Subjects With Early-Onset Type 2 Diabetes Show Defective Activation of the Skeletal Muscle PGC-1α/Mitofusin-2 Regulatory Pathway in Response to Physical Activity
OBJECTIVE: Type 2 diabetes is associated with insulin resistance and skeletal muscle mitochondrial dysfunction. We have found that subjects with early-onset type 2 diabetes show incapacity to increase VO₂max in response to chronic exercise. This suggests a defect in muscle mitochondrial response to...
Saved in:
Published in | Diabetes care Vol. 33; no. 3; pp. 645 - 651 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Alexandria, VA
American Diabetes Association
01.03.2010
|
Subjects | |
Online Access | Get full text |
ISSN | 0149-5992 1935-5548 |
DOI | 10.2337/dc09-1305 |
Cover
Abstract | OBJECTIVE: Type 2 diabetes is associated with insulin resistance and skeletal muscle mitochondrial dysfunction. We have found that subjects with early-onset type 2 diabetes show incapacity to increase VO₂max in response to chronic exercise. This suggests a defect in muscle mitochondrial response to exercise. Here, we have explored the nature of the mechanisms involved. RESEARCH DESIGN AND METHODS: Muscle biopsies were collected from young type 2 diabetic subjects and obese control subjects before and after acute or chronic exercise protocols, and the expression of genes and/or proteins relevant to mitochondrial function was measured. In particular, the regulatory pathway peroxisome proliferator-activated receptor γ coactivator (PGC)-1α/mitofusin-2 (Mfn2) was analyzed. RESULTS: At baseline, subjects with diabetes showed reduced expression (by 26%) of the mitochondrial fusion protein Mfn2 and a 39% reduction of the α-subunit of ATP synthase. Porin expression was unchanged, consistent with normal mitochondrial mass. Chronic exercise led to a 2.8-fold increase in Mfn2, as well as increases in porin, and the α-subunit of ATP synthase in muscle from control subjects. However, Mfn2 was unchanged after chronic exercise in individuals with diabetes, whereas porin and α-subunit of ATP synthase were increased. Acute exercise caused a fourfold increase in PGC-1α expression in muscle from control subjects but not in subjects with diabetes. CONCLUSIONS: Our results demonstrate alterations in the regulatory pathway that controls PGC-1α expression and induction of Mfn2 in muscle from patients with early-onset type 2 diabetes. Patients with early-onset type 2 diabetes display abnormalities in the exercise-dependent pathway that regulates the expression of PGC-1α and Mfn2. |
---|---|
AbstractList | OBJECTIVE: Type 2 diabetes is associated with insulin resistance and skeletal muscle mitochondrial dysfunction. We have found that subjects with early-onset type 2 diabetes show incapacity to increase VO₂max in response to chronic exercise. This suggests a defect in muscle mitochondrial response to exercise. Here, we have explored the nature of the mechanisms involved. RESEARCH DESIGN AND METHODS: Muscle biopsies were collected from young type 2 diabetic subjects and obese control subjects before and after acute or chronic exercise protocols, and the expression of genes and/or proteins relevant to mitochondrial function was measured. In particular, the regulatory pathway peroxisome proliferator-activated receptor γ coactivator (PGC)-1α/mitofusin-2 (Mfn2) was analyzed. RESULTS: At baseline, subjects with diabetes showed reduced expression (by 26%) of the mitochondrial fusion protein Mfn2 and a 39% reduction of the α-subunit of ATP synthase. Porin expression was unchanged, consistent with normal mitochondrial mass. Chronic exercise led to a 2.8-fold increase in Mfn2, as well as increases in porin, and the α-subunit of ATP synthase in muscle from control subjects. However, Mfn2 was unchanged after chronic exercise in individuals with diabetes, whereas porin and α-subunit of ATP synthase were increased. Acute exercise caused a fourfold increase in PGC-1α expression in muscle from control subjects but not in subjects with diabetes. CONCLUSIONS: Our results demonstrate alterations in the regulatory pathway that controls PGC-1α expression and induction of Mfn2 in muscle from patients with early-onset type 2 diabetes. Patients with early-onset type 2 diabetes display abnormalities in the exercise-dependent pathway that regulates the expression of PGC-1α and Mfn2. OBJECTIVE--Type 2 diabetes is associated with insulin resistance and skeletal muscle mitochondrial dysfunction. We have found that subjects with early-onset type 2 diabetes show incapacity to increase V[O.sub.2max] in response to chronic exercise. This suggests a defect in muscle mitochondrial response to exercise. Here, we have explored the nature of the mechanisms involved. RESEARCH DESIGN AND METHODS--Muscle biopsies were collected from young type 2 diabetic subjects and obese control subjects before and after acute or chronic exercise protocols, and the expression of genes and/or proteins relevant to mitochondrial function was measured. In particular, the regulatory pathway peroxisome proliferator-activated receptor γ coactivator (PGC)-1α/mitofusin-2 (Mfn2) was analyzed. RESULTS-- At baseline, subjects with diabetes showed reduced expression (by 26%) of the mitochondrial fusion protein Mfn2 and a 39% reduction of the α-subunit of ATP synthase. Porin expression was unchanged, consistent with normal mitochondrial mass. Chronic exercise led to a 2.8-fold increase in Mfn2, as well as increases in porin, and the α-subunit of ATP synthase in muscle from control subjects. However, Mfn2 was unchanged after chronic exercise in individuals with diabetes, whereas porin and α-subunit of ATP synthase were increased. Acute exercise caused a fourfold increase in PGC-1α expression in muscle from control subjects but not in subjects with diabetes. CONCLUSIONS -- Our results demonstrate alterations in the regulatory pathway that controls PGC-1α expression and induction of Mfn2 in muscle from patients with early-onset type 2 diabetes. Patients with early-onset type 2 diabetes display abnormalities in the exercise-dependent pathway that regulates the expression of PGC-1α and Mfn2. |
Audience | Professional |
Author | Thabit, Hood Shah, Syed Hatunic, Mensud Naon, Deborah Hernández-Alvarez, María Isabel Brema, Imad Finucane, Francis Chiellini, Chiara Zorzano, Antonio Nolan, John J Liesa, Marc Burns, Nicole |
Author_xml | – sequence: 1 fullname: Hernández-Alvarez, María Isabel – sequence: 2 fullname: Thabit, Hood – sequence: 3 fullname: Burns, Nicole – sequence: 4 fullname: Shah, Syed – sequence: 5 fullname: Brema, Imad – sequence: 6 fullname: Hatunic, Mensud – sequence: 7 fullname: Finucane, Francis – sequence: 8 fullname: Liesa, Marc – sequence: 9 fullname: Chiellini, Chiara – sequence: 10 fullname: Naon, Deborah – sequence: 11 fullname: Zorzano, Antonio – sequence: 12 fullname: Nolan, John J |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22509206$$DView record in Pascal Francis |
BookMark | eNptks1uEzEQx1eoiKaFA0-AJQQSh21sr_fDl0pRWgpSq0YkiKPlOOOsy8YOa2-rfR3egBfhmfA2Aako8mGkmd_8ZzwzJ8mRdRaS5DXBZzTLyvFKYZ6SDOfPkhHhWZ7mOauOkhEmjKc55_Q4OfH-DmPMWFW9SI4pxhmlFRklP-fd8g5U8OibCTW6lG3Tp7fWQ0CLfguIogsjlxDAo3ntHtAF6Eibe0CTwchgnEVOo1ADmn-HBoJs0E3nVQNodjVNye9f4xsTnO68sSlFX2DdNTK4tkczGeoH2SNjo9dvXSyKgkOzuvdGRZXHAib0L5PnWjYeXu3tabL4eLmYfkqvb68-TyfXqcoxDylXTHMoi4yvKi7jAFbZkpVMEcnIsihwWVRSSYUhZ1TmBSdEa5VxYBoTSXF2mpzvZLfdcgMrBTa0shHb1mxk2wsnjXgasaYWa3cvaEXLnLIo8H4v0LofHfggNsYraBppwXVesCJnBDMawbc7cC0bEMZqF_XUAIsJpaQsMCGDXHqAWoOFWDzuX5vofsKfHeDjW8HGqIMJ7_b9Sh_nrVtplfH_PkxpHCvFReTGO061zvsWtFAmPC4-FjCNIFgMVyiGKxTDFcaMD_9l_BU9xL7ZsVo6Iddt7ODrnOIYIxWucoKzP1_N5s4 |
CODEN | DICAD2 |
CitedBy_id | crossref_primary_10_1038_s41598_017_14120_6 crossref_primary_10_1038_nrendo_2011_158 crossref_primary_10_1152_japplphysiol_00873_2014 crossref_primary_10_3389_fnagi_2022_893018 crossref_primary_10_1111_jdi_12803 crossref_primary_10_4161_cc_28189 crossref_primary_10_1097_01_fjc_0000432861_55968_a6 crossref_primary_10_1111_eci_12468 crossref_primary_10_1016_j_lfs_2020_117965 crossref_primary_10_1038_s41387_022_00213_3 crossref_primary_10_1073_pnas_1108220109 crossref_primary_10_1016_j_molmet_2017_10_006 crossref_primary_10_1155_2018_8258246 crossref_primary_10_14814_phy2_13723 crossref_primary_10_1096_fj_13_230037 crossref_primary_10_3892_ol_2016_5191 crossref_primary_10_1155_2016_4085727 crossref_primary_10_1016_j_freeradbiomed_2016_04_019 crossref_primary_10_1152_ajpendo_00578_2013 crossref_primary_10_1186_s13293_018_0164_z crossref_primary_10_1016_j_jdiacomp_2013_04_002 crossref_primary_10_3390_ijms22189812 crossref_primary_10_1155_2020_1949415 crossref_primary_10_1186_s12957_016_0922_5 crossref_primary_10_5487_TR_2014_30_4_243 crossref_primary_10_1016_j_ejogrb_2013_11_024 crossref_primary_10_1186_s12933_020_01109_1 crossref_primary_10_1080_13813455_2019_1673432 crossref_primary_10_1038_s41598_017_00276_8 crossref_primary_10_1186_0717_6287_47_74 crossref_primary_10_1016_j_semcdb_2015_11_005 crossref_primary_10_1089_ars_2010_3779 crossref_primary_10_3390_jcm11226863 crossref_primary_10_1007_s00592_018_1171_6 crossref_primary_10_3389_fcell_2014_00072 crossref_primary_10_1038_ijo_2015_120 crossref_primary_10_14814_phy2_14681 crossref_primary_10_1016_j_biopha_2023_115852 crossref_primary_10_1096_fj_13_242750 crossref_primary_10_1152_ajpendo_00546_2012 crossref_primary_10_1002_jbio_201960140 crossref_primary_10_1152_ajpendo_00146_2013 crossref_primary_10_18632_aging_102972 crossref_primary_10_1152_ajpregu_00229_2010 crossref_primary_10_1007_s11332_018_0430_9 crossref_primary_10_1186_s12885_023_11419_8 crossref_primary_10_1002_jcb_27995 crossref_primary_10_4049_jimmunol_1501023 crossref_primary_10_1016_j_cmet_2023_12_025 crossref_primary_10_1111_bph_12577 crossref_primary_10_3390_cells9061454 crossref_primary_10_1007_s11033_014_3584_9 crossref_primary_10_1016_j_jcjd_2014_05_008 crossref_primary_10_1042_CS20160080 crossref_primary_10_1186_s10020_025_01101_z crossref_primary_10_1080_21505594_2021_1965829 crossref_primary_10_1002_iub_1511 crossref_primary_10_1186_s12937_024_01006_3 crossref_primary_10_15252_embr_201947928 crossref_primary_10_1155_2012_642038 crossref_primary_10_1152_japplphysiol_00921_2011 crossref_primary_10_1007_s41048_015_0013_0 crossref_primary_10_1016_j_ebiom_2019_04_044 crossref_primary_10_3390_cells11193060 crossref_primary_10_1093_ptj_pzx072 crossref_primary_10_1089_ars_2014_6208 crossref_primary_10_1111_boc_201600019 crossref_primary_10_1152_japplphysiol_00539_2021 crossref_primary_10_3389_fphys_2015_00422 crossref_primary_10_1016_j_exger_2016_06_008 crossref_primary_10_3389_fphys_2015_00426 crossref_primary_10_1096_fj_202100262RR crossref_primary_10_1210_clinem_dgae032 crossref_primary_10_1042_CS20160736 crossref_primary_10_1093_hmg_ddac201 crossref_primary_10_3390_ijerph20021388 crossref_primary_10_1139_bcb_2015_0012 crossref_primary_10_1016_j_jff_2018_09_016 crossref_primary_10_1155_2019_3649808 crossref_primary_10_1111_nyas_12863 crossref_primary_10_3390_cells10030537 crossref_primary_10_3892_mmr_2013_1457 crossref_primary_10_1155_2012_684283 crossref_primary_10_1007_s13300_019_0588_4 crossref_primary_10_1038_nrendo_2014_160 crossref_primary_10_1007_s00018_020_03662_0 crossref_primary_10_1111_jcmm_12320 crossref_primary_10_3390_ijms22010091 crossref_primary_10_1002_mnfr_201700941 crossref_primary_10_1515_hsz_2017_0331 crossref_primary_10_3390_ijms252312860 crossref_primary_10_4110_in_2021_21_e30 crossref_primary_10_1016_j_cell_2013_09_003 crossref_primary_10_3389_fphys_2024_1466148 crossref_primary_10_1096_fj_201901936RR crossref_primary_10_1007_s40200_020_00611_3 crossref_primary_10_1016_j_semcdb_2022_02_011 crossref_primary_10_1002_cbf_3878 crossref_primary_10_1016_j_jtbi_2013_09_028 crossref_primary_10_1016_j_molcel_2016_02_022 crossref_primary_10_1038_nrendo_2016_104 crossref_primary_10_1530_JME_16_0031 crossref_primary_10_1007_s11357_024_01131_1 crossref_primary_10_1038_s41392_024_01756_w crossref_primary_10_1152_japplphysiol_00819_2013 crossref_primary_10_1152_ajpendo_00441_2013 crossref_primary_10_1016_j_exger_2014_08_013 crossref_primary_10_1165_rcmb_2012_0506OC crossref_primary_10_3892_ijmm_2014_1738 crossref_primary_10_1007_s12032_015_0515_0 crossref_primary_10_1152_japplphysiol_00084_2013 crossref_primary_10_1016_j_jphotobiol_2018_07_032 crossref_primary_10_1242_dmm_048912 crossref_primary_10_1007_s13105_013_0301_4 crossref_primary_10_1016_j_jnutbio_2014_01_011 crossref_primary_10_1152_ajpregu_00300_2010 crossref_primary_10_15252_embj_201694914 crossref_primary_10_1152_ajpendo_00238_2010 crossref_primary_10_1016_j_cmet_2016_11_004 crossref_primary_10_1002_dmrr_1025 crossref_primary_10_15252_embj_2022111901 crossref_primary_10_1152_japplphysiol_01096_2012 crossref_primary_10_20945_2359_4292_2023_0040 crossref_primary_10_1210_jc_2018_02679 crossref_primary_10_3389_fphys_2021_649461 crossref_primary_10_1186_2044_5040_2_14 crossref_primary_10_1139_y2012_144 crossref_primary_10_1371_journal_pone_0127089 crossref_primary_10_1093_molehr_gaaa071 crossref_primary_10_1038_s41598_025_90281_z crossref_primary_10_1007_s11655_019_3040_8 crossref_primary_10_1016_j_clinbiochem_2015_07_098 crossref_primary_10_1080_13813455_2020_1716018 crossref_primary_10_1155_2011_250496 crossref_primary_10_1042_BJ20130807 crossref_primary_10_1371_journal_pone_0092810 crossref_primary_10_3390_ijms24119677 crossref_primary_10_1371_journal_pone_0070248 crossref_primary_10_1586_eem_10_21 crossref_primary_10_3389_fcell_2021_647631 crossref_primary_10_3724_zdxbyxb_2022_0647 crossref_primary_10_1186_s40608_015_0070_4 crossref_primary_10_1007_s13539_012_0073_7 crossref_primary_10_1016_j_scispo_2017_11_002 crossref_primary_10_1007_s00125_010_1890_x crossref_primary_10_3390_ijms21155374 |
Cites_doi | 10.1056/NEJMoa031314 10.1038/ng1180 10.1152/ajpendo.00729.2007 10.1007/s00125-009-1403-y 10.1016/S0092-8674(00)80611-X 10.1093/gerona/61.6.534 10.2337/diabetes.50.5.921 10.1067/mpd.2000.105141 10.1073/pnas.1032913100 10.1371/journal.pone.0003614 10.1152/japplphysiol.01228.2006 10.1016/j.cmet.2009.07.011 10.1096/fj.02-0367com 10.1093/hmg/ddi149 10.1371/journal.pone.0003613 10.2337/diacare.28.5.1216 10.1073/pnas.0401401101 10.2337/db07-0141 10.1152/jappl.1972.33.3.312 10.1210/jc.2006-0002 10.2337/diabetes.54.9.2685 10.2337/diabetes.51.10.2944 10.1007/s00125-007-0655-7 10.2337/db05-0509 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS COPYRIGHT 2010 American Diabetes Association 2010 by the American Diabetes Association. 2010 |
Copyright_xml | – notice: 2015 INIST-CNRS – notice: COPYRIGHT 2010 American Diabetes Association – notice: 2010 by the American Diabetes Association. 2010 |
DBID | FBQ AAYXX CITATION IQODW 7S9 L.6 5PM |
DOI | 10.2337/dc09-1305 |
DatabaseName | AGRIS CrossRef Pascal-Francis AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1935-5548 |
EndPage | 651 |
ExternalDocumentID | PMC2827524 A221760114 22509206 10_2337_dc09_1305 US201301808510 |
GeographicLocations | Spain |
GeographicLocations_xml | – name: Spain |
GroupedDBID | --- -ET ..I .55 .GJ .XZ 08P 0R~ 18M 29F 2WC 3O- 4.4 41~ 53G 5GY 5RE 5RS 5VS 6PF 7RV 7X2 7X7 88E 88I 8AF 8AO 8C1 8F7 8FE 8FH 8FI 8FJ 8G5 8R4 8R5 AAIKC AAKAS AAMNW AAQOH AAQQT AAWTL AAYEP AAYJJ ABOCM ABPPZ ABUWG ACGFO ACGOD ADBBV ADZCM AEGXH AENEX AERZD AFFNX AFKRA AFOSN AFRAH AHMBA AI. AIAGR ALIPV ALMA_UNASSIGNED_HOLDINGS AN0 AQUVI ATCPS AZQEC BAWUL BCR BCU BEC BENPR BHPHI BKEYQ BKNYI BLC BNQBC BPHCQ BTFSW BVXVI C1A CCPQU CS3 DIK DU5 DWQXO E3Z EBS EDB EJD EMOBN EX3 F5P FBQ FYUFA GNUQQ GUQSH GX1 H13 HCIFZ HMCUK HZ~ IAG IAO IEA IHR INH INR IOF IPO ITC J5H K9- KQ8 L7B M0K M0R M0T M1P M2O M2P M2Q M5~ N4W NAPCQ O5R O5S O9- OK1 OVD P2P PCD PEA PHGZT PQQKQ PROAC PSQYO Q2X RHI S0X SJFOW SV3 TDI TEORI TR2 TWZ UKHRP VH1 VVN W8F WH7 WHG WOQ WOW X7M YHG YOC ZCG ZGI ZXP ~KM AAFWJ AAYXX CITATION PHGZM IQODW PJZUB PPXIY PMFND 7S9 L.6 PUEGO 5PM |
ID | FETCH-LOGICAL-c509t-9c4f9e7639d89a548d3b474c1a41b660768acac0e542a56911ffc39e4f01a203 |
ISSN | 0149-5992 |
IngestDate | Thu Aug 21 14:13:45 EDT 2025 Fri Sep 05 04:18:22 EDT 2025 Tue Jun 17 21:12:43 EDT 2025 Thu Jun 12 23:53:50 EDT 2025 Tue Jun 10 20:24:44 EDT 2025 Mon Jul 21 09:16:59 EDT 2025 Tue Jul 01 04:20:22 EDT 2025 Thu Apr 24 23:00:57 EDT 2025 Thu Apr 03 09:42:36 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Endocrinopathy Type 2 diabetes Physical exercise Human Nutrition Deficiency Metabolic diseases Activation Striated muscle Regulation(control) Age of onset Early Endocrinology |
Language | English |
License | CC BY 4.0 Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c509t-9c4f9e7639d89a548d3b474c1a41b660768acac0e542a56911ffc39e4f01a203 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 M.I.H.-A. and H.T. contributed equally to this work. A.Z. and J.J.N. share senior authorship. |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC2827524 |
PMID | 20032281 |
PQID | 46541042 |
PQPubID | 24069 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2827524 proquest_miscellaneous_46541042 gale_infotracmisc_A221760114 gale_infotracgeneralonefile_A221760114 gale_infotracacademiconefile_A221760114 pascalfrancis_primary_22509206 crossref_citationtrail_10_2337_dc09_1305 crossref_primary_10_2337_dc09_1305 fao_agris_US201301808510 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-03-01 |
PublicationDateYYYYMMDD | 2010-03-01 |
PublicationDate_xml | – month: 03 year: 2010 text: 2010-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Alexandria, VA |
PublicationPlace_xml | – name: Alexandria, VA |
PublicationTitle | Diabetes care |
PublicationYear | 2010 |
Publisher | American Diabetes Association |
Publisher_xml | – name: American Diabetes Association |
References | Fagot-Campagna (2022031302512287000_B1) 2000; 136 Mootha (2022031302512287000_B8) 2003; 34 Bach (2022031302512287000_B7) 2005; 54 Gollnick (2022031302512287000_B10) 1972; 33 Musi (2022031302512287000_B18) 2001; 50 Soriano (2022031302512287000_B14) 2006; 55 Mootha (2022031302512287000_B12) 2004; 101 De Filippis (2022031302512287000_B22) 2008; 294 Liesa (2022031302512287000_B20) 2008; 3 Kelley (2022031302512287000_B4) 2002; 51 Toledo (2022031302512287000_B6) 2006; 91 Pich (2022031302512287000_B15) 2005; 14 Hernández-Alvarez (2022031302512287000_B23) 2009; 52 Menshikova (2022031302512287000_B21) 2007; 103 Baar (2022031302512287000_B11) 2002; 16 Barres (2022031302512287000_B24) 2009; 1 Toledo (2022031302512287000_B17) 2007; 56 Wu (2022031302512287000_B13) 1999; 98 Irrcher (2022031302512287000_B19) 2008; 3 Petersen (2022031302512287000_B5) 2004; 350 Menshikova (2022031302512287000_B16) 2006; 61 McQuaid (2022031302512287000_B2) 2005; 28 Burns (2022031302512287000_B3) 2007; 50 Patti (2022031302512287000_B9) 2003; 100 |
References_xml | – volume: 350 start-page: 664 year: 2004 ident: 2022031302512287000_B5 article-title: Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes publication-title: N Engl J Med doi: 10.1056/NEJMoa031314 – volume: 34 start-page: 267 year: 2003 ident: 2022031302512287000_B8 article-title: PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes publication-title: Nat Genet doi: 10.1038/ng1180 – volume: 294 start-page: E607 year: 2008 ident: 2022031302512287000_B22 article-title: Insulin-resistant muscle is exercise resistant: evidence for reduced response of nuclear-encoded mitochondrial genes to exercise publication-title: Am J Physiol Endocrinol Metab doi: 10.1152/ajpendo.00729.2007 – volume: 52 start-page: 1618 year: 2009 ident: 2022031302512287000_B23 article-title: Genes involved in mitochondrial biogenesis/function are induced in response to bilio-pancreatic diversion in morbidly obese subjects with normal glucose tolerance but not in type 2 diabetics publication-title: Diabetologia doi: 10.1007/s00125-009-1403-y – volume: 98 start-page: 115 year: 1999 ident: 2022031302512287000_B13 article-title: Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1 publication-title: Cell doi: 10.1016/S0092-8674(00)80611-X – volume: 61 start-page: 534 year: 2006 ident: 2022031302512287000_B16 article-title: Effects of exercise on mitochondrial content and function in aging human skeletal muscle publication-title: J Gerontol A Biol Sci Med Sci doi: 10.1093/gerona/61.6.534 – volume: 50 start-page: 921 year: 2001 ident: 2022031302512287000_B18 article-title: AMP-activated protein kinase (AMPK) is activated in muscle of subjects with type 2 diabetes during exercise publication-title: Diabetes doi: 10.2337/diabetes.50.5.921 – volume: 136 start-page: 664 year: 2000 ident: 2022031302512287000_B1 article-title: Type 2 diabetes among North American children and adolescents: an epidemiologic review and a public health perspective publication-title: J Pediatr doi: 10.1067/mpd.2000.105141 – volume: 100 start-page: 8466 year: 2003 ident: 2022031302512287000_B9 article-title: Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1032913100 – volume: 3 start-page: e3614 year: 2008 ident: 2022031302512287000_B19 article-title: AMP-activated protein kinase-regulated activation of the PGC-1alpha promoter in skeletal muscle cells publication-title: PLoS One doi: 10.1371/journal.pone.0003614 – volume: 103 start-page: 21 year: 2007 ident: 2022031302512287000_B21 article-title: Characteristics of skeletal muscle mitochondrial biogenesis induced by moderate-intensity exercise and weight loss in obesity publication-title: J Appl Physiol doi: 10.1152/japplphysiol.01228.2006 – volume: 1 start-page: 189 year: 2009 ident: 2022031302512287000_B24 article-title: Non-CpG methylation of the PGC-1α promoter through DNMT3B controls mitochondrial density publication-title: Cell Metab doi: 10.1016/j.cmet.2009.07.011 – volume: 16 start-page: 1879 year: 2002 ident: 2022031302512287000_B11 article-title: Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1 publication-title: FASEB J doi: 10.1096/fj.02-0367com – volume: 14 start-page: 1405 year: 2005 ident: 2022031302512287000_B15 article-title: The Charcot-Marie-Tooth type 2A gene product, Mfn2, up-regulates fuel oxidation through expression of OXPHOS system publication-title: Hum Mol Genet doi: 10.1093/hmg/ddi149 – volume: 3 start-page: e3613 year: 2008 ident: 2022031302512287000_B20 article-title: Mitochondrial fusion is increased by the nuclear coactivator PGC-1beta publication-title: PLoS One doi: 10.1371/journal.pone.0003613 – volume: 28 start-page: 1216 year: 2005 ident: 2022031302512287000_B2 article-title: Early-onset insulin-resistant diabetes in obese Caucasians has features of typical type 2 diabetes, but 3 decades earlier publication-title: Diabetes Care doi: 10.2337/diacare.28.5.1216 – volume: 101 start-page: 6570 year: 2004 ident: 2022031302512287000_B12 article-title: Erralpha and Gabpa/b specify PGC-1alpha-dependent oxidative phosphorylation gene expression that is altered in diabetic muscle publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0401401101 – volume: 56 start-page: 2142 year: 2007 ident: 2022031302512287000_B17 article-title: Effects of physical activity and weight loss on skeletal muscle mitochondria and relationship with glucose control in type 2 diabetes publication-title: Diabetes doi: 10.2337/db07-0141 – volume: 33 start-page: 312 year: 1972 ident: 2022031302512287000_B10 article-title: Enzyme activity and fiber composition in skeletal muscle of untrained and trained men publication-title: J Appl Physiol doi: 10.1152/jappl.1972.33.3.312 – volume: 91 start-page: 3224 year: 2006 ident: 2022031302512287000_B6 article-title: Changes induced by physical activity and weight loss in the morphology of intermyofibrillar mitochondria in obese men and women publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2006-0002 – volume: 54 start-page: 2685 year: 2005 ident: 2022031302512287000_B7 article-title: Expression of Mfn2, the Charcot-Marie-Tooth neuropathy type 2A gene, in human skeletal muscle: effects of type 2 diabetes, obesity, weight loss, and the regulatory role of tumor necrosis factor alpha and interleukin-6 publication-title: Diabetes doi: 10.2337/diabetes.54.9.2685 – volume: 51 start-page: 2944 year: 2002 ident: 2022031302512287000_B4 article-title: Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes publication-title: Diabetes doi: 10.2337/diabetes.51.10.2944 – volume: 50 start-page: 1500 year: 2007 ident: 2022031302512287000_B3 article-title: Early-onset type 2 diabetes in obese white subjects is characterised by a marked defect in beta cell insulin secretion, severe insulin resistance and a lack of response to aerobic exercise training publication-title: Diabetologia doi: 10.1007/s00125-007-0655-7 – volume: 55 start-page: 1783 year: 2006 ident: 2022031302512287000_B14 article-title: Evidence for a mitochondrial regulatory pathway defined by peroxisome proliferator-activated receptor-gamma coactivator-1 alpha, estrogen-related receptor-alpha, and mitofusin 2 publication-title: Diabetes doi: 10.2337/db05-0509 |
SSID | ssj0004488 |
Score | 2.4100544 |
Snippet | OBJECTIVE: Type 2 diabetes is associated with insulin resistance and skeletal muscle mitochondrial dysfunction. We have found that subjects with early-onset... OBJECTIVE--Type 2 diabetes is associated with insulin resistance and skeletal muscle mitochondrial dysfunction. We have found that subjects with early-onset... |
SourceID | pubmedcentral proquest gale pascalfrancis crossref fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 645 |
SubjectTerms | adenosine triphosphate Analysis Biological and medical sciences Diabetes. Impaired glucose tolerance Endocrine pancreas. Apud cells (diseases) Endocrinopathies Etiopathogenesis. Screening. Investigations. Target tissue resistance Exercise genes Genetic research H-transporting ATP synthase Insulin resistance Medical sciences Metabolic diseases Miscellaneous noninsulin-dependent diabetes mellitus Obesity Original Research patients Physical fitness porins Proteins Public health. Hygiene Public health. Hygiene-occupational medicine skeletal muscle Type 2 diabetes |
Title | Subjects With Early-Onset Type 2 Diabetes Show Defective Activation of the Skeletal Muscle PGC-1α/Mitofusin-2 Regulatory Pathway in Response to Physical Activity |
URI | https://www.proquest.com/docview/46541042 https://pubmed.ncbi.nlm.nih.gov/PMC2827524 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtNAEF31IiEkhLiqgRJWiAJS5NZe3-LHNC20oJSoSdW-WZuNty1UTtUkVPRz-AN-hCc-iJld79oufSi8WFG8azuZ45nZ2ZkzhLxmI3_sxmPQfnHMnUBGnsPB83VA3iLwueSxinf09qKdg-DjUXi0sPC7krU0n43WxdWNdSX_I1X4DuSKVbL_IFl7UfgCPoN84QgShuOtZAxv_ReVjXGI0VTFVex8zqfZrDXUkdUtE1kdnEwuQbdIrd5aHWG6mpkcgcFXsD9YGNmbT-Eurf6HruOtdbfXNlHV9eC9l5gi7zAQiOpej3vzfXAfL7mqHNzXubaqEUffyl7o3hRVD9g-EuaclZHYi1xt2XsY0nY6Z9_g5FVRS6RObPHW7hRmlgkhyDCuLMhO0e--qMrQCwOFcHv9wQlX4aPB96KWq4hz4Ba9SfSyoc_ECRPdOW890-o68UMHHKJ2VZ9rYo0Ct35FOUeauLKw85Emur1uQpivSAjGAttE-G5Y2kmTG3DNfNqkRlhO4eQUp-IuYbhIllkMHh266rufymrdQHVDtb9H813h1A1715qXtCj5xHoM9875FCQodduV2rqontVbcZOGD8j9Yn1DOxqsD8lClj8id3pFBsdj8sNgliJmaQWzFDFLGTUAoYhZajFLS8zSiaSAWWowSzVmqcLsr58bFbTSEq20QCs9zalBK51NqEErNWh9Qobvt4fdHafoE-IIcHdnTiICmWRgKJNxO-GAhrE_CuJAeDzwRlGEe81ccOFmYcB4GIF5l1L4SRZI1-PM9Z-SpXySZyuEepErhQzHzEXSJxnwGHn8ZcZ9EcswajfIOyOWVBQc-tjK5Sz9S_gN8soOPdfEMTcNWgHZpvwYDHp6MGCYRuC1cRXkNshbFHiK2IRbwPPrchl4UGRsSzsMVGqE4YwGeVMbeaz56m8auFobCIZE1E43a9iyjw0m302YGzXISwO2FOdiemaeTebTFEkZPTD_DRLXMGgvgST29TP56Ykis2dtFocseHabv-s5uVtqhlWyNLuYZy9gTTAbNclifBTDsd31mmR5c3uvv99Ur90fxdEQFg |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subjects+With+Early-Onset+Type+2+Diabetes+Show+Defective+Activation+of+the+Skeletal+Muscle+PGC-1%CE%B1%2FMitofusin-2+Regulatory+Pathway+in+Response+to+Physical+Activity&rft.jtitle=Diabetes+care&rft.au=Hern%C3%A1ndez-Alvarez%2C+Mar%C3%ADa+Isabel&rft.au=Thabit%2C+Hood&rft.au=Burns%2C+Nicole&rft.au=Shah%2C+Syed&rft.date=2010-03-01&rft.issn=0149-5992&rft.eissn=1935-5548&rft.volume=33&rft.issue=3&rft.spage=645&rft.epage=651&rft_id=info:doi/10.2337%2Fdc09-1305&rft.externalDBID=n%2Fa&rft.externalDocID=10_2337_dc09_1305 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0149-5992&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0149-5992&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0149-5992&client=summon |