Probing allosteric coupling in a constitutively open mutant of the ion channel KcsA using solid-state NMR

Transmembrane allosteric coupling is a feature of many critical biological signaling events. Here we test whether transmembrane allosteric coupling controls the potassium binding affinity of the prototypical potassium channel KcsA in the context of C-type inactivation. Activation of KcsA is initiate...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 117; no. 13; pp. 7171 - 7175
Main Authors Sun, Zhiyu, Xu, Yunyao, Zhang, Dongyu, McDermott, Ann E.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 31.03.2020
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.1908828117

Cover

Abstract Transmembrane allosteric coupling is a feature of many critical biological signaling events. Here we test whether transmembrane allosteric coupling controls the potassium binding affinity of the prototypical potassium channel KcsA in the context of C-type inactivation. Activation of KcsA is initiated by proton binding to the pH gate upon an intracellular drop in pH. Numerous studies have suggested that this proton binding also prompts a conformational switch, leading to a loss of affinity for potassium ions at the selectivity filter and therefore to channel inactivation. We tested this mechanism for inactivation using a KcsA mutant (H25R/E118A) that exhibits an open pH gate across a broad range of pH values. We present solid-state NMR measurements of this open mutant at neutral pH to probe the affinity for potassiumat the selectivity filter. The potassium binding affinity in the selectivity filter of this mutant, 81 mM, is about four orders of magnitude weaker than that of wildtype KcsA at neutral pH and is comparable to the value for wild-type KcsA at low pH (pH ≈ 3.5). This result strongly supports our assertion that the open pH gate allosterically affects the potassium binding affinity of the selectivity filter. In this mutant, the protonation state of a glutamate residue (E120) in the pH sensor is sensitive to potassium binding, suggesting that this mutant also has flexibility in the activation gate and is subject to transmembrane allostery.
AbstractList Transmembrane allosteric coupling is a feature of many critical biological signaling events. Here we test whether transmembrane allosteric coupling controls the potassium binding affinity of the prototypical potassium channel KcsA in the context of C-type inactivation. Activation of KcsA is initiated by proton binding to the pH gate upon an intracellular drop in pH. Numerous studies have suggested that this proton binding also prompts a conformational switch, leading to a loss of affinity for potassium ions at the selectivity filter and therefore to channel inactivation. We tested this mechanism for inactivation using a KcsA mutant (H25R/E118A) that exhibits an open pH gate across a broad range of pH values. We present solid-state NMR measurements of this open mutant at neutral pH to probe the affinity for potassium at the selectivity filter. The potassium binding affinity in the selectivity filter of this mutant, 81 mM, is about four orders of magnitude weaker than that of wild-type KcsA at neutral pH and is comparable to the value for wild-type KcsA at low pH (pH ≈ 3.5). This result strongly supports our assertion that the open pH gate allosterically affects the potassium binding affinity of the selectivity filter. In this mutant, the protonation state of a glutamate residue (E120) in the pH sensor is sensitive to potassium binding, suggesting that this mutant also has flexibility in the activation gate and is subject to transmembrane allostery.Transmembrane allosteric coupling is a feature of many critical biological signaling events. Here we test whether transmembrane allosteric coupling controls the potassium binding affinity of the prototypical potassium channel KcsA in the context of C-type inactivation. Activation of KcsA is initiated by proton binding to the pH gate upon an intracellular drop in pH. Numerous studies have suggested that this proton binding also prompts a conformational switch, leading to a loss of affinity for potassium ions at the selectivity filter and therefore to channel inactivation. We tested this mechanism for inactivation using a KcsA mutant (H25R/E118A) that exhibits an open pH gate across a broad range of pH values. We present solid-state NMR measurements of this open mutant at neutral pH to probe the affinity for potassium at the selectivity filter. The potassium binding affinity in the selectivity filter of this mutant, 81 mM, is about four orders of magnitude weaker than that of wild-type KcsA at neutral pH and is comparable to the value for wild-type KcsA at low pH (pH ≈ 3.5). This result strongly supports our assertion that the open pH gate allosterically affects the potassium binding affinity of the selectivity filter. In this mutant, the protonation state of a glutamate residue (E120) in the pH sensor is sensitive to potassium binding, suggesting that this mutant also has flexibility in the activation gate and is subject to transmembrane allostery.
Transmembrane allosteric coupling is a feature of many critical biological signaling events. Here we test whether transmembrane allosteric coupling controls the potassium binding affinity of the prototypical potassium channel KcsA in the context of C-type inactivation. Activation of KcsA is initiated by proton binding to the pH gate upon an intracellular drop in pH. Numerous studies have suggested that this proton binding also prompts a conformational switch, leading to a loss of affinity for potassium ions at the selectivity filter and therefore to channel inactivation. We tested this mechanism for inactivation using a KcsA mutant (H25R/E118A) that exhibits an open pH gate across a broad range of pH values. We present solid-state NMR measurements of this open mutant at neutral pH to probe the affinity for potassium at the selectivity filter. The potassium binding affinity in the selectivity filter of this mutant, 81 mM, is about four orders of magnitude weaker than that of wild-type KcsA at neutral pH and is comparable to the value for wild-type KcsA at low pH (pH ≈ 3.5). This result strongly supports our assertion that the open pH gate allosterically affects the potassium binding affinity of the selectivity filter. In this mutant, the protonation state of a glutamate residue (E120) in the pH sensor is sensitive to potassium binding, suggesting that this mutant also has flexibility in the activation gate and is subject to transmembrane allostery.
Inactivation of potassium channels controls its mean open time and provides exquisite control over biological processes. In the highly conserved C-type inactivation process, opening of the activation gate causes subsequent inactivation. We test whether the open state of the channel simply has a poor ability to bind the K + ion. Previously, activated and inactivated states were stabilized using truncations or a significant pH drop. Here, we use the H25R/E118A constitutively open mutant of KcsA and also observe a large drop in potassium binding affinity. This provides strong evidence that channel opening causes an allosteric loss of ion affinity, and that the central feature of this universal channel inactivation process is loss of ion affinity at the selectivity filter. Transmembrane allosteric coupling is a feature of many critical biological signaling events. Here we test whether transmembrane allosteric coupling controls the potassium binding affinity of the prototypical potassium channel KcsA in the context of C-type inactivation. Activation of KcsA is initiated by proton binding to the pH gate upon an intracellular drop in pH. Numerous studies have suggested that this proton binding also prompts a conformational switch, leading to a loss of affinity for potassium ions at the selectivity filter and therefore to channel inactivation. We tested this mechanism for inactivation using a KcsA mutant (H25R/E118A) that exhibits an open pH gate across a broad range of pH values. We present solid-state NMR measurements of this open mutant at neutral pH to probe the affinity for potassium at the selectivity filter. The potassium binding affinity in the selectivity filter of this mutant, 81 mM, is about four orders of magnitude weaker than that of wild-type KcsA at neutral pH and is comparable to the value for wild-type KcsA at low pH (pH ≈ 3.5). This result strongly supports our assertion that the open pH gate allosterically affects the potassium binding affinity of the selectivity filter. In this mutant, the protonation state of a glutamate residue (E120) in the pH sensor is sensitive to potassium binding, suggesting that this mutant also has flexibility in the activation gate and is subject to transmembrane allostery.
Transmembrane allosteric coupling is a feature of many critical biological signaling events. Here we test whether transmembrane allosteric coupling controls the potassium binding affinity of the prototypical potassium channel KcsA in the context of C-type inactivation. Activation of KcsA is initiated by proton binding to the pH gate upon an intracellular drop in pH. Numerous studies have suggested that this proton binding also prompts a conformational switch, leading to a loss of affinity for potassium ions at the selectivity filter and therefore to channel inactivation. We tested this mechanism for inactivation using a KcsA mutant (H25R/E118A) that exhibits an open pH gate across a broad range of pH values. We present solid-state NMR measurements of this open mutant at neutral pH to probe the affinity for potassiumat the selectivity filter. The potassium binding affinity in the selectivity filter of this mutant, 81 mM, is about four orders of magnitude weaker than that of wildtype KcsA at neutral pH and is comparable to the value for wild-type KcsA at low pH (pH ≈ 3.5). This result strongly supports our assertion that the open pH gate allosterically affects the potassium binding affinity of the selectivity filter. In this mutant, the protonation state of a glutamate residue (E120) in the pH sensor is sensitive to potassium binding, suggesting that this mutant also has flexibility in the activation gate and is subject to transmembrane allostery.
Author Xu, Yunyao
Sun, Zhiyu
McDermott, Ann E.
Zhang, Dongyu
Author_xml – sequence: 1
  givenname: Zhiyu
  surname: Sun
  fullname: Sun, Zhiyu
– sequence: 2
  givenname: Yunyao
  surname: Xu
  fullname: Xu, Yunyao
– sequence: 3
  givenname: Dongyu
  surname: Zhang
  fullname: Zhang, Dongyu
– sequence: 4
  givenname: Ann E.
  surname: McDermott
  fullname: McDermott, Ann E.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32188782$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1vFCEYxolpY7fVsycNiZdepuVrB7iYNI1VY6vG6JkwwHTZsDAC06T_vWy2rbZJTwT4Pc_78RyCvZiiA-ANRicYcXo6RV1OsERCEIExfwEWGEnc9UyiPbBAiPBOMMIOwGEpa4SQXAr0EhxQgoXggiyA_5HT4OM11CGkUl32Bpo0T2H75iPU7RZL9XWu_saFW5gmF-FmrjpWmEZYVw76FKFZ6RhdgF9NOYNz2apLCt52perq4Lern6_A_qhDca_vziPw--Ljr_PP3eX3T1_Ozy47s0Sydnope22pYZZzbS2Vg2aDNsYhJKi2SFuM2cAdFsQ6M9rR9gL1QrM2MmW9oUfgw853moeNs8bFmnVQU_YbnW9V0l49_ol-pa7TjeKYEtKLZnB8Z5DTn9mVqja-GBeCji7NRRHKWylKJW7o-yfoOs05tvEaJTgTvOeyUe_-7-ihlfsUGrDcASanUrIblfFtbW2vrUEfFEZqm7bapq3-pd10p09099bPK97uFOtSU37ASS-JZLSnfwHqJbit
CitedBy_id crossref_primary_10_1073_pnas_2017168118
crossref_primary_10_1021_acsomega_1c00276
crossref_primary_10_3390_e23010072
crossref_primary_10_3390_biom12081076
crossref_primary_10_3390_membranes11080604
crossref_primary_10_1021_jacs_3c00764
crossref_primary_10_1063_5_0040649
crossref_primary_10_1021_acs_chemrev_1c00852
crossref_primary_10_7554_eLife_78075
Cites_doi 10.1073/pnas.1211900109
10.1073/pnas.0911270107
10.1038/nsmb1070
10.1063/1.1534105
10.1085/jgp.91.3.317
10.1085/jgp.200709843
10.1038/nature09153
10.1038/nature09136
10.1073/pnas.0810663106
10.1016/j.febslet.2010.02.003
10.1074/jbc.M608264200
10.1016/j.jmb.2010.06.031
10.7554/eLife.28032
10.1073/pnas.1701330114
10.1016/S1090-7807(03)00082-X
10.1111/j.1469-7793.2003.00483.x
10.1016/S0006-3495(02)73982-9
10.1085/jgp.201812082
10.1073/pnas.262372999
10.1016/j.bpj.2010.12.1700
10.1113/jphysiol.2010.191585
10.1038/nature05416
10.1021/bi026215y
10.1016/j.pep.2013.07.013
10.1016/j.str.2008.01.018
10.1016/j.bbamem.2014.10.001
10.1085/jgp.114.4.551
10.1085/jgp.201311057
10.1038/nsmb.3457
10.1085/jgp.201611602
10.1016/j.str.2007.09.022
10.1073/pnas.1319577110
10.1073/pnas.1811168116
10.1085/jgp.117.1.69
10.1016/S0009-2614(01)00791-6
10.1016/j.febslet.2010.02.015
10.1073/pnas.1510526112
10.1073/pnas.0800873105
10.1006/jmre.1999.1896
10.1016/j.bbamem.2011.09.007
10.1085/jgp.117.2.165
10.1371/journal.pcbi.1003058
ContentType Journal Article
Copyright Copyright National Academy of Sciences Mar 31, 2020
2020
Copyright_xml – notice: Copyright National Academy of Sciences Mar 31, 2020
– notice: 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1908828117
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
CrossRef


Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 7175
ExternalDocumentID PMC7132268
32188782
10_1073_pnas_1908828117
26929436
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: P41 GM118302
– fundername: NIGMS NIH HHS
  grantid: R01 GM088724
– fundername: NCRR NIH HHS
  grantid: C06 RR015495
– fundername: HHS | NIH | National Institute of General Medical Sciences (NIGMS)
  grantid: 088724
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c509t-a596ad3c4d77add39ba4bacce0083ad0ad114b7e182decfdfd68068a4490346c3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 13:27:44 EDT 2025
Fri Sep 05 09:25:39 EDT 2025
Mon Jun 30 08:18:50 EDT 2025
Thu Apr 03 07:04:19 EDT 2025
Tue Jul 01 03:40:18 EDT 2025
Thu Apr 24 23:01:19 EDT 2025
Thu May 29 09:12:52 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords solid-state NMR
KcsA
transmembrane allostery
ion channels
Language English
License Published under the PNAS license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c509t-a596ad3c4d77add39ba4bacce0083ad0ad114b7e182decfdfd68068a4490346c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Reviewers: L.B.A., Max Planck Institute for Biophysical Chemistry (MPG); L.D., Royal Institute of Technology; and M.T., University of Innsbruck.
Contributed by Ann E. McDermott, December 24, 2019 (sent for review May 23, 2019; reviewed by Loren B. Andreas, Lucie Delemotte, and Martin Tollinger)
Author contributions: Z.S., Y.X., D.Z., and A.E.M. designed research; Z.S., Y.X., and D.Z. performed research; Z.S., Y.X., D.Z., and A.E.M. analyzed data; and Z.S., Y.X., D.Z., and A.E.M. wrote the paper.
ORCID 0000-0002-9249-1649
0000-0003-3246-489X
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7132268
PMID 32188782
PQID 2387487679
PQPubID 42026
PageCount 5
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7132268
proquest_miscellaneous_2379033391
proquest_journals_2387487679
pubmed_primary_32188782
crossref_citationtrail_10_1073_pnas_1908828117
crossref_primary_10_1073_pnas_1908828117
jstor_primary_26929436
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-31
PublicationDateYYYYMMDD 2020-03-31
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-31
  day: 31
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2020
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_40_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
Cuello L. G. (e_1_3_3_7_2) 1998; 74
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
References_xml – ident: e_1_3_3_10_2
  doi: 10.1073/pnas.1211900109
– ident: e_1_3_3_23_2
  doi: 10.1073/pnas.0911270107
– ident: e_1_3_3_29_2
  doi: 10.1038/nsmb1070
– ident: e_1_3_3_40_2
  doi: 10.1063/1.1534105
– ident: e_1_3_3_20_2
  doi: 10.1085/jgp.91.3.317
– ident: e_1_3_3_30_2
  doi: 10.1085/jgp.200709843
– ident: e_1_3_3_28_2
  doi: 10.1038/nature09153
– ident: e_1_3_3_1_2
  doi: 10.1038/nature09136
– ident: e_1_3_3_37_2
  doi: 10.1073/pnas.0810663106
– ident: e_1_3_3_22_2
  doi: 10.1016/j.febslet.2010.02.003
– ident: e_1_3_3_17_2
  doi: 10.1074/jbc.M608264200
– ident: e_1_3_3_19_2
  doi: 10.1016/j.jmb.2010.06.031
– ident: e_1_3_3_44_2
  doi: 10.7554/eLife.28032
– ident: e_1_3_3_13_2
  doi: 10.1073/pnas.1701330114
– ident: e_1_3_3_39_2
  doi: 10.1016/S1090-7807(03)00082-X
– ident: e_1_3_3_5_2
  doi: 10.1111/j.1469-7793.2003.00483.x
– ident: e_1_3_3_36_2
  doi: 10.1016/S0006-3495(02)73982-9
– ident: e_1_3_3_27_2
  doi: 10.1085/jgp.201812082
– ident: e_1_3_3_4_2
  doi: 10.1073/pnas.262372999
– ident: e_1_3_3_24_2
  doi: 10.1016/j.bpj.2010.12.1700
– ident: e_1_3_3_31_2
  doi: 10.1113/jphysiol.2010.191585
– ident: e_1_3_3_33_2
  doi: 10.1038/nature05416
– ident: e_1_3_3_34_2
  doi: 10.1021/bi026215y
– ident: e_1_3_3_38_2
  doi: 10.1016/j.pep.2013.07.013
– ident: e_1_3_3_3_2
  doi: 10.1016/j.str.2008.01.018
– ident: e_1_3_3_32_2
  doi: 10.1016/j.bbamem.2014.10.001
– ident: e_1_3_3_8_2
  doi: 10.1085/jgp.114.4.551
– ident: e_1_3_3_18_2
  doi: 10.1085/jgp.201311057
– ident: e_1_3_3_6_2
  doi: 10.1038/nsmb.3457
– ident: e_1_3_3_25_2
  doi: 10.1085/jgp.201611602
– ident: e_1_3_3_14_2
  doi: 10.1016/j.str.2007.09.022
– ident: e_1_3_3_11_2
  doi: 10.1073/pnas.1319577110
– ident: e_1_3_3_26_2
  doi: 10.1073/pnas.1811168116
– ident: e_1_3_3_21_2
  doi: 10.1085/jgp.117.1.69
– ident: e_1_3_3_41_2
  doi: 10.1016/S0009-2614(01)00791-6
– ident: e_1_3_3_15_2
  doi: 10.1016/j.febslet.2010.02.015
– volume: 74
  start-page: A254
  year: 1998
  ident: e_1_3_3_7_2
  article-title: Proton-dependent gating in the Streptomyces K+ channel
  publication-title: Biophys. J.
– ident: e_1_3_3_35_2
  doi: 10.1073/pnas.1510526112
– ident: e_1_3_3_16_2
  doi: 10.1073/pnas.0800873105
– ident: e_1_3_3_42_2
  doi: 10.1006/jmre.1999.1896
– ident: e_1_3_3_2_2
  doi: 10.1016/j.bbamem.2011.09.007
– ident: e_1_3_3_9_2
  doi: 10.1085/jgp.117.2.165
– ident: e_1_3_3_43_2
– ident: e_1_3_3_12_2
  doi: 10.1371/journal.pcbi.1003058
SSID ssj0009580
Score 2.385262
Snippet Transmembrane allosteric coupling is a feature of many critical biological signaling events. Here we test whether transmembrane allosteric coupling controls...
Inactivation of potassium channels controls its mean open time and provides exquisite control over biological processes. In the highly conserved C-type...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7171
SubjectTerms Activation
Affinity
Allosteric properties
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Binding
Biological Sciences
Coupling
Deactivation
Hydrogen-Ion Concentration
Inactivation
Ion channels
Ions
Magnetic Resonance Spectroscopy
Mutants
Mutation
NMR
Nuclear magnetic resonance
pH effects
pH sensors
Potassium
Potassium - metabolism
Potassium Channels - genetics
Potassium Channels - metabolism
Protein Conformation
Protonation
Protons
Selectivity
Solid state
Title Probing allosteric coupling in a constitutively open mutant of the ion channel KcsA using solid-state NMR
URI https://www.jstor.org/stable/26929436
https://www.ncbi.nlm.nih.gov/pubmed/32188782
https://www.proquest.com/docview/2387487679
https://www.proquest.com/docview/2379033391
https://pubmed.ncbi.nlm.nih.gov/PMC7132268
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKkNBeEAMGgYGMxMNQlNLEaZw8VtvQBGpVwSZVvFSOnbBKmVPR5qH8Tf4Qx7GdpKUg2EvUOo5zOV_OLeeC0NvEF0Oa-cILWJ4rbxXxYjZIvSAWSjrAu1k79MeT6PI6_Dgbznq9n52opWqd9vmPvXkld6EqjAFdVZbsf1C2WRQG4DfQF7ZAYdj-E42nqoiSSjIsCpWroYLieVktC5OnwlRMuY4FAJ5WbFzVKsu9rVTjYBsboKivkn9lVrif-GrkVrXzAK57Ibw628idjD93VdhpI_JWdpGJ9SiO2vwUwzRWrudOJ2234y9Vzea-3iw2lR2bVbUgqOSGlb85ss9L-a2dOubnIEpMkMlISvei3_VbgJFqEvlsWMdfrqzLsAMQoqFOs-5nmkeDiuNFoe4y2jBxnQFq0Uo6PBkMVr8j3-HvcK_sAGanGh5Ltur7KvoriM2iHSQtb2soEVCMYqq7Ju2U656Oz6iy8KP4HrofUFDorAupqQQd67woc2e23hQl73fOfYge2BNtaU06cHafSbQb2dtRla4eoYfGxsEjDdgj1MvkY3RkHzs-NaXO3z1BC4Ng3CIYWwTjhcQMbyMYKwRjjWBc5hjAh4G-2CAYKwTjGsG4g2AMCH6Krj9cXJ1deqb5h8dBh117bJhETBAeCkpBBpMkZWHKOM-U0cDEgAmw5FNgM3EgMp6LXETxIIpZCMAgYcTJMTqQpcyeIwwaawx6dcoYLOenCQtyUMLyjKvWBCIlDurbhzvnpjK-atBSzOsIDUrmijDzljAOOm0OWOqiMH-eelxTq5kXRGCQhCRy0Ikl39ywlNUc9Gcagn5CEwe9aXYDw1df8ZjMykrNoXCHhCS-g55pajeLW7g4iG7hoJmgislv75GLm7qovAHtizsf-RIdtq_5CTpYf6-yV6Cwr9PX9QvwC7YA7u4
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probing+allosteric+coupling+in+a+constitutively+open+mutant+of+the+ion+channel+KcsA+using+solid-state+NMR&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Sun%2C+Zhiyu&rft.au=Xu%2C+Yunyao&rft.au=Zhang%2C+Dongyu&rft.au=McDermott%2C+Ann+E.&rft.date=2020-03-31&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=117&rft.issue=13&rft.spage=7171&rft.epage=7175&rft_id=info:doi/10.1073%2Fpnas.1908828117&rft_id=info%3Apmid%2F32188782&rft.externalDocID=PMC7132268
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon