Probing allosteric coupling in a constitutively open mutant of the ion channel KcsA using solid-state NMR
Transmembrane allosteric coupling is a feature of many critical biological signaling events. Here we test whether transmembrane allosteric coupling controls the potassium binding affinity of the prototypical potassium channel KcsA in the context of C-type inactivation. Activation of KcsA is initiate...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 117; no. 13; pp. 7171 - 7175 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
31.03.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.1908828117 |
Cover
Abstract | Transmembrane allosteric coupling is a feature of many critical biological signaling events. Here we test whether transmembrane allosteric coupling controls the potassium binding affinity of the prototypical potassium channel KcsA in the context of C-type inactivation. Activation of KcsA is initiated by proton binding to the pH gate upon an intracellular drop in pH. Numerous studies have suggested that this proton binding also prompts a conformational switch, leading to a loss of affinity for potassium ions at the selectivity filter and therefore to channel inactivation. We tested this mechanism for inactivation using a KcsA mutant (H25R/E118A) that exhibits an open pH gate across a broad range of pH values. We present solid-state NMR measurements of this open mutant at neutral pH to probe the affinity for potassiumat the selectivity filter. The potassium binding affinity in the selectivity filter of this mutant, 81 mM, is about four orders of magnitude weaker than that of wildtype KcsA at neutral pH and is comparable to the value for wild-type KcsA at low pH (pH ≈ 3.5). This result strongly supports our assertion that the open pH gate allosterically affects the potassium binding affinity of the selectivity filter. In this mutant, the protonation state of a glutamate residue (E120) in the pH sensor is sensitive to potassium binding, suggesting that this mutant also has flexibility in the activation gate and is subject to transmembrane allostery. |
---|---|
AbstractList | Transmembrane allosteric coupling is a feature of many critical biological signaling events. Here we test whether transmembrane allosteric coupling controls the potassium binding affinity of the prototypical potassium channel KcsA in the context of C-type inactivation. Activation of KcsA is initiated by proton binding to the pH gate upon an intracellular drop in pH. Numerous studies have suggested that this proton binding also prompts a conformational switch, leading to a loss of affinity for potassium ions at the selectivity filter and therefore to channel inactivation. We tested this mechanism for inactivation using a KcsA mutant (H25R/E118A) that exhibits an open pH gate across a broad range of pH values. We present solid-state NMR measurements of this open mutant at neutral pH to probe the affinity for potassium at the selectivity filter. The potassium binding affinity in the selectivity filter of this mutant, 81 mM, is about four orders of magnitude weaker than that of wild-type KcsA at neutral pH and is comparable to the value for wild-type KcsA at low pH (pH ≈ 3.5). This result strongly supports our assertion that the open pH gate allosterically affects the potassium binding affinity of the selectivity filter. In this mutant, the protonation state of a glutamate residue (E120) in the pH sensor is sensitive to potassium binding, suggesting that this mutant also has flexibility in the activation gate and is subject to transmembrane allostery.Transmembrane allosteric coupling is a feature of many critical biological signaling events. Here we test whether transmembrane allosteric coupling controls the potassium binding affinity of the prototypical potassium channel KcsA in the context of C-type inactivation. Activation of KcsA is initiated by proton binding to the pH gate upon an intracellular drop in pH. Numerous studies have suggested that this proton binding also prompts a conformational switch, leading to a loss of affinity for potassium ions at the selectivity filter and therefore to channel inactivation. We tested this mechanism for inactivation using a KcsA mutant (H25R/E118A) that exhibits an open pH gate across a broad range of pH values. We present solid-state NMR measurements of this open mutant at neutral pH to probe the affinity for potassium at the selectivity filter. The potassium binding affinity in the selectivity filter of this mutant, 81 mM, is about four orders of magnitude weaker than that of wild-type KcsA at neutral pH and is comparable to the value for wild-type KcsA at low pH (pH ≈ 3.5). This result strongly supports our assertion that the open pH gate allosterically affects the potassium binding affinity of the selectivity filter. In this mutant, the protonation state of a glutamate residue (E120) in the pH sensor is sensitive to potassium binding, suggesting that this mutant also has flexibility in the activation gate and is subject to transmembrane allostery. Transmembrane allosteric coupling is a feature of many critical biological signaling events. Here we test whether transmembrane allosteric coupling controls the potassium binding affinity of the prototypical potassium channel KcsA in the context of C-type inactivation. Activation of KcsA is initiated by proton binding to the pH gate upon an intracellular drop in pH. Numerous studies have suggested that this proton binding also prompts a conformational switch, leading to a loss of affinity for potassium ions at the selectivity filter and therefore to channel inactivation. We tested this mechanism for inactivation using a KcsA mutant (H25R/E118A) that exhibits an open pH gate across a broad range of pH values. We present solid-state NMR measurements of this open mutant at neutral pH to probe the affinity for potassium at the selectivity filter. The potassium binding affinity in the selectivity filter of this mutant, 81 mM, is about four orders of magnitude weaker than that of wild-type KcsA at neutral pH and is comparable to the value for wild-type KcsA at low pH (pH ≈ 3.5). This result strongly supports our assertion that the open pH gate allosterically affects the potassium binding affinity of the selectivity filter. In this mutant, the protonation state of a glutamate residue (E120) in the pH sensor is sensitive to potassium binding, suggesting that this mutant also has flexibility in the activation gate and is subject to transmembrane allostery. Inactivation of potassium channels controls its mean open time and provides exquisite control over biological processes. In the highly conserved C-type inactivation process, opening of the activation gate causes subsequent inactivation. We test whether the open state of the channel simply has a poor ability to bind the K + ion. Previously, activated and inactivated states were stabilized using truncations or a significant pH drop. Here, we use the H25R/E118A constitutively open mutant of KcsA and also observe a large drop in potassium binding affinity. This provides strong evidence that channel opening causes an allosteric loss of ion affinity, and that the central feature of this universal channel inactivation process is loss of ion affinity at the selectivity filter. Transmembrane allosteric coupling is a feature of many critical biological signaling events. Here we test whether transmembrane allosteric coupling controls the potassium binding affinity of the prototypical potassium channel KcsA in the context of C-type inactivation. Activation of KcsA is initiated by proton binding to the pH gate upon an intracellular drop in pH. Numerous studies have suggested that this proton binding also prompts a conformational switch, leading to a loss of affinity for potassium ions at the selectivity filter and therefore to channel inactivation. We tested this mechanism for inactivation using a KcsA mutant (H25R/E118A) that exhibits an open pH gate across a broad range of pH values. We present solid-state NMR measurements of this open mutant at neutral pH to probe the affinity for potassium at the selectivity filter. The potassium binding affinity in the selectivity filter of this mutant, 81 mM, is about four orders of magnitude weaker than that of wild-type KcsA at neutral pH and is comparable to the value for wild-type KcsA at low pH (pH ≈ 3.5). This result strongly supports our assertion that the open pH gate allosterically affects the potassium binding affinity of the selectivity filter. In this mutant, the protonation state of a glutamate residue (E120) in the pH sensor is sensitive to potassium binding, suggesting that this mutant also has flexibility in the activation gate and is subject to transmembrane allostery. Transmembrane allosteric coupling is a feature of many critical biological signaling events. Here we test whether transmembrane allosteric coupling controls the potassium binding affinity of the prototypical potassium channel KcsA in the context of C-type inactivation. Activation of KcsA is initiated by proton binding to the pH gate upon an intracellular drop in pH. Numerous studies have suggested that this proton binding also prompts a conformational switch, leading to a loss of affinity for potassium ions at the selectivity filter and therefore to channel inactivation. We tested this mechanism for inactivation using a KcsA mutant (H25R/E118A) that exhibits an open pH gate across a broad range of pH values. We present solid-state NMR measurements of this open mutant at neutral pH to probe the affinity for potassiumat the selectivity filter. The potassium binding affinity in the selectivity filter of this mutant, 81 mM, is about four orders of magnitude weaker than that of wildtype KcsA at neutral pH and is comparable to the value for wild-type KcsA at low pH (pH ≈ 3.5). This result strongly supports our assertion that the open pH gate allosterically affects the potassium binding affinity of the selectivity filter. In this mutant, the protonation state of a glutamate residue (E120) in the pH sensor is sensitive to potassium binding, suggesting that this mutant also has flexibility in the activation gate and is subject to transmembrane allostery. |
Author | Xu, Yunyao Sun, Zhiyu McDermott, Ann E. Zhang, Dongyu |
Author_xml | – sequence: 1 givenname: Zhiyu surname: Sun fullname: Sun, Zhiyu – sequence: 2 givenname: Yunyao surname: Xu fullname: Xu, Yunyao – sequence: 3 givenname: Dongyu surname: Zhang fullname: Zhang, Dongyu – sequence: 4 givenname: Ann E. surname: McDermott fullname: McDermott, Ann E. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32188782$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1vFCEYxolpY7fVsycNiZdepuVrB7iYNI1VY6vG6JkwwHTZsDAC06T_vWy2rbZJTwT4Pc_78RyCvZiiA-ANRicYcXo6RV1OsERCEIExfwEWGEnc9UyiPbBAiPBOMMIOwGEpa4SQXAr0EhxQgoXggiyA_5HT4OM11CGkUl32Bpo0T2H75iPU7RZL9XWu_saFW5gmF-FmrjpWmEZYVw76FKFZ6RhdgF9NOYNz2apLCt52perq4Lern6_A_qhDca_vziPw--Ljr_PP3eX3T1_Ozy47s0Sydnope22pYZZzbS2Vg2aDNsYhJKi2SFuM2cAdFsQ6M9rR9gL1QrM2MmW9oUfgw853moeNs8bFmnVQU_YbnW9V0l49_ol-pa7TjeKYEtKLZnB8Z5DTn9mVqja-GBeCji7NRRHKWylKJW7o-yfoOs05tvEaJTgTvOeyUe_-7-ihlfsUGrDcASanUrIblfFtbW2vrUEfFEZqm7bapq3-pd10p09099bPK97uFOtSU37ASS-JZLSnfwHqJbit |
CitedBy_id | crossref_primary_10_1073_pnas_2017168118 crossref_primary_10_1021_acsomega_1c00276 crossref_primary_10_3390_e23010072 crossref_primary_10_3390_biom12081076 crossref_primary_10_3390_membranes11080604 crossref_primary_10_1021_jacs_3c00764 crossref_primary_10_1063_5_0040649 crossref_primary_10_1021_acs_chemrev_1c00852 crossref_primary_10_7554_eLife_78075 |
Cites_doi | 10.1073/pnas.1211900109 10.1073/pnas.0911270107 10.1038/nsmb1070 10.1063/1.1534105 10.1085/jgp.91.3.317 10.1085/jgp.200709843 10.1038/nature09153 10.1038/nature09136 10.1073/pnas.0810663106 10.1016/j.febslet.2010.02.003 10.1074/jbc.M608264200 10.1016/j.jmb.2010.06.031 10.7554/eLife.28032 10.1073/pnas.1701330114 10.1016/S1090-7807(03)00082-X 10.1111/j.1469-7793.2003.00483.x 10.1016/S0006-3495(02)73982-9 10.1085/jgp.201812082 10.1073/pnas.262372999 10.1016/j.bpj.2010.12.1700 10.1113/jphysiol.2010.191585 10.1038/nature05416 10.1021/bi026215y 10.1016/j.pep.2013.07.013 10.1016/j.str.2008.01.018 10.1016/j.bbamem.2014.10.001 10.1085/jgp.114.4.551 10.1085/jgp.201311057 10.1038/nsmb.3457 10.1085/jgp.201611602 10.1016/j.str.2007.09.022 10.1073/pnas.1319577110 10.1073/pnas.1811168116 10.1085/jgp.117.1.69 10.1016/S0009-2614(01)00791-6 10.1016/j.febslet.2010.02.015 10.1073/pnas.1510526112 10.1073/pnas.0800873105 10.1006/jmre.1999.1896 10.1016/j.bbamem.2011.09.007 10.1085/jgp.117.2.165 10.1371/journal.pcbi.1003058 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Mar 31, 2020 2020 |
Copyright_xml | – notice: Copyright National Academy of Sciences Mar 31, 2020 – notice: 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.1908828117 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 7175 |
ExternalDocumentID | PMC7132268 32188782 10_1073_pnas_1908828117 26929436 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: P41 GM118302 – fundername: NIGMS NIH HHS grantid: R01 GM088724 – fundername: NCRR NIH HHS grantid: C06 RR015495 – fundername: HHS | NIH | National Institute of General Medical Sciences (NIGMS) grantid: 088724 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c509t-a596ad3c4d77add39ba4bacce0083ad0ad114b7e182decfdfd68068a4490346c3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 13:27:44 EDT 2025 Fri Sep 05 09:25:39 EDT 2025 Mon Jun 30 08:18:50 EDT 2025 Thu Apr 03 07:04:19 EDT 2025 Tue Jul 01 03:40:18 EDT 2025 Thu Apr 24 23:01:19 EDT 2025 Thu May 29 09:12:52 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Keywords | solid-state NMR KcsA transmembrane allostery ion channels |
Language | English |
License | Published under the PNAS license. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c509t-a596ad3c4d77add39ba4bacce0083ad0ad114b7e182decfdfd68068a4490346c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Reviewers: L.B.A., Max Planck Institute for Biophysical Chemistry (MPG); L.D., Royal Institute of Technology; and M.T., University of Innsbruck. Contributed by Ann E. McDermott, December 24, 2019 (sent for review May 23, 2019; reviewed by Loren B. Andreas, Lucie Delemotte, and Martin Tollinger) Author contributions: Z.S., Y.X., D.Z., and A.E.M. designed research; Z.S., Y.X., and D.Z. performed research; Z.S., Y.X., D.Z., and A.E.M. analyzed data; and Z.S., Y.X., D.Z., and A.E.M. wrote the paper. |
ORCID | 0000-0002-9249-1649 0000-0003-3246-489X |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/7132268 |
PMID | 32188782 |
PQID | 2387487679 |
PQPubID | 42026 |
PageCount | 5 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7132268 proquest_miscellaneous_2379033391 proquest_journals_2387487679 pubmed_primary_32188782 crossref_citationtrail_10_1073_pnas_1908828117 crossref_primary_10_1073_pnas_1908828117 jstor_primary_26929436 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-31 |
PublicationDateYYYYMMDD | 2020-03-31 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-31 day: 31 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2020 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_40_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 Cuello L. G. (e_1_3_3_7_2) 1998; 74 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 |
References_xml | – ident: e_1_3_3_10_2 doi: 10.1073/pnas.1211900109 – ident: e_1_3_3_23_2 doi: 10.1073/pnas.0911270107 – ident: e_1_3_3_29_2 doi: 10.1038/nsmb1070 – ident: e_1_3_3_40_2 doi: 10.1063/1.1534105 – ident: e_1_3_3_20_2 doi: 10.1085/jgp.91.3.317 – ident: e_1_3_3_30_2 doi: 10.1085/jgp.200709843 – ident: e_1_3_3_28_2 doi: 10.1038/nature09153 – ident: e_1_3_3_1_2 doi: 10.1038/nature09136 – ident: e_1_3_3_37_2 doi: 10.1073/pnas.0810663106 – ident: e_1_3_3_22_2 doi: 10.1016/j.febslet.2010.02.003 – ident: e_1_3_3_17_2 doi: 10.1074/jbc.M608264200 – ident: e_1_3_3_19_2 doi: 10.1016/j.jmb.2010.06.031 – ident: e_1_3_3_44_2 doi: 10.7554/eLife.28032 – ident: e_1_3_3_13_2 doi: 10.1073/pnas.1701330114 – ident: e_1_3_3_39_2 doi: 10.1016/S1090-7807(03)00082-X – ident: e_1_3_3_5_2 doi: 10.1111/j.1469-7793.2003.00483.x – ident: e_1_3_3_36_2 doi: 10.1016/S0006-3495(02)73982-9 – ident: e_1_3_3_27_2 doi: 10.1085/jgp.201812082 – ident: e_1_3_3_4_2 doi: 10.1073/pnas.262372999 – ident: e_1_3_3_24_2 doi: 10.1016/j.bpj.2010.12.1700 – ident: e_1_3_3_31_2 doi: 10.1113/jphysiol.2010.191585 – ident: e_1_3_3_33_2 doi: 10.1038/nature05416 – ident: e_1_3_3_34_2 doi: 10.1021/bi026215y – ident: e_1_3_3_38_2 doi: 10.1016/j.pep.2013.07.013 – ident: e_1_3_3_3_2 doi: 10.1016/j.str.2008.01.018 – ident: e_1_3_3_32_2 doi: 10.1016/j.bbamem.2014.10.001 – ident: e_1_3_3_8_2 doi: 10.1085/jgp.114.4.551 – ident: e_1_3_3_18_2 doi: 10.1085/jgp.201311057 – ident: e_1_3_3_6_2 doi: 10.1038/nsmb.3457 – ident: e_1_3_3_25_2 doi: 10.1085/jgp.201611602 – ident: e_1_3_3_14_2 doi: 10.1016/j.str.2007.09.022 – ident: e_1_3_3_11_2 doi: 10.1073/pnas.1319577110 – ident: e_1_3_3_26_2 doi: 10.1073/pnas.1811168116 – ident: e_1_3_3_21_2 doi: 10.1085/jgp.117.1.69 – ident: e_1_3_3_41_2 doi: 10.1016/S0009-2614(01)00791-6 – ident: e_1_3_3_15_2 doi: 10.1016/j.febslet.2010.02.015 – volume: 74 start-page: A254 year: 1998 ident: e_1_3_3_7_2 article-title: Proton-dependent gating in the Streptomyces K+ channel publication-title: Biophys. J. – ident: e_1_3_3_35_2 doi: 10.1073/pnas.1510526112 – ident: e_1_3_3_16_2 doi: 10.1073/pnas.0800873105 – ident: e_1_3_3_42_2 doi: 10.1006/jmre.1999.1896 – ident: e_1_3_3_2_2 doi: 10.1016/j.bbamem.2011.09.007 – ident: e_1_3_3_9_2 doi: 10.1085/jgp.117.2.165 – ident: e_1_3_3_43_2 – ident: e_1_3_3_12_2 doi: 10.1371/journal.pcbi.1003058 |
SSID | ssj0009580 |
Score | 2.385262 |
Snippet | Transmembrane allosteric coupling is a feature of many critical biological signaling events. Here we test whether transmembrane allosteric coupling controls... Inactivation of potassium channels controls its mean open time and provides exquisite control over biological processes. In the highly conserved C-type... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7171 |
SubjectTerms | Activation Affinity Allosteric properties Bacterial Proteins - genetics Bacterial Proteins - metabolism Binding Biological Sciences Coupling Deactivation Hydrogen-Ion Concentration Inactivation Ion channels Ions Magnetic Resonance Spectroscopy Mutants Mutation NMR Nuclear magnetic resonance pH effects pH sensors Potassium Potassium - metabolism Potassium Channels - genetics Potassium Channels - metabolism Protein Conformation Protonation Protons Selectivity Solid state |
Title | Probing allosteric coupling in a constitutively open mutant of the ion channel KcsA using solid-state NMR |
URI | https://www.jstor.org/stable/26929436 https://www.ncbi.nlm.nih.gov/pubmed/32188782 https://www.proquest.com/docview/2387487679 https://www.proquest.com/docview/2379033391 https://pubmed.ncbi.nlm.nih.gov/PMC7132268 |
Volume | 117 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKkNBeEAMGgYGMxMNQlNLEaZw8VtvQBGpVwSZVvFSOnbBKmVPR5qH8Tf4Qx7GdpKUg2EvUOo5zOV_OLeeC0NvEF0Oa-cILWJ4rbxXxYjZIvSAWSjrAu1k79MeT6PI6_Dgbznq9n52opWqd9vmPvXkld6EqjAFdVZbsf1C2WRQG4DfQF7ZAYdj-E42nqoiSSjIsCpWroYLieVktC5OnwlRMuY4FAJ5WbFzVKsu9rVTjYBsboKivkn9lVrif-GrkVrXzAK57Ibw628idjD93VdhpI_JWdpGJ9SiO2vwUwzRWrudOJ2234y9Vzea-3iw2lR2bVbUgqOSGlb85ss9L-a2dOubnIEpMkMlISvei3_VbgJFqEvlsWMdfrqzLsAMQoqFOs-5nmkeDiuNFoe4y2jBxnQFq0Uo6PBkMVr8j3-HvcK_sAGanGh5Ltur7KvoriM2iHSQtb2soEVCMYqq7Ju2U656Oz6iy8KP4HrofUFDorAupqQQd67woc2e23hQl73fOfYge2BNtaU06cHafSbQb2dtRla4eoYfGxsEjDdgj1MvkY3RkHzs-NaXO3z1BC4Ng3CIYWwTjhcQMbyMYKwRjjWBc5hjAh4G-2CAYKwTjGsG4g2AMCH6Krj9cXJ1deqb5h8dBh117bJhETBAeCkpBBpMkZWHKOM-U0cDEgAmw5FNgM3EgMp6LXETxIIpZCMAgYcTJMTqQpcyeIwwaawx6dcoYLOenCQtyUMLyjKvWBCIlDurbhzvnpjK-atBSzOsIDUrmijDzljAOOm0OWOqiMH-eelxTq5kXRGCQhCRy0Ikl39ywlNUc9Gcagn5CEwe9aXYDw1df8ZjMykrNoXCHhCS-g55pajeLW7g4iG7hoJmgislv75GLm7qovAHtizsf-RIdtq_5CTpYf6-yV6Cwr9PX9QvwC7YA7u4 |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probing+allosteric+coupling+in+a+constitutively+open+mutant+of+the+ion+channel+KcsA+using+solid-state+NMR&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Sun%2C+Zhiyu&rft.au=Xu%2C+Yunyao&rft.au=Zhang%2C+Dongyu&rft.au=McDermott%2C+Ann+E.&rft.date=2020-03-31&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=117&rft.issue=13&rft.spage=7171&rft.epage=7175&rft_id=info:doi/10.1073%2Fpnas.1908828117&rft_id=info%3Apmid%2F32188782&rft.externalDocID=PMC7132268 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |