An oligotrophic deep-subsurface community dependent on syntrophy is dominated by sulfur-driven autotrophic denitrifiers
Subsurface lithoautotrophic microbial ecosystems (SLiMEs) under oligotrophic conditions are typically supported by H₂. Methanogens and sulfate reducers, and the respective energy processes, are thought to be the dominant players and have been the research foci. Recent investigations showed that, in...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 113; no. 49; pp. E7927 - E7936 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
06.12.2016
|
Series | PNAS Plus |
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.1612244113 |
Cover
Abstract | Subsurface lithoautotrophic microbial ecosystems (SLiMEs) under oligotrophic conditions are typically supported by H₂. Methanogens and sulfate reducers, and the respective energy processes, are thought to be the dominant players and have been the research foci. Recent investigations showed that, in some deep, fluid-filled fractures in the Witwatersrand Basin, South Africa, methanogens contribute <5% of the total DNA and appear to produce sufficient CH₄ to support the rest of the diverse community. This paradoxical situation reflects our lack of knowledge about the in situ metabolic diversity and the overall ecological trophic structure of SLiMEs. Here, we show the active metabolic processes and interactions in one of these communities by combining metatranscriptomic assemblies, metaproteomic and stable isotopic data, and thermodynamic modeling. Dominating the active community are four autotrophic β-proteobacterial genera that are capable of oxidizing sulfur by denitrification, a process that was previously unnoticed in the deep subsurface. They co-occur with sulfate reducers, anaerobic methane oxidizers, and methanogens, which each comprise <5% of the total community. Syntrophic interactions between these microbial groups remove thermodynamic bottlenecks and enable diverse metabolic reactions to occur under the oligotrophic conditions that dominate in the subsurface. The dominance of sulfur oxidizers is explained by the availability of electron donors and acceptors to these microorganisms and the ability of sulfur-oxidizing denitrifiers to gain energy through concomitant S and H₂ oxidation. We demonstrate that SLiMEs support taxonomically and metabolically diverse microorganisms, which, through developing syntrophic partnerships, overcome thermodynamic barriers imposed by the environmental conditions in the deep subsurface. |
---|---|
AbstractList | Subsurface lithoautotrophic microbial ecosystems (SLiMEs) under oligotrophic conditions are typically supported by H
Methanogens and sulfate reducers, and the respective energy processes, are thought to be the dominant players and have been the research foci. Recent investigations showed that, in some deep, fluid-filled fractures in the Witwatersrand Basin, South Africa, methanogens contribute <5% of the total DNA and appear to produce sufficient CH
to support the rest of the diverse community. This paradoxical situation reflects our lack of knowledge about the in situ metabolic diversity and the overall ecological trophic structure of SLiMEs. Here, we show the active metabolic processes and interactions in one of these communities by combining metatranscriptomic assemblies, metaproteomic and stable isotopic data, and thermodynamic modeling. Dominating the active community are four autotrophic β-proteobacterial genera that are capable of oxidizing sulfur by denitrification, a process that was previously unnoticed in the deep subsurface. They co-occur with sulfate reducers, anaerobic methane oxidizers, and methanogens, which each comprise <5% of the total community. Syntrophic interactions between these microbial groups remove thermodynamic bottlenecks and enable diverse metabolic reactions to occur under the oligotrophic conditions that dominate in the subsurface. The dominance of sulfur oxidizers is explained by the availability of electron donors and acceptors to these microorganisms and the ability of sulfur-oxidizing denitrifiers to gain energy through concomitant S and H
oxidation. We demonstrate that SLiMEs support taxonomically and metabolically diverse microorganisms, which, through developing syntrophic partnerships, overcome thermodynamic barriers imposed by the environmental conditions in the deep subsurface. Microorganisms are known to live in the deep subsurface, kilometers below the photic zone, but the community-wide metabolic networks and trophic structures (the organization of their energy and nutritional hierarchy) remain poorly understood. We show that an active subsurface lithoautotrophic microbial ecosystem (SLiME) under oligotrophic condition exists. Taxonomically and metabolically diverse microorganisms are supported, with sulfur-driven autotrophic denitrifiers predominating in the community. Denitrification is a highly active process in the deep subsurface that evaded recognition in the past. This study highlights the critical role of metabolic cooperation, via syntrophy between subsurface microbial groups, for the survival of the whole community under the oligotrophic conditions that dominate in the subsurface. Subsurface lithoautotrophic microbial ecosystems (SLiMEs) under oligotrophic conditions are typically supported by H 2 . Methanogens and sulfate reducers, and the respective energy processes, are thought to be the dominant players and have been the research foci. Recent investigations showed that, in some deep, fluid-filled fractures in the Witwatersrand Basin, South Africa, methanogens contribute <5% of the total DNA and appear to produce sufficient CH 4 to support the rest of the diverse community. This paradoxical situation reflects our lack of knowledge about the in situ metabolic diversity and the overall ecological trophic structure of SLiMEs. Here, we show the active metabolic processes and interactions in one of these communities by combining metatranscriptomic assemblies, metaproteomic and stable isotopic data, and thermodynamic modeling. Dominating the active community are four autotrophic β-proteobacterial genera that are capable of oxidizing sulfur by denitrification, a process that was previously unnoticed in the deep subsurface. They co-occur with sulfate reducers, anaerobic methane oxidizers, and methanogens, which each comprise <5% of the total community. Syntrophic interactions between these microbial groups remove thermodynamic bottlenecks and enable diverse metabolic reactions to occur under the oligotrophic conditions that dominate in the subsurface. The dominance of sulfur oxidizers is explained by the availability of electron donors and acceptors to these microorganisms and the ability of sulfur-oxidizing denitrifiers to gain energy through concomitant S and H 2 oxidation. We demonstrate that SLiMEs support taxonomically and metabolically diverse microorganisms, which, through developing syntrophic partnerships, overcome thermodynamic barriers imposed by the environmental conditions in the deep subsurface. Microorganisms are known to live in the deep subsurface, kilometers below the photic zone, but the community-wide metabolic networks and trophic structures (the organization of their energy and nutritional hierarchy) remain poorly understood. We show that an active subsurface lithoautotrophic microbial ecosystem (SLiME) under oligotrophic condition exists. Taxonomically and metabolically diverse microorganisms are supported, with sulfur-driven autotrophic denitrifiers predominating in the community. Denitrification is a highly active process in the deep subsurface that evaded recognition in the past. This study highlights the critical role of metabolic cooperation, via syntrophy between subsurface microbial groups, for the survival of the whole community under the oligotrophic conditions that dominate in the subsurface. Subsurface lithoautotrophic microbial ecosystems (SLiMEs) under oligotrophic conditions are typically supported by H 2 . Methanogens and sulfate reducers, and the respective energy processes, are thought to be the dominant players and have been the research foci. Recent investigations showed that, in some deep, fluid-filled fractures in the Witwatersrand Basin, South Africa, methanogens contribute <5% of the total DNA and appear to produce sufficient CH 4 to support the rest of the diverse community. This paradoxical situation reflects our lack of knowledge about the in situ metabolic diversity and the overall ecological trophic structure of SLiMEs. Here, we show the active metabolic processes and interactions in one of these communities by combining metatranscriptomic assemblies, metaproteomic and stable isotopic data, and thermodynamic modeling. Dominating the active community are four autotrophic β-proteobacterial genera that are capable of oxidizing sulfur by denitrification, a process that was previously unnoticed in the deep subsurface. They co-occur with sulfate reducers, anaerobic methane oxidizers, and methanogens, which each comprise <5% of the total community. Syntrophic interactions between these microbial groups remove thermodynamic bottlenecks and enable diverse metabolic reactions to occur under the oligotrophic conditions that dominate in the subsurface. The dominance of sulfur oxidizers is explained by the availability of electron donors and acceptors to these microorganisms and the ability of sulfur-oxidizing denitrifiers to gain energy through concomitant S and H 2 oxidation. We demonstrate that SLiMEs support taxonomically and metabolically diverse microorganisms, which, through developing syntrophic partnerships, overcome thermodynamic barriers imposed by the environmental conditions in the deep subsurface. Subsurface lithoautotrophic microbial ecosystems (SLiMEs) under oligotrophic conditions are typically supported by H2 Methanogens and sulfate reducers, and the respective energy processes, are thought to be the dominant players and have been the research foci. Recent investigations showed that, in some deep, fluid-filled fractures in the Witwatersrand Basin, South Africa, methanogens contribute <5% of the total DNA and appear to produce sufficient CH4 to support the rest of the diverse community. This paradoxical situation reflects our lack of knowledge about the in situ metabolic diversity and the overall ecological trophic structure of SLiMEs. Here, we show the active metabolic processes and interactions in one of these communities by combining metatranscriptomic assemblies, metaproteomic and stable isotopic data, and thermodynamic modeling. Dominating the active community are four autotrophic β-proteobacterial genera that are capable of oxidizing sulfur by denitrification, a process that was previously unnoticed in the deep subsurface. They co-occur with sulfate reducers, anaerobic methane oxidizers, and methanogens, which each comprise <5% of the total community. Syntrophic interactions between these microbial groups remove thermodynamic bottlenecks and enable diverse metabolic reactions to occur under the oligotrophic conditions that dominate in the subsurface. The dominance of sulfur oxidizers is explained by the availability of electron donors and acceptors to these microorganisms and the ability of sulfur-oxidizing denitrifiers to gain energy through concomitant S and H2 oxidation. We demonstrate that SLiMEs support taxonomically and metabolically diverse microorganisms, which, through developing syntrophic partnerships, overcome thermodynamic barriers imposed by the environmental conditions in the deep subsurface.Subsurface lithoautotrophic microbial ecosystems (SLiMEs) under oligotrophic conditions are typically supported by H2 Methanogens and sulfate reducers, and the respective energy processes, are thought to be the dominant players and have been the research foci. Recent investigations showed that, in some deep, fluid-filled fractures in the Witwatersrand Basin, South Africa, methanogens contribute <5% of the total DNA and appear to produce sufficient CH4 to support the rest of the diverse community. This paradoxical situation reflects our lack of knowledge about the in situ metabolic diversity and the overall ecological trophic structure of SLiMEs. Here, we show the active metabolic processes and interactions in one of these communities by combining metatranscriptomic assemblies, metaproteomic and stable isotopic data, and thermodynamic modeling. Dominating the active community are four autotrophic β-proteobacterial genera that are capable of oxidizing sulfur by denitrification, a process that was previously unnoticed in the deep subsurface. They co-occur with sulfate reducers, anaerobic methane oxidizers, and methanogens, which each comprise <5% of the total community. Syntrophic interactions between these microbial groups remove thermodynamic bottlenecks and enable diverse metabolic reactions to occur under the oligotrophic conditions that dominate in the subsurface. The dominance of sulfur oxidizers is explained by the availability of electron donors and acceptors to these microorganisms and the ability of sulfur-oxidizing denitrifiers to gain energy through concomitant S and H2 oxidation. We demonstrate that SLiMEs support taxonomically and metabolically diverse microorganisms, which, through developing syntrophic partnerships, overcome thermodynamic barriers imposed by the environmental conditions in the deep subsurface. Subsurface lithoautotrophic microbial ecosystems (SLiMEs) under oligotrophic conditions are typically supported by H^sub 2^. Methanogens and sulfate reducers, and the respective energy processes, are thought to be the dominant players and have been the research foci. Recent investigations showed that, in some deep, fluid-filled fractures in the Witwatersrand Basin, South Africa, methanogens contribute <5% of the total DNA and appear to produce sufficient CH^sub 4^ to support the rest of the diverse community. This paradoxical situation reflects our lack of knowledge about the in situ metabolic diversity and the overall ecological trophic structure of SLiMEs. Here, we show the active metabolic processes and interactions in one of these communities by combining metatranscriptomic assemblies, metaproteomic and stable isotopic data, and thermodynamic modeling. Dominating the active community are four autotrophic ...-proteobacterial genera that are capable of oxidizing sulfur by denitrification, a process that was previously unnoticed in the deep subsurface. They co-occur with sulfate reducers, anaerobic methane oxidizers, and methanogens, which each comprise <5% of the total community. Syntrophic interactions between these microbial groups remove thermodynamic bottlenecks and enable diverse metabolic reactions to occur under the oligotrophic conditions that dominate in the subsurface. The dominance of sulfur oxidizers is explained by the availability of electron donors and acceptors to these microorganisms and the ability of sulfur-oxidizing denitrifiers to gain energy through concomitant S and H^sub 2^ oxidation. We demonstrate that SLiMEs support taxonomically and metabolically diverse microorganisms, which, through developing syntrophic partnerships, overcome thermodynamic barriers imposed by the environmental conditions in the deep subsurface. (ProQuest: ... denotes formulae/symbols omitted.) Subsurface lithoautotrophic microbial ecosystems (SLiMEs) under oligotrophic conditions are typically supported by H₂. Methanogens and sulfate reducers, and the respective energy processes, are thought to be the dominant players and have been the research foci. Recent investigations showed that, in some deep, fluid-filled fractures in the Witwatersrand Basin, South Africa, methanogens contribute <5% of the total DNA and appear to produce sufficient CH₄ to support the rest of the diverse community. This paradoxical situation reflects our lack of knowledge about the in situ metabolic diversity and the overall ecological trophic structure of SLiMEs. Here, we show the active metabolic processes and interactions in one of these communities by combining metatranscriptomic assemblies, metaproteomic and stable isotopic data, and thermodynamic modeling. Dominating the active community are four autotrophic β-proteobacterial genera that are capable of oxidizing sulfur by denitrification, a process that was previously unnoticed in the deep subsurface. They co-occur with sulfate reducers, anaerobic methane oxidizers, and methanogens, which each comprise <5% of the total community. Syntrophic interactions between these microbial groups remove thermodynamic bottlenecks and enable diverse metabolic reactions to occur under the oligotrophic conditions that dominate in the subsurface. The dominance of sulfur oxidizers is explained by the availability of electron donors and acceptors to these microorganisms and the ability of sulfur-oxidizing denitrifiers to gain energy through concomitant S and H₂ oxidation. We demonstrate that SLiMEs support taxonomically and metabolically diverse microorganisms, which, through developing syntrophic partnerships, overcome thermodynamic barriers imposed by the environmental conditions in the deep subsurface. |
Author | Perlman, David H. Wang, Wei Lindsay, Melody R. Purtschert, Roland Li, Long Lollar, Barbara Sherwood Ono, Shuhei Kieft, Thomas L. Yi, Min Joo Oh, Youmi Linage-Alvarez, Borja Magnabosco, Cara Wiggins, Jessica B. Lau, Maggie C. Y. Kuloyo, Olukayode Wei, Siwen Kyin, Saw Harris, Rachel L. Onstott, Tullis C. Shwe, Henry H. van Heerden, Esta Guo, Ling Slater, Greg F. |
Author_xml | – sequence: 1 givenname: Maggie C. Y. surname: Lau fullname: Lau, Maggie C. Y. organization: Department of Geosciences, Princeton University, Princeton, NJ 08544 – sequence: 2 givenname: Thomas L. surname: Kieft fullname: Kieft, Thomas L. organization: Department of Biology, New Mexico Institute of Mining and Technology, Socorro, NM 87801 – sequence: 3 givenname: Olukayode surname: Kuloyo fullname: Kuloyo, Olukayode organization: Department of Microbial, Biochemical, and Food Biotechnology, University of the Free State, Bloemfontein 9301, South Africa – sequence: 4 givenname: Borja surname: Linage-Alvarez fullname: Linage-Alvarez, Borja organization: Department of Microbial, Biochemical, and Food Biotechnology, University of the Free State, Bloemfontein 9301, South Africa – sequence: 5 givenname: Esta surname: van Heerden fullname: van Heerden, Esta organization: Department of Microbial, Biochemical, and Food Biotechnology, University of the Free State, Bloemfontein 9301, South Africa – sequence: 6 givenname: Melody R. surname: Lindsay fullname: Lindsay, Melody R. organization: Department of Geosciences, Princeton University, Princeton, NJ 08544 – sequence: 7 givenname: Cara surname: Magnabosco fullname: Magnabosco, Cara organization: Department of Geosciences, Princeton University, Princeton, NJ 08544 – sequence: 8 givenname: Wei surname: Wang fullname: Wang, Wei organization: High Throughput Sequencing and Microarray Facility, Lewis–Sigler Institute for Integrative Genomics, Princeton University, NJ 08544 – sequence: 9 givenname: Jessica B. surname: Wiggins fullname: Wiggins, Jessica B. organization: High Throughput Sequencing and Microarray Facility, Lewis-Sigler Institute for Integrative Genomics, Princeton University, NJ 08544 – sequence: 10 givenname: Ling surname: Guo fullname: Guo, Ling organization: High Throughput Sequencing and Microarray Facility, Lewis-Sigler Institute for Integrative Genomics, Princeton University, NJ 08544 – sequence: 11 givenname: David H. surname: Perlman fullname: Perlman, David H. organization: Proteomics and Mass Spectrometry Core, Department of Molecular Biology, Princeton University, NJ 08544 – sequence: 12 givenname: Saw surname: Kyin fullname: Kyin, Saw organization: Proteomics and Mass Spectrometry Core, Department of Molecular Biology, Princeton University, NJ 08544 – sequence: 13 givenname: Henry H. surname: Shwe fullname: Shwe, Henry H. organization: Proteomics and Mass Spectrometry Core, Department of Molecular Biology, Princeton University, NJ 08544 – sequence: 14 givenname: Rachel L. surname: Harris fullname: Harris, Rachel L. organization: Department of Geosciences, Princeton University, Princeton, NJ 08544 – sequence: 15 givenname: Youmi surname: Oh fullname: Oh, Youmi organization: Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ 08544 – sequence: 16 givenname: Min Joo surname: Yi fullname: Yi, Min Joo organization: Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544 – sequence: 17 givenname: Roland surname: Purtschert fullname: Purtschert, Roland organization: Climate and Environmental Physics, Physics Institute, University of Bern, 3012 Bern, Switzerland – sequence: 18 givenname: Greg F. surname: Slater fullname: Slater, Greg F. organization: School of Geography and Earth Sciences, McMaster University, Hamilton, ON, Canada L8S 4K1 – sequence: 19 givenname: Shuhei surname: Ono fullname: Ono, Shuhei organization: Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 – sequence: 20 givenname: Siwen surname: Wei fullname: Wei, Siwen organization: Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E3 – sequence: 21 givenname: Long surname: Li fullname: Li, Long organization: Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E3 – sequence: 22 givenname: Barbara Sherwood surname: Lollar fullname: Lollar, Barbara Sherwood organization: Department of Earth Sciences, University of Toronto, Toronto, ON, Canada M5S 3B1 – sequence: 23 givenname: Tullis C. surname: Onstott fullname: Onstott, Tullis C. organization: Department of Geosciences, Princeton University, Princeton, NJ 08544 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27872277$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1v1DAQxS1URLcLZ06gSFy4pPVHnNgXpKqigFSJC5wtJx63XiV28EfR_vck3ZaWSpzmML_39GbeCTrywQNCbwk-JbhjZ7PX6ZS0hNKmIYS9QBuCJanbRuIjtMGYdrVoaHOMTlLaYYwlF_gVOqad6Cjtug36fe6rMLrrkGOYb9xQGYC5TqVPJVo9QDWEaSre5f2ymcEb8LkKvkp7f6fYVy5VJkzO6wym6vdVKqMtsTbR3YKvdMlPrBef6KyDmF6jl1aPCd7czy36efn5x8XX-ur7l28X51f1wLHMtQRhSNPqHptBUADKmSXWSsl7KXgjtAHDe9C8BYHpwATWjPW97qwQvSUd26JPB9-59BOYYYkf9ajm6CYd9ypop_7deHejrsOt4oTj9aVb9PHeIIZfBVJWk0sDjKP2EEpSZPkvl1KyFf3wDN2FEv1y3koJLFrR4oV6_zTR3ygPnSwAPwBDDClFsGpwWWcX1oBuVASrtXu1dq8eu190Z890D9b_V7w7KHYph_iYpG062knG_gDB3b-B |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2021_146085 crossref_primary_10_1093_femsre_fuab010 crossref_primary_10_1016_j_chemgeo_2021_120571 crossref_primary_10_1016_j_geoderma_2019_06_019 crossref_primary_10_1002_ldr_4547 crossref_primary_10_1038_s41467_021_27783_7 crossref_primary_10_1089_ast_2024_0100 crossref_primary_10_1016_j_earscirev_2020_103342 crossref_primary_10_1128_genomeA_00047_17 crossref_primary_10_1016_j_gca_2017_10_022 crossref_primary_10_1021_acs_est_2c08652 crossref_primary_10_1186_s40168_018_0526_0 crossref_primary_10_1016_j_watres_2025_123329 crossref_primary_10_1038_s41558_020_0734_z crossref_primary_10_1093_femsec_fiy141 crossref_primary_10_1016_j_gca_2022_09_034 crossref_primary_10_1073_pnas_1701266114 crossref_primary_10_1016_j_epsl_2021_117247 crossref_primary_10_1038_s41529_022_00312_7 crossref_primary_10_1126_sciadv_adq0645 crossref_primary_10_1016_j_gca_2018_10_030 crossref_primary_10_3389_fmicb_2021_627595 crossref_primary_10_1128_msystems_00300_21 crossref_primary_10_1038_s41561_018_0221_6 crossref_primary_10_3390_geosciences10110461 crossref_primary_10_3390_geosciences8110418 crossref_primary_10_1111_1462_2920_15867 crossref_primary_10_1111_1462_2920_15866 crossref_primary_10_1016_j_jenvman_2024_120468 crossref_primary_10_1073_pnas_2309636121 crossref_primary_10_2138_am_2020_7166CCBYNCND crossref_primary_10_1016_j_eng_2024_08_006 crossref_primary_10_3389_fbioe_2020_00834 crossref_primary_10_1038_s43247_024_01966_8 crossref_primary_10_1038_s41522_023_00408_1 crossref_primary_10_1002_lno_12692 crossref_primary_10_1007_s00248_017_1100_1 crossref_primary_10_1016_j_rser_2021_111997 crossref_primary_10_1016_j_envpol_2021_118231 crossref_primary_10_3390_life10120307 crossref_primary_10_1134_S0026261719030068 crossref_primary_10_1016_j_cej_2021_132535 crossref_primary_10_1038_s41598_024_68868_9 crossref_primary_10_1038_s41579_024_01110_5 crossref_primary_10_1038_s41598_025_86145_1 crossref_primary_10_1128_Spectrum_00631_21 crossref_primary_10_1016_j_envpol_2022_119322 crossref_primary_10_1038_s41598_018_35940_0 crossref_primary_10_3389_fmicb_2018_01235 crossref_primary_10_1007_s00248_018_1270_5 crossref_primary_10_1080_01490451_2019_1641770 crossref_primary_10_3389_fmicb_2018_01234 crossref_primary_10_1016_j_jhazmat_2017_09_046 crossref_primary_10_1111_1462_2920_15561 crossref_primary_10_1038_s43247_021_00170_2 crossref_primary_10_1093_ismeco_ycae113 crossref_primary_10_3390_w16213021 crossref_primary_10_1038_s41396_020_0602_x crossref_primary_10_1186_s12864_021_07535_z crossref_primary_10_1016_j_orggeochem_2018_02_003 crossref_primary_10_1016_j_gca_2023_02_022 crossref_primary_10_1038_s41396_020_0624_4 crossref_primary_10_1016_j_jwpe_2021_102266 crossref_primary_10_1186_s40517_023_00269_z crossref_primary_10_3390_microorganisms8111694 crossref_primary_10_1016_j_chemgeo_2018_06_011 crossref_primary_10_1073_pnas_1621079114 crossref_primary_10_3390_microorganisms12051025 crossref_primary_10_1016_j_chemgeo_2020_120027 crossref_primary_10_1080_01490451_2018_1535632 crossref_primary_10_1093_femsec_fiab112 crossref_primary_10_3389_fmicb_2022_1018940 crossref_primary_10_1016_j_jngse_2022_104729 crossref_primary_10_1038_s41396_022_01207_w crossref_primary_10_3389_fmicb_2018_01605 crossref_primary_10_1021_acsestengg_4c00701 crossref_primary_10_1038_s41467_017_00094_6 crossref_primary_10_3389_fmicb_2021_668240 crossref_primary_10_3390_w13111533 crossref_primary_10_1073_pnas_2109609118 crossref_primary_10_1038_s41396_021_00965_3 crossref_primary_10_1016_j_scitotenv_2022_153092 crossref_primary_10_1038_s41564_023_01347_5 crossref_primary_10_1089_ast_2018_1960 crossref_primary_10_1016_j_ibiod_2024_105958 crossref_primary_10_1007_s00248_021_01809_5 crossref_primary_10_1016_j_watres_2025_123190 crossref_primary_10_1111_1462_2920_14969 crossref_primary_10_1186_s12866_018_1275_8 crossref_primary_10_1186_s13568_021_01302_9 crossref_primary_10_1016_j_jenvman_2023_118714 crossref_primary_10_3390_min9120749 crossref_primary_10_1038_s42003_021_02980_8 crossref_primary_10_1016_j_gca_2024_04_019 crossref_primary_10_1089_ast_2022_0139 crossref_primary_10_1002_mbo3_1258 crossref_primary_10_1093_ismeco_ycae138 crossref_primary_10_1038_s42003_021_01810_1 crossref_primary_10_3389_fmicb_2018_02129 crossref_primary_10_1111_gbi_12592 crossref_primary_10_1038_s42003_024_07027_2 crossref_primary_10_3390_agronomy14010195 crossref_primary_10_1021_acs_est_3c09640 crossref_primary_10_1038_s41467_023_41900_8 crossref_primary_10_1371_journal_pcbi_1007169 crossref_primary_10_1016_j_gca_2020_12_002 crossref_primary_10_1128_mBio_01470_19 crossref_primary_10_1038_s41564_017_0098_y crossref_primary_10_1093_femsec_fiae062 crossref_primary_10_3389_fmicb_2023_1054084 crossref_primary_10_3390_microorganisms9010064 crossref_primary_10_1155_2022_3945073 crossref_primary_10_1093_ismeco_ycae047 crossref_primary_10_1016_j_watres_2019_02_058 crossref_primary_10_1016_j_eng_2019_03_004 crossref_primary_10_1016_j_envpol_2024_124510 crossref_primary_10_1128_mSystems_00313_18 crossref_primary_10_3390_geosciences8060211 crossref_primary_10_3389_fmicb_2019_01362 crossref_primary_10_1038_s41396_022_01331_7 crossref_primary_10_1038_s41545_024_00348_z crossref_primary_10_1038_ismej_2017_185 crossref_primary_10_3389_fspas_2023_1203845 crossref_primary_10_1016_j_envpol_2019_07_071 crossref_primary_10_1128_mBio_01792_18 crossref_primary_10_3390_w14182921 crossref_primary_10_1038_s41561_021_00725_0 crossref_primary_10_1016_j_ijhydene_2020_12_058 crossref_primary_10_1038_s41467_019_13245_8 crossref_primary_10_1186_s40793_023_00527_4 crossref_primary_10_1186_s40793_020_00355_w crossref_primary_10_1007_s10123_018_0009_y crossref_primary_10_1080_10256016_2024_2410293 crossref_primary_10_1016_j_gca_2020_11_026 crossref_primary_10_1016_j_gca_2020_11_024 crossref_primary_10_3389_fmicb_2019_00316 crossref_primary_10_1371_journal_pone_0250283 crossref_primary_10_1128_AEM_00252_20 crossref_primary_10_1111_1462_2920_16291 crossref_primary_10_3389_fevo_2020_602809 crossref_primary_10_1016_j_chemgeo_2019_119322 crossref_primary_10_1016_j_chemgeo_2022_120788 crossref_primary_10_1089_ast_2020_2237 crossref_primary_10_1186_s40168_023_01501_5 crossref_primary_10_1016_j_cej_2025_160570 crossref_primary_10_1111_1462_2920_15006 crossref_primary_10_3389_fmicb_2023_1217727 |
Cites_doi | 10.1093/nar/gks1219 10.1016/j.gca.2004.02.020 10.1038/nature12230 10.1126/science.1127376 10.1099/ijs.0.024968-0 10.1002/rcm.4307 10.1038/nmeth.1923 10.1080/713851170 10.1126/science.270.5235.450 10.1038/ncomms9952 10.1038/ismej.2012.94 10.1021/je00014a031 10.1038/nature09974 10.1021/ac010088e 10.1038/ncomms13252 10.1007/BF00410179 10.1016/j.chemgeo.2011.01.028 10.1111/1574-6976.12019 10.1111/j.1462-2920.2009.02083.x 10.1007/BF00689344 10.1007/BF00456703 10.3389/fmicb.2015.01457 10.1038/nmeth.3144 10.1142/S0218339011500318 10.1016/j.gca.2015.10.003 10.1093/acprof:oso/9780198570301.001.0001 10.1126/science.1155495 10.3389/fmicb.2014.00610 10.4236/jwarp.2011.34026 10.1038/nature12375 10.1128/br.41.1.100-180.1977 10.1016/j.tim.2005.07.010 10.1093/nar/gkq1007 10.1038/nrmicro2939 10.1002/bit.260290605 10.1093/nar/30.1.176 10.1128/AEM.69.4.2340-2348.2003 10.1186/1471-2105-11-119 10.1080/01490450600875688 10.1126/science.1229240 10.1038/nbt.1883 10.1016/j.ecolmodel.2009.03.005 10.1080/01490450701572416 10.1038/nmeth.1322 10.1099/ijs.0.016980-0 10.1021/es803616k 10.1038/ismej.2015.150 10.1128/AEM.71.12.8773-8783.2005 10.1111/1574-6941.12098 10.1186/1471-2105-10-421 10.1016/j.gca.2008.07.004 10.1093/bioinformatics/btq461 10.1128/AEM.02508-06 10.3389/fmicb.2015.00349 10.1007/s002030050703 10.1007/978-3-642-30123-0_59 10.1093/bioinformatics/bts565 10.1038/ismej.2013.125 10.1007/BF00409245 10.1111/gbi.12069 10.1016/j.chemgeo.2011.11.017 10.1101/gr.089532.108 10.1111/j.1472-4669.2007.00099.x 10.1111/j.1472-4669.2008.00174.x 10.1016/j.gca.2004.08.010 10.1093/bioinformatics/btr381 10.62721/diffusion-fundamentals.11.538 10.1021/es404808r 10.1128/AEM.65.3.1304-1307.1999 10.1080/01490450600875829 10.1016/B978-008044570-0/50159-8 10.1038/nature11656 10.1038/ismej.2014.173 10.1128/AEM.02948-08 10.1038/nature15733 10.1016/S0016-7037(03)00414-9 10.1007/BF00405893 10.1002/bit.260420415 10.1038/ismej.2012.73 10.1073/pnas.1215340110 10.1021/ac020113w 10.1021/es2022329 10.1128/aem.60.6.1949-1955.1994 10.1038/nature12365 10.3389/fmicb.2014.00679 10.1038/nature15512 10.1038/nmeth.1517 10.1007/BF00245152 |
ContentType | Journal Article |
Copyright | Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles Copyright National Academy of Sciences Dec 6, 2016 |
Copyright_xml | – notice: Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles – notice: Copyright National Academy of Sciences Dec 6, 2016 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.1612244113 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Syntrophy in the oligotrophic deep subsurface |
EISSN | 1091-6490 |
EndPage | E7936 |
ExternalDocumentID | PMC5150411 4276376401 27872277 10_1073_pnas_1612244113 26472793 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Feature |
GrantInformation_xml | – fundername: National Science Foundation (NSF) grantid: EAR-0948659 – fundername: Alfred P. Sloan Foundation (Sloan Foundation) grantid: Sloan 2013-10-03; sub award 48045 – fundername: National Science Foundation (NSF) grantid: DGE-1148900 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION AFOSN CGR CUY CVF DOOOF ECM EIF JSODD NPM RHF VQA YIF YIN 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c509t-9e8d146ab0dc82ee253f1ff995b98548aded5bea56e802c380a33bba7f88bf173 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 17:22:26 EDT 2025 Fri Sep 05 12:05:55 EDT 2025 Mon Jun 30 08:38:07 EDT 2025 Wed Feb 19 02:42:58 EST 2025 Wed Sep 10 06:03:33 EDT 2025 Thu Apr 24 23:01:18 EDT 2025 Sun Sep 21 12:06:33 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 49 |
Keywords | inverted biomass pyramid active subsurface environment sulfur-driven autotrophic denitrifiers syntrophy metabolic interactions |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c509t-9e8d146ab0dc82ee253f1ff995b98548aded5bea56e802c380a33bba7f88bf173 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Author contributions: M.C.Y.L. and T.C.O. designed research; M.C.Y.L., C.M., W.W., and T.C.O. planned the technical approach of metatranscriptomics; M.C.Y.L., D.H.P., and T.C.O. planned the technical approach of metaproteomics; M.C.Y.L., T.L.K., O.K., B.L.-A., E.v.H., M.R.L., C.M., W.W., J.B.W., L.G., D.H.P., S.K., H.H.S., R.P., G.F.S., S.O., S.W., L.L., B.S.L., and T.C.O. performed research; E.v.H. was the point of contact with the mining company; M.C.Y.L., T.L.K., O.K., B.L.-A., E.v.H., M.R.L., and C.M. collected samples; M.C.Y.L., M.R.L., R.L.H., Y.O., M.J.Y., R.P., G.F.S., S.O., S.W., L.L., B.S.L., and T.C.O. analyzed data; G.F.S., S.O., L.L., B.S.L., and T.C.O. assisted with the interpretation of isotopic data; T.L.K., C.M., W.W., J.B.W., D.H.P., S.K., G.F.S., L.L., B.S.L., and T.C.O. contributed to and/or commented on the earlier drafts of the manuscript; and M.C.Y.L. wrote the paper. 5Present address: Simons Center for Data Analysis, Simons Foundation, New York, NY 10010. 6Present address: Department of Chemistry, Princeton University, NJ 08544. Edited by David M. Karl, University of Hawaii, Honolulu, HI, and approved October 26, 2016 (received for review August 10, 2016) 7Present address: Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN 47907. 2Present address: Energy Bioengineering and Geomicrobiology Group, University of Calgary, Calgary, AB, Canada T2N 1N4. 3Present address: Consorcio de Promoción del Ovino, 49630 Villalpando, Castillo-León, Spain. 4Present address: Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717. |
ORCID | 0000-0003-2812-9749 |
OpenAccessLink | https://www.pnas.org/content/pnas/113/49/E7927.full.pdf |
PMID | 27872277 |
PQID | 1848086860 |
PQPubID | 42026 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5150411 proquest_miscellaneous_1842599931 proquest_journals_1848086860 pubmed_primary_27872277 crossref_citationtrail_10_1073_pnas_1612244113 crossref_primary_10_1073_pnas_1612244113 jstor_primary_26472793 |
PublicationCentury | 2000 |
PublicationDate | 2016-12-06 |
PublicationDateYYYYMMDD | 2016-12-06 |
PublicationDate_xml | – month: 12 year: 2016 text: 2016-12-06 day: 06 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationSeriesTitle | PNAS Plus |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2016 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | Takahashi H (e_1_3_4_77_2) 2009; 11 McGlynn SE (e_1_3_4_18_2) 2015; 526 Milucka J (e_1_3_4_17_2) 2012; 491 Osburn MR (e_1_3_4_50_2) 2014; 5 Borgonie G (e_1_3_4_13_2) 2011; 474 Nesvizhskii AI (e_1_3_4_66_2) 2014; 11 Casciotti KL (e_1_3_4_70_2) 2002; 74 Jin Q (e_1_3_4_79_2) 2003; 69 Simkus DN (e_1_3_4_23_2) 2016; 173 Sigman DM (e_1_3_4_69_2) 2001; 73 e_1_3_4_72_2 Norlund KLI (e_1_3_4_39_2) 2009; 43 Singh A (e_1_3_4_46_2) 2012; 20 Kojima H (e_1_3_4_30_2) 2011; 61 e_1_3_4_38_2 Onstott TC (e_1_3_4_75_2) 2005 Magnabosco C (e_1_3_4_4_2) 2016; 10 Abiye TA (e_1_3_4_78_2) 2011; 3 Brysch K (e_1_3_4_97_2) 1987; 148 Poser A (e_1_3_4_34_2) 2014; 48 Smith RL (e_1_3_4_93_2) 1994; 60 Otto R (e_1_3_4_82_2) 1985; 142 Li L (e_1_3_4_32_2) 2016; 7 Kelly DP (e_1_3_4_89_2) 1999; 171 Meyerdierks A (e_1_3_4_36_2) 2010; 12 Abe T (e_1_3_4_53_2) 2011; 39 e_1_3_4_81_2 Labonté JM (e_1_3_4_11_2) 2015; 6 Fu L (e_1_3_4_60_2) 2012; 28 Lin LH (e_1_3_4_33_2) 2006; 23 LaRowe DE (e_1_3_4_83_2) 2007; 5 Bosch J (e_1_3_4_42_2) 2012; 46 Widdel F (e_1_3_4_98_2) 1981; 129 Borgonie G (e_1_3_4_12_2) 2015; 6 Quast C (e_1_3_4_56_2) 2013; 41 Wang H (e_1_3_4_47_2) 2009; 220 Guy BM (e_1_3_4_43_2) 2012; 216 MacLean LCW (e_1_3_4_44_2) 2007; 24 Sherwood Lollar B (e_1_3_4_27_2) 2008; 72 Ben Maamar S (e_1_3_4_10_2) 2015; 6 Bethke CM (e_1_3_4_76_2) 2008 Magnabosco C (e_1_3_4_8_2) 2014; 5 Thauer RK (e_1_3_4_84_2) 1977; 41 Granger J (e_1_3_4_71_2) 2009; 23 Wegener G (e_1_3_4_19_2) 2015; 526 Wiśniewski JR (e_1_3_4_65_2) 2009; 6 Cussler EL (e_1_3_4_73_2) 1984 Lin L-H (e_1_3_4_3_2) 2006; 314 Nyyssönen M (e_1_3_4_9_2) 2014; 8 Edgar RC (e_1_3_4_62_2) 2011; 27 Orsi WD (e_1_3_4_51_2) 2013; 499 Schink B (e_1_3_4_16_2) 2013 Kojima H (e_1_3_4_31_2) 2010; 60 Abe T (e_1_3_4_54_2) 2014; 5 Langmead B (e_1_3_4_63_2) 2012; 9 Jungbluth SP (e_1_3_4_6_2) 2013; 7 Chivian D (e_1_3_4_22_2) 2008; 322 Biebl H (e_1_3_4_14_2) 1978; 117 Morris BEL (e_1_3_4_15_2) 2013; 37 Onstott TC (e_1_3_4_86_2) 2014; 12 Courchamp F (e_1_3_4_41_2) 2008 Hansen M (e_1_3_4_49_2) 2015; 9 Moser DP (e_1_3_4_2_2) 2005; 71 Tamimi A (e_1_3_4_74_2) 1994; 39 Kristjansson JK (e_1_3_4_95_2) 1982; 131 Lippmann J (e_1_3_4_25_2) 2003; 67 Hyatt D (e_1_3_4_61_2) 2010; 11 Edgar RC (e_1_3_4_52_2) 2010; 26 Subletta KL (e_1_3_4_90_2) 1987; 29 Hoehler TM (e_1_3_4_87_2) 2013; 11 Onstott TC (e_1_3_4_35_2) 2006; 23 Jin Q (e_1_3_4_80_2) 2005; 69 Davidson MM (e_1_3_4_88_2) 2009; 75 Sonne-Hansen J (e_1_3_4_96_2) 1999; 65 Moran MA (e_1_3_4_28_2) 2013; 7 Ward JA (e_1_3_4_68_2) 2004; 68 Odum EP (e_1_3_4_40_2) 2005 Lever MA (e_1_3_4_5_2) 2013; 339 Lippmann-Pipke J (e_1_3_4_26_2) 2011; 283 Anantharaman K (e_1_3_4_48_2) 2013; 110 Szymanski M (e_1_3_4_55_2) 2002; 30 Silver BJ (e_1_3_4_29_2) 2012; 294 Robertson G (e_1_3_4_58_2) 2010; 7 Prokopenko MG (e_1_3_4_20_2) 2013; 500 MacLean LCW (e_1_3_4_45_2) 2008; 6 Simpson JT (e_1_3_4_59_2) 2009; 19 Nealson KH (e_1_3_4_24_2) 2005; 13 Strohm TO (e_1_3_4_94_2) 2007; 73 Lavalleur HJ (e_1_3_4_7_2) 2013; 85 Hoor AT (e_1_3_4_91_2) 1976; 42 Haroon MF (e_1_3_4_37_2) 2013; 500 Stevens TO (e_1_3_4_1_2) 1995; 270 Camacho C (e_1_3_4_64_2) 2009; 10 Lau MCY (e_1_3_4_21_2) 2014; 5 Moser DP (e_1_3_4_67_2) 2003; 20 Grabherr MG (e_1_3_4_57_2) 2011; 29 Tijhuis L (e_1_3_4_85_2) 1993; 42 Drobner E (e_1_3_4_92_2) 1992; 157 20709691 - Bioinformatics. 2010 Oct 1;26(19):2460-1 19878267 - Environ Microbiol. 2010 Feb;12(2):422-39 23418786 - FEMS Microbiol Ecol. 2013 Jul;85(1):62-73 20081014 - Int J Syst Evol Microbiol. 2010 Dec;60(Pt 12):2862-6 19377485 - Nat Methods. 2009 May;6(5):359-62 18845759 - Science. 2008 Oct 10;322(5899):275-8 26325359 - ISME J. 2016 Mar;10 (3):730-41 23193283 - Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6 22931831 - ISME J. 2013 Feb;7(2):237-43 26375009 - Nature. 2015 Oct 22;526(7574):531-5 23949662 - ISME J. 2014 Jan;8(1):126-38 21637257 - Nature. 2011 Jun 2;474(7349):79-82 20003500 - BMC Bioinformatics. 2009 Dec 15;10:421 21700674 - Bioinformatics. 2011 Aug 15;27(16):2194-200 23263870 - Proc Natl Acad Sci U S A. 2013 Jan 2;110(1):330-5 23135396 - Nature. 2012 Nov 22;491(7425):541-6 16332873 - Appl Environ Microbiol. 2005 Dec;71(12):8773-83 21572440 - Nat Biotechnol. 2011 May 15;29(7):644-52 25400621 - Front Microbiol. 2014 Oct 31;5:531 26733990 - Front Microbiol. 2015 Dec 22;6:1457 27807346 - Nat Commun. 2016 Oct 27;7:13252 20935650 - Nat Methods. 2010 Nov;7(11):909-12 11752286 - Nucleic Acids Res. 2002 Jan 1;30(1):176-8 19076638 - Geobiology. 2008 Dec;6(5):471-80 22791235 - ISME J. 2013 Jan;7(1):161-72 23925243 - Nature. 2013 Aug 8;500(7461):194-8 22388286 - Nat Methods. 2012 Mar 04;9(4):357-9 10049897 - Appl Environ Microbiol. 1999 Mar;65(3):1304-7 22142180 - Environ Sci Technol. 2012 Feb 21;46(4):2095-101 7283636 - Arch Microbiol. 1981 Jul;129(5):395-400 23480449 - FEMS Microbiol Rev. 2013 May;37(3):384-406 23892779 - Nature. 2013 Aug 29;500(7464):567-70 12380811 - Anal Chem. 2002 Oct 1;74(19):4905-12 25003498 - Environ Sci Technol. 2014 Aug 19;48(16):9094-102 23060610 - Bioinformatics. 2012 Dec 1;28(23):3150-2 17209072 - Appl Environ Microbiol. 2007 Mar;73(5):1420-4 24822057 - Front Genet. 2014 May 01;5:114 11569803 - Anal Chem. 2001 Sep 1;73(17):4145-53 24289240 - Geobiology. 2014 Jan;12(1):1-19 21071414 - Nucleic Acids Res. 2011 Jan;39(Database issue):D210-3 1510552 - Arch Microbiol. 1992;157(3):213-7 16054814 - Trends Microbiol. 2005 Sep;13(9):405-10 26597082 - Nat Commun. 2015 Nov 24;6:8952 20709913 - Int J Syst Evol Microbiol. 2011 Jul;61(Pt 7):1651-5 18576503 - Biotechnol Bioeng. 1987 Apr;29(6):690-5 19251739 - Genome Res. 2009 Jun;19(6):1117-23 16349284 - Appl Environ Microbiol. 1994 Jun;60(6):1949-55 17053150 - Science. 2006 Oct 20;314(5798):479-82 1087862 - Antonie Van Leeuwenhoek. 1976;42(4):483-92 12676718 - Appl Environ Microbiol. 2003 Apr;69(4):2340-8 19908214 - Rapid Commun Mass Spectrom. 2009 Dec;23(23):3753-62 25954269 - Front Microbiol. 2015 Apr 22;6:349 23493710 - Science. 2013 Mar 15;339(6125):1305-8 25566203 - Front Microbiol. 2014 Dec 17;5:679 860983 - Bacteriol Rev. 1977 Mar;41(1):100-80 18613056 - Biotechnol Bioeng. 1993 Aug 5;42(4):509-19 23321532 - Nat Rev Microbiol. 2013 Feb;11(2):83-94 25226028 - ISME J. 2015 Mar;9(3):696-707 25357241 - Nat Methods. 2014 Nov;11(11):1114-25 23760485 - Nature. 2013 Jul 11;499(7457):205-8 19943646 - Environ Sci Technol. 2009 Dec 1;43(23):8781-6 19561180 - Appl Environ Microbiol. 2009 Sep;75(17):5621-30 26490622 - Nature. 2015 Oct 22;526(7574):587-90 25429287 - Front Microbiol. 2014 Nov 12;5:610 20211023 - BMC Bioinformatics. 2010 Mar 08;11:119 |
References_xml | – volume: 41 start-page: D590 year: 2013 ident: e_1_3_4_56_2 article-title: The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools publication-title: Nucleic Acids Res doi: 10.1093/nar/gks1219 – volume: 68 start-page: 3239 year: 2004 ident: e_1_3_4_68_2 article-title: Microbial hydrocarbon gases in the Witwatersrand Basin, South Africa: Implications for the deep biosphere publication-title: Geochim Cosmochim Acta doi: 10.1016/j.gca.2004.02.020 – volume: 499 start-page: 205 year: 2013 ident: e_1_3_4_51_2 article-title: Gene expression in the deep biosphere publication-title: Nature doi: 10.1038/nature12230 – volume: 314 start-page: 479 year: 2006 ident: e_1_3_4_3_2 article-title: Long-term sustainability of a high-energy, low-diversity crustal biome publication-title: Science doi: 10.1126/science.1127376 – volume: 61 start-page: 1651 year: 2011 ident: e_1_3_4_30_2 article-title: Sulfuritalea hydrogenivorans gen. nov., sp. nov., a facultative autotroph isolated from a freshwater lake publication-title: Int J Syst Evol Microbiol doi: 10.1099/ijs.0.024968-0 – volume: 23 start-page: 3753 year: 2009 ident: e_1_3_4_71_2 article-title: Removal of nitrite with sulfamic acid for nitrate N and O isotope analysis with the denitrifier method publication-title: Rapid Commun Mass Spectrom doi: 10.1002/rcm.4307 – volume: 9 start-page: 357 year: 2012 ident: e_1_3_4_63_2 article-title: Fast gapped-read alignment with Bowtie 2 publication-title: Nat Methods doi: 10.1038/nmeth.1923 – volume: 20 start-page: 1 year: 2003 ident: e_1_3_4_67_2 article-title: Temporal shifts in microbial community structure and geochemistry of an ultradeep South African gold mine borehole publication-title: Geomicrobiol J doi: 10.1080/713851170 – volume: 270 start-page: 450 year: 1995 ident: e_1_3_4_1_2 article-title: Lithoautotrophic microbial ecosystems in deep basalt aquifers publication-title: Science doi: 10.1126/science.270.5235.450 – ident: e_1_3_4_72_2 – volume: 6 start-page: 8952 year: 2015 ident: e_1_3_4_12_2 article-title: Eukaryotic opportunists dominate the deep-subsurface biosphere in South Africa publication-title: Nat Commun doi: 10.1038/ncomms9952 – volume: 7 start-page: 237 year: 2013 ident: e_1_3_4_28_2 article-title: Sizing up metatranscriptomics publication-title: ISME J doi: 10.1038/ismej.2012.94 – volume: 39 start-page: 330 year: 1994 ident: e_1_3_4_74_2 article-title: Diffusion coefficients for hydrogen sulfide, carbon dioxide, and nitrous oxide in water over the temperature range 293–368K publication-title: J Chem Eng Data doi: 10.1021/je00014a031 – volume: 474 start-page: 79 year: 2011 ident: e_1_3_4_13_2 article-title: Nematoda from the terrestrial deep subsurface of South Africa publication-title: Nature doi: 10.1038/nature09974 – volume-title: Geochemical and Biogeochemical Reaction Modeling year: 2008 ident: e_1_3_4_76_2 – volume: 73 start-page: 4145 year: 2001 ident: e_1_3_4_69_2 article-title: A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater publication-title: Anal Chem doi: 10.1021/ac010088e – volume: 7 start-page: 13252 year: 2016 ident: e_1_3_4_32_2 article-title: Sulfur mass-independent fractionation in subsurface fracture waters indicates a long-standing sulfur cycle in Precambrian rocks publication-title: Nat Commun doi: 10.1038/ncomms13252 – volume: 42 start-page: 483 year: 1976 ident: e_1_3_4_91_2 article-title: Energetic aspects of the metabolism of reduced sulphur compounds in Thiobacillus dentrificans publication-title: Antonie van Leeuwenhoek doi: 10.1007/BF00410179 – volume: 216 start-page: 208 year: 2012 ident: e_1_3_4_43_2 article-title: A multiple sulfur and organic carbon isotope record from non-conglomeratic sedimentary rocks of the Mesoarchean Witwatersrand Supergroup, South Africa publication-title: Precambrian Res – volume-title: Diffusion: Mass Transfer in Fluid Systems year: 1984 ident: e_1_3_4_73_2 – volume: 283 start-page: 287 year: 2011 ident: e_1_3_4_26_2 article-title: Neon identifies two billion year old fluid component in Kaapvaal Craton publication-title: Chem Geol doi: 10.1016/j.chemgeo.2011.01.028 – volume: 37 start-page: 384 year: 2013 ident: e_1_3_4_15_2 article-title: Microbial syntrophy: Interaction for the common good publication-title: FEMS Microbiol Rev doi: 10.1111/1574-6976.12019 – volume: 12 start-page: 422 year: 2010 ident: e_1_3_4_36_2 article-title: Metagenome and mRNA expression analyses of anaerobic methanotrophic archaea of the ANME-1 group publication-title: Environ Microbiol doi: 10.1111/j.1462-2920.2009.02083.x – volume: 117 start-page: 9 year: 1978 ident: e_1_3_4_14_2 article-title: Growth yields of green sulfur bacteria in mixed cultures with sulfur and sulfate reducing bacteria publication-title: Arch Microbiol doi: 10.1007/BF00689344 – volume: 148 start-page: 264 year: 1987 ident: e_1_3_4_97_2 article-title: Lithoautotrophic growth of sulfate-reducing bacteria and description of Desulfobacterium autotrophicum gen. nov., sp. nov publication-title: Arch Microbiol doi: 10.1007/BF00456703 – volume: 6 start-page: 1457 year: 2015 ident: e_1_3_4_10_2 article-title: Groundwater isolation governs chemistry and microbial community structure along hydrologic flowpaths publication-title: Front Microbiol doi: 10.3389/fmicb.2015.01457 – volume: 11 start-page: 1114 year: 2014 ident: e_1_3_4_66_2 article-title: Proteogenomics: Concepts, applications and computational strategies publication-title: Nat Methods doi: 10.1038/nmeth.3144 – volume: 20 start-page: 21 year: 2012 ident: e_1_3_4_46_2 article-title: Modeling fish biomass structure at near pristine coral reefs and degradation by fishing publication-title: J Biol Syst doi: 10.1142/S0218339011500318 – volume: 173 start-page: 264 year: 2016 ident: e_1_3_4_23_2 article-title: Variations in microbial carbon sources and cycling in the deep continental subsurface publication-title: Geochim Cosmochim Acta doi: 10.1016/j.gca.2015.10.003 – volume-title: Allee Effects in Ecology and Conservation year: 2008 ident: e_1_3_4_41_2 doi: 10.1093/acprof:oso/9780198570301.001.0001 – volume: 322 start-page: 275 year: 2008 ident: e_1_3_4_22_2 article-title: Environmental genomics reveals a single-species ecosystem deep within Earth publication-title: Science doi: 10.1126/science.1155495 – volume: 5 start-page: 610 year: 2014 ident: e_1_3_4_50_2 article-title: Chemolithotrophy in the continental deep subsurface: Sanford Underground Research Facility (SURF), USA publication-title: Front Microbiol doi: 10.3389/fmicb.2014.00610 – volume: 3 start-page: 199 year: 2011 ident: e_1_3_4_78_2 article-title: Groundwater resource in the crystalline rocks of the Johannesburg area, South Africa publication-title: J Water Resour Prot doi: 10.4236/jwarp.2011.34026 – volume: 500 start-page: 567 year: 2013 ident: e_1_3_4_37_2 article-title: Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage publication-title: Nature doi: 10.1038/nature12375 – volume: 41 start-page: 100 year: 1977 ident: e_1_3_4_84_2 article-title: Energy conservation in chemotrophic anaerobic bacteria publication-title: Bacteriol Rev doi: 10.1128/br.41.1.100-180.1977 – volume: 13 start-page: 405 year: 2005 ident: e_1_3_4_24_2 article-title: Hydrogen-driven subsurface lithoautotrophic microbial ecosystems (SLiMEs): Do they exist and why should we care? publication-title: Trends Microbiol doi: 10.1016/j.tim.2005.07.010 – volume: 39 start-page: D210 year: 2011 ident: e_1_3_4_53_2 article-title: tRNADB-CE 2011: tRNA gene database curated manually by experts publication-title: Nucleic Acids Res doi: 10.1093/nar/gkq1007 – volume: 11 start-page: 83 year: 2013 ident: e_1_3_4_87_2 article-title: Microbial life under extreme energy limitation publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro2939 – volume: 29 start-page: 690 year: 1987 ident: e_1_3_4_90_2 article-title: Aerobic oxidation of hydrogen sulfide by Thiobacillus denitrificans publication-title: Biotechnol Bioeng doi: 10.1002/bit.260290605 – volume: 30 start-page: 176 year: 2002 ident: e_1_3_4_55_2 article-title: 5S ribosomal RNA database publication-title: Nucleic Acids Res doi: 10.1093/nar/30.1.176 – volume-title: Fundamentals of Ecology year: 2005 ident: e_1_3_4_40_2 – volume: 69 start-page: 2340 year: 2003 ident: e_1_3_4_79_2 article-title: A new rate law describing microbial respiration publication-title: Appl Environ Microbiol doi: 10.1128/AEM.69.4.2340-2348.2003 – volume: 11 start-page: 119 year: 2010 ident: e_1_3_4_61_2 article-title: Prodigal: Prokaryotic gene recognition and translation initiation site identification publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-11-119 – volume: 129 start-page: 395 year: 1981 ident: e_1_3_4_98_2 article-title: Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov publication-title: Arch Microbiol – ident: e_1_3_4_38_2 – volume: 23 start-page: 369 year: 2006 ident: e_1_3_4_35_2 article-title: The origin and age of biogeochemical trends in deep fracture water of the Witwatersrand Basin, South Africa publication-title: Geomicrobiol J doi: 10.1080/01490450600875688 – volume: 339 start-page: 1305 year: 2013 ident: e_1_3_4_5_2 article-title: Evidence for microbial carbon and sulfur cycling in deeply buried ridge flank basalt publication-title: Science doi: 10.1126/science.1229240 – volume: 29 start-page: 644 year: 2011 ident: e_1_3_4_57_2 article-title: Full-length transcriptome assembly from RNA-Seq data without a reference genome publication-title: Nat Biotechnol doi: 10.1038/nbt.1883 – volume: 220 start-page: 1376 year: 2009 ident: e_1_3_4_47_2 article-title: Modeling inverted biomass pyramids and refuges in ecosystems publication-title: Ecol Modell doi: 10.1016/j.ecolmodel.2009.03.005 – volume: 24 start-page: 491 year: 2007 ident: e_1_3_4_44_2 article-title: Mineralogical, chemical and biological characterization of an anaerobic biofilm collected from a borehole in a deep gold mine in South Africa publication-title: Geomicrobiol J doi: 10.1080/01490450701572416 – volume: 6 start-page: 359 year: 2009 ident: e_1_3_4_65_2 article-title: Universal sample preparation method for proteome analysis publication-title: Nat Methods doi: 10.1038/nmeth.1322 – volume: 60 start-page: 2862 year: 2010 ident: e_1_3_4_31_2 article-title: Sulfuricella denitrificans gen. nov., sp. nov., a sulfur-oxidizing autotroph isolated from a freshwater lake publication-title: Int J Syst Evol Microbiol doi: 10.1099/ijs.0.016980-0 – volume: 43 start-page: 8781 year: 2009 ident: e_1_3_4_39_2 article-title: Microbial architecture of environmental sulfur processes: A novel syntrophic sulfur-metabolizing consortia publication-title: Environ Sci Technol doi: 10.1021/es803616k – volume: 10 start-page: 730 year: 2016 ident: e_1_3_4_4_2 article-title: A metagenomic window into carbon metabolism at 3 km depth in Precambrian continental crust publication-title: ISME J doi: 10.1038/ismej.2015.150 – volume: 71 start-page: 8773 year: 2005 ident: e_1_3_4_2_2 article-title: Desulfotomaculum and Methanobacterium spp. dominate a 4- to 5-kilometer-deep fault publication-title: Appl Environ Microbiol doi: 10.1128/AEM.71.12.8773-8783.2005 – volume: 85 start-page: 62 year: 2013 ident: e_1_3_4_7_2 article-title: Microbial characterization of basalt formation waters targeted for geological carbon sequestration publication-title: FEMS Microbiol Ecol doi: 10.1111/1574-6941.12098 – volume: 10 start-page: 421 year: 2009 ident: e_1_3_4_64_2 article-title: BLAST+: Architecture and applications publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-10-421 – volume: 72 start-page: 4778 year: 2008 ident: e_1_3_4_27_2 article-title: Isotopic signatures of CH4 and higher hydrocarbon gases from Precambrian Shield sites: A model for abiogenic polymerization of hydrocarbons publication-title: Geochim Cosmochim Acta doi: 10.1016/j.gca.2008.07.004 – volume: 26 start-page: 2460 year: 2010 ident: e_1_3_4_52_2 article-title: Search and clustering orders of magnitude faster than BLAST publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq461 – volume: 73 start-page: 1420 year: 2007 ident: e_1_3_4_94_2 article-title: Growth yields in bacterial denitrification and nitrate ammonification publication-title: Appl Environ Microbiol doi: 10.1128/AEM.02508-06 – volume: 6 start-page: 349 year: 2015 ident: e_1_3_4_11_2 article-title: Single cell genomics indicates horizontal gene transfer and viral infections in a deep subsurface Firmicutes population publication-title: Front Microbiol doi: 10.3389/fmicb.2015.00349 – volume: 171 start-page: 219 year: 1999 ident: e_1_3_4_89_2 article-title: Thermodynamic aspects of energy conservation by chemolithotrophic sulfur bacteria in relation to the sulfur oxidation pathways publication-title: Arch Microbiol doi: 10.1007/s002030050703 – start-page: 471 volume-title: The Prokaryotes year: 2013 ident: e_1_3_4_16_2 doi: 10.1007/978-3-642-30123-0_59 – volume: 28 start-page: 3150 year: 2012 ident: e_1_3_4_60_2 article-title: CD-HIT: Accelerated for clustering the next-generation sequencing data publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts565 – volume: 8 start-page: 126 year: 2014 ident: e_1_3_4_9_2 article-title: Taxonomically and functionally diverse microbial communities in deep crystalline rocks of the Fennoscandian shield publication-title: ISME J doi: 10.1038/ismej.2013.125 – volume: 142 start-page: 97 year: 1985 ident: e_1_3_4_82_2 article-title: The relation between phosphate potential and growth rate of Streptococcus cremoris publication-title: Arch Microbiol doi: 10.1007/BF00409245 – volume: 12 start-page: 1 year: 2014 ident: e_1_3_4_86_2 article-title: Does aspartic acid racemization constrain the depth limit of the subsurface biosphere? publication-title: Geobiology doi: 10.1111/gbi.12069 – volume: 294 start-page: 51 year: 2012 ident: e_1_3_4_29_2 article-title: The origin of NO3 − and N2 in deep subsurface fracture water of South Africa publication-title: Chem Geol doi: 10.1016/j.chemgeo.2011.11.017 – volume: 19 start-page: 1117 year: 2009 ident: e_1_3_4_59_2 article-title: ABySS: A parallel assembler for short read sequence data publication-title: Genome Res doi: 10.1101/gr.089532.108 – volume: 5 start-page: 153 year: 2007 ident: e_1_3_4_83_2 article-title: Quantifying the energetics of metabolic reactions in diverse biogeochemical systems: Electron flow and ATP synthesis publication-title: Geobiology doi: 10.1111/j.1472-4669.2007.00099.x – volume: 6 start-page: 471 year: 2008 ident: e_1_3_4_45_2 article-title: A high-resolution chemical and structural study of framboidal pyrite formed within a low-temperature bacterial biofilm publication-title: Geobiology doi: 10.1111/j.1472-4669.2008.00174.x – volume: 69 start-page: 1133 year: 2005 ident: e_1_3_4_80_2 article-title: Predicting the rate of microbial respiration in geochemical environments publication-title: Geochim Cosmochim Acta doi: 10.1016/j.gca.2004.08.010 – volume: 27 start-page: 2194 year: 2011 ident: e_1_3_4_62_2 article-title: UCHIME improves sensitivity and speed of chimera detection publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr381 – volume: 11 start-page: 1 year: 2009 ident: e_1_3_4_77_2 article-title: 3D X-ray CT and diffusion measurements to assess tortuosity and constrictivity in a sedimentary rock publication-title: Diffus Fundam doi: 10.62721/diffusion-fundamentals.11.538 – volume: 5 start-page: 531 year: 2014 ident: e_1_3_4_21_2 article-title: Phylogeny and phylogeography of functional genes shared among seven terrestrial subsurface metagenomes reveal N-cycling and microbial evolutionary relationships publication-title: Front Microbiol – volume: 48 start-page: 9094 year: 2014 ident: e_1_3_4_34_2 article-title: Stable sulfur and oxygen isotope fractionation of anoxic sulfide oxidation by two different enzymatic pathways publication-title: Environ Sci Technol doi: 10.1021/es404808r – volume: 65 start-page: 1304 year: 1999 ident: e_1_3_4_96_2 article-title: Kinetics of sulfate and hydrogen uptake by the thermophilic sulfate-reducing bacteria thermodesulfobacterium sp. Strain JSP and thermodesulfovibrio sp. Strain R1Ha3 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.65.3.1304-1307.1999 – volume: 23 start-page: 475 year: 2006 ident: e_1_3_4_33_2 article-title: Planktonic microbial communities associated with fracture-derived groundwater in a deep gold mine of South Africa publication-title: Geomicrobiol J doi: 10.1080/01490450600875829 – start-page: 1217 volume-title: Carbon Dioxide Storage in Deep Geologic Formations for Climate Change Mitigation, Geologic Storage of Carbon Dioxide with Monitoring and Verification, The CO2 Capture and Storage Project (CCP) year: 2005 ident: e_1_3_4_75_2 doi: 10.1016/B978-008044570-0/50159-8 – volume: 491 start-page: 541 year: 2012 ident: e_1_3_4_17_2 article-title: Zero-valent sulphur is a key intermediate in marine methane oxidation publication-title: Nature doi: 10.1038/nature11656 – volume: 9 start-page: 696 year: 2015 ident: e_1_3_4_49_2 article-title: A novel hydrogen oxidizer amidst the sulfur-oxidizing Thiomicrospira lineage publication-title: ISME J doi: 10.1038/ismej.2014.173 – volume: 75 start-page: 5621 year: 2009 ident: e_1_3_4_88_2 article-title: Sulfur isotope enrichment during maintenance metabolism in the thermophilic sulfate-reducing bacterium Desulfotomaculum putei publication-title: Appl Environ Microbiol doi: 10.1128/AEM.02948-08 – volume: 526 start-page: 587 year: 2015 ident: e_1_3_4_19_2 article-title: Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria publication-title: Nature doi: 10.1038/nature15733 – volume: 67 start-page: 4597 year: 2003 ident: e_1_3_4_25_2 article-title: Dating ultra-deep mine waters with noble gases and 36Cl, Witwatersrand Basin, South Africa publication-title: Geochim Cosmochim Acta doi: 10.1016/S0016-7037(03)00414-9 – volume: 131 start-page: 278 year: 1982 ident: e_1_3_4_95_2 article-title: Different Ks values for hydrogen of methanogenic bacteria and sulfate reducing bacteria—an explanation for the apparent inhibition of methanogenesis by sulfate publication-title: Arch Microbiol doi: 10.1007/BF00405893 – volume: 42 start-page: 509 year: 1993 ident: e_1_3_4_85_2 article-title: A thermodynamically based correlation for maintenance gibbs energy requirements in aerobic and anaerobic chemotrophic growth publication-title: Biotechnol Bioeng doi: 10.1002/bit.260420415 – volume: 7 start-page: 161 year: 2013 ident: e_1_3_4_6_2 article-title: Microbial diversity within basement fluids of the sediment-buried Juan de Fuca Ridge flank publication-title: ISME J doi: 10.1038/ismej.2012.73 – volume: 110 start-page: 330 year: 2013 ident: e_1_3_4_48_2 article-title: Evidence for hydrogen oxidation and metabolic plasticity in widespread deep-sea sulfur-oxidizing bacteria publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1215340110 – volume: 74 start-page: 4905 year: 2002 ident: e_1_3_4_70_2 article-title: Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method publication-title: Anal Chem doi: 10.1021/ac020113w – volume: 46 start-page: 2095 year: 2012 ident: e_1_3_4_42_2 article-title: Anaerobic, nitrate-dependent oxidation of pyrite nanoparticles by Thiobacillus denitrificans publication-title: Environ Sci Technol doi: 10.1021/es2022329 – volume: 60 start-page: 1949 year: 1994 ident: e_1_3_4_93_2 article-title: Autotrophic, hydrogen-oxidizing, denitrifying bacteria in groundwater, potential agents for bioremediation of nitrate contamination publication-title: Appl Environ Microbiol doi: 10.1128/aem.60.6.1949-1955.1994 – volume: 500 start-page: 194 year: 2013 ident: e_1_3_4_20_2 article-title: Nitrogen losses in anoxic marine sediments driven by Thioploca-anammox bacterial consortia publication-title: Nature doi: 10.1038/nature12365 – ident: e_1_3_4_81_2 – volume: 5 start-page: 679 year: 2014 ident: e_1_3_4_8_2 article-title: Comparisons of the composition and biogeographic distribution of the bacterial communities occupying South African thermal springs with those inhabiting deep subsurface fracture water publication-title: Front Microbiol doi: 10.3389/fmicb.2014.00679 – volume: 5 start-page: 114 year: 2014 ident: e_1_3_4_54_2 article-title: tRNADB-CE: tRNA gene database well-timed in the era of big sequence data publication-title: Front Genet – volume: 526 start-page: 531 year: 2015 ident: e_1_3_4_18_2 article-title: Single cell activity reveals direct electron transfer in methanotrophic consortia publication-title: Nature doi: 10.1038/nature15512 – volume: 7 start-page: 909 year: 2010 ident: e_1_3_4_58_2 article-title: De novo assembly and analysis of RNA-seq data publication-title: Nat Methods doi: 10.1038/nmeth.1517 – volume: 157 start-page: 213 year: 1992 ident: e_1_3_4_92_2 article-title: Thiobacillus plumbophilus spec. nov., a novel galena and hydrogen oxidizer publication-title: Arch Microbiol doi: 10.1007/BF00245152 – reference: 19251739 - Genome Res. 2009 Jun;19(6):1117-23 – reference: 1510552 - Arch Microbiol. 1992;157(3):213-7 – reference: 19878267 - Environ Microbiol. 2010 Feb;12(2):422-39 – reference: 26733990 - Front Microbiol. 2015 Dec 22;6:1457 – reference: 19943646 - Environ Sci Technol. 2009 Dec 1;43(23):8781-6 – reference: 20709691 - Bioinformatics. 2010 Oct 1;26(19):2460-1 – reference: 10049897 - Appl Environ Microbiol. 1999 Mar;65(3):1304-7 – reference: 27807346 - Nat Commun. 2016 Oct 27;7:13252 – reference: 22931831 - ISME J. 2013 Feb;7(2):237-43 – reference: 25954269 - Front Microbiol. 2015 Apr 22;6:349 – reference: 21572440 - Nat Biotechnol. 2011 May 15;29(7):644-52 – reference: 23949662 - ISME J. 2014 Jan;8(1):126-38 – reference: 20081014 - Int J Syst Evol Microbiol. 2010 Dec;60(Pt 12):2862-6 – reference: 18576503 - Biotechnol Bioeng. 1987 Apr;29(6):690-5 – reference: 12380811 - Anal Chem. 2002 Oct 1;74(19):4905-12 – reference: 11569803 - Anal Chem. 2001 Sep 1;73(17):4145-53 – reference: 22388286 - Nat Methods. 2012 Mar 04;9(4):357-9 – reference: 16054814 - Trends Microbiol. 2005 Sep;13(9):405-10 – reference: 7283636 - Arch Microbiol. 1981 Jul;129(5):395-400 – reference: 24822057 - Front Genet. 2014 May 01;5:114 – reference: 860983 - Bacteriol Rev. 1977 Mar;41(1):100-80 – reference: 23060610 - Bioinformatics. 2012 Dec 1;28(23):3150-2 – reference: 19076638 - Geobiology. 2008 Dec;6(5):471-80 – reference: 25003498 - Environ Sci Technol. 2014 Aug 19;48(16):9094-102 – reference: 18845759 - Science. 2008 Oct 10;322(5899):275-8 – reference: 19561180 - Appl Environ Microbiol. 2009 Sep;75(17):5621-30 – reference: 17209072 - Appl Environ Microbiol. 2007 Mar;73(5):1420-4 – reference: 21700674 - Bioinformatics. 2011 Aug 15;27(16):2194-200 – reference: 17053150 - Science. 2006 Oct 20;314(5798):479-82 – reference: 11752286 - Nucleic Acids Res. 2002 Jan 1;30(1):176-8 – reference: 21071414 - Nucleic Acids Res. 2011 Jan;39(Database issue):D210-3 – reference: 22142180 - Environ Sci Technol. 2012 Feb 21;46(4):2095-101 – reference: 25357241 - Nat Methods. 2014 Nov;11(11):1114-25 – reference: 23892779 - Nature. 2013 Aug 29;500(7464):567-70 – reference: 16349284 - Appl Environ Microbiol. 1994 Jun;60(6):1949-55 – reference: 23263870 - Proc Natl Acad Sci U S A. 2013 Jan 2;110(1):330-5 – reference: 19908214 - Rapid Commun Mass Spectrom. 2009 Dec;23(23):3753-62 – reference: 18613056 - Biotechnol Bioeng. 1993 Aug 5;42(4):509-19 – reference: 16332873 - Appl Environ Microbiol. 2005 Dec;71(12):8773-83 – reference: 25226028 - ISME J. 2015 Mar;9(3):696-707 – reference: 23480449 - FEMS Microbiol Rev. 2013 May;37(3):384-406 – reference: 25429287 - Front Microbiol. 2014 Nov 12;5:610 – reference: 21637257 - Nature. 2011 Jun 2;474(7349):79-82 – reference: 26490622 - Nature. 2015 Oct 22;526(7574):587-90 – reference: 20003500 - BMC Bioinformatics. 2009 Dec 15;10:421 – reference: 26325359 - ISME J. 2016 Mar;10 (3):730-41 – reference: 12676718 - Appl Environ Microbiol. 2003 Apr;69(4):2340-8 – reference: 22791235 - ISME J. 2013 Jan;7(1):161-72 – reference: 23760485 - Nature. 2013 Jul 11;499(7457):205-8 – reference: 23321532 - Nat Rev Microbiol. 2013 Feb;11(2):83-94 – reference: 25400621 - Front Microbiol. 2014 Oct 31;5:531 – reference: 20709913 - Int J Syst Evol Microbiol. 2011 Jul;61(Pt 7):1651-5 – reference: 26375009 - Nature. 2015 Oct 22;526(7574):531-5 – reference: 23493710 - Science. 2013 Mar 15;339(6125):1305-8 – reference: 19377485 - Nat Methods. 2009 May;6(5):359-62 – reference: 1087862 - Antonie Van Leeuwenhoek. 1976;42(4):483-92 – reference: 23135396 - Nature. 2012 Nov 22;491(7425):541-6 – reference: 20935650 - Nat Methods. 2010 Nov;7(11):909-12 – reference: 23418786 - FEMS Microbiol Ecol. 2013 Jul;85(1):62-73 – reference: 24289240 - Geobiology. 2014 Jan;12(1):1-19 – reference: 23925243 - Nature. 2013 Aug 8;500(7461):194-8 – reference: 20211023 - BMC Bioinformatics. 2010 Mar 08;11:119 – reference: 26597082 - Nat Commun. 2015 Nov 24;6:8952 – reference: 23193283 - Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6 – reference: 25566203 - Front Microbiol. 2014 Dec 17;5:679 |
SSID | ssj0009580 |
Score | 2.5870526 |
Snippet | Subsurface lithoautotrophic microbial ecosystems (SLiMEs) under oligotrophic conditions are typically supported by H₂. Methanogens and sulfate reducers, and... Microorganisms are known to live in the deep subsurface, kilometers below the photic zone, but the community-wide metabolic networks and trophic structures... Subsurface lithoautotrophic microbial ecosystems (SLiMEs) under oligotrophic conditions are typically supported by H Methanogens and sulfate reducers, and the... Subsurface lithoautotrophic microbial ecosystems (SLiMEs) under oligotrophic conditions are typically supported by H^sub 2^. Methanogens and sulfate reducers,... Subsurface lithoautotrophic microbial ecosystems (SLiMEs) under oligotrophic conditions are typically supported by H2 Methanogens and sulfate reducers, and the... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | E7927 |
SubjectTerms | Autotrophic Processes Biological Sciences Carbon - metabolism Denitrification Ecosystem Environmental conditions Metabolism Methane - biosynthesis Microbiota Microorganisms Nitrogen - metabolism PNAS Plus South Africa Sulfates Sulfur Sulfur - metabolism Thermodynamics |
Title | An oligotrophic deep-subsurface community dependent on syntrophy is dominated by sulfur-driven autotrophic denitrifiers |
URI | https://www.jstor.org/stable/26472793 https://www.ncbi.nlm.nih.gov/pubmed/27872277 https://www.proquest.com/docview/1848086860 https://www.proquest.com/docview/1842599931 https://pubmed.ncbi.nlm.nih.gov/PMC5150411 |
Volume | 113 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FcuGCKFAwFLRIHIosB7-9PgZUVPGIemil3qJd7zo1CnbkByj8Jf4ks971xgmtBFysyPtwlPky-814Hgi9FmDIMsFTxyMxGChhwB0WRczhbhACHxA86LNcv8zjs8vw41V0NZn8GkUtdS2bZj9vzCv5H6nCPZCrzJL9B8maTeEGfAb5whUkDNe_kvEMuN6qWFZtXa2vi8zmQqydBlRBV-c0k3HoffYH8Oyh120rXw40m7JfsZHdzHklg2FaRUSbbpV3tcNrqQNt2rWjrWGfusgLHTE_ENpzcwA2Q7jBfPAvzrbZKlqFNLZjn8-3vY8_004lDC2XhbCHw6APCRDqeFABTLZxUX_qVtWmd-9KtzDdVNwgE8xqUI7ObPWd1sov_q6qv9KxX8PruwG5uiq20sVAZZw4VN1EjbJWmasalaraqda9p0mqygz8cSqAGpOtjEvaTIHgAmkJ9TYjjKy_9SDxQYH5vu4ss1uIexi6g-76CRC1wTVkKjwTd6gdlQRv954mi07r9TsMSAXB3mTe7EfpjmjPxQN0X9sreKbAd4gmonyIDgdx4hNdtvzNI_RjVuIxGvEeGrFBIzZoxFWJDRpx0WCDRsw2eAeNeIRGPEbjY3T54fTi_Zmj23o4GbDT1kkF4XA-U-byjPhC-FGQe3mephFLCRjQAE0eMUGjWBDXzwLi0iBgjCY5ISz3kuAIHZRVKZ4inBKehnmaybKEYcKAdwChzjOR84CHsUctNB1-6kWma97L1iurRR97kQQLKabFVkwWOjEL1qrcy-1Tj3rZmXm-7MQAx52FjgdhLrSygHUkJC6JSexa6JUZBlUu38_RUlRdP8ePwGALPAs9UbLfbq7BY6FkBxVmgiwTvztSFtd9uXiwWFz4ws9u3fM5urf9Ax6jg7buxAug2i172UP8N6Hv3Dg |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+oligotrophic+deep-subsurface+community+dependent+on+syntrophy+is+dominated+by+sulfur-driven+autotrophic+denitrifiers&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Lau%2C+Maggie+C+Y&rft.au=Kieft%2C+Thomas+L&rft.au=Kuloyo%2C+Olukayode&rft.au=Linage-Alvarez%2C+Borja&rft.date=2016-12-06&rft.eissn=1091-6490&rft.volume=113&rft.issue=49&rft.spage=E7927&rft_id=info:doi/10.1073%2Fpnas.1612244113&rft_id=info%3Apmid%2F27872277&rft.externalDocID=27872277 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |