Subjects With Early-Onset Type 2 Diabetes Show Defective Activation of the Skeletal Muscle PGC-1α/Mitofusin-2 Regulatory Pathway in Response to Physical Activity

OBJECTIVE: Type 2 diabetes is associated with insulin resistance and skeletal muscle mitochondrial dysfunction. We have found that subjects with early-onset type 2 diabetes show incapacity to increase VO₂max in response to chronic exercise. This suggests a defect in muscle mitochondrial response to...

Full description

Saved in:
Bibliographic Details
Published inDiabetes care Vol. 33; no. 3; pp. 645 - 651
Main Authors Hernández-Alvarez, María Isabel, Thabit, Hood, Burns, Nicole, Shah, Syed, Brema, Imad, Hatunic, Mensud, Finucane, Francis, Liesa, Marc, Chiellini, Chiara, Naon, Deborah, Zorzano, Antonio, Nolan, John J
Format Journal Article
LanguageEnglish
Published Alexandria, VA American Diabetes Association 01.03.2010
Subjects
Online AccessGet full text
ISSN0149-5992
1935-5548
DOI10.2337/dc09-1305

Cover

Abstract OBJECTIVE: Type 2 diabetes is associated with insulin resistance and skeletal muscle mitochondrial dysfunction. We have found that subjects with early-onset type 2 diabetes show incapacity to increase VO₂max in response to chronic exercise. This suggests a defect in muscle mitochondrial response to exercise. Here, we have explored the nature of the mechanisms involved. RESEARCH DESIGN AND METHODS: Muscle biopsies were collected from young type 2 diabetic subjects and obese control subjects before and after acute or chronic exercise protocols, and the expression of genes and/or proteins relevant to mitochondrial function was measured. In particular, the regulatory pathway peroxisome proliferator-activated receptor γ coactivator (PGC)-1α/mitofusin-2 (Mfn2) was analyzed. RESULTS: At baseline, subjects with diabetes showed reduced expression (by 26%) of the mitochondrial fusion protein Mfn2 and a 39% reduction of the α-subunit of ATP synthase. Porin expression was unchanged, consistent with normal mitochondrial mass. Chronic exercise led to a 2.8-fold increase in Mfn2, as well as increases in porin, and the α-subunit of ATP synthase in muscle from control subjects. However, Mfn2 was unchanged after chronic exercise in individuals with diabetes, whereas porin and α-subunit of ATP synthase were increased. Acute exercise caused a fourfold increase in PGC-1α expression in muscle from control subjects but not in subjects with diabetes. CONCLUSIONS: Our results demonstrate alterations in the regulatory pathway that controls PGC-1α expression and induction of Mfn2 in muscle from patients with early-onset type 2 diabetes. Patients with early-onset type 2 diabetes display abnormalities in the exercise-dependent pathway that regulates the expression of PGC-1α and Mfn2.
AbstractList OBJECTIVE: Type 2 diabetes is associated with insulin resistance and skeletal muscle mitochondrial dysfunction. We have found that subjects with early-onset type 2 diabetes show incapacity to increase VO₂max in response to chronic exercise. This suggests a defect in muscle mitochondrial response to exercise. Here, we have explored the nature of the mechanisms involved. RESEARCH DESIGN AND METHODS: Muscle biopsies were collected from young type 2 diabetic subjects and obese control subjects before and after acute or chronic exercise protocols, and the expression of genes and/or proteins relevant to mitochondrial function was measured. In particular, the regulatory pathway peroxisome proliferator-activated receptor γ coactivator (PGC)-1α/mitofusin-2 (Mfn2) was analyzed. RESULTS: At baseline, subjects with diabetes showed reduced expression (by 26%) of the mitochondrial fusion protein Mfn2 and a 39% reduction of the α-subunit of ATP synthase. Porin expression was unchanged, consistent with normal mitochondrial mass. Chronic exercise led to a 2.8-fold increase in Mfn2, as well as increases in porin, and the α-subunit of ATP synthase in muscle from control subjects. However, Mfn2 was unchanged after chronic exercise in individuals with diabetes, whereas porin and α-subunit of ATP synthase were increased. Acute exercise caused a fourfold increase in PGC-1α expression in muscle from control subjects but not in subjects with diabetes. CONCLUSIONS: Our results demonstrate alterations in the regulatory pathway that controls PGC-1α expression and induction of Mfn2 in muscle from patients with early-onset type 2 diabetes. Patients with early-onset type 2 diabetes display abnormalities in the exercise-dependent pathway that regulates the expression of PGC-1α and Mfn2.
OBJECTIVE--Type 2 diabetes is associated with insulin resistance and skeletal muscle mitochondrial dysfunction. We have found that subjects with early-onset type 2 diabetes show incapacity to increase V[O.sub.2max] in response to chronic exercise. This suggests a defect in muscle mitochondrial response to exercise. Here, we have explored the nature of the mechanisms involved. RESEARCH DESIGN AND METHODS--Muscle biopsies were collected from young type 2 diabetic subjects and obese control subjects before and after acute or chronic exercise protocols, and the expression of genes and/or proteins relevant to mitochondrial function was measured. In particular, the regulatory pathway peroxisome proliferator-activated receptor γ coactivator (PGC)-1α/mitofusin-2 (Mfn2) was analyzed. RESULTS-- At baseline, subjects with diabetes showed reduced expression (by 26%) of the mitochondrial fusion protein Mfn2 and a 39% reduction of the α-subunit of ATP synthase. Porin expression was unchanged, consistent with normal mitochondrial mass. Chronic exercise led to a 2.8-fold increase in Mfn2, as well as increases in porin, and the α-subunit of ATP synthase in muscle from control subjects. However, Mfn2 was unchanged after chronic exercise in individuals with diabetes, whereas porin and α-subunit of ATP synthase were increased. Acute exercise caused a fourfold increase in PGC-1α expression in muscle from control subjects but not in subjects with diabetes. CONCLUSIONS -- Our results demonstrate alterations in the regulatory pathway that controls PGC-1α expression and induction of Mfn2 in muscle from patients with early-onset type 2 diabetes. Patients with early-onset type 2 diabetes display abnormalities in the exercise-dependent pathway that regulates the expression of PGC-1α and Mfn2.
Audience Professional
Author Thabit, Hood
Shah, Syed
Hatunic, Mensud
Naon, Deborah
Hernández-Alvarez, María Isabel
Brema, Imad
Finucane, Francis
Chiellini, Chiara
Zorzano, Antonio
Nolan, John J
Liesa, Marc
Burns, Nicole
Author_xml – sequence: 1
  fullname: Hernández-Alvarez, María Isabel
– sequence: 2
  fullname: Thabit, Hood
– sequence: 3
  fullname: Burns, Nicole
– sequence: 4
  fullname: Shah, Syed
– sequence: 5
  fullname: Brema, Imad
– sequence: 6
  fullname: Hatunic, Mensud
– sequence: 7
  fullname: Finucane, Francis
– sequence: 8
  fullname: Liesa, Marc
– sequence: 9
  fullname: Chiellini, Chiara
– sequence: 10
  fullname: Naon, Deborah
– sequence: 11
  fullname: Zorzano, Antonio
– sequence: 12
  fullname: Nolan, John J
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22509206$$DView record in Pascal Francis
BookMark eNptks1uEzEQx1eoiKaFA0-AJQQSh21sr_fDl0pRWgpSq0YkiKPlOOOsy8YOa2-rfR3egBfhmfA2Aako8mGkmd_8ZzwzJ8mRdRaS5DXBZzTLyvFKYZ6SDOfPkhHhWZ7mOauOkhEmjKc55_Q4OfH-DmPMWFW9SI4pxhmlFRklP-fd8g5U8OibCTW6lG3Tp7fWQ0CLfguIogsjlxDAo3ntHtAF6Eibe0CTwchgnEVOo1ADmn-HBoJs0E3nVQNodjVNye9f4xsTnO68sSlFX2DdNTK4tkczGeoH2SNjo9dvXSyKgkOzuvdGRZXHAib0L5PnWjYeXu3tabL4eLmYfkqvb68-TyfXqcoxDylXTHMoi4yvKi7jAFbZkpVMEcnIsihwWVRSSYUhZ1TmBSdEa5VxYBoTSXF2mpzvZLfdcgMrBTa0shHb1mxk2wsnjXgasaYWa3cvaEXLnLIo8H4v0LofHfggNsYraBppwXVesCJnBDMawbc7cC0bEMZqF_XUAIsJpaQsMCGDXHqAWoOFWDzuX5vofsKfHeDjW8HGqIMJ7_b9Sh_nrVtplfH_PkxpHCvFReTGO061zvsWtFAmPC4-FjCNIFgMVyiGKxTDFcaMD_9l_BU9xL7ZsVo6Iddt7ODrnOIYIxWucoKzP1_N5s4
CODEN DICAD2
CitedBy_id crossref_primary_10_1038_s41598_017_14120_6
crossref_primary_10_1038_nrendo_2011_158
crossref_primary_10_1152_japplphysiol_00873_2014
crossref_primary_10_3389_fnagi_2022_893018
crossref_primary_10_1111_jdi_12803
crossref_primary_10_4161_cc_28189
crossref_primary_10_1097_01_fjc_0000432861_55968_a6
crossref_primary_10_1111_eci_12468
crossref_primary_10_1016_j_lfs_2020_117965
crossref_primary_10_1038_s41387_022_00213_3
crossref_primary_10_1073_pnas_1108220109
crossref_primary_10_1016_j_molmet_2017_10_006
crossref_primary_10_1155_2018_8258246
crossref_primary_10_14814_phy2_13723
crossref_primary_10_1096_fj_13_230037
crossref_primary_10_3892_ol_2016_5191
crossref_primary_10_1155_2016_4085727
crossref_primary_10_1016_j_freeradbiomed_2016_04_019
crossref_primary_10_1152_ajpendo_00578_2013
crossref_primary_10_1186_s13293_018_0164_z
crossref_primary_10_1016_j_jdiacomp_2013_04_002
crossref_primary_10_3390_ijms22189812
crossref_primary_10_1155_2020_1949415
crossref_primary_10_1186_s12957_016_0922_5
crossref_primary_10_5487_TR_2014_30_4_243
crossref_primary_10_1016_j_ejogrb_2013_11_024
crossref_primary_10_1186_s12933_020_01109_1
crossref_primary_10_1080_13813455_2019_1673432
crossref_primary_10_1038_s41598_017_00276_8
crossref_primary_10_1186_0717_6287_47_74
crossref_primary_10_1016_j_semcdb_2015_11_005
crossref_primary_10_1089_ars_2010_3779
crossref_primary_10_3390_jcm11226863
crossref_primary_10_1007_s00592_018_1171_6
crossref_primary_10_3389_fcell_2014_00072
crossref_primary_10_1038_ijo_2015_120
crossref_primary_10_14814_phy2_14681
crossref_primary_10_1016_j_biopha_2023_115852
crossref_primary_10_1096_fj_13_242750
crossref_primary_10_1152_ajpendo_00546_2012
crossref_primary_10_1002_jbio_201960140
crossref_primary_10_1152_ajpendo_00146_2013
crossref_primary_10_18632_aging_102972
crossref_primary_10_1152_ajpregu_00229_2010
crossref_primary_10_1007_s11332_018_0430_9
crossref_primary_10_1186_s12885_023_11419_8
crossref_primary_10_1002_jcb_27995
crossref_primary_10_4049_jimmunol_1501023
crossref_primary_10_1016_j_cmet_2023_12_025
crossref_primary_10_1111_bph_12577
crossref_primary_10_3390_cells9061454
crossref_primary_10_1007_s11033_014_3584_9
crossref_primary_10_1016_j_jcjd_2014_05_008
crossref_primary_10_1042_CS20160080
crossref_primary_10_1186_s10020_025_01101_z
crossref_primary_10_1080_21505594_2021_1965829
crossref_primary_10_1002_iub_1511
crossref_primary_10_1186_s12937_024_01006_3
crossref_primary_10_15252_embr_201947928
crossref_primary_10_1155_2012_642038
crossref_primary_10_1152_japplphysiol_00921_2011
crossref_primary_10_1007_s41048_015_0013_0
crossref_primary_10_1016_j_ebiom_2019_04_044
crossref_primary_10_3390_cells11193060
crossref_primary_10_1093_ptj_pzx072
crossref_primary_10_1089_ars_2014_6208
crossref_primary_10_1111_boc_201600019
crossref_primary_10_1152_japplphysiol_00539_2021
crossref_primary_10_3389_fphys_2015_00422
crossref_primary_10_1016_j_exger_2016_06_008
crossref_primary_10_3389_fphys_2015_00426
crossref_primary_10_1096_fj_202100262RR
crossref_primary_10_1210_clinem_dgae032
crossref_primary_10_1042_CS20160736
crossref_primary_10_1093_hmg_ddac201
crossref_primary_10_3390_ijerph20021388
crossref_primary_10_1139_bcb_2015_0012
crossref_primary_10_1016_j_jff_2018_09_016
crossref_primary_10_1155_2019_3649808
crossref_primary_10_1111_nyas_12863
crossref_primary_10_3390_cells10030537
crossref_primary_10_3892_mmr_2013_1457
crossref_primary_10_1155_2012_684283
crossref_primary_10_1007_s13300_019_0588_4
crossref_primary_10_1038_nrendo_2014_160
crossref_primary_10_1007_s00018_020_03662_0
crossref_primary_10_1111_jcmm_12320
crossref_primary_10_3390_ijms22010091
crossref_primary_10_1002_mnfr_201700941
crossref_primary_10_1515_hsz_2017_0331
crossref_primary_10_3390_ijms252312860
crossref_primary_10_4110_in_2021_21_e30
crossref_primary_10_1016_j_cell_2013_09_003
crossref_primary_10_3389_fphys_2024_1466148
crossref_primary_10_1096_fj_201901936RR
crossref_primary_10_1007_s40200_020_00611_3
crossref_primary_10_1016_j_semcdb_2022_02_011
crossref_primary_10_1002_cbf_3878
crossref_primary_10_1016_j_jtbi_2013_09_028
crossref_primary_10_1016_j_molcel_2016_02_022
crossref_primary_10_1038_nrendo_2016_104
crossref_primary_10_1530_JME_16_0031
crossref_primary_10_1007_s11357_024_01131_1
crossref_primary_10_1038_s41392_024_01756_w
crossref_primary_10_1152_japplphysiol_00819_2013
crossref_primary_10_1152_ajpendo_00441_2013
crossref_primary_10_1016_j_exger_2014_08_013
crossref_primary_10_1165_rcmb_2012_0506OC
crossref_primary_10_3892_ijmm_2014_1738
crossref_primary_10_1007_s12032_015_0515_0
crossref_primary_10_1152_japplphysiol_00084_2013
crossref_primary_10_1016_j_jphotobiol_2018_07_032
crossref_primary_10_1242_dmm_048912
crossref_primary_10_1007_s13105_013_0301_4
crossref_primary_10_1016_j_jnutbio_2014_01_011
crossref_primary_10_1152_ajpregu_00300_2010
crossref_primary_10_15252_embj_201694914
crossref_primary_10_1152_ajpendo_00238_2010
crossref_primary_10_1016_j_cmet_2016_11_004
crossref_primary_10_1002_dmrr_1025
crossref_primary_10_15252_embj_2022111901
crossref_primary_10_1152_japplphysiol_01096_2012
crossref_primary_10_20945_2359_4292_2023_0040
crossref_primary_10_1210_jc_2018_02679
crossref_primary_10_3389_fphys_2021_649461
crossref_primary_10_1186_2044_5040_2_14
crossref_primary_10_1139_y2012_144
crossref_primary_10_1371_journal_pone_0127089
crossref_primary_10_1093_molehr_gaaa071
crossref_primary_10_1038_s41598_025_90281_z
crossref_primary_10_1007_s11655_019_3040_8
crossref_primary_10_1016_j_clinbiochem_2015_07_098
crossref_primary_10_1080_13813455_2020_1716018
crossref_primary_10_1155_2011_250496
crossref_primary_10_1042_BJ20130807
crossref_primary_10_1371_journal_pone_0092810
crossref_primary_10_3390_ijms24119677
crossref_primary_10_1371_journal_pone_0070248
crossref_primary_10_1586_eem_10_21
crossref_primary_10_3389_fcell_2021_647631
crossref_primary_10_3724_zdxbyxb_2022_0647
crossref_primary_10_1186_s40608_015_0070_4
crossref_primary_10_1007_s13539_012_0073_7
crossref_primary_10_1016_j_scispo_2017_11_002
crossref_primary_10_1007_s00125_010_1890_x
crossref_primary_10_3390_ijms21155374
Cites_doi 10.1056/NEJMoa031314
10.1038/ng1180
10.1152/ajpendo.00729.2007
10.1007/s00125-009-1403-y
10.1016/S0092-8674(00)80611-X
10.1093/gerona/61.6.534
10.2337/diabetes.50.5.921
10.1067/mpd.2000.105141
10.1073/pnas.1032913100
10.1371/journal.pone.0003614
10.1152/japplphysiol.01228.2006
10.1016/j.cmet.2009.07.011
10.1096/fj.02-0367com
10.1093/hmg/ddi149
10.1371/journal.pone.0003613
10.2337/diacare.28.5.1216
10.1073/pnas.0401401101
10.2337/db07-0141
10.1152/jappl.1972.33.3.312
10.1210/jc.2006-0002
10.2337/diabetes.54.9.2685
10.2337/diabetes.51.10.2944
10.1007/s00125-007-0655-7
10.2337/db05-0509
ContentType Journal Article
Copyright 2015 INIST-CNRS
COPYRIGHT 2010 American Diabetes Association
2010 by the American Diabetes Association. 2010
Copyright_xml – notice: 2015 INIST-CNRS
– notice: COPYRIGHT 2010 American Diabetes Association
– notice: 2010 by the American Diabetes Association. 2010
DBID FBQ
AAYXX
CITATION
IQODW
7S9
L.6
5PM
DOI 10.2337/dc09-1305
DatabaseName AGRIS
CrossRef
Pascal-Francis
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA

Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1935-5548
EndPage 651
ExternalDocumentID PMC2827524
A221760114
22509206
10_2337_dc09_1305
US201301808510
GeographicLocations Spain
GeographicLocations_xml – name: Spain
GroupedDBID ---
-ET
..I
.55
.GJ
.XZ
08P
0R~
18M
29F
2WC
3O-
4.4
41~
53G
5GY
5RE
5RS
5VS
6PF
7RV
7X2
7X7
88E
88I
8AF
8AO
8C1
8F7
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
AAIKC
AAKAS
AAMNW
AAQOH
AAQQT
AAWTL
AAYEP
AAYJJ
ABOCM
ABPPZ
ABUWG
ACGFO
ACGOD
ADBBV
ADZCM
AEGXH
AENEX
AERZD
AFFNX
AFKRA
AFOSN
AFRAH
AHMBA
AI.
AIAGR
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AN0
AQUVI
ATCPS
AZQEC
BAWUL
BCR
BCU
BEC
BENPR
BHPHI
BKEYQ
BKNYI
BLC
BNQBC
BPHCQ
BTFSW
BVXVI
C1A
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EBS
EDB
EJD
EMOBN
EX3
F5P
FBQ
FYUFA
GNUQQ
GUQSH
GX1
H13
HCIFZ
HMCUK
HZ~
IAG
IAO
IEA
IHR
INH
INR
IOF
IPO
ITC
J5H
K9-
KQ8
L7B
M0K
M0R
M0T
M1P
M2O
M2P
M2Q
M5~
N4W
NAPCQ
O5R
O5S
O9-
OK1
OVD
P2P
PCD
PEA
PHGZT
PQQKQ
PROAC
PSQYO
Q2X
RHI
S0X
SJFOW
SV3
TDI
TEORI
TR2
TWZ
UKHRP
VH1
VVN
W8F
WH7
WHG
WOQ
WOW
X7M
YHG
YOC
ZCG
ZGI
ZXP
~KM
AAFWJ
AAYXX
CITATION
PHGZM
IQODW
PJZUB
PPXIY
PMFND
7S9
L.6
PUEGO
5PM
ID FETCH-LOGICAL-c509t-9c4f9e7639d89a548d3b474c1a41b660768acac0e542a56911ffc39e4f01a203
ISSN 0149-5992
IngestDate Thu Aug 21 14:13:45 EDT 2025
Fri Sep 05 04:18:22 EDT 2025
Tue Jun 17 21:12:43 EDT 2025
Thu Jun 12 23:53:50 EDT 2025
Tue Jun 10 20:24:44 EDT 2025
Mon Jul 21 09:16:59 EDT 2025
Tue Jul 01 04:20:22 EDT 2025
Thu Apr 24 23:00:57 EDT 2025
Thu Apr 03 09:42:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Endocrinopathy
Type 2 diabetes
Physical exercise
Human
Nutrition
Deficiency
Metabolic diseases
Activation
Striated muscle
Regulation(control)
Age of onset
Early
Endocrinology
Language English
License CC BY 4.0
Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c509t-9c4f9e7639d89a548d3b474c1a41b660768acac0e542a56911ffc39e4f01a203
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
M.I.H.-A. and H.T. contributed equally to this work. A.Z. and J.J.N. share senior authorship.
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC2827524
PMID 20032281
PQID 46541042
PQPubID 24069
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2827524
proquest_miscellaneous_46541042
gale_infotracmisc_A221760114
gale_infotracgeneralonefile_A221760114
gale_infotracacademiconefile_A221760114
pascalfrancis_primary_22509206
crossref_citationtrail_10_2337_dc09_1305
crossref_primary_10_2337_dc09_1305
fao_agris_US201301808510
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-03-01
PublicationDateYYYYMMDD 2010-03-01
PublicationDate_xml – month: 03
  year: 2010
  text: 2010-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Alexandria, VA
PublicationPlace_xml – name: Alexandria, VA
PublicationTitle Diabetes care
PublicationYear 2010
Publisher American Diabetes Association
Publisher_xml – name: American Diabetes Association
References Fagot-Campagna (2022031302512287000_B1) 2000; 136
Mootha (2022031302512287000_B8) 2003; 34
Bach (2022031302512287000_B7) 2005; 54
Gollnick (2022031302512287000_B10) 1972; 33
Musi (2022031302512287000_B18) 2001; 50
Soriano (2022031302512287000_B14) 2006; 55
Mootha (2022031302512287000_B12) 2004; 101
De Filippis (2022031302512287000_B22) 2008; 294
Liesa (2022031302512287000_B20) 2008; 3
Kelley (2022031302512287000_B4) 2002; 51
Toledo (2022031302512287000_B6) 2006; 91
Pich (2022031302512287000_B15) 2005; 14
Hernández-Alvarez (2022031302512287000_B23) 2009; 52
Menshikova (2022031302512287000_B21) 2007; 103
Baar (2022031302512287000_B11) 2002; 16
Barres (2022031302512287000_B24) 2009; 1
Toledo (2022031302512287000_B17) 2007; 56
Wu (2022031302512287000_B13) 1999; 98
Irrcher (2022031302512287000_B19) 2008; 3
Petersen (2022031302512287000_B5) 2004; 350
Menshikova (2022031302512287000_B16) 2006; 61
McQuaid (2022031302512287000_B2) 2005; 28
Burns (2022031302512287000_B3) 2007; 50
Patti (2022031302512287000_B9) 2003; 100
References_xml – volume: 350
  start-page: 664
  year: 2004
  ident: 2022031302512287000_B5
  article-title: Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa031314
– volume: 34
  start-page: 267
  year: 2003
  ident: 2022031302512287000_B8
  article-title: PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes
  publication-title: Nat Genet
  doi: 10.1038/ng1180
– volume: 294
  start-page: E607
  year: 2008
  ident: 2022031302512287000_B22
  article-title: Insulin-resistant muscle is exercise resistant: evidence for reduced response of nuclear-encoded mitochondrial genes to exercise
  publication-title: Am J Physiol Endocrinol Metab
  doi: 10.1152/ajpendo.00729.2007
– volume: 52
  start-page: 1618
  year: 2009
  ident: 2022031302512287000_B23
  article-title: Genes involved in mitochondrial biogenesis/function are induced in response to bilio-pancreatic diversion in morbidly obese subjects with normal glucose tolerance but not in type 2 diabetics
  publication-title: Diabetologia
  doi: 10.1007/s00125-009-1403-y
– volume: 98
  start-page: 115
  year: 1999
  ident: 2022031302512287000_B13
  article-title: Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80611-X
– volume: 61
  start-page: 534
  year: 2006
  ident: 2022031302512287000_B16
  article-title: Effects of exercise on mitochondrial content and function in aging human skeletal muscle
  publication-title: J Gerontol A Biol Sci Med Sci
  doi: 10.1093/gerona/61.6.534
– volume: 50
  start-page: 921
  year: 2001
  ident: 2022031302512287000_B18
  article-title: AMP-activated protein kinase (AMPK) is activated in muscle of subjects with type 2 diabetes during exercise
  publication-title: Diabetes
  doi: 10.2337/diabetes.50.5.921
– volume: 136
  start-page: 664
  year: 2000
  ident: 2022031302512287000_B1
  article-title: Type 2 diabetes among North American children and adolescents: an epidemiologic review and a public health perspective
  publication-title: J Pediatr
  doi: 10.1067/mpd.2000.105141
– volume: 100
  start-page: 8466
  year: 2003
  ident: 2022031302512287000_B9
  article-title: Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1032913100
– volume: 3
  start-page: e3614
  year: 2008
  ident: 2022031302512287000_B19
  article-title: AMP-activated protein kinase-regulated activation of the PGC-1alpha promoter in skeletal muscle cells
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0003614
– volume: 103
  start-page: 21
  year: 2007
  ident: 2022031302512287000_B21
  article-title: Characteristics of skeletal muscle mitochondrial biogenesis induced by moderate-intensity exercise and weight loss in obesity
  publication-title: J Appl Physiol
  doi: 10.1152/japplphysiol.01228.2006
– volume: 1
  start-page: 189
  year: 2009
  ident: 2022031302512287000_B24
  article-title: Non-CpG methylation of the PGC-1α promoter through DNMT3B controls mitochondrial density
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2009.07.011
– volume: 16
  start-page: 1879
  year: 2002
  ident: 2022031302512287000_B11
  article-title: Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1
  publication-title: FASEB J
  doi: 10.1096/fj.02-0367com
– volume: 14
  start-page: 1405
  year: 2005
  ident: 2022031302512287000_B15
  article-title: The Charcot-Marie-Tooth type 2A gene product, Mfn2, up-regulates fuel oxidation through expression of OXPHOS system
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddi149
– volume: 3
  start-page: e3613
  year: 2008
  ident: 2022031302512287000_B20
  article-title: Mitochondrial fusion is increased by the nuclear coactivator PGC-1beta
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0003613
– volume: 28
  start-page: 1216
  year: 2005
  ident: 2022031302512287000_B2
  article-title: Early-onset insulin-resistant diabetes in obese Caucasians has features of typical type 2 diabetes, but 3 decades earlier
  publication-title: Diabetes Care
  doi: 10.2337/diacare.28.5.1216
– volume: 101
  start-page: 6570
  year: 2004
  ident: 2022031302512287000_B12
  article-title: Erralpha and Gabpa/b specify PGC-1alpha-dependent oxidative phosphorylation gene expression that is altered in diabetic muscle
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0401401101
– volume: 56
  start-page: 2142
  year: 2007
  ident: 2022031302512287000_B17
  article-title: Effects of physical activity and weight loss on skeletal muscle mitochondria and relationship with glucose control in type 2 diabetes
  publication-title: Diabetes
  doi: 10.2337/db07-0141
– volume: 33
  start-page: 312
  year: 1972
  ident: 2022031302512287000_B10
  article-title: Enzyme activity and fiber composition in skeletal muscle of untrained and trained men
  publication-title: J Appl Physiol
  doi: 10.1152/jappl.1972.33.3.312
– volume: 91
  start-page: 3224
  year: 2006
  ident: 2022031302512287000_B6
  article-title: Changes induced by physical activity and weight loss in the morphology of intermyofibrillar mitochondria in obese men and women
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2006-0002
– volume: 54
  start-page: 2685
  year: 2005
  ident: 2022031302512287000_B7
  article-title: Expression of Mfn2, the Charcot-Marie-Tooth neuropathy type 2A gene, in human skeletal muscle: effects of type 2 diabetes, obesity, weight loss, and the regulatory role of tumor necrosis factor alpha and interleukin-6
  publication-title: Diabetes
  doi: 10.2337/diabetes.54.9.2685
– volume: 51
  start-page: 2944
  year: 2002
  ident: 2022031302512287000_B4
  article-title: Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes
  publication-title: Diabetes
  doi: 10.2337/diabetes.51.10.2944
– volume: 50
  start-page: 1500
  year: 2007
  ident: 2022031302512287000_B3
  article-title: Early-onset type 2 diabetes in obese white subjects is characterised by a marked defect in beta cell insulin secretion, severe insulin resistance and a lack of response to aerobic exercise training
  publication-title: Diabetologia
  doi: 10.1007/s00125-007-0655-7
– volume: 55
  start-page: 1783
  year: 2006
  ident: 2022031302512287000_B14
  article-title: Evidence for a mitochondrial regulatory pathway defined by peroxisome proliferator-activated receptor-gamma coactivator-1 alpha, estrogen-related receptor-alpha, and mitofusin 2
  publication-title: Diabetes
  doi: 10.2337/db05-0509
SSID ssj0004488
Score 2.4100544
Snippet OBJECTIVE: Type 2 diabetes is associated with insulin resistance and skeletal muscle mitochondrial dysfunction. We have found that subjects with early-onset...
OBJECTIVE--Type 2 diabetes is associated with insulin resistance and skeletal muscle mitochondrial dysfunction. We have found that subjects with early-onset...
SourceID pubmedcentral
proquest
gale
pascalfrancis
crossref
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 645
SubjectTerms adenosine triphosphate
Analysis
Biological and medical sciences
Diabetes. Impaired glucose tolerance
Endocrine pancreas. Apud cells (diseases)
Endocrinopathies
Etiopathogenesis. Screening. Investigations. Target tissue resistance
Exercise
genes
Genetic research
H-transporting ATP synthase
Insulin resistance
Medical sciences
Metabolic diseases
Miscellaneous
noninsulin-dependent diabetes mellitus
Obesity
Original Research
patients
Physical fitness
porins
Proteins
Public health. Hygiene
Public health. Hygiene-occupational medicine
skeletal muscle
Type 2 diabetes
Title Subjects With Early-Onset Type 2 Diabetes Show Defective Activation of the Skeletal Muscle PGC-1α/Mitofusin-2 Regulatory Pathway in Response to Physical Activity
URI https://www.proquest.com/docview/46541042
https://pubmed.ncbi.nlm.nih.gov/PMC2827524
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtNAEF31IiEkhLiqgRJWiAJS5NZe3-LHNC20oJSoSdW-WZuNty1UTtUkVPRz-AN-hCc-iJld79oufSi8WFG8azuZ45nZ2ZkzhLxmI3_sxmPQfnHMnUBGnsPB83VA3iLwueSxinf09qKdg-DjUXi0sPC7krU0n43WxdWNdSX_I1X4DuSKVbL_IFl7UfgCPoN84QgShuOtZAxv_ReVjXGI0VTFVex8zqfZrDXUkdUtE1kdnEwuQbdIrd5aHWG6mpkcgcFXsD9YGNmbT-Eurf6HruOtdbfXNlHV9eC9l5gi7zAQiOpej3vzfXAfL7mqHNzXubaqEUffyl7o3hRVD9g-EuaclZHYi1xt2XsY0nY6Z9_g5FVRS6RObPHW7hRmlgkhyDCuLMhO0e--qMrQCwOFcHv9wQlX4aPB96KWq4hz4Ba9SfSyoc_ECRPdOW890-o68UMHHKJ2VZ9rYo0Ct35FOUeauLKw85Emur1uQpivSAjGAttE-G5Y2kmTG3DNfNqkRlhO4eQUp-IuYbhIllkMHh266rufymrdQHVDtb9H813h1A1715qXtCj5xHoM9875FCQodduV2rqontVbcZOGD8j9Yn1DOxqsD8lClj8id3pFBsdj8sNgliJmaQWzFDFLGTUAoYhZajFLS8zSiaSAWWowSzVmqcLsr58bFbTSEq20QCs9zalBK51NqEErNWh9Qobvt4fdHafoE-IIcHdnTiICmWRgKJNxO-GAhrE_CuJAeDzwRlGEe81ccOFmYcB4GIF5l1L4SRZI1-PM9Z-SpXySZyuEepErhQzHzEXSJxnwGHn8ZcZ9EcswajfIOyOWVBQc-tjK5Sz9S_gN8soOPdfEMTcNWgHZpvwYDHp6MGCYRuC1cRXkNshbFHiK2IRbwPPrchl4UGRsSzsMVGqE4YwGeVMbeaz56m8auFobCIZE1E43a9iyjw0m302YGzXISwO2FOdiemaeTebTFEkZPTD_DRLXMGgvgST29TP56Ykis2dtFocseHabv-s5uVtqhlWyNLuYZy9gTTAbNclifBTDsd31mmR5c3uvv99Ur90fxdEQFg
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subjects+With+Early-Onset+Type+2+Diabetes+Show+Defective+Activation+of+the+Skeletal+Muscle+PGC-1%CE%B1%2FMitofusin-2+Regulatory+Pathway+in+Response+to+Physical+Activity&rft.jtitle=Diabetes+care&rft.au=Hern%C3%A1ndez-Alvarez%2C+Mar%C3%ADa+Isabel&rft.au=Thabit%2C+Hood&rft.au=Burns%2C+Nicole&rft.au=Shah%2C+Syed&rft.date=2010-03-01&rft.issn=0149-5992&rft.eissn=1935-5548&rft.volume=33&rft.issue=3&rft.spage=645&rft.epage=651&rft_id=info:doi/10.2337%2Fdc09-1305&rft.externalDBID=n%2Fa&rft.externalDocID=10_2337_dc09_1305
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0149-5992&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0149-5992&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0149-5992&client=summon