1c7HkqHR4j-Dzgfd_537_l7f-Zf4DN0fX4srg8u7p4B8-Fr6QI6Wp7sLFcrNw-8ZuleR-m8y9fge7c
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2hIlVcEJSv0FIGiRtYrR0nTo4VdNUCrTiwUm-RHTvtCjaJNtmK8usZO9ltqwIS19ixo7yx_ayZeQPwtvSkoapiVgoXM1lqxzItSlaZJC65M0kVxHROTtOjqfx0lpzdyOIP0e4rl-SQ0-BVmup-r7XV3o3EN68w4MMLvOctY8Qi70svlEAWPRUHaz-CSkK5OCIFkikh8jFt5s9j3D6a7vDNO77ScARNHsHDkTviwQD2Y7jn6i3YPBm940-gOw4pj9hUeK5b7Ga_HOra4jmx40uHNgRr-NaLK0v75lCLHg3ZOk2HTY0tUem5xu77bD73j4ZgDyRei8vO4azGRdPrxRWGcHdsyRSewnRy-O3DERuLKrCSuEHPTGWylFuu9mXJY5lqrkyS6Vw6WprK5BlPnMx9-qtzItbGWu9r4ylh5vxdJH4GG3VTuxeAKs9VZbS2qREytoL2K5cm1FXSzmEzHgFf_c-iHBXHfeGLH8W1VrLHoCAMioBB8TOCd-t32kFv45-9d1YwFePa6wqh9glqJdMsgjfrZlo13hWia9csqQ-xviz32jQRPB_gXU8Xe85KF8kI3q_wvh7879_y8v-6v4bNrx8nxZfj08_b8ED4pIoQubYDG_1i6V4R1enNbrDm3zz-8xg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+gap+size+and+groove+design+of+hydrodynamic+bearing+on+plasma+skimming+effect+for+use+in+rotary+blood+pump&rft.jtitle=Journal+of+artificial+organs&rft.au=Jiang%2C+Ming&rft.au=Sakota%2C+Daisuke&rft.au=Kosaka%2C+Ryo&rft.au=Hijikata%2C+Wataru&rft.date=2022-09-01&rft.issn=1619-0904&rft.eissn=1619-0904&rft.volume=25&rft.issue=3&rft.spage=195&rft_id=info:doi/10.1007%2Fs10047-021-01308-x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-7229&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-7229&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-7229&client=summon