An oligotrophic deep-subsurface community dependent on syntrophy is dominated by sulfur-driven autotrophic denitrifiers

Subsurface lithoautotrophic microbial ecosystems (SLiMEs) under oligotrophic conditions are typically supported by H₂. Methanogens and sulfate reducers, and the respective energy processes, are thought to be the dominant players and have been the research foci. Recent investigations showed that, in...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 113; no. 49; pp. E7927 - E7936
Main Authors Lau, Maggie C. Y., Kieft, Thomas L., Kuloyo, Olukayode, Linage-Alvarez, Borja, van Heerden, Esta, Lindsay, Melody R., Magnabosco, Cara, Wang, Wei, Wiggins, Jessica B., Guo, Ling, Perlman, David H., Kyin, Saw, Shwe, Henry H., Harris, Rachel L., Oh, Youmi, Yi, Min Joo, Purtschert, Roland, Slater, Greg F., Ono, Shuhei, Wei, Siwen, Li, Long, Lollar, Barbara Sherwood, Onstott, Tullis C.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 06.12.2016
SeriesPNAS Plus
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.1612244113

Cover

Abstract Subsurface lithoautotrophic microbial ecosystems (SLiMEs) under oligotrophic conditions are typically supported by H₂. Methanogens and sulfate reducers, and the respective energy processes, are thought to be the dominant players and have been the research foci. Recent investigations showed that, in some deep, fluid-filled fractures in the Witwatersrand Basin, South Africa, methanogens contribute <5% of the total DNA and appear to produce sufficient CH₄ to support the rest of the diverse community. This paradoxical situation reflects our lack of knowledge about the in situ metabolic diversity and the overall ecological trophic structure of SLiMEs. Here, we show the active metabolic processes and interactions in one of these communities by combining metatranscriptomic assemblies, metaproteomic and stable isotopic data, and thermodynamic modeling. Dominating the active community are four autotrophic β-proteobacterial genera that are capable of oxidizing sulfur by denitrification, a process that was previously unnoticed in the deep subsurface. They co-occur with sulfate reducers, anaerobic methane oxidizers, and methanogens, which each comprise <5% of the total community. Syntrophic interactions between these microbial groups remove thermodynamic bottlenecks and enable diverse metabolic reactions to occur under the oligotrophic conditions that dominate in the subsurface. The dominance of sulfur oxidizers is explained by the availability of electron donors and acceptors to these microorganisms and the ability of sulfur-oxidizing denitrifiers to gain energy through concomitant S and H₂ oxidation. We demonstrate that SLiMEs support taxonomically and metabolically diverse microorganisms, which, through developing syntrophic partnerships, overcome thermodynamic barriers imposed by the environmental conditions in the deep subsurface.
AbstractList Subsurface lithoautotrophic microbial ecosystems (SLiMEs) under oligotrophic conditions are typically supported by H Methanogens and sulfate reducers, and the respective energy processes, are thought to be the dominant players and have been the research foci. Recent investigations showed that, in some deep, fluid-filled fractures in the Witwatersrand Basin, South Africa, methanogens contribute <5% of the total DNA and appear to produce sufficient CH to support the rest of the diverse community. This paradoxical situation reflects our lack of knowledge about the in situ metabolic diversity and the overall ecological trophic structure of SLiMEs. Here, we show the active metabolic processes and interactions in one of these communities by combining metatranscriptomic assemblies, metaproteomic and stable isotopic data, and thermodynamic modeling. Dominating the active community are four autotrophic β-proteobacterial genera that are capable of oxidizing sulfur by denitrification, a process that was previously unnoticed in the deep subsurface. They co-occur with sulfate reducers, anaerobic methane oxidizers, and methanogens, which each comprise <5% of the total community. Syntrophic interactions between these microbial groups remove thermodynamic bottlenecks and enable diverse metabolic reactions to occur under the oligotrophic conditions that dominate in the subsurface. The dominance of sulfur oxidizers is explained by the availability of electron donors and acceptors to these microorganisms and the ability of sulfur-oxidizing denitrifiers to gain energy through concomitant S and H oxidation. We demonstrate that SLiMEs support taxonomically and metabolically diverse microorganisms, which, through developing syntrophic partnerships, overcome thermodynamic barriers imposed by the environmental conditions in the deep subsurface.
Microorganisms are known to live in the deep subsurface, kilometers below the photic zone, but the community-wide metabolic networks and trophic structures (the organization of their energy and nutritional hierarchy) remain poorly understood. We show that an active subsurface lithoautotrophic microbial ecosystem (SLiME) under oligotrophic condition exists. Taxonomically and metabolically diverse microorganisms are supported, with sulfur-driven autotrophic denitrifiers predominating in the community. Denitrification is a highly active process in the deep subsurface that evaded recognition in the past. This study highlights the critical role of metabolic cooperation, via syntrophy between subsurface microbial groups, for the survival of the whole community under the oligotrophic conditions that dominate in the subsurface. Subsurface lithoautotrophic microbial ecosystems (SLiMEs) under oligotrophic conditions are typically supported by H 2 . Methanogens and sulfate reducers, and the respective energy processes, are thought to be the dominant players and have been the research foci. Recent investigations showed that, in some deep, fluid-filled fractures in the Witwatersrand Basin, South Africa, methanogens contribute <5% of the total DNA and appear to produce sufficient CH 4 to support the rest of the diverse community. This paradoxical situation reflects our lack of knowledge about the in situ metabolic diversity and the overall ecological trophic structure of SLiMEs. Here, we show the active metabolic processes and interactions in one of these communities by combining metatranscriptomic assemblies, metaproteomic and stable isotopic data, and thermodynamic modeling. Dominating the active community are four autotrophic β-proteobacterial genera that are capable of oxidizing sulfur by denitrification, a process that was previously unnoticed in the deep subsurface. They co-occur with sulfate reducers, anaerobic methane oxidizers, and methanogens, which each comprise <5% of the total community. Syntrophic interactions between these microbial groups remove thermodynamic bottlenecks and enable diverse metabolic reactions to occur under the oligotrophic conditions that dominate in the subsurface. The dominance of sulfur oxidizers is explained by the availability of electron donors and acceptors to these microorganisms and the ability of sulfur-oxidizing denitrifiers to gain energy through concomitant S and H 2 oxidation. We demonstrate that SLiMEs support taxonomically and metabolically diverse microorganisms, which, through developing syntrophic partnerships, overcome thermodynamic barriers imposed by the environmental conditions in the deep subsurface.
Microorganisms are known to live in the deep subsurface, kilometers below the photic zone, but the community-wide metabolic networks and trophic structures (the organization of their energy and nutritional hierarchy) remain poorly understood. We show that an active subsurface lithoautotrophic microbial ecosystem (SLiME) under oligotrophic condition exists. Taxonomically and metabolically diverse microorganisms are supported, with sulfur-driven autotrophic denitrifiers predominating in the community. Denitrification is a highly active process in the deep subsurface that evaded recognition in the past. This study highlights the critical role of metabolic cooperation, via syntrophy between subsurface microbial groups, for the survival of the whole community under the oligotrophic conditions that dominate in the subsurface. Subsurface lithoautotrophic microbial ecosystems (SLiMEs) under oligotrophic conditions are typically supported by H 2 . Methanogens and sulfate reducers, and the respective energy processes, are thought to be the dominant players and have been the research foci. Recent investigations showed that, in some deep, fluid-filled fractures in the Witwatersrand Basin, South Africa, methanogens contribute <5% of the total DNA and appear to produce sufficient CH 4 to support the rest of the diverse community. This paradoxical situation reflects our lack of knowledge about the in situ metabolic diversity and the overall ecological trophic structure of SLiMEs. Here, we show the active metabolic processes and interactions in one of these communities by combining metatranscriptomic assemblies, metaproteomic and stable isotopic data, and thermodynamic modeling. Dominating the active community are four autotrophic β-proteobacterial genera that are capable of oxidizing sulfur by denitrification, a process that was previously unnoticed in the deep subsurface. They co-occur with sulfate reducers, anaerobic methane oxidizers, and methanogens, which each comprise <5% of the total community. Syntrophic interactions between these microbial groups remove thermodynamic bottlenecks and enable diverse metabolic reactions to occur under the oligotrophic conditions that dominate in the subsurface. The dominance of sulfur oxidizers is explained by the availability of electron donors and acceptors to these microorganisms and the ability of sulfur-oxidizing denitrifiers to gain energy through concomitant S and H 2 oxidation. We demonstrate that SLiMEs support taxonomically and metabolically diverse microorganisms, which, through developing syntrophic partnerships, overcome thermodynamic barriers imposed by the environmental conditions in the deep subsurface.
Subsurface lithoautotrophic microbial ecosystems (SLiMEs) under oligotrophic conditions are typically supported by H2 Methanogens and sulfate reducers, and the respective energy processes, are thought to be the dominant players and have been the research foci. Recent investigations showed that, in some deep, fluid-filled fractures in the Witwatersrand Basin, South Africa, methanogens contribute <5% of the total DNA and appear to produce sufficient CH4 to support the rest of the diverse community. This paradoxical situation reflects our lack of knowledge about the in situ metabolic diversity and the overall ecological trophic structure of SLiMEs. Here, we show the active metabolic processes and interactions in one of these communities by combining metatranscriptomic assemblies, metaproteomic and stable isotopic data, and thermodynamic modeling. Dominating the active community are four autotrophic β-proteobacterial genera that are capable of oxidizing sulfur by denitrification, a process that was previously unnoticed in the deep subsurface. They co-occur with sulfate reducers, anaerobic methane oxidizers, and methanogens, which each comprise <5% of the total community. Syntrophic interactions between these microbial groups remove thermodynamic bottlenecks and enable diverse metabolic reactions to occur under the oligotrophic conditions that dominate in the subsurface. The dominance of sulfur oxidizers is explained by the availability of electron donors and acceptors to these microorganisms and the ability of sulfur-oxidizing denitrifiers to gain energy through concomitant S and H2 oxidation. We demonstrate that SLiMEs support taxonomically and metabolically diverse microorganisms, which, through developing syntrophic partnerships, overcome thermodynamic barriers imposed by the environmental conditions in the deep subsurface.Subsurface lithoautotrophic microbial ecosystems (SLiMEs) under oligotrophic conditions are typically supported by H2 Methanogens and sulfate reducers, and the respective energy processes, are thought to be the dominant players and have been the research foci. Recent investigations showed that, in some deep, fluid-filled fractures in the Witwatersrand Basin, South Africa, methanogens contribute <5% of the total DNA and appear to produce sufficient CH4 to support the rest of the diverse community. This paradoxical situation reflects our lack of knowledge about the in situ metabolic diversity and the overall ecological trophic structure of SLiMEs. Here, we show the active metabolic processes and interactions in one of these communities by combining metatranscriptomic assemblies, metaproteomic and stable isotopic data, and thermodynamic modeling. Dominating the active community are four autotrophic β-proteobacterial genera that are capable of oxidizing sulfur by denitrification, a process that was previously unnoticed in the deep subsurface. They co-occur with sulfate reducers, anaerobic methane oxidizers, and methanogens, which each comprise <5% of the total community. Syntrophic interactions between these microbial groups remove thermodynamic bottlenecks and enable diverse metabolic reactions to occur under the oligotrophic conditions that dominate in the subsurface. The dominance of sulfur oxidizers is explained by the availability of electron donors and acceptors to these microorganisms and the ability of sulfur-oxidizing denitrifiers to gain energy through concomitant S and H2 oxidation. We demonstrate that SLiMEs support taxonomically and metabolically diverse microorganisms, which, through developing syntrophic partnerships, overcome thermodynamic barriers imposed by the environmental conditions in the deep subsurface.
Subsurface lithoautotrophic microbial ecosystems (SLiMEs) under oligotrophic conditions are typically supported by H^sub 2^. Methanogens and sulfate reducers, and the respective energy processes, are thought to be the dominant players and have been the research foci. Recent investigations showed that, in some deep, fluid-filled fractures in the Witwatersrand Basin, South Africa, methanogens contribute <5% of the total DNA and appear to produce sufficient CH^sub 4^ to support the rest of the diverse community. This paradoxical situation reflects our lack of knowledge about the in situ metabolic diversity and the overall ecological trophic structure of SLiMEs. Here, we show the active metabolic processes and interactions in one of these communities by combining metatranscriptomic assemblies, metaproteomic and stable isotopic data, and thermodynamic modeling. Dominating the active community are four autotrophic ...-proteobacterial genera that are capable of oxidizing sulfur by denitrification, a process that was previously unnoticed in the deep subsurface. They co-occur with sulfate reducers, anaerobic methane oxidizers, and methanogens, which each comprise <5% of the total community. Syntrophic interactions between these microbial groups remove thermodynamic bottlenecks and enable diverse metabolic reactions to occur under the oligotrophic conditions that dominate in the subsurface. The dominance of sulfur oxidizers is explained by the availability of electron donors and acceptors to these microorganisms and the ability of sulfur-oxidizing denitrifiers to gain energy through concomitant S and H^sub 2^ oxidation. We demonstrate that SLiMEs support taxonomically and metabolically diverse microorganisms, which, through developing syntrophic partnerships, overcome thermodynamic barriers imposed by the environmental conditions in the deep subsurface. (ProQuest: ... denotes formulae/symbols omitted.)
Subsurface lithoautotrophic microbial ecosystems (SLiMEs) under oligotrophic conditions are typically supported by H₂. Methanogens and sulfate reducers, and the respective energy processes, are thought to be the dominant players and have been the research foci. Recent investigations showed that, in some deep, fluid-filled fractures in the Witwatersrand Basin, South Africa, methanogens contribute <5% of the total DNA and appear to produce sufficient CH₄ to support the rest of the diverse community. This paradoxical situation reflects our lack of knowledge about the in situ metabolic diversity and the overall ecological trophic structure of SLiMEs. Here, we show the active metabolic processes and interactions in one of these communities by combining metatranscriptomic assemblies, metaproteomic and stable isotopic data, and thermodynamic modeling. Dominating the active community are four autotrophic β-proteobacterial genera that are capable of oxidizing sulfur by denitrification, a process that was previously unnoticed in the deep subsurface. They co-occur with sulfate reducers, anaerobic methane oxidizers, and methanogens, which each comprise <5% of the total community. Syntrophic interactions between these microbial groups remove thermodynamic bottlenecks and enable diverse metabolic reactions to occur under the oligotrophic conditions that dominate in the subsurface. The dominance of sulfur oxidizers is explained by the availability of electron donors and acceptors to these microorganisms and the ability of sulfur-oxidizing denitrifiers to gain energy through concomitant S and H₂ oxidation. We demonstrate that SLiMEs support taxonomically and metabolically diverse microorganisms, which, through developing syntrophic partnerships, overcome thermodynamic barriers imposed by the environmental conditions in the deep subsurface.
Author Perlman, David H.
Wang, Wei
Lindsay, Melody R.
Purtschert, Roland
Li, Long
Lollar, Barbara Sherwood
Ono, Shuhei
Kieft, Thomas L.
Yi, Min Joo
Oh, Youmi
Linage-Alvarez, Borja
Magnabosco, Cara
Wiggins, Jessica B.
Lau, Maggie C. Y.
Kuloyo, Olukayode
Wei, Siwen
Kyin, Saw
Harris, Rachel L.
Onstott, Tullis C.
Shwe, Henry H.
van Heerden, Esta
Guo, Ling
Slater, Greg F.
Author_xml – sequence: 1
  givenname: Maggie C. Y.
  surname: Lau
  fullname: Lau, Maggie C. Y.
  organization: Department of Geosciences, Princeton University, Princeton, NJ 08544
– sequence: 2
  givenname: Thomas L.
  surname: Kieft
  fullname: Kieft, Thomas L.
  organization: Department of Biology, New Mexico Institute of Mining and Technology, Socorro, NM 87801
– sequence: 3
  givenname: Olukayode
  surname: Kuloyo
  fullname: Kuloyo, Olukayode
  organization: Department of Microbial, Biochemical, and Food Biotechnology, University of the Free State, Bloemfontein 9301, South Africa
– sequence: 4
  givenname: Borja
  surname: Linage-Alvarez
  fullname: Linage-Alvarez, Borja
  organization: Department of Microbial, Biochemical, and Food Biotechnology, University of the Free State, Bloemfontein 9301, South Africa
– sequence: 5
  givenname: Esta
  surname: van Heerden
  fullname: van Heerden, Esta
  organization: Department of Microbial, Biochemical, and Food Biotechnology, University of the Free State, Bloemfontein 9301, South Africa
– sequence: 6
  givenname: Melody R.
  surname: Lindsay
  fullname: Lindsay, Melody R.
  organization: Department of Geosciences, Princeton University, Princeton, NJ 08544
– sequence: 7
  givenname: Cara
  surname: Magnabosco
  fullname: Magnabosco, Cara
  organization: Department of Geosciences, Princeton University, Princeton, NJ 08544
– sequence: 8
  givenname: Wei
  surname: Wang
  fullname: Wang, Wei
  organization: High Throughput Sequencing and Microarray Facility, Lewis–Sigler Institute for Integrative Genomics, Princeton University, NJ 08544
– sequence: 9
  givenname: Jessica B.
  surname: Wiggins
  fullname: Wiggins, Jessica B.
  organization: High Throughput Sequencing and Microarray Facility, Lewis-Sigler Institute for Integrative Genomics, Princeton University, NJ 08544
– sequence: 10
  givenname: Ling
  surname: Guo
  fullname: Guo, Ling
  organization: High Throughput Sequencing and Microarray Facility, Lewis-Sigler Institute for Integrative Genomics, Princeton University, NJ 08544
– sequence: 11
  givenname: David H.
  surname: Perlman
  fullname: Perlman, David H.
  organization: Proteomics and Mass Spectrometry Core, Department of Molecular Biology, Princeton University, NJ 08544
– sequence: 12
  givenname: Saw
  surname: Kyin
  fullname: Kyin, Saw
  organization: Proteomics and Mass Spectrometry Core, Department of Molecular Biology, Princeton University, NJ 08544
– sequence: 13
  givenname: Henry H.
  surname: Shwe
  fullname: Shwe, Henry H.
  organization: Proteomics and Mass Spectrometry Core, Department of Molecular Biology, Princeton University, NJ 08544
– sequence: 14
  givenname: Rachel L.
  surname: Harris
  fullname: Harris, Rachel L.
  organization: Department of Geosciences, Princeton University, Princeton, NJ 08544
– sequence: 15
  givenname: Youmi
  surname: Oh
  fullname: Oh, Youmi
  organization: Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ 08544
– sequence: 16
  givenname: Min Joo
  surname: Yi
  fullname: Yi, Min Joo
  organization: Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544
– sequence: 17
  givenname: Roland
  surname: Purtschert
  fullname: Purtschert, Roland
  organization: Climate and Environmental Physics, Physics Institute, University of Bern, 3012 Bern, Switzerland
– sequence: 18
  givenname: Greg F.
  surname: Slater
  fullname: Slater, Greg F.
  organization: School of Geography and Earth Sciences, McMaster University, Hamilton, ON, Canada L8S 4K1
– sequence: 19
  givenname: Shuhei
  surname: Ono
  fullname: Ono, Shuhei
  organization: Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
– sequence: 20
  givenname: Siwen
  surname: Wei
  fullname: Wei, Siwen
  organization: Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E3
– sequence: 21
  givenname: Long
  surname: Li
  fullname: Li, Long
  organization: Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E3
– sequence: 22
  givenname: Barbara Sherwood
  surname: Lollar
  fullname: Lollar, Barbara Sherwood
  organization: Department of Earth Sciences, University of Toronto, Toronto, ON, Canada M5S 3B1
– sequence: 23
  givenname: Tullis C.
  surname: Onstott
  fullname: Onstott, Tullis C.
  organization: Department of Geosciences, Princeton University, Princeton, NJ 08544
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27872277$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1v1DAQxS1URLcLZ06gSFy4pPVHnNgXpKqigFSJC5wtJx63XiV28EfR_vck3ZaWSpzmML_39GbeCTrywQNCbwk-JbhjZ7PX6ZS0hNKmIYS9QBuCJanbRuIjtMGYdrVoaHOMTlLaYYwlF_gVOqad6Cjtug36fe6rMLrrkGOYb9xQGYC5TqVPJVo9QDWEaSre5f2ymcEb8LkKvkp7f6fYVy5VJkzO6wym6vdVKqMtsTbR3YKvdMlPrBef6KyDmF6jl1aPCd7czy36efn5x8XX-ur7l28X51f1wLHMtQRhSNPqHptBUADKmSXWSsl7KXgjtAHDe9C8BYHpwATWjPW97qwQvSUd26JPB9-59BOYYYkf9ajm6CYd9ypop_7deHejrsOt4oTj9aVb9PHeIIZfBVJWk0sDjKP2EEpSZPkvl1KyFf3wDN2FEv1y3koJLFrR4oV6_zTR3ygPnSwAPwBDDClFsGpwWWcX1oBuVASrtXu1dq8eu190Z890D9b_V7w7KHYph_iYpG062knG_gDB3b-B
CitedBy_id crossref_primary_10_1016_j_scitotenv_2021_146085
crossref_primary_10_1093_femsre_fuab010
crossref_primary_10_1016_j_chemgeo_2021_120571
crossref_primary_10_1016_j_geoderma_2019_06_019
crossref_primary_10_1002_ldr_4547
crossref_primary_10_1038_s41467_021_27783_7
crossref_primary_10_1089_ast_2024_0100
crossref_primary_10_1016_j_earscirev_2020_103342
crossref_primary_10_1128_genomeA_00047_17
crossref_primary_10_1016_j_gca_2017_10_022
crossref_primary_10_1021_acs_est_2c08652
crossref_primary_10_1186_s40168_018_0526_0
crossref_primary_10_1016_j_watres_2025_123329
crossref_primary_10_1038_s41558_020_0734_z
crossref_primary_10_1093_femsec_fiy141
crossref_primary_10_1016_j_gca_2022_09_034
crossref_primary_10_1073_pnas_1701266114
crossref_primary_10_1016_j_epsl_2021_117247
crossref_primary_10_1038_s41529_022_00312_7
crossref_primary_10_1126_sciadv_adq0645
crossref_primary_10_1016_j_gca_2018_10_030
crossref_primary_10_3389_fmicb_2021_627595
crossref_primary_10_1128_msystems_00300_21
crossref_primary_10_1038_s41561_018_0221_6
crossref_primary_10_3390_geosciences10110461
crossref_primary_10_3390_geosciences8110418
crossref_primary_10_1111_1462_2920_15867
crossref_primary_10_1111_1462_2920_15866
crossref_primary_10_1016_j_jenvman_2024_120468
crossref_primary_10_1073_pnas_2309636121
crossref_primary_10_2138_am_2020_7166CCBYNCND
crossref_primary_10_1016_j_eng_2024_08_006
crossref_primary_10_3389_fbioe_2020_00834
crossref_primary_10_1038_s43247_024_01966_8
crossref_primary_10_1038_s41522_023_00408_1
crossref_primary_10_1002_lno_12692
crossref_primary_10_1007_s00248_017_1100_1
crossref_primary_10_1016_j_rser_2021_111997
crossref_primary_10_1016_j_envpol_2021_118231
crossref_primary_10_3390_life10120307
crossref_primary_10_1134_S0026261719030068
crossref_primary_10_1016_j_cej_2021_132535
crossref_primary_10_1038_s41598_024_68868_9
crossref_primary_10_1038_s41579_024_01110_5
crossref_primary_10_1038_s41598_025_86145_1
crossref_primary_10_1128_Spectrum_00631_21
crossref_primary_10_1016_j_envpol_2022_119322
crossref_primary_10_1038_s41598_018_35940_0
crossref_primary_10_3389_fmicb_2018_01235
crossref_primary_10_1007_s00248_018_1270_5
crossref_primary_10_1080_01490451_2019_1641770
crossref_primary_10_3389_fmicb_2018_01234
crossref_primary_10_1016_j_jhazmat_2017_09_046
crossref_primary_10_1111_1462_2920_15561
crossref_primary_10_1038_s43247_021_00170_2
crossref_primary_10_1093_ismeco_ycae113
crossref_primary_10_3390_w16213021
crossref_primary_10_1038_s41396_020_0602_x
crossref_primary_10_1186_s12864_021_07535_z
crossref_primary_10_1016_j_orggeochem_2018_02_003
crossref_primary_10_1016_j_gca_2023_02_022
crossref_primary_10_1038_s41396_020_0624_4
crossref_primary_10_1016_j_jwpe_2021_102266
crossref_primary_10_1186_s40517_023_00269_z
crossref_primary_10_3390_microorganisms8111694
crossref_primary_10_1016_j_chemgeo_2018_06_011
crossref_primary_10_1073_pnas_1621079114
crossref_primary_10_3390_microorganisms12051025
crossref_primary_10_1016_j_chemgeo_2020_120027
crossref_primary_10_1080_01490451_2018_1535632
crossref_primary_10_1093_femsec_fiab112
crossref_primary_10_3389_fmicb_2022_1018940
crossref_primary_10_1016_j_jngse_2022_104729
crossref_primary_10_1038_s41396_022_01207_w
crossref_primary_10_3389_fmicb_2018_01605
crossref_primary_10_1021_acsestengg_4c00701
crossref_primary_10_1038_s41467_017_00094_6
crossref_primary_10_3389_fmicb_2021_668240
crossref_primary_10_3390_w13111533
crossref_primary_10_1073_pnas_2109609118
crossref_primary_10_1038_s41396_021_00965_3
crossref_primary_10_1016_j_scitotenv_2022_153092
crossref_primary_10_1038_s41564_023_01347_5
crossref_primary_10_1089_ast_2018_1960
crossref_primary_10_1016_j_ibiod_2024_105958
crossref_primary_10_1007_s00248_021_01809_5
crossref_primary_10_1016_j_watres_2025_123190
crossref_primary_10_1111_1462_2920_14969
crossref_primary_10_1186_s12866_018_1275_8
crossref_primary_10_1186_s13568_021_01302_9
crossref_primary_10_1016_j_jenvman_2023_118714
crossref_primary_10_3390_min9120749
crossref_primary_10_1038_s42003_021_02980_8
crossref_primary_10_1016_j_gca_2024_04_019
crossref_primary_10_1089_ast_2022_0139
crossref_primary_10_1002_mbo3_1258
crossref_primary_10_1093_ismeco_ycae138
crossref_primary_10_1038_s42003_021_01810_1
crossref_primary_10_3389_fmicb_2018_02129
crossref_primary_10_1111_gbi_12592
crossref_primary_10_1038_s42003_024_07027_2
crossref_primary_10_3390_agronomy14010195
crossref_primary_10_1021_acs_est_3c09640
crossref_primary_10_1038_s41467_023_41900_8
crossref_primary_10_1371_journal_pcbi_1007169
crossref_primary_10_1016_j_gca_2020_12_002
crossref_primary_10_1128_mBio_01470_19
crossref_primary_10_1038_s41564_017_0098_y
crossref_primary_10_1093_femsec_fiae062
crossref_primary_10_3389_fmicb_2023_1054084
crossref_primary_10_3390_microorganisms9010064
crossref_primary_10_1155_2022_3945073
crossref_primary_10_1093_ismeco_ycae047
crossref_primary_10_1016_j_watres_2019_02_058
crossref_primary_10_1016_j_eng_2019_03_004
crossref_primary_10_1016_j_envpol_2024_124510
crossref_primary_10_1128_mSystems_00313_18
crossref_primary_10_3390_geosciences8060211
crossref_primary_10_3389_fmicb_2019_01362
crossref_primary_10_1038_s41396_022_01331_7
crossref_primary_10_1038_s41545_024_00348_z
crossref_primary_10_1038_ismej_2017_185
crossref_primary_10_3389_fspas_2023_1203845
crossref_primary_10_1016_j_envpol_2019_07_071
crossref_primary_10_1128_mBio_01792_18
crossref_primary_10_3390_w14182921
crossref_primary_10_1038_s41561_021_00725_0
crossref_primary_10_1016_j_ijhydene_2020_12_058
crossref_primary_10_1038_s41467_019_13245_8
crossref_primary_10_1186_s40793_023_00527_4
crossref_primary_10_1186_s40793_020_00355_w
crossref_primary_10_1007_s10123_018_0009_y
crossref_primary_10_1080_10256016_2024_2410293
crossref_primary_10_1016_j_gca_2020_11_026
crossref_primary_10_1016_j_gca_2020_11_024
crossref_primary_10_3389_fmicb_2019_00316
crossref_primary_10_1371_journal_pone_0250283
crossref_primary_10_1128_AEM_00252_20
crossref_primary_10_1111_1462_2920_16291
crossref_primary_10_3389_fevo_2020_602809
crossref_primary_10_1016_j_chemgeo_2019_119322
crossref_primary_10_1016_j_chemgeo_2022_120788
crossref_primary_10_1089_ast_2020_2237
crossref_primary_10_1186_s40168_023_01501_5
crossref_primary_10_1016_j_cej_2025_160570
crossref_primary_10_1111_1462_2920_15006
crossref_primary_10_3389_fmicb_2023_1217727
Cites_doi 10.1093/nar/gks1219
10.1016/j.gca.2004.02.020
10.1038/nature12230
10.1126/science.1127376
10.1099/ijs.0.024968-0
10.1002/rcm.4307
10.1038/nmeth.1923
10.1080/713851170
10.1126/science.270.5235.450
10.1038/ncomms9952
10.1038/ismej.2012.94
10.1021/je00014a031
10.1038/nature09974
10.1021/ac010088e
10.1038/ncomms13252
10.1007/BF00410179
10.1016/j.chemgeo.2011.01.028
10.1111/1574-6976.12019
10.1111/j.1462-2920.2009.02083.x
10.1007/BF00689344
10.1007/BF00456703
10.3389/fmicb.2015.01457
10.1038/nmeth.3144
10.1142/S0218339011500318
10.1016/j.gca.2015.10.003
10.1093/acprof:oso/9780198570301.001.0001
10.1126/science.1155495
10.3389/fmicb.2014.00610
10.4236/jwarp.2011.34026
10.1038/nature12375
10.1128/br.41.1.100-180.1977
10.1016/j.tim.2005.07.010
10.1093/nar/gkq1007
10.1038/nrmicro2939
10.1002/bit.260290605
10.1093/nar/30.1.176
10.1128/AEM.69.4.2340-2348.2003
10.1186/1471-2105-11-119
10.1080/01490450600875688
10.1126/science.1229240
10.1038/nbt.1883
10.1016/j.ecolmodel.2009.03.005
10.1080/01490450701572416
10.1038/nmeth.1322
10.1099/ijs.0.016980-0
10.1021/es803616k
10.1038/ismej.2015.150
10.1128/AEM.71.12.8773-8783.2005
10.1111/1574-6941.12098
10.1186/1471-2105-10-421
10.1016/j.gca.2008.07.004
10.1093/bioinformatics/btq461
10.1128/AEM.02508-06
10.3389/fmicb.2015.00349
10.1007/s002030050703
10.1007/978-3-642-30123-0_59
10.1093/bioinformatics/bts565
10.1038/ismej.2013.125
10.1007/BF00409245
10.1111/gbi.12069
10.1016/j.chemgeo.2011.11.017
10.1101/gr.089532.108
10.1111/j.1472-4669.2007.00099.x
10.1111/j.1472-4669.2008.00174.x
10.1016/j.gca.2004.08.010
10.1093/bioinformatics/btr381
10.62721/diffusion-fundamentals.11.538
10.1021/es404808r
10.1128/AEM.65.3.1304-1307.1999
10.1080/01490450600875829
10.1016/B978-008044570-0/50159-8
10.1038/nature11656
10.1038/ismej.2014.173
10.1128/AEM.02948-08
10.1038/nature15733
10.1016/S0016-7037(03)00414-9
10.1007/BF00405893
10.1002/bit.260420415
10.1038/ismej.2012.73
10.1073/pnas.1215340110
10.1021/ac020113w
10.1021/es2022329
10.1128/aem.60.6.1949-1955.1994
10.1038/nature12365
10.3389/fmicb.2014.00679
10.1038/nature15512
10.1038/nmeth.1517
10.1007/BF00245152
ContentType Journal Article
Copyright Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright National Academy of Sciences Dec 6, 2016
Copyright_xml – notice: Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright National Academy of Sciences Dec 6, 2016
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1612244113
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE

CrossRef
MEDLINE - Academic
Virology and AIDS Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Syntrophy in the oligotrophic deep subsurface
EISSN 1091-6490
EndPage E7936
ExternalDocumentID PMC5150411
4276376401
27872277
10_1073_pnas_1612244113
26472793
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Feature
GrantInformation_xml – fundername: National Science Foundation (NSF)
  grantid: EAR-0948659
– fundername: Alfred P. Sloan Foundation (Sloan Foundation)
  grantid: Sloan 2013-10-03; sub award 48045
– fundername: National Science Foundation (NSF)
  grantid: DGE-1148900
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
AFOSN
CGR
CUY
CVF
DOOOF
ECM
EIF
JSODD
NPM
RHF
VQA
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c509t-9e8d146ab0dc82ee253f1ff995b98548aded5bea56e802c380a33bba7f88bf173
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 17:22:26 EDT 2025
Fri Sep 05 12:05:55 EDT 2025
Mon Jun 30 08:38:07 EDT 2025
Wed Feb 19 02:42:58 EST 2025
Wed Sep 10 06:03:33 EDT 2025
Thu Apr 24 23:01:18 EDT 2025
Sun Sep 21 12:06:33 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 49
Keywords inverted biomass pyramid
active subsurface environment
sulfur-driven autotrophic denitrifiers
syntrophy
metabolic interactions
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c509t-9e8d146ab0dc82ee253f1ff995b98548aded5bea56e802c380a33bba7f88bf173
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Author contributions: M.C.Y.L. and T.C.O. designed research; M.C.Y.L., C.M., W.W., and T.C.O. planned the technical approach of metatranscriptomics; M.C.Y.L., D.H.P., and T.C.O. planned the technical approach of metaproteomics; M.C.Y.L., T.L.K., O.K., B.L.-A., E.v.H., M.R.L., C.M., W.W., J.B.W., L.G., D.H.P., S.K., H.H.S., R.P., G.F.S., S.O., S.W., L.L., B.S.L., and T.C.O. performed research; E.v.H. was the point of contact with the mining company; M.C.Y.L., T.L.K., O.K., B.L.-A., E.v.H., M.R.L., and C.M. collected samples; M.C.Y.L., M.R.L., R.L.H., Y.O., M.J.Y., R.P., G.F.S., S.O., S.W., L.L., B.S.L., and T.C.O. analyzed data; G.F.S., S.O., L.L., B.S.L., and T.C.O. assisted with the interpretation of isotopic data; T.L.K., C.M., W.W., J.B.W., D.H.P., S.K., G.F.S., L.L., B.S.L., and T.C.O. contributed to and/or commented on the earlier drafts of the manuscript; and M.C.Y.L. wrote the paper.
5Present address: Simons Center for Data Analysis, Simons Foundation, New York, NY 10010.
6Present address: Department of Chemistry, Princeton University, NJ 08544.
Edited by David M. Karl, University of Hawaii, Honolulu, HI, and approved October 26, 2016 (received for review August 10, 2016)
7Present address: Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN 47907.
2Present address: Energy Bioengineering and Geomicrobiology Group, University of Calgary, Calgary, AB, Canada T2N 1N4.
3Present address: Consorcio de Promoción del Ovino, 49630 Villalpando, Castillo-León, Spain.
4Present address: Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717.
ORCID 0000-0003-2812-9749
OpenAccessLink https://www.pnas.org/content/pnas/113/49/E7927.full.pdf
PMID 27872277
PQID 1848086860
PQPubID 42026
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5150411
proquest_miscellaneous_1842599931
proquest_journals_1848086860
pubmed_primary_27872277
crossref_citationtrail_10_1073_pnas_1612244113
crossref_primary_10_1073_pnas_1612244113
jstor_primary_26472793
PublicationCentury 2000
PublicationDate 2016-12-06
PublicationDateYYYYMMDD 2016-12-06
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-12-06
  day: 06
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationSeriesTitle PNAS Plus
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2016
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References Takahashi H (e_1_3_4_77_2) 2009; 11
McGlynn SE (e_1_3_4_18_2) 2015; 526
Milucka J (e_1_3_4_17_2) 2012; 491
Osburn MR (e_1_3_4_50_2) 2014; 5
Borgonie G (e_1_3_4_13_2) 2011; 474
Nesvizhskii AI (e_1_3_4_66_2) 2014; 11
Casciotti KL (e_1_3_4_70_2) 2002; 74
Jin Q (e_1_3_4_79_2) 2003; 69
Simkus DN (e_1_3_4_23_2) 2016; 173
Sigman DM (e_1_3_4_69_2) 2001; 73
e_1_3_4_72_2
Norlund KLI (e_1_3_4_39_2) 2009; 43
Singh A (e_1_3_4_46_2) 2012; 20
Kojima H (e_1_3_4_30_2) 2011; 61
e_1_3_4_38_2
Onstott TC (e_1_3_4_75_2) 2005
Magnabosco C (e_1_3_4_4_2) 2016; 10
Abiye TA (e_1_3_4_78_2) 2011; 3
Brysch K (e_1_3_4_97_2) 1987; 148
Poser A (e_1_3_4_34_2) 2014; 48
Smith RL (e_1_3_4_93_2) 1994; 60
Otto R (e_1_3_4_82_2) 1985; 142
Li L (e_1_3_4_32_2) 2016; 7
Kelly DP (e_1_3_4_89_2) 1999; 171
Meyerdierks A (e_1_3_4_36_2) 2010; 12
Abe T (e_1_3_4_53_2) 2011; 39
e_1_3_4_81_2
Labonté JM (e_1_3_4_11_2) 2015; 6
Fu L (e_1_3_4_60_2) 2012; 28
Lin LH (e_1_3_4_33_2) 2006; 23
LaRowe DE (e_1_3_4_83_2) 2007; 5
Bosch J (e_1_3_4_42_2) 2012; 46
Widdel F (e_1_3_4_98_2) 1981; 129
Borgonie G (e_1_3_4_12_2) 2015; 6
Quast C (e_1_3_4_56_2) 2013; 41
Wang H (e_1_3_4_47_2) 2009; 220
Guy BM (e_1_3_4_43_2) 2012; 216
MacLean LCW (e_1_3_4_44_2) 2007; 24
Sherwood Lollar B (e_1_3_4_27_2) 2008; 72
Ben Maamar S (e_1_3_4_10_2) 2015; 6
Bethke CM (e_1_3_4_76_2) 2008
Magnabosco C (e_1_3_4_8_2) 2014; 5
Thauer RK (e_1_3_4_84_2) 1977; 41
Granger J (e_1_3_4_71_2) 2009; 23
Wegener G (e_1_3_4_19_2) 2015; 526
Wiśniewski JR (e_1_3_4_65_2) 2009; 6
Cussler EL (e_1_3_4_73_2) 1984
Lin L-H (e_1_3_4_3_2) 2006; 314
Nyyssönen M (e_1_3_4_9_2) 2014; 8
Edgar RC (e_1_3_4_62_2) 2011; 27
Orsi WD (e_1_3_4_51_2) 2013; 499
Schink B (e_1_3_4_16_2) 2013
Kojima H (e_1_3_4_31_2) 2010; 60
Abe T (e_1_3_4_54_2) 2014; 5
Langmead B (e_1_3_4_63_2) 2012; 9
Jungbluth SP (e_1_3_4_6_2) 2013; 7
Chivian D (e_1_3_4_22_2) 2008; 322
Biebl H (e_1_3_4_14_2) 1978; 117
Morris BEL (e_1_3_4_15_2) 2013; 37
Onstott TC (e_1_3_4_86_2) 2014; 12
Courchamp F (e_1_3_4_41_2) 2008
Hansen M (e_1_3_4_49_2) 2015; 9
Moser DP (e_1_3_4_2_2) 2005; 71
Tamimi A (e_1_3_4_74_2) 1994; 39
Kristjansson JK (e_1_3_4_95_2) 1982; 131
Lippmann J (e_1_3_4_25_2) 2003; 67
Hyatt D (e_1_3_4_61_2) 2010; 11
Edgar RC (e_1_3_4_52_2) 2010; 26
Subletta KL (e_1_3_4_90_2) 1987; 29
Hoehler TM (e_1_3_4_87_2) 2013; 11
Onstott TC (e_1_3_4_35_2) 2006; 23
Jin Q (e_1_3_4_80_2) 2005; 69
Davidson MM (e_1_3_4_88_2) 2009; 75
Sonne-Hansen J (e_1_3_4_96_2) 1999; 65
Moran MA (e_1_3_4_28_2) 2013; 7
Ward JA (e_1_3_4_68_2) 2004; 68
Odum EP (e_1_3_4_40_2) 2005
Lever MA (e_1_3_4_5_2) 2013; 339
Lippmann-Pipke J (e_1_3_4_26_2) 2011; 283
Anantharaman K (e_1_3_4_48_2) 2013; 110
Szymanski M (e_1_3_4_55_2) 2002; 30
Silver BJ (e_1_3_4_29_2) 2012; 294
Robertson G (e_1_3_4_58_2) 2010; 7
Prokopenko MG (e_1_3_4_20_2) 2013; 500
MacLean LCW (e_1_3_4_45_2) 2008; 6
Simpson JT (e_1_3_4_59_2) 2009; 19
Nealson KH (e_1_3_4_24_2) 2005; 13
Strohm TO (e_1_3_4_94_2) 2007; 73
Lavalleur HJ (e_1_3_4_7_2) 2013; 85
Hoor AT (e_1_3_4_91_2) 1976; 42
Haroon MF (e_1_3_4_37_2) 2013; 500
Stevens TO (e_1_3_4_1_2) 1995; 270
Camacho C (e_1_3_4_64_2) 2009; 10
Lau MCY (e_1_3_4_21_2) 2014; 5
Moser DP (e_1_3_4_67_2) 2003; 20
Grabherr MG (e_1_3_4_57_2) 2011; 29
Tijhuis L (e_1_3_4_85_2) 1993; 42
Drobner E (e_1_3_4_92_2) 1992; 157
20709691 - Bioinformatics. 2010 Oct 1;26(19):2460-1
19878267 - Environ Microbiol. 2010 Feb;12(2):422-39
23418786 - FEMS Microbiol Ecol. 2013 Jul;85(1):62-73
20081014 - Int J Syst Evol Microbiol. 2010 Dec;60(Pt 12):2862-6
19377485 - Nat Methods. 2009 May;6(5):359-62
18845759 - Science. 2008 Oct 10;322(5899):275-8
26325359 - ISME J. 2016 Mar;10 (3):730-41
23193283 - Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6
22931831 - ISME J. 2013 Feb;7(2):237-43
26375009 - Nature. 2015 Oct 22;526(7574):531-5
23949662 - ISME J. 2014 Jan;8(1):126-38
21637257 - Nature. 2011 Jun 2;474(7349):79-82
20003500 - BMC Bioinformatics. 2009 Dec 15;10:421
21700674 - Bioinformatics. 2011 Aug 15;27(16):2194-200
23263870 - Proc Natl Acad Sci U S A. 2013 Jan 2;110(1):330-5
23135396 - Nature. 2012 Nov 22;491(7425):541-6
16332873 - Appl Environ Microbiol. 2005 Dec;71(12):8773-83
21572440 - Nat Biotechnol. 2011 May 15;29(7):644-52
25400621 - Front Microbiol. 2014 Oct 31;5:531
26733990 - Front Microbiol. 2015 Dec 22;6:1457
27807346 - Nat Commun. 2016 Oct 27;7:13252
20935650 - Nat Methods. 2010 Nov;7(11):909-12
11752286 - Nucleic Acids Res. 2002 Jan 1;30(1):176-8
19076638 - Geobiology. 2008 Dec;6(5):471-80
22791235 - ISME J. 2013 Jan;7(1):161-72
23925243 - Nature. 2013 Aug 8;500(7461):194-8
22388286 - Nat Methods. 2012 Mar 04;9(4):357-9
10049897 - Appl Environ Microbiol. 1999 Mar;65(3):1304-7
22142180 - Environ Sci Technol. 2012 Feb 21;46(4):2095-101
7283636 - Arch Microbiol. 1981 Jul;129(5):395-400
23480449 - FEMS Microbiol Rev. 2013 May;37(3):384-406
23892779 - Nature. 2013 Aug 29;500(7464):567-70
12380811 - Anal Chem. 2002 Oct 1;74(19):4905-12
25003498 - Environ Sci Technol. 2014 Aug 19;48(16):9094-102
23060610 - Bioinformatics. 2012 Dec 1;28(23):3150-2
17209072 - Appl Environ Microbiol. 2007 Mar;73(5):1420-4
24822057 - Front Genet. 2014 May 01;5:114
11569803 - Anal Chem. 2001 Sep 1;73(17):4145-53
24289240 - Geobiology. 2014 Jan;12(1):1-19
21071414 - Nucleic Acids Res. 2011 Jan;39(Database issue):D210-3
1510552 - Arch Microbiol. 1992;157(3):213-7
16054814 - Trends Microbiol. 2005 Sep;13(9):405-10
26597082 - Nat Commun. 2015 Nov 24;6:8952
20709913 - Int J Syst Evol Microbiol. 2011 Jul;61(Pt 7):1651-5
18576503 - Biotechnol Bioeng. 1987 Apr;29(6):690-5
19251739 - Genome Res. 2009 Jun;19(6):1117-23
16349284 - Appl Environ Microbiol. 1994 Jun;60(6):1949-55
17053150 - Science. 2006 Oct 20;314(5798):479-82
1087862 - Antonie Van Leeuwenhoek. 1976;42(4):483-92
12676718 - Appl Environ Microbiol. 2003 Apr;69(4):2340-8
19908214 - Rapid Commun Mass Spectrom. 2009 Dec;23(23):3753-62
25954269 - Front Microbiol. 2015 Apr 22;6:349
23493710 - Science. 2013 Mar 15;339(6125):1305-8
25566203 - Front Microbiol. 2014 Dec 17;5:679
860983 - Bacteriol Rev. 1977 Mar;41(1):100-80
18613056 - Biotechnol Bioeng. 1993 Aug 5;42(4):509-19
23321532 - Nat Rev Microbiol. 2013 Feb;11(2):83-94
25226028 - ISME J. 2015 Mar;9(3):696-707
25357241 - Nat Methods. 2014 Nov;11(11):1114-25
23760485 - Nature. 2013 Jul 11;499(7457):205-8
19943646 - Environ Sci Technol. 2009 Dec 1;43(23):8781-6
19561180 - Appl Environ Microbiol. 2009 Sep;75(17):5621-30
26490622 - Nature. 2015 Oct 22;526(7574):587-90
25429287 - Front Microbiol. 2014 Nov 12;5:610
20211023 - BMC Bioinformatics. 2010 Mar 08;11:119
References_xml – volume: 41
  start-page: D590
  year: 2013
  ident: e_1_3_4_56_2
  article-title: The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks1219
– volume: 68
  start-page: 3239
  year: 2004
  ident: e_1_3_4_68_2
  article-title: Microbial hydrocarbon gases in the Witwatersrand Basin, South Africa: Implications for the deep biosphere
  publication-title: Geochim Cosmochim Acta
  doi: 10.1016/j.gca.2004.02.020
– volume: 499
  start-page: 205
  year: 2013
  ident: e_1_3_4_51_2
  article-title: Gene expression in the deep biosphere
  publication-title: Nature
  doi: 10.1038/nature12230
– volume: 314
  start-page: 479
  year: 2006
  ident: e_1_3_4_3_2
  article-title: Long-term sustainability of a high-energy, low-diversity crustal biome
  publication-title: Science
  doi: 10.1126/science.1127376
– volume: 61
  start-page: 1651
  year: 2011
  ident: e_1_3_4_30_2
  article-title: Sulfuritalea hydrogenivorans gen. nov., sp. nov., a facultative autotroph isolated from a freshwater lake
  publication-title: Int J Syst Evol Microbiol
  doi: 10.1099/ijs.0.024968-0
– volume: 23
  start-page: 3753
  year: 2009
  ident: e_1_3_4_71_2
  article-title: Removal of nitrite with sulfamic acid for nitrate N and O isotope analysis with the denitrifier method
  publication-title: Rapid Commun Mass Spectrom
  doi: 10.1002/rcm.4307
– volume: 9
  start-page: 357
  year: 2012
  ident: e_1_3_4_63_2
  article-title: Fast gapped-read alignment with Bowtie 2
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1923
– volume: 20
  start-page: 1
  year: 2003
  ident: e_1_3_4_67_2
  article-title: Temporal shifts in microbial community structure and geochemistry of an ultradeep South African gold mine borehole
  publication-title: Geomicrobiol J
  doi: 10.1080/713851170
– volume: 270
  start-page: 450
  year: 1995
  ident: e_1_3_4_1_2
  article-title: Lithoautotrophic microbial ecosystems in deep basalt aquifers
  publication-title: Science
  doi: 10.1126/science.270.5235.450
– ident: e_1_3_4_72_2
– volume: 6
  start-page: 8952
  year: 2015
  ident: e_1_3_4_12_2
  article-title: Eukaryotic opportunists dominate the deep-subsurface biosphere in South Africa
  publication-title: Nat Commun
  doi: 10.1038/ncomms9952
– volume: 7
  start-page: 237
  year: 2013
  ident: e_1_3_4_28_2
  article-title: Sizing up metatranscriptomics
  publication-title: ISME J
  doi: 10.1038/ismej.2012.94
– volume: 39
  start-page: 330
  year: 1994
  ident: e_1_3_4_74_2
  article-title: Diffusion coefficients for hydrogen sulfide, carbon dioxide, and nitrous oxide in water over the temperature range 293–368K
  publication-title: J Chem Eng Data
  doi: 10.1021/je00014a031
– volume: 474
  start-page: 79
  year: 2011
  ident: e_1_3_4_13_2
  article-title: Nematoda from the terrestrial deep subsurface of South Africa
  publication-title: Nature
  doi: 10.1038/nature09974
– volume-title: Geochemical and Biogeochemical Reaction Modeling
  year: 2008
  ident: e_1_3_4_76_2
– volume: 73
  start-page: 4145
  year: 2001
  ident: e_1_3_4_69_2
  article-title: A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater
  publication-title: Anal Chem
  doi: 10.1021/ac010088e
– volume: 7
  start-page: 13252
  year: 2016
  ident: e_1_3_4_32_2
  article-title: Sulfur mass-independent fractionation in subsurface fracture waters indicates a long-standing sulfur cycle in Precambrian rocks
  publication-title: Nat Commun
  doi: 10.1038/ncomms13252
– volume: 42
  start-page: 483
  year: 1976
  ident: e_1_3_4_91_2
  article-title: Energetic aspects of the metabolism of reduced sulphur compounds in Thiobacillus dentrificans
  publication-title: Antonie van Leeuwenhoek
  doi: 10.1007/BF00410179
– volume: 216
  start-page: 208
  year: 2012
  ident: e_1_3_4_43_2
  article-title: A multiple sulfur and organic carbon isotope record from non-conglomeratic sedimentary rocks of the Mesoarchean Witwatersrand Supergroup, South Africa
  publication-title: Precambrian Res
– volume-title: Diffusion: Mass Transfer in Fluid Systems
  year: 1984
  ident: e_1_3_4_73_2
– volume: 283
  start-page: 287
  year: 2011
  ident: e_1_3_4_26_2
  article-title: Neon identifies two billion year old fluid component in Kaapvaal Craton
  publication-title: Chem Geol
  doi: 10.1016/j.chemgeo.2011.01.028
– volume: 37
  start-page: 384
  year: 2013
  ident: e_1_3_4_15_2
  article-title: Microbial syntrophy: Interaction for the common good
  publication-title: FEMS Microbiol Rev
  doi: 10.1111/1574-6976.12019
– volume: 12
  start-page: 422
  year: 2010
  ident: e_1_3_4_36_2
  article-title: Metagenome and mRNA expression analyses of anaerobic methanotrophic archaea of the ANME-1 group
  publication-title: Environ Microbiol
  doi: 10.1111/j.1462-2920.2009.02083.x
– volume: 117
  start-page: 9
  year: 1978
  ident: e_1_3_4_14_2
  article-title: Growth yields of green sulfur bacteria in mixed cultures with sulfur and sulfate reducing bacteria
  publication-title: Arch Microbiol
  doi: 10.1007/BF00689344
– volume: 148
  start-page: 264
  year: 1987
  ident: e_1_3_4_97_2
  article-title: Lithoautotrophic growth of sulfate-reducing bacteria and description of Desulfobacterium autotrophicum gen. nov., sp. nov
  publication-title: Arch Microbiol
  doi: 10.1007/BF00456703
– volume: 6
  start-page: 1457
  year: 2015
  ident: e_1_3_4_10_2
  article-title: Groundwater isolation governs chemistry and microbial community structure along hydrologic flowpaths
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2015.01457
– volume: 11
  start-page: 1114
  year: 2014
  ident: e_1_3_4_66_2
  article-title: Proteogenomics: Concepts, applications and computational strategies
  publication-title: Nat Methods
  doi: 10.1038/nmeth.3144
– volume: 20
  start-page: 21
  year: 2012
  ident: e_1_3_4_46_2
  article-title: Modeling fish biomass structure at near pristine coral reefs and degradation by fishing
  publication-title: J Biol Syst
  doi: 10.1142/S0218339011500318
– volume: 173
  start-page: 264
  year: 2016
  ident: e_1_3_4_23_2
  article-title: Variations in microbial carbon sources and cycling in the deep continental subsurface
  publication-title: Geochim Cosmochim Acta
  doi: 10.1016/j.gca.2015.10.003
– volume-title: Allee Effects in Ecology and Conservation
  year: 2008
  ident: e_1_3_4_41_2
  doi: 10.1093/acprof:oso/9780198570301.001.0001
– volume: 322
  start-page: 275
  year: 2008
  ident: e_1_3_4_22_2
  article-title: Environmental genomics reveals a single-species ecosystem deep within Earth
  publication-title: Science
  doi: 10.1126/science.1155495
– volume: 5
  start-page: 610
  year: 2014
  ident: e_1_3_4_50_2
  article-title: Chemolithotrophy in the continental deep subsurface: Sanford Underground Research Facility (SURF), USA
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2014.00610
– volume: 3
  start-page: 199
  year: 2011
  ident: e_1_3_4_78_2
  article-title: Groundwater resource in the crystalline rocks of the Johannesburg area, South Africa
  publication-title: J Water Resour Prot
  doi: 10.4236/jwarp.2011.34026
– volume: 500
  start-page: 567
  year: 2013
  ident: e_1_3_4_37_2
  article-title: Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage
  publication-title: Nature
  doi: 10.1038/nature12375
– volume: 41
  start-page: 100
  year: 1977
  ident: e_1_3_4_84_2
  article-title: Energy conservation in chemotrophic anaerobic bacteria
  publication-title: Bacteriol Rev
  doi: 10.1128/br.41.1.100-180.1977
– volume: 13
  start-page: 405
  year: 2005
  ident: e_1_3_4_24_2
  article-title: Hydrogen-driven subsurface lithoautotrophic microbial ecosystems (SLiMEs): Do they exist and why should we care?
  publication-title: Trends Microbiol
  doi: 10.1016/j.tim.2005.07.010
– volume: 39
  start-page: D210
  year: 2011
  ident: e_1_3_4_53_2
  article-title: tRNADB-CE 2011: tRNA gene database curated manually by experts
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkq1007
– volume: 11
  start-page: 83
  year: 2013
  ident: e_1_3_4_87_2
  article-title: Microbial life under extreme energy limitation
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro2939
– volume: 29
  start-page: 690
  year: 1987
  ident: e_1_3_4_90_2
  article-title: Aerobic oxidation of hydrogen sulfide by Thiobacillus denitrificans
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.260290605
– volume: 30
  start-page: 176
  year: 2002
  ident: e_1_3_4_55_2
  article-title: 5S ribosomal RNA database
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/30.1.176
– volume-title: Fundamentals of Ecology
  year: 2005
  ident: e_1_3_4_40_2
– volume: 69
  start-page: 2340
  year: 2003
  ident: e_1_3_4_79_2
  article-title: A new rate law describing microbial respiration
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.69.4.2340-2348.2003
– volume: 11
  start-page: 119
  year: 2010
  ident: e_1_3_4_61_2
  article-title: Prodigal: Prokaryotic gene recognition and translation initiation site identification
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-11-119
– volume: 129
  start-page: 395
  year: 1981
  ident: e_1_3_4_98_2
  article-title: Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov
  publication-title: Arch Microbiol
– ident: e_1_3_4_38_2
– volume: 23
  start-page: 369
  year: 2006
  ident: e_1_3_4_35_2
  article-title: The origin and age of biogeochemical trends in deep fracture water of the Witwatersrand Basin, South Africa
  publication-title: Geomicrobiol J
  doi: 10.1080/01490450600875688
– volume: 339
  start-page: 1305
  year: 2013
  ident: e_1_3_4_5_2
  article-title: Evidence for microbial carbon and sulfur cycling in deeply buried ridge flank basalt
  publication-title: Science
  doi: 10.1126/science.1229240
– volume: 29
  start-page: 644
  year: 2011
  ident: e_1_3_4_57_2
  article-title: Full-length transcriptome assembly from RNA-Seq data without a reference genome
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.1883
– volume: 220
  start-page: 1376
  year: 2009
  ident: e_1_3_4_47_2
  article-title: Modeling inverted biomass pyramids and refuges in ecosystems
  publication-title: Ecol Modell
  doi: 10.1016/j.ecolmodel.2009.03.005
– volume: 24
  start-page: 491
  year: 2007
  ident: e_1_3_4_44_2
  article-title: Mineralogical, chemical and biological characterization of an anaerobic biofilm collected from a borehole in a deep gold mine in South Africa
  publication-title: Geomicrobiol J
  doi: 10.1080/01490450701572416
– volume: 6
  start-page: 359
  year: 2009
  ident: e_1_3_4_65_2
  article-title: Universal sample preparation method for proteome analysis
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1322
– volume: 60
  start-page: 2862
  year: 2010
  ident: e_1_3_4_31_2
  article-title: Sulfuricella denitrificans gen. nov., sp. nov., a sulfur-oxidizing autotroph isolated from a freshwater lake
  publication-title: Int J Syst Evol Microbiol
  doi: 10.1099/ijs.0.016980-0
– volume: 43
  start-page: 8781
  year: 2009
  ident: e_1_3_4_39_2
  article-title: Microbial architecture of environmental sulfur processes: A novel syntrophic sulfur-metabolizing consortia
  publication-title: Environ Sci Technol
  doi: 10.1021/es803616k
– volume: 10
  start-page: 730
  year: 2016
  ident: e_1_3_4_4_2
  article-title: A metagenomic window into carbon metabolism at 3 km depth in Precambrian continental crust
  publication-title: ISME J
  doi: 10.1038/ismej.2015.150
– volume: 71
  start-page: 8773
  year: 2005
  ident: e_1_3_4_2_2
  article-title: Desulfotomaculum and Methanobacterium spp. dominate a 4- to 5-kilometer-deep fault
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.71.12.8773-8783.2005
– volume: 85
  start-page: 62
  year: 2013
  ident: e_1_3_4_7_2
  article-title: Microbial characterization of basalt formation waters targeted for geological carbon sequestration
  publication-title: FEMS Microbiol Ecol
  doi: 10.1111/1574-6941.12098
– volume: 10
  start-page: 421
  year: 2009
  ident: e_1_3_4_64_2
  article-title: BLAST+: Architecture and applications
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-10-421
– volume: 72
  start-page: 4778
  year: 2008
  ident: e_1_3_4_27_2
  article-title: Isotopic signatures of CH4 and higher hydrocarbon gases from Precambrian Shield sites: A model for abiogenic polymerization of hydrocarbons
  publication-title: Geochim Cosmochim Acta
  doi: 10.1016/j.gca.2008.07.004
– volume: 26
  start-page: 2460
  year: 2010
  ident: e_1_3_4_52_2
  article-title: Search and clustering orders of magnitude faster than BLAST
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq461
– volume: 73
  start-page: 1420
  year: 2007
  ident: e_1_3_4_94_2
  article-title: Growth yields in bacterial denitrification and nitrate ammonification
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.02508-06
– volume: 6
  start-page: 349
  year: 2015
  ident: e_1_3_4_11_2
  article-title: Single cell genomics indicates horizontal gene transfer and viral infections in a deep subsurface Firmicutes population
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2015.00349
– volume: 171
  start-page: 219
  year: 1999
  ident: e_1_3_4_89_2
  article-title: Thermodynamic aspects of energy conservation by chemolithotrophic sulfur bacteria in relation to the sulfur oxidation pathways
  publication-title: Arch Microbiol
  doi: 10.1007/s002030050703
– start-page: 471
  volume-title: The Prokaryotes
  year: 2013
  ident: e_1_3_4_16_2
  doi: 10.1007/978-3-642-30123-0_59
– volume: 28
  start-page: 3150
  year: 2012
  ident: e_1_3_4_60_2
  article-title: CD-HIT: Accelerated for clustering the next-generation sequencing data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts565
– volume: 8
  start-page: 126
  year: 2014
  ident: e_1_3_4_9_2
  article-title: Taxonomically and functionally diverse microbial communities in deep crystalline rocks of the Fennoscandian shield
  publication-title: ISME J
  doi: 10.1038/ismej.2013.125
– volume: 142
  start-page: 97
  year: 1985
  ident: e_1_3_4_82_2
  article-title: The relation between phosphate potential and growth rate of Streptococcus cremoris
  publication-title: Arch Microbiol
  doi: 10.1007/BF00409245
– volume: 12
  start-page: 1
  year: 2014
  ident: e_1_3_4_86_2
  article-title: Does aspartic acid racemization constrain the depth limit of the subsurface biosphere?
  publication-title: Geobiology
  doi: 10.1111/gbi.12069
– volume: 294
  start-page: 51
  year: 2012
  ident: e_1_3_4_29_2
  article-title: The origin of NO3 − and N2 in deep subsurface fracture water of South Africa
  publication-title: Chem Geol
  doi: 10.1016/j.chemgeo.2011.11.017
– volume: 19
  start-page: 1117
  year: 2009
  ident: e_1_3_4_59_2
  article-title: ABySS: A parallel assembler for short read sequence data
  publication-title: Genome Res
  doi: 10.1101/gr.089532.108
– volume: 5
  start-page: 153
  year: 2007
  ident: e_1_3_4_83_2
  article-title: Quantifying the energetics of metabolic reactions in diverse biogeochemical systems: Electron flow and ATP synthesis
  publication-title: Geobiology
  doi: 10.1111/j.1472-4669.2007.00099.x
– volume: 6
  start-page: 471
  year: 2008
  ident: e_1_3_4_45_2
  article-title: A high-resolution chemical and structural study of framboidal pyrite formed within a low-temperature bacterial biofilm
  publication-title: Geobiology
  doi: 10.1111/j.1472-4669.2008.00174.x
– volume: 69
  start-page: 1133
  year: 2005
  ident: e_1_3_4_80_2
  article-title: Predicting the rate of microbial respiration in geochemical environments
  publication-title: Geochim Cosmochim Acta
  doi: 10.1016/j.gca.2004.08.010
– volume: 27
  start-page: 2194
  year: 2011
  ident: e_1_3_4_62_2
  article-title: UCHIME improves sensitivity and speed of chimera detection
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr381
– volume: 11
  start-page: 1
  year: 2009
  ident: e_1_3_4_77_2
  article-title: 3D X-ray CT and diffusion measurements to assess tortuosity and constrictivity in a sedimentary rock
  publication-title: Diffus Fundam
  doi: 10.62721/diffusion-fundamentals.11.538
– volume: 5
  start-page: 531
  year: 2014
  ident: e_1_3_4_21_2
  article-title: Phylogeny and phylogeography of functional genes shared among seven terrestrial subsurface metagenomes reveal N-cycling and microbial evolutionary relationships
  publication-title: Front Microbiol
– volume: 48
  start-page: 9094
  year: 2014
  ident: e_1_3_4_34_2
  article-title: Stable sulfur and oxygen isotope fractionation of anoxic sulfide oxidation by two different enzymatic pathways
  publication-title: Environ Sci Technol
  doi: 10.1021/es404808r
– volume: 65
  start-page: 1304
  year: 1999
  ident: e_1_3_4_96_2
  article-title: Kinetics of sulfate and hydrogen uptake by the thermophilic sulfate-reducing bacteria thermodesulfobacterium sp. Strain JSP and thermodesulfovibrio sp. Strain R1Ha3
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.65.3.1304-1307.1999
– volume: 23
  start-page: 475
  year: 2006
  ident: e_1_3_4_33_2
  article-title: Planktonic microbial communities associated with fracture-derived groundwater in a deep gold mine of South Africa
  publication-title: Geomicrobiol J
  doi: 10.1080/01490450600875829
– start-page: 1217
  volume-title: Carbon Dioxide Storage in Deep Geologic Formations for Climate Change Mitigation, Geologic Storage of Carbon Dioxide with Monitoring and Verification, The CO2 Capture and Storage Project (CCP)
  year: 2005
  ident: e_1_3_4_75_2
  doi: 10.1016/B978-008044570-0/50159-8
– volume: 491
  start-page: 541
  year: 2012
  ident: e_1_3_4_17_2
  article-title: Zero-valent sulphur is a key intermediate in marine methane oxidation
  publication-title: Nature
  doi: 10.1038/nature11656
– volume: 9
  start-page: 696
  year: 2015
  ident: e_1_3_4_49_2
  article-title: A novel hydrogen oxidizer amidst the sulfur-oxidizing Thiomicrospira lineage
  publication-title: ISME J
  doi: 10.1038/ismej.2014.173
– volume: 75
  start-page: 5621
  year: 2009
  ident: e_1_3_4_88_2
  article-title: Sulfur isotope enrichment during maintenance metabolism in the thermophilic sulfate-reducing bacterium Desulfotomaculum putei
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.02948-08
– volume: 526
  start-page: 587
  year: 2015
  ident: e_1_3_4_19_2
  article-title: Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria
  publication-title: Nature
  doi: 10.1038/nature15733
– volume: 67
  start-page: 4597
  year: 2003
  ident: e_1_3_4_25_2
  article-title: Dating ultra-deep mine waters with noble gases and 36Cl, Witwatersrand Basin, South Africa
  publication-title: Geochim Cosmochim Acta
  doi: 10.1016/S0016-7037(03)00414-9
– volume: 131
  start-page: 278
  year: 1982
  ident: e_1_3_4_95_2
  article-title: Different Ks values for hydrogen of methanogenic bacteria and sulfate reducing bacteria—an explanation for the apparent inhibition of methanogenesis by sulfate
  publication-title: Arch Microbiol
  doi: 10.1007/BF00405893
– volume: 42
  start-page: 509
  year: 1993
  ident: e_1_3_4_85_2
  article-title: A thermodynamically based correlation for maintenance gibbs energy requirements in aerobic and anaerobic chemotrophic growth
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.260420415
– volume: 7
  start-page: 161
  year: 2013
  ident: e_1_3_4_6_2
  article-title: Microbial diversity within basement fluids of the sediment-buried Juan de Fuca Ridge flank
  publication-title: ISME J
  doi: 10.1038/ismej.2012.73
– volume: 110
  start-page: 330
  year: 2013
  ident: e_1_3_4_48_2
  article-title: Evidence for hydrogen oxidation and metabolic plasticity in widespread deep-sea sulfur-oxidizing bacteria
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1215340110
– volume: 74
  start-page: 4905
  year: 2002
  ident: e_1_3_4_70_2
  article-title: Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method
  publication-title: Anal Chem
  doi: 10.1021/ac020113w
– volume: 46
  start-page: 2095
  year: 2012
  ident: e_1_3_4_42_2
  article-title: Anaerobic, nitrate-dependent oxidation of pyrite nanoparticles by Thiobacillus denitrificans
  publication-title: Environ Sci Technol
  doi: 10.1021/es2022329
– volume: 60
  start-page: 1949
  year: 1994
  ident: e_1_3_4_93_2
  article-title: Autotrophic, hydrogen-oxidizing, denitrifying bacteria in groundwater, potential agents for bioremediation of nitrate contamination
  publication-title: Appl Environ Microbiol
  doi: 10.1128/aem.60.6.1949-1955.1994
– volume: 500
  start-page: 194
  year: 2013
  ident: e_1_3_4_20_2
  article-title: Nitrogen losses in anoxic marine sediments driven by Thioploca-anammox bacterial consortia
  publication-title: Nature
  doi: 10.1038/nature12365
– ident: e_1_3_4_81_2
– volume: 5
  start-page: 679
  year: 2014
  ident: e_1_3_4_8_2
  article-title: Comparisons of the composition and biogeographic distribution of the bacterial communities occupying South African thermal springs with those inhabiting deep subsurface fracture water
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2014.00679
– volume: 5
  start-page: 114
  year: 2014
  ident: e_1_3_4_54_2
  article-title: tRNADB-CE: tRNA gene database well-timed in the era of big sequence data
  publication-title: Front Genet
– volume: 526
  start-page: 531
  year: 2015
  ident: e_1_3_4_18_2
  article-title: Single cell activity reveals direct electron transfer in methanotrophic consortia
  publication-title: Nature
  doi: 10.1038/nature15512
– volume: 7
  start-page: 909
  year: 2010
  ident: e_1_3_4_58_2
  article-title: De novo assembly and analysis of RNA-seq data
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1517
– volume: 157
  start-page: 213
  year: 1992
  ident: e_1_3_4_92_2
  article-title: Thiobacillus plumbophilus spec. nov., a novel galena and hydrogen oxidizer
  publication-title: Arch Microbiol
  doi: 10.1007/BF00245152
– reference: 19251739 - Genome Res. 2009 Jun;19(6):1117-23
– reference: 1510552 - Arch Microbiol. 1992;157(3):213-7
– reference: 19878267 - Environ Microbiol. 2010 Feb;12(2):422-39
– reference: 26733990 - Front Microbiol. 2015 Dec 22;6:1457
– reference: 19943646 - Environ Sci Technol. 2009 Dec 1;43(23):8781-6
– reference: 20709691 - Bioinformatics. 2010 Oct 1;26(19):2460-1
– reference: 10049897 - Appl Environ Microbiol. 1999 Mar;65(3):1304-7
– reference: 27807346 - Nat Commun. 2016 Oct 27;7:13252
– reference: 22931831 - ISME J. 2013 Feb;7(2):237-43
– reference: 25954269 - Front Microbiol. 2015 Apr 22;6:349
– reference: 21572440 - Nat Biotechnol. 2011 May 15;29(7):644-52
– reference: 23949662 - ISME J. 2014 Jan;8(1):126-38
– reference: 20081014 - Int J Syst Evol Microbiol. 2010 Dec;60(Pt 12):2862-6
– reference: 18576503 - Biotechnol Bioeng. 1987 Apr;29(6):690-5
– reference: 12380811 - Anal Chem. 2002 Oct 1;74(19):4905-12
– reference: 11569803 - Anal Chem. 2001 Sep 1;73(17):4145-53
– reference: 22388286 - Nat Methods. 2012 Mar 04;9(4):357-9
– reference: 16054814 - Trends Microbiol. 2005 Sep;13(9):405-10
– reference: 7283636 - Arch Microbiol. 1981 Jul;129(5):395-400
– reference: 24822057 - Front Genet. 2014 May 01;5:114
– reference: 860983 - Bacteriol Rev. 1977 Mar;41(1):100-80
– reference: 23060610 - Bioinformatics. 2012 Dec 1;28(23):3150-2
– reference: 19076638 - Geobiology. 2008 Dec;6(5):471-80
– reference: 25003498 - Environ Sci Technol. 2014 Aug 19;48(16):9094-102
– reference: 18845759 - Science. 2008 Oct 10;322(5899):275-8
– reference: 19561180 - Appl Environ Microbiol. 2009 Sep;75(17):5621-30
– reference: 17209072 - Appl Environ Microbiol. 2007 Mar;73(5):1420-4
– reference: 21700674 - Bioinformatics. 2011 Aug 15;27(16):2194-200
– reference: 17053150 - Science. 2006 Oct 20;314(5798):479-82
– reference: 11752286 - Nucleic Acids Res. 2002 Jan 1;30(1):176-8
– reference: 21071414 - Nucleic Acids Res. 2011 Jan;39(Database issue):D210-3
– reference: 22142180 - Environ Sci Technol. 2012 Feb 21;46(4):2095-101
– reference: 25357241 - Nat Methods. 2014 Nov;11(11):1114-25
– reference: 23892779 - Nature. 2013 Aug 29;500(7464):567-70
– reference: 16349284 - Appl Environ Microbiol. 1994 Jun;60(6):1949-55
– reference: 23263870 - Proc Natl Acad Sci U S A. 2013 Jan 2;110(1):330-5
– reference: 19908214 - Rapid Commun Mass Spectrom. 2009 Dec;23(23):3753-62
– reference: 18613056 - Biotechnol Bioeng. 1993 Aug 5;42(4):509-19
– reference: 16332873 - Appl Environ Microbiol. 2005 Dec;71(12):8773-83
– reference: 25226028 - ISME J. 2015 Mar;9(3):696-707
– reference: 23480449 - FEMS Microbiol Rev. 2013 May;37(3):384-406
– reference: 25429287 - Front Microbiol. 2014 Nov 12;5:610
– reference: 21637257 - Nature. 2011 Jun 2;474(7349):79-82
– reference: 26490622 - Nature. 2015 Oct 22;526(7574):587-90
– reference: 20003500 - BMC Bioinformatics. 2009 Dec 15;10:421
– reference: 26325359 - ISME J. 2016 Mar;10 (3):730-41
– reference: 12676718 - Appl Environ Microbiol. 2003 Apr;69(4):2340-8
– reference: 22791235 - ISME J. 2013 Jan;7(1):161-72
– reference: 23760485 - Nature. 2013 Jul 11;499(7457):205-8
– reference: 23321532 - Nat Rev Microbiol. 2013 Feb;11(2):83-94
– reference: 25400621 - Front Microbiol. 2014 Oct 31;5:531
– reference: 20709913 - Int J Syst Evol Microbiol. 2011 Jul;61(Pt 7):1651-5
– reference: 26375009 - Nature. 2015 Oct 22;526(7574):531-5
– reference: 23493710 - Science. 2013 Mar 15;339(6125):1305-8
– reference: 19377485 - Nat Methods. 2009 May;6(5):359-62
– reference: 1087862 - Antonie Van Leeuwenhoek. 1976;42(4):483-92
– reference: 23135396 - Nature. 2012 Nov 22;491(7425):541-6
– reference: 20935650 - Nat Methods. 2010 Nov;7(11):909-12
– reference: 23418786 - FEMS Microbiol Ecol. 2013 Jul;85(1):62-73
– reference: 24289240 - Geobiology. 2014 Jan;12(1):1-19
– reference: 23925243 - Nature. 2013 Aug 8;500(7461):194-8
– reference: 20211023 - BMC Bioinformatics. 2010 Mar 08;11:119
– reference: 26597082 - Nat Commun. 2015 Nov 24;6:8952
– reference: 23193283 - Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6
– reference: 25566203 - Front Microbiol. 2014 Dec 17;5:679
SSID ssj0009580
Score 2.5870526
Snippet Subsurface lithoautotrophic microbial ecosystems (SLiMEs) under oligotrophic conditions are typically supported by H₂. Methanogens and sulfate reducers, and...
Microorganisms are known to live in the deep subsurface, kilometers below the photic zone, but the community-wide metabolic networks and trophic structures...
Subsurface lithoautotrophic microbial ecosystems (SLiMEs) under oligotrophic conditions are typically supported by H Methanogens and sulfate reducers, and the...
Subsurface lithoautotrophic microbial ecosystems (SLiMEs) under oligotrophic conditions are typically supported by H^sub 2^. Methanogens and sulfate reducers,...
Subsurface lithoautotrophic microbial ecosystems (SLiMEs) under oligotrophic conditions are typically supported by H2 Methanogens and sulfate reducers, and the...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage E7927
SubjectTerms Autotrophic Processes
Biological Sciences
Carbon - metabolism
Denitrification
Ecosystem
Environmental conditions
Metabolism
Methane - biosynthesis
Microbiota
Microorganisms
Nitrogen - metabolism
PNAS Plus
South Africa
Sulfates
Sulfur
Sulfur - metabolism
Thermodynamics
Title An oligotrophic deep-subsurface community dependent on syntrophy is dominated by sulfur-driven autotrophic denitrifiers
URI https://www.jstor.org/stable/26472793
https://www.ncbi.nlm.nih.gov/pubmed/27872277
https://www.proquest.com/docview/1848086860
https://www.proquest.com/docview/1842599931
https://pubmed.ncbi.nlm.nih.gov/PMC5150411
Volume 113
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FcuGCKFAwFLRIHIosB7-9PgZUVPGIemil3qJd7zo1CnbkByj8Jf4ks971xgmtBFysyPtwlPky-814Hgi9FmDIMsFTxyMxGChhwB0WRczhbhACHxA86LNcv8zjs8vw41V0NZn8GkUtdS2bZj9vzCv5H6nCPZCrzJL9B8maTeEGfAb5whUkDNe_kvEMuN6qWFZtXa2vi8zmQqydBlRBV-c0k3HoffYH8Oyh120rXw40m7JfsZHdzHklg2FaRUSbbpV3tcNrqQNt2rWjrWGfusgLHTE_ENpzcwA2Q7jBfPAvzrbZKlqFNLZjn8-3vY8_004lDC2XhbCHw6APCRDqeFABTLZxUX_qVtWmd-9KtzDdVNwgE8xqUI7ObPWd1sov_q6qv9KxX8PruwG5uiq20sVAZZw4VN1EjbJWmasalaraqda9p0mqygz8cSqAGpOtjEvaTIHgAmkJ9TYjjKy_9SDxQYH5vu4ss1uIexi6g-76CRC1wTVkKjwTd6gdlQRv954mi07r9TsMSAXB3mTe7EfpjmjPxQN0X9sreKbAd4gmonyIDgdx4hNdtvzNI_RjVuIxGvEeGrFBIzZoxFWJDRpx0WCDRsw2eAeNeIRGPEbjY3T54fTi_Zmj23o4GbDT1kkF4XA-U-byjPhC-FGQe3mephFLCRjQAE0eMUGjWBDXzwLi0iBgjCY5ISz3kuAIHZRVKZ4inBKehnmaybKEYcKAdwChzjOR84CHsUctNB1-6kWma97L1iurRR97kQQLKabFVkwWOjEL1qrcy-1Tj3rZmXm-7MQAx52FjgdhLrSygHUkJC6JSexa6JUZBlUu38_RUlRdP8ePwGALPAs9UbLfbq7BY6FkBxVmgiwTvztSFtd9uXiwWFz4ws9u3fM5urf9Ax6jg7buxAug2i172UP8N6Hv3Dg
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+oligotrophic+deep-subsurface+community+dependent+on+syntrophy+is+dominated+by+sulfur-driven+autotrophic+denitrifiers&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Lau%2C+Maggie+C+Y&rft.au=Kieft%2C+Thomas+L&rft.au=Kuloyo%2C+Olukayode&rft.au=Linage-Alvarez%2C+Borja&rft.date=2016-12-06&rft.eissn=1091-6490&rft.volume=113&rft.issue=49&rft.spage=E7927&rft_id=info:doi/10.1073%2Fpnas.1612244113&rft_id=info%3Apmid%2F27872277&rft.externalDocID=27872277
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon