Fast and accurate Slicewise OutLIer Detection (SOLID) with informed model estimation for diffusion MRI data
The accurate characterization of the diffusion process in tissue using diffusion MRI is greatly challenged by the presence of artefacts. Subject motion causes not only spatial misalignments between diffusion weighted images, but often also slicewise signal intensity errors. Voxelwise robust model es...
Saved in:
| Published in | NeuroImage (Orlando, Fla.) Vol. 181; pp. 331 - 346 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Inc
01.11.2018
Elsevier Limited |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1053-8119 1095-9572 1095-9572 |
| DOI | 10.1016/j.neuroimage.2018.07.003 |
Cover
| Abstract | The accurate characterization of the diffusion process in tissue using diffusion MRI is greatly challenged by the presence of artefacts. Subject motion causes not only spatial misalignments between diffusion weighted images, but often also slicewise signal intensity errors. Voxelwise robust model estimation is commonly used to exclude intensity errors as outliers. Slicewise outliers, however, become distributed over multiple adjacent slices after image registration and transformation. This challenges outlier detection with voxelwise procedures due to partial volume effects. Detecting the outlier slices before any transformations are applied to diffusion weighted images is therefore required. In this work, we present i) an automated tool coined SOLID for slicewise outlier detection prior to geometrical image transformation, and ii) a framework to naturally interpret data uncertainty information from SOLID and include it as such in model estimators. SOLID uses a straightforward intensity metric, is independent of the choice of the diffusion MRI model, and can handle datasets with a few or irregularly distributed gradient directions. The SOLID-informed estimation framework prevents the need to completely reject diffusion weighted images or individual voxel measurements by downweighting measurements with their degree of uncertainty, thereby supporting convergence and well-conditioning of iterative estimation algorithms. In comprehensive simulation experiments, SOLID detects outliers with a high sensitivity and specificity, and can achieve higher or at least similar sensitivity and specificity compared to other tools that are based on more complex and time-consuming procedures for the scenarios investigated. SOLID was further validated on data from 54 neonatal subjects which were visually inspected for outlier slices with the interactive tool developed as part of this study, showing its potential to quickly highlight problematic volumes and slices in large population studies. The informed model estimation framework was evaluated both in simulations and in vivo human data.
•Slicewise artefacts due to subject motion or hardware issues are a common issue in diffusion MRI.•We propose a model-free slicewise outlier detection for diffusion MRI, coined SOLID.•We propose a model-free slicewise outlier detection algorithm for diffusion data, coined SOLID.•SOLID is validated with manually labelled outliers from 54 newborn subjects and extensive simulations.•SOLID-information is used as measurement uncertainty to provide robust diffusion and kurtosis tensor estimates. |
|---|---|
| AbstractList | The accurate characterization of the diffusion process in tissue using diffusion MRI is greatly challenged by the presence of artefacts. Subject motion causes not only spatial misalignments between diffusion weighted images, but often also slicewise signal intensity errors. Voxelwise robust model estimation is commonly used to exclude intensity errors as outliers. Slicewise outliers, however, become distributed over multiple adjacent slices after image registration and transformation. This challenges outlier detection with voxelwise procedures due to partial volume effects. Detecting the outlier slices before any transformations are applied to diffusion weighted images is therefore required. In this work, we present i) an automated tool coined SOLID for slicewise outlier detection prior to geometrical image transformation, and ii) a framework to naturally interpret data uncertainty information from SOLID and include it as such in model estimators. SOLID uses a straightforward intensity metric, is independent of the choice of the diffusion MRI model, and can handle datasets with a few or irregularly distributed gradient directions. The SOLID-informed estimation framework prevents the need to completely reject diffusion weighted images or individual voxel measurements by downweighting measurements with their degree of uncertainty, thereby supporting convergence and well-conditioning of iterative estimation algorithms. In comprehensive simulation experiments, SOLID detects outliers with a high sensitivity and specificity, and can achieve higher or at least similar sensitivity and specificity compared to other tools that are based on more complex and time-consuming procedures for the scenarios investigated. SOLID was further validated on data from 54 neonatal subjects which were visually inspected for outlier slices with the interactive tool developed as part of this study, showing its potential to quickly highlight problematic volumes and slices in large population studies. The informed model estimation framework was evaluated both in simulations and in vivo human data. The accurate characterization of the diffusion process in tissue using diffusion MRI is greatly challenged by the presence of artefacts. Subject motion causes not only spatial misalignments between diffusion weighted images, but often also slicewise signal intensity errors. Voxelwise robust model estimation is commonly used to exclude intensity errors as outliers. Slicewise outliers, however, become distributed over multiple adjacent slices after image registration and transformation. This challenges outlier detection with voxelwise procedures due to partial volume effects. Detecting the outlier slices before any transformations are applied to diffusion weighted images is therefore required. In this work, we present i) an automated tool coined SOLID for slicewise outlier detection prior to geometrical image transformation, and ii) a framework to naturally interpret data uncertainty information from SOLID and include it as such in model estimators. SOLID uses a straightforward intensity metric, is independent of the choice of the diffusion MRI model, and can handle datasets with a few or irregularly distributed gradient directions. The SOLID-informed estimation framework prevents the need to completely reject diffusion weighted images or individual voxel measurements by downweighting measurements with their degree of uncertainty, thereby supporting convergence and well-conditioning of iterative estimation algorithms. In comprehensive simulation experiments, SOLID detects outliers with a high sensitivity and specificity, and can achieve higher or at least similar sensitivity and specificity compared to other tools that are based on more complex and time-consuming procedures for the scenarios investigated. SOLID was further validated on data from 54 neonatal subjects which were visually inspected for outlier slices with the interactive tool developed as part of this study, showing its potential to quickly highlight problematic volumes and slices in large population studies. The informed model estimation framework was evaluated both in simulations and in vivo human data.The accurate characterization of the diffusion process in tissue using diffusion MRI is greatly challenged by the presence of artefacts. Subject motion causes not only spatial misalignments between diffusion weighted images, but often also slicewise signal intensity errors. Voxelwise robust model estimation is commonly used to exclude intensity errors as outliers. Slicewise outliers, however, become distributed over multiple adjacent slices after image registration and transformation. This challenges outlier detection with voxelwise procedures due to partial volume effects. Detecting the outlier slices before any transformations are applied to diffusion weighted images is therefore required. In this work, we present i) an automated tool coined SOLID for slicewise outlier detection prior to geometrical image transformation, and ii) a framework to naturally interpret data uncertainty information from SOLID and include it as such in model estimators. SOLID uses a straightforward intensity metric, is independent of the choice of the diffusion MRI model, and can handle datasets with a few or irregularly distributed gradient directions. The SOLID-informed estimation framework prevents the need to completely reject diffusion weighted images or individual voxel measurements by downweighting measurements with their degree of uncertainty, thereby supporting convergence and well-conditioning of iterative estimation algorithms. In comprehensive simulation experiments, SOLID detects outliers with a high sensitivity and specificity, and can achieve higher or at least similar sensitivity and specificity compared to other tools that are based on more complex and time-consuming procedures for the scenarios investigated. SOLID was further validated on data from 54 neonatal subjects which were visually inspected for outlier slices with the interactive tool developed as part of this study, showing its potential to quickly highlight problematic volumes and slices in large population studies. The informed model estimation framework was evaluated both in simulations and in vivo human data. The accurate characterization of the diffusion process in tissue using diffusion MRI is greatly challenged by the presence of artefacts. Subject motion causes not only spatial misalignments between diffusion weighted images, but often also slicewise signal intensity errors. Voxelwise robust model estimation is commonly used to exclude intensity errors as outliers. Slicewise outliers, however, become distributed over multiple adjacent slices after image registration and transformation. This challenges outlier detection with voxelwise procedures due to partial volume effects. Detecting the outlier slices before any transformations are applied to diffusion weighted images is therefore required. In this work, we present i) an automated tool coined SOLID for slicewise outlier detection prior to geometrical image transformation, and ii) a framework to naturally interpret data uncertainty information from SOLID and include it as such in model estimators. SOLID uses a straightforward intensity metric, is independent of the choice of the diffusion MRI model, and can handle datasets with a few or irregularly distributed gradient directions. The SOLID-informed estimation framework prevents the need to completely reject diffusion weighted images or individual voxel measurements by downweighting measurements with their degree of uncertainty, thereby supporting convergence and well-conditioning of iterative estimation algorithms. In comprehensive simulation experiments, SOLID detects outliers with a high sensitivity and specificity, and can achieve higher or at least similar sensitivity and specificity compared to other tools that are based on more complex and time-consuming procedures for the scenarios investigated. SOLID was further validated on data from 54 neonatal subjects which were visually inspected for outlier slices with the interactive tool developed as part of this study, showing its potential to quickly highlight problematic volumes and slices in large population studies. The informed model estimation framework was evaluated both in simulations and in vivo human data. •Slicewise artefacts due to subject motion or hardware issues are a common issue in diffusion MRI.•We propose a model-free slicewise outlier detection for diffusion MRI, coined SOLID.•We propose a model-free slicewise outlier detection algorithm for diffusion data, coined SOLID.•SOLID is validated with manually labelled outliers from 54 newborn subjects and extensive simulations.•SOLID-information is used as measurement uncertainty to provide robust diffusion and kurtosis tensor estimates. |
| Author | Sairanen, Viljami Tax, C.M.W. Leemans, A. |
| Author_xml | – sequence: 1 givenname: Viljami surname: Sairanen fullname: Sairanen, Viljami email: viljami.sairanen@helsinki.fi organization: Department of Physics, University of Helsinki, Helsinki, Finland – sequence: 2 givenname: A. surname: Leemans fullname: Leemans, A. organization: Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands – sequence: 3 givenname: C.M.W. surname: Tax fullname: Tax, C.M.W. organization: Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, United Kingdom |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29981481$$D View this record in MEDLINE/PubMed |
| BookMark | eNqVkU1vEzEQhleoiH7AX0CWuJTDLrb3y74goKUQKSgShbPl2GNw6nhT20uUf4-3KSDlFE4ej5559c4758WJHzwUBSK4Iph0b1aVhzEMdi1_QEUxYRXuK4zrJ8UZwbwtedvTk6lu65IRwk-L8xhXGGNOGvasOKWcs1yRs-LuRsaEpNdIKjUGmQDdOqtgayOgxZjmMwjoGhKoZAePLm8X89n1a7S16Sey3gxhDRqtBw0OQUzZ0AOW-0hbY8Y4_b58nSEtk3xePDXSRXjx-F4U328-frv6XM4Xn2ZX7-elajFPJdOmqdul7Dpuamp62SvgmNG2B8I14VI2yx6r3Deq73tGu2ZpONSMKsVaTeuLgu91R7-Ru610TmxCthZ2gmAxBShW4l-AYgpQ4F7kAPPs5X52E4b7Ma8k1jYqcE56GMaY2a5rWNM2PKOvDtDVMAafNxOUYFrXTddNZl4-UuMyZ_XXyZ8TZODtHlBhiDGAEcqmhxhTkNYdY5kdCPzHth_2o5DP8ctCEFFZ8Aq0DfniQg_2GJF3ByLKWW-VdHewO07iN90r4Wg |
| CitedBy_id | crossref_primary_10_1016_j_neuroimage_2022_119423 crossref_primary_10_1016_j_neuroimage_2023_120397 crossref_primary_10_1007_s11682_020_00363_x crossref_primary_10_1016_j_nicl_2023_103419 crossref_primary_10_1002_mrm_27893 crossref_primary_10_2139_ssrn_4123879 crossref_primary_10_1016_j_media_2024_103386 crossref_primary_10_1007_s00415_023_12086_2 crossref_primary_10_1016_j_neuroimage_2020_116534 crossref_primary_10_1016_j_neuroimage_2021_117967 crossref_primary_10_1016_j_jad_2021_08_120 crossref_primary_10_1002_mrm_28544 crossref_primary_10_1016_j_neuroimage_2020_116793 crossref_primary_10_1016_j_neuroimage_2019_01_077 crossref_primary_10_1371_journal_pone_0280055 crossref_primary_10_1002_nbm_5229 crossref_primary_10_7554_eLife_101069 crossref_primary_10_1016_j_neuroimage_2021_118830 crossref_primary_10_1016_j_neuroimage_2020_117163 crossref_primary_10_1007_s11831_023_09898_w crossref_primary_10_1002_hbm_26211 crossref_primary_10_1016_j_nicl_2021_102818 crossref_primary_10_1002_hbm_24691 crossref_primary_10_1002_mrm_30351 crossref_primary_10_1038_s41380_023_02178_w crossref_primary_10_1162_netn_a_00378 crossref_primary_10_1002_brb3_3048 crossref_primary_10_1016_j_neuroimage_2021_118802 crossref_primary_10_1212_WNL_0000000000209695 crossref_primary_10_7554_eLife_101069_3 crossref_primary_10_1016_j_ijnurstu_2020_103551 crossref_primary_10_1002_hbm_24964 crossref_primary_10_1002_hbm_25859 crossref_primary_10_1162_imag_a_00012 crossref_primary_10_1016_j_neuroimage_2019_06_020 |
| Cites_doi | 10.1002/mrm.20642 10.1002/mrm.20279 10.1002/mrm.22835 10.1016/S1053-8119(03)00336-7 10.1016/j.media.2016.02.010 10.1002/hbm.22756 10.1016/j.neuroimage.2013.05.028 10.1002/mrm.26124 10.1002/mrm.1910390518 10.1371/journal.pone.0049764 10.1002/mrm.24173 10.3174/ajnr.A3465 10.1016/j.cmpb.2005.08.004 10.1016/j.neuroimage.2017.02.081 10.1002/mrm.22032 10.1006/jmrb.1994.1037 10.1016/j.nicl.2016.03.022 10.1016/j.mri.2010.06.022 10.1007/3-540-45468-3_23 10.1016/0031-3203(95)00067-4 10.1006/jmre.2000.2209 10.1002/mrm.22924 10.1016/j.neuroimage.2017.04.064 10.1016/j.media.2017.03.007 10.1002/nbm.1543 10.1002/mrm.26259 10.1016/j.neuroimage.2015.07.067 10.1002/mrm.10677 10.1016/j.neuroimage.2004.07.037 10.1109/TMI.2013.2284014 10.1016/j.cortex.2008.05.002 10.1007/BF00127126 10.1002/mrm.25165 10.1002/mrm.22786 10.1016/j.neuroimage.2016.11.061 10.1016/j.cortex.2011.05.018 10.1016/j.neuroimage.2015.10.019 10.1002/(SICI)1522-2594(199909)42:3<515::AID-MRM14>3.0.CO;2-Q 10.1016/j.neuroimage.2011.09.015 10.1002/jmri.20683 10.1016/j.neuroimage.2012.07.022 10.1016/j.media.2017.04.010 10.1109/TMI.2009.2037915 10.1002/mrm.25351 10.1016/S1361-8415(02)00079-8 10.1093/med/9780195369779.003.0018 10.1016/j.neuroimage.2007.02.016 10.1002/mrm.10491 10.1371/journal.pone.0061737 10.1109/TMI.2016.2555244 10.1016/j.jneumeth.2015.09.029 10.1016/j.neuroimage.2016.06.058 10.3389/fninf.2014.00004 10.1523/JNEUROSCI.5162-14.2015 10.1016/j.neuroimage.2008.05.053 10.1016/j.neuroimage.2017.02.085 10.1002/mrm.20426 10.1016/j.mri.2004.08.024 10.1063/1.1695690 10.1007/s12021-009-9061-2 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier Inc. Copyright © 2018 Elsevier Inc. All rights reserved. 2018. Elsevier Inc. |
| Copyright_xml | – notice: 2018 Elsevier Inc. – notice: Copyright © 2018 Elsevier Inc. All rights reserved. – notice: 2018. Elsevier Inc. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 ADTOC UNPAY |
| DOI | 10.1016/j.neuroimage.2018.07.003 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (Proquest) ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database (Proquest) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest One Psychology |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central Database Suite (ProQuest) url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1095-9572 |
| EndPage | 346 |
| ExternalDocumentID | oai:helda.helsinki.fi:10138/310910 29981481 10_1016_j_neuroimage_2018_07_003 S1053811918305950 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | Netherlands |
| GeographicLocations_xml | – name: Netherlands |
| GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACLOT ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- ~HD 3V. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJOXV AMFUW C45 HMQ LCYCR RIG SNS ZA5 29N 53G AAFWJ AAQXK AAYXX ABXDB ACRPL ADFGL ADMUD ADNMO ADVLN ADXHL AFPKN AGHFR AGQPQ AIGII AKRLJ ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ OK1 R2- SEW WUQ XPP ZMT AGCQF AGRNS ALIPV CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 PUEGO ADTOC UNPAY |
| ID | FETCH-LOGICAL-c509t-8df435ba669f32f7a7ce908257e19d19aa4b70c7a7fc7778264bf9e382cc85d23 |
| IEDL.DBID | .~1 |
| ISSN | 1053-8119 1095-9572 |
| IngestDate | Sun Oct 26 04:17:21 EDT 2025 Sun Sep 28 02:16:33 EDT 2025 Tue Oct 07 06:35:56 EDT 2025 Mon Jul 21 05:59:13 EDT 2025 Sat Oct 25 05:52:32 EDT 2025 Thu Apr 24 23:10:24 EDT 2025 Fri Feb 23 02:45:24 EST 2024 Tue Oct 14 19:31:18 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | Copyright © 2018 Elsevier Inc. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c509t-8df435ba669f32f7a7ce908257e19d19aa4b70c7a7fc7778264bf9e382cc85d23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://hdl.handle.net/10138/310910 |
| PMID | 29981481 |
| PQID | 2102334662 |
| PQPubID | 2031077 |
| PageCount | 16 |
| ParticipantIDs | unpaywall_primary_10_1016_j_neuroimage_2018_07_003 proquest_miscellaneous_2066484549 proquest_journals_2102334662 pubmed_primary_29981481 crossref_citationtrail_10_1016_j_neuroimage_2018_07_003 crossref_primary_10_1016_j_neuroimage_2018_07_003 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2018_07_003 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2018_07_003 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-11-01 2018-11-00 20181101 |
| PublicationDateYYYYMMDD | 2018-11-01 |
| PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Amsterdam |
| PublicationTitle | NeuroImage (Orlando, Fla.) |
| PublicationTitleAlternate | Neuroimage |
| PublicationYear | 2018 |
| Publisher | Elsevier Inc Elsevier Limited |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
| References | Lucas (bib36) 2010; 8 Veraart (bib67) 2013; 81 Ferrante, Paragios (bib16) 2017; 39 Veraart, Van Hecke, Sijbers (bib68) 2011; 66 Sairanen (bib54) 2017; 147 Collier (bib14) 2015; 73 Wedeen (bib70) 2005; 54 St-Jean, Coupé, Descoteaux (bib57) 2016; 32 Jones, Horsfield, Simmons (bib27) 1999; 42 Liu, Gasbarra, Railavo (bib34) 2016; 257 Scelfo (bib55) 2012 Jenkinson (bib1a) 2012; 62.2 Jiang (bib24) 2009; 62 Poot (bib52) 2010; 29 Andersson, Skare (bib1) 2010 Jones, Cercignani (bib26) 2010; 23 Andersson (bib3) 2008; 42 Marami, Scherrer, Afacan, Warfield (bib40) 2016 Nielsen, Ghugre, Panigrahy (bib43) 2004; 22 Stejskal, Tanner (bib58) 1965; 42 Tournier, Calamante, Connelly (bib65) 2007; 35 Cook (bib15) 2006; vol. 14 Oguz (bib46) 2014; 8 Mangin (bib37) 2002; 6 Jones (bib25) 2008; 44 Andersson (bib2) 2016; 141 Pierpaoli, Walker (bib51) 2010; 51 Tax (bib60) 2017; 39 Tuch (bib66) 2004; 52 Odish (bib45) 2015; 36 Batchelor (bib9) 2003; 49 Le Bihan (bib11) 2006; 24 Tax (bib61) 2015; vol. 73 Andersson (bib4) 2017; 152 Morris (bib42) 2011; 66 Leemans (bib32) 2009; 17 Pannek (bib48) 2015 Li (bib33) 2013; 8 Tax, Vos, Leemans (bib62) 2016 Lauzon (bib31) 2013; 8 Mangin (bib38) 2001; 2208 Andersson, Sotiropoulos (bib6) 2016; 125 Norman, Streiner (bib44) 2007 Tournier (bib64) 2004; 23 Langen (bib30) 2012; 48 Rohde (bib53) 2004; 51 Hämäläinen (bib19) 2017; 152 Liu (bib35) 2010 Zhou (bib71) 2011; 29 Ojala, Pietikäinen, Harwood (bib47) 1996; 29 Fogtmann (bib17) 2014; 33 Heemskerk (bib20) 2013; 34 Vos (bib69) 2017; 77 Baum, Stevenson (bib10) 2016 Froeling (bib18) 2017; 77 Chang, Walker, Pierpaoli (bib13) 2012; 68 Marami, Scherrer, Afacan, Erem (bib39) 2016; 35 Stjerna (bib59) 2015; 35 Pierpaoli (bib50) 2010 Pannek (bib49) 2012; 63 Jezzard, Barnett, Pierpaoli (bib22) 1998; 39 Tournier, Mori, Leemans (bib63) 2011; 65 Jiang (bib23) 2006; 81 Knutsson, Westin (bib29) 1993 Andersson, Skare, Ashburner (bib5) 2003; 20 Kennis (bib28) 2016; 11 Chang, Jones, Pierpaoli (bib12) 2005; 53 Harms (bib2a) 2017; 155 Iglewicz, Hoaglin (bib21) 1993; 62 Basser, Mattiello, Lebihan (bib8) 1994; 103 Andersson, Sotiropoulos (bib7) 2015; 122 Meer (bib41) 1991; 6 Skare (bib56) 2000; 147 Li (10.1016/j.neuroimage.2018.07.003_bib33) 2013; 8 Pierpaoli (10.1016/j.neuroimage.2018.07.003_bib50) 2010 Norman (10.1016/j.neuroimage.2018.07.003_bib44) 2007 Andersson (10.1016/j.neuroimage.2018.07.003_bib5) 2003; 20 Ferrante (10.1016/j.neuroimage.2018.07.003_bib16) 2017; 39 Chang (10.1016/j.neuroimage.2018.07.003_bib12) 2005; 53 Harms (10.1016/j.neuroimage.2018.07.003_bib2a) 2017; 155 Morris (10.1016/j.neuroimage.2018.07.003_bib42) 2011; 66 Veraart (10.1016/j.neuroimage.2018.07.003_bib67) 2013; 81 Liu (10.1016/j.neuroimage.2018.07.003_bib35) 2010 Andersson (10.1016/j.neuroimage.2018.07.003_bib2) 2016; 141 Jones (10.1016/j.neuroimage.2018.07.003_bib25) 2008; 44 Marami (10.1016/j.neuroimage.2018.07.003_bib39) 2016; 35 Andersson (10.1016/j.neuroimage.2018.07.003_bib1) 2010 Meer (10.1016/j.neuroimage.2018.07.003_bib41) 1991; 6 Baum (10.1016/j.neuroimage.2018.07.003_bib10) 2016 Chang (10.1016/j.neuroimage.2018.07.003_bib13) 2012; 68 Jones (10.1016/j.neuroimage.2018.07.003_bib26) 2010; 23 Mangin (10.1016/j.neuroimage.2018.07.003_bib38) 2001; 2208 Cook (10.1016/j.neuroimage.2018.07.003_bib15) 2006; vol. 14 Heemskerk (10.1016/j.neuroimage.2018.07.003_bib20) 2013; 34 Stjerna (10.1016/j.neuroimage.2018.07.003_bib59) 2015; 35 Tournier (10.1016/j.neuroimage.2018.07.003_bib64) 2004; 23 Jiang (10.1016/j.neuroimage.2018.07.003_bib23) 2006; 81 Knutsson (10.1016/j.neuroimage.2018.07.003_bib29) 1993 Tax (10.1016/j.neuroimage.2018.07.003_bib62) 2016 Andersson (10.1016/j.neuroimage.2018.07.003_bib6) 2016; 125 Pierpaoli (10.1016/j.neuroimage.2018.07.003_bib51) 2010; 51 Langen (10.1016/j.neuroimage.2018.07.003_bib30) 2012; 48 St-Jean (10.1016/j.neuroimage.2018.07.003_bib57) 2016; 32 Tax (10.1016/j.neuroimage.2018.07.003_bib60) 2017; 39 Leemans (10.1016/j.neuroimage.2018.07.003_bib32) 2009; 17 Tournier (10.1016/j.neuroimage.2018.07.003_bib63) 2011; 65 Jiang (10.1016/j.neuroimage.2018.07.003_bib24) 2009; 62 Fogtmann (10.1016/j.neuroimage.2018.07.003_bib17) 2014; 33 Odish (10.1016/j.neuroimage.2018.07.003_bib45) 2015; 36 Scelfo (10.1016/j.neuroimage.2018.07.003_bib55) 2012 Tax (10.1016/j.neuroimage.2018.07.003_bib61) 2015; vol. 73 Pannek (10.1016/j.neuroimage.2018.07.003_bib48) 2015 Basser (10.1016/j.neuroimage.2018.07.003_bib8) 1994; 103 Lucas (10.1016/j.neuroimage.2018.07.003_bib36) 2010; 8 Rohde (10.1016/j.neuroimage.2018.07.003_bib53) 2004; 51 Andersson (10.1016/j.neuroimage.2018.07.003_bib4) 2017; 152 Mangin (10.1016/j.neuroimage.2018.07.003_bib37) 2002; 6 Andersson (10.1016/j.neuroimage.2018.07.003_bib3) 2008; 42 Froeling (10.1016/j.neuroimage.2018.07.003_bib18) 2017; 77 Ojala (10.1016/j.neuroimage.2018.07.003_bib47) 1996; 29 Zhou (10.1016/j.neuroimage.2018.07.003_bib71) 2011; 29 Lauzon (10.1016/j.neuroimage.2018.07.003_bib31) 2013; 8 Stejskal (10.1016/j.neuroimage.2018.07.003_bib58) 1965; 42 Le Bihan (10.1016/j.neuroimage.2018.07.003_bib11) 2006; 24 Collier (10.1016/j.neuroimage.2018.07.003_bib14) 2015; 73 Marami (10.1016/j.neuroimage.2018.07.003_bib40) 2016 Veraart (10.1016/j.neuroimage.2018.07.003_bib68) 2011; 66 Vos (10.1016/j.neuroimage.2018.07.003_bib69) 2017; 77 Nielsen (10.1016/j.neuroimage.2018.07.003_bib43) 2004; 22 Tournier (10.1016/j.neuroimage.2018.07.003_bib65) 2007; 35 Batchelor (10.1016/j.neuroimage.2018.07.003_bib9) 2003; 49 Skare (10.1016/j.neuroimage.2018.07.003_bib56) 2000; 147 Tuch (10.1016/j.neuroimage.2018.07.003_bib66) 2004; 52 Jenkinson (10.1016/j.neuroimage.2018.07.003_bib1a) 2012; 62.2 Jezzard (10.1016/j.neuroimage.2018.07.003_bib22) 1998; 39 Hämäläinen (10.1016/j.neuroimage.2018.07.003_bib19) 2017; 152 Andersson (10.1016/j.neuroimage.2018.07.003_bib7) 2015; 122 Sairanen (10.1016/j.neuroimage.2018.07.003_bib54) 2017; 147 Poot (10.1016/j.neuroimage.2018.07.003_bib52) 2010; 29 Liu (10.1016/j.neuroimage.2018.07.003_bib34) 2016; 257 Jones (10.1016/j.neuroimage.2018.07.003_bib27) 1999; 42 Oguz (10.1016/j.neuroimage.2018.07.003_bib46) 2014; 8 Wedeen (10.1016/j.neuroimage.2018.07.003_bib70) 2005; 54 Kennis (10.1016/j.neuroimage.2018.07.003_bib28) 2016; 11 Iglewicz (10.1016/j.neuroimage.2018.07.003_bib21) 1993; 62 Pannek (10.1016/j.neuroimage.2018.07.003_bib49) 2012; 63 |
| References_xml | – volume: 33 start-page: 272 year: 2014 end-page: 289 ident: bib17 article-title: A unified approach to diffusion direction sensitive slice registration and 3-d DTI reconstruction from moving fetal brain anatomy publication-title: IEEE Trans. Med. Imag. – volume: 51 start-page: 103 year: 2004 end-page: 114 ident: bib53 article-title: Comprehensive approach for correction of motion and distortion in diffusion-weighted MRI publication-title: Magn. Reson. Med. – volume: 62 start-page: 645 year: 2009 end-page: 655 ident: bib24 article-title: Diffusion tensor imaging (DTI) of the brain in moving subjects: application to in-utero fetal and ex-utero studies publication-title: Magn. Reson. Med. – year: 2015 ident: bib48 article-title: Combined slicewise and voxelwise outlier detection in diffusion MRI data of preterm born infants publication-title: Ohbm – volume: 35 start-page: 1459 year: 2007 end-page: 1472 ident: bib65 article-title: Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution publication-title: Neuroimage – volume: 141 start-page: 556 year: 2016 end-page: 572 ident: bib2 article-title: Incorporating outlier detection and replacement into a non-parametric framework for movement and distortion correction of diffusion MR images publication-title: Neuroimage – volume: 125 start-page: 1063 year: 2016 end-page: 1078 ident: bib6 article-title: An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging publication-title: Neuroimage – volume: 147 year: 2000 ident: bib56 article-title: Condition number as a measure of noise performance of diffusion tensor data acquisition schemes with MRI publication-title: J. Magn. Reson. – volume: 51 start-page: 2010 year: 2010 ident: bib51 article-title: TORTOISE: an integrated software package for processing of diffusion MRI data publication-title: Processing of Diffusion … – volume: 8 year: 2013 ident: bib31 article-title: Simultaneous analysis and quality assurance for diffusion tensor imaging publication-title: PLoS One – volume: 23 start-page: 803 year: 2010 end-page: 820 ident: bib26 article-title: Twenty-five pitfalls in the analysis of diffusion MRI data publication-title: NMR Biomed. – volume: 8 start-page: 4 year: 2014 ident: bib46 article-title: DTIPrep: quality control of diffusion-weighted images publication-title: Front. Neuroinf. – volume: 62.2 start-page: 782 year: 2012 end-page: 790 ident: bib1a article-title: Fsl publication-title: Neuroimage – year: 2007 ident: bib44 article-title: Biostatistics: the Bare Essentials, PMPH-USA – volume: 29 start-page: 819 year: 2010 end-page: 829 ident: bib52 article-title: Optimal experimental design for diffusion kurtosis imaging publication-title: IEEE Trans. Med. Imag. – volume: 11 start-page: 539 year: 2016 end-page: 547 ident: bib28 article-title: Choosing the polarity of the phase-encoding direction in diffusion MRI: does it matter for group analysis? publication-title: Neuroimage: Clinica – volume: 17 start-page: 3537 year: 2009 ident: bib32 article-title: ExploreDTI: a graphical toolbox for processing, analyzing, and visualizing diffusion MR data publication-title: Proceedings 17th Scientific Meeting, International Society for Magnetic Resonance in Medicine – volume: 23 start-page: 1176 year: 2004 end-page: 1185 ident: bib64 article-title: Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution publication-title: Neuroimage – start-page: 285 year: 2010 end-page: 302 ident: bib1 article-title: Image distortion and its correction in diffusion MRI publication-title: Diffusion MRI: Theory, Methods, and Applications – volume: 39 start-page: 162 year: 2017 end-page: 177 ident: bib60 article-title: Quantifying the brain's sheet structure with normalized convolution publication-title: Med. Image Anal. – volume: 81 start-page: 106 year: 2006 end-page: 116 ident: bib23 article-title: DtiStudio: resource program for diffusion tensor computation and fiber bundle tracking publication-title: Comput. Meth. Progr. Biomed. – volume: 29 start-page: 51 year: 1996 end-page: 59 ident: bib47 article-title: A comparative study of texture measures with classification based on feature distributions publication-title: Pattern Recogn. – volume: 155 start-page: 82 year: 2017 end-page: 96 ident: bib2a article-title: Robust and fast nonlinear optimization of diffusion MRI microstructure models publication-title: Neuroimage – start-page: 76280J year: 2010 ident: bib35 article-title: Quality control of diffusion weighted images publication-title: Proceedings of SPIE–the International Society for Optical Engineering. NIH Public Access – volume: 2208 start-page: 186 year: 2001 end-page: 194 ident: bib38 article-title: Eddy-current distortion correction and Robust tensor estimation for MR diffusion imaging publication-title: Lect. Notes Comput. Sci. – volume: 22 start-page: 1319 year: 2004 end-page: 1323 ident: bib43 article-title: Affine and polynomial mutual information coregistration for artifact elimination in diffusion tensor imaging of newborns publication-title: Magn. Reson. Imag. – volume: 39 start-page: 801 year: 1998 end-page: 812 ident: bib22 article-title: Characterization of and correction for eddy current artifacts in echo planar diffusion imaging publication-title: Magn. Reson. Med. – start-page: 303 year: 2010 end-page: 317 ident: bib50 article-title: Artifacts in diffusion MRI publication-title: In Diffusion MRI: Theory, methods, and applications – volume: 147 start-page: 57 year: 2017 end-page: 65 ident: bib54 article-title: A novel measure of reliability in Diffusion Tensor Imaging after data rejections due to subject motion publication-title: Neuroimage – volume: 54 start-page: 1377 year: 2005 end-page: 1386 ident: bib70 article-title: Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging publication-title: Magn. Reson. Med. – volume: 48 start-page: 183 year: 2012 end-page: 193 ident: bib30 article-title: Fronto-striatal circuitry and inhibitory control in autism: findings from diffusion tensor imaging tractography publication-title: Cortex – volume: 34 start-page: 1496 year: 2013 end-page: 1505 ident: bib20 article-title: Acquisition guidelines and quality assessment tools for analyzing neonatal diffusion tensor MRI data publication-title: Am. J. Neuroradiol. – volume: 32 start-page: 115 year: 2016 end-page: 130 ident: bib57 article-title: Non Local Spatial and Angular Matching: enabling higher spatial resolution diffusion MRI datasets through adaptive denoising publication-title: Med. Image Anal. – volume: 77 start-page: 1797 year: 2017 end-page: 1809 ident: bib18 article-title: ?MASSIVE? brain dataset: multiple acquisitions for standardization of structural imaging validation and evaluation publication-title: Magn. Reson. Med. – volume: 65 start-page: 1532 year: 2011 end-page: 1556 ident: bib63 article-title: Diffusion tensor imaging and beyond publication-title: Magn. Reson. Med. – volume: 42 start-page: 1340 year: 2008 end-page: 1356 ident: bib3 article-title: Maximum a posteriori estimation of diffusion tensor parameters using a Rician noise model: why, how and but publication-title: Neuroimage – volume: 152 start-page: 249 year: 2017 end-page: 257 ident: bib19 article-title: Bilingualism modulates the white matter structure of language-related pathways publication-title: Neuroimage – volume: 6 start-page: 191 year: 2002 end-page: 198 ident: bib37 article-title: Distortion correction and robust tensor estimation for MR diffusion imaging publication-title: Med. Image Anal. – volume: vol. 73 start-page: 794 year: 2015 end-page: 808 ident: bib61 article-title: REKINDLE: Robust extraction of kurtosis INDices with linear estimation publication-title: Magn. Reson. Med. – volume: 8 start-page: 5 year: 2010 end-page: 17 ident: bib36 article-title: The Java Image Science Toolkit (JIST) for rapid prototyping and publishing of neuroimaging software publication-title: Neuroinformatics – start-page: 515 year: 1993 end-page: 523 ident: bib29 article-title: Normalized and differential convolution: methods for interpolation and filtering of incomplete and uncertain data publication-title: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June(16–19) – volume: 73 start-page: 2174 year: 2015 end-page: 2184 ident: bib14 article-title: Iterative reweighted linear least squares for accurate, fast, and robust estimation of diffusion magnetic resonance parameters publication-title: Magn. Reson. Med. – volume: 81 start-page: 335 year: 2013 end-page: 346 ident: bib67 article-title: Weighted linear least squares estimation of diffusion MRI parameters: strengths, limitations, and pitfalls publication-title: Neuroimage – volume: 42 start-page: 515 year: 1999 end-page: 525 ident: bib27 article-title: Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging publication-title: Magn. Reson. Med. – volume: 6 start-page: 59 year: 1991 end-page: 70 ident: bib41 article-title: Robust regression methods for computer vision: a review publication-title: Int. J. Comput. Vis. – volume: 122 start-page: 166 year: 2015 end-page: 176 ident: bib7 article-title: Non-parametric representation and prediction of single- and multi-shell diffusion-weighted MRI data using Gaussian processes publication-title: Neuroimage – volume: 36 start-page: 2061 year: 2015 end-page: 2074 ident: bib45 article-title: Microstructural brain abnormalities in Huntington's disease: a two-year follow-up publication-title: Hum. Brain Mapp. – volume: 8 start-page: e49764 year: 2013 ident: bib33 article-title: Image corruption detection in diffusion tensor imaging for post-processing and real-time monitoring K. Herholz publication-title: PLoS One – volume: 62 start-page: 782 year: 1993 end-page: 790 ident: bib21 article-title: How to Detect and Handle Outliers, Jenkinson, M. et al., 2012 publication-title: Fsl. NeuroImage – start-page: 544 year: 2016 end-page: 552 ident: bib40 article-title: Motion-robust reconstruction based on simultaneous multi-slice registration for diffusion-weighted MRI of moving subjects publication-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) – volume: 35 start-page: 4824 year: 2015 end-page: 4829 ident: bib59 article-title: Visual fixation in human newborns correlates with extensive white matter networks and predicts long-term neurocognitive development publication-title: J. Neurosci. – volume: 103 start-page: 247 year: 1994 end-page: 254 ident: bib8 article-title: Estimation of the effective self-diffusion tensor from the NMR spin echo publication-title: J. Magn. Reson., Ser. B – volume: 66 start-page: 92 year: 2011 end-page: 101 ident: bib42 article-title: Preterm neonatal diffusion processing using detection and replacement of outliers prior to resampling publication-title: Magn. Reson. Med. – volume: 66 start-page: 678 year: 2011 end-page: 686 ident: bib68 article-title: Constrained maximum likelihood estimation of the diffusion kurtosis tensor using a Rician noise model publication-title: Magn. Reson. Med. – volume: 152 start-page: 450 year: 2017 end-page: 466 ident: bib4 article-title: Towards a comprehensive framework for movement and distortion correction of diffusion MR images: within volume movement publication-title: Neuroimage – volume: 35 start-page: 2258 year: 2016 end-page: 2269 ident: bib39 article-title: Motion-robust diffusion-weighted brain MRI reconstruction through slice-level registration-based motion tracking publication-title: IEEE Trans. Med. Imag. – volume: 44 start-page: 936 year: 2008 end-page: 952 ident: bib25 article-title: Studying connections in the living human brain with diffusion MRI publication-title: Cortex – volume: 24 start-page: 478 year: 2006 end-page: 488 ident: bib11 article-title: Artifacts and pitfalls in diffusion MRI publication-title: J. Magn. Reson. Imag. – volume: 49 start-page: 1143 year: 2003 end-page: 1151 ident: bib9 article-title: Anisotropic noise propagation in diffusion tensor MRI sampling schemes publication-title: Magn. Reson. Med. – start-page: 3553 year: 2012 ident: bib55 article-title: Automated detection, evaluation and removal of DWI-related artifacts publication-title: In Proc. Intl. Soc. Mag. Reson. Med – volume: 257 start-page: 147 year: 2016 end-page: 158 ident: bib34 article-title: Fast estimation of diffusion tensors under Rician noise by the EM algorithm publication-title: J. Neurosci. Meth. – volume: 52 start-page: 1358 year: 2004 end-page: 1372 ident: bib66 article-title: Q-ball imaging publication-title: Magn. Reson. Med. – start-page: 4824 year: 2016 end-page: 4829 ident: bib10 article-title: Commentary: visual fixation in human newborns correlates with extensive white matter networks and predicts long-term neurocognitive development publication-title: Front. Neurosci. – volume: 42 start-page: 288 year: 1965 end-page: 292 ident: bib58 article-title: Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient publication-title: J. Chem. Phys. – volume: 77 start-page: 285 year: 2017 end-page: 299 ident: bib69 article-title: The importance of correcting for signal drift in diffusion MRI publication-title: Magn. Reson. Med. – volume: 39 start-page: 101 year: 2017 end-page: 123 ident: bib16 article-title: Slice-to-volume medical image registration: a survey publication-title: Med. Image Anal. – volume: 20 start-page: 870 year: 2003 end-page: 888 ident: bib5 article-title: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging publication-title: Neuroimage – volume: 53 start-page: 1088 year: 2005 end-page: 1095 ident: bib12 article-title: RESTORE: robust estimation of tensors by outlier rejection publication-title: Magn. Reson. Med. – volume: 63 start-page: 835 year: 2012 end-page: 842 ident: bib49 article-title: HOMOR: higher order model outlier rejection for high b-value MR diffusion data publication-title: Neuroimage – volume: 29 start-page: 230 year: 2011 end-page: 242 ident: bib71 article-title: Automated artifact detection and removal for improved tensor estimation in motion-corrupted DTI data sets using the combination of local binary patterns and 2D partial least squares publication-title: Magn. Reson. Imag. – volume: 68 start-page: 1654 year: 2012 end-page: 1663 ident: bib13 article-title: Informed RESTORE: a method for robust estimation of diffusion tensor from low redundancy datasets in the presence of physiological noise artifacts publication-title: Magn. Reson. Med. – start-page: 127 year: 2016 end-page: 150 ident: bib62 article-title: Checking and correcting DTI data publication-title: Diffusion Tensor Imaging – volume: vol. 14 start-page: 2759 year: 2006 ident: bib15 article-title: Camino: open-source diffusion-MRI reconstruction and processing publication-title: 14th Scientific Meeting of the International Society for Magnetic Resonance in Medicine – volume: 54 start-page: 1377 issue: 6 year: 2005 ident: 10.1016/j.neuroimage.2018.07.003_bib70 article-title: Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging publication-title: Magn. Reson. Med. doi: 10.1002/mrm.20642 – start-page: 285 year: 2010 ident: 10.1016/j.neuroimage.2018.07.003_bib1 article-title: Image distortion and its correction in diffusion MRI – start-page: 3553 year: 2012 ident: 10.1016/j.neuroimage.2018.07.003_bib55 article-title: Automated detection, evaluation and removal of DWI-related artifacts publication-title: In Proc. Intl. Soc. Mag. Reson. Med – volume: 52 start-page: 1358 issue: 6 year: 2004 ident: 10.1016/j.neuroimage.2018.07.003_bib66 article-title: Q-ball imaging publication-title: Magn. Reson. Med. doi: 10.1002/mrm.20279 – volume: 66 start-page: 678 issue: 3 year: 2011 ident: 10.1016/j.neuroimage.2018.07.003_bib68 article-title: Constrained maximum likelihood estimation of the diffusion kurtosis tensor using a Rician noise model publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22835 – volume: 20 start-page: 870 issue: 2 year: 2003 ident: 10.1016/j.neuroimage.2018.07.003_bib5 article-title: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging publication-title: Neuroimage doi: 10.1016/S1053-8119(03)00336-7 – volume: 32 start-page: 115 year: 2016 ident: 10.1016/j.neuroimage.2018.07.003_bib57 article-title: Non Local Spatial and Angular Matching: enabling higher spatial resolution diffusion MRI datasets through adaptive denoising publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.02.010 – volume: 36 start-page: 2061 issue: 6 year: 2015 ident: 10.1016/j.neuroimage.2018.07.003_bib45 article-title: Microstructural brain abnormalities in Huntington's disease: a two-year follow-up publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22756 – start-page: 544 year: 2016 ident: 10.1016/j.neuroimage.2018.07.003_bib40 article-title: Motion-robust reconstruction based on simultaneous multi-slice registration for diffusion-weighted MRI of moving subjects – volume: vol. 14 start-page: 2759 year: 2006 ident: 10.1016/j.neuroimage.2018.07.003_bib15 article-title: Camino: open-source diffusion-MRI reconstruction and processing – volume: 81 start-page: 335 year: 2013 ident: 10.1016/j.neuroimage.2018.07.003_bib67 article-title: Weighted linear least squares estimation of diffusion MRI parameters: strengths, limitations, and pitfalls publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.028 – start-page: 76280J year: 2010 ident: 10.1016/j.neuroimage.2018.07.003_bib35 article-title: Quality control of diffusion weighted images – volume: 77 start-page: 285 issue: 1 year: 2017 ident: 10.1016/j.neuroimage.2018.07.003_bib69 article-title: The importance of correcting for signal drift in diffusion MRI publication-title: Magn. Reson. Med. doi: 10.1002/mrm.26124 – volume: 39 start-page: 801 issue: 5 year: 1998 ident: 10.1016/j.neuroimage.2018.07.003_bib22 article-title: Characterization of and correction for eddy current artifacts in echo planar diffusion imaging publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910390518 – volume: 8 start-page: e49764 issue: 10 year: 2013 ident: 10.1016/j.neuroimage.2018.07.003_bib33 article-title: Image corruption detection in diffusion tensor imaging for post-processing and real-time monitoring K. Herholz publication-title: PLoS One doi: 10.1371/journal.pone.0049764 – volume: 68 start-page: 1654 issue: 5 year: 2012 ident: 10.1016/j.neuroimage.2018.07.003_bib13 article-title: Informed RESTORE: a method for robust estimation of diffusion tensor from low redundancy datasets in the presence of physiological noise artifacts publication-title: Magn. Reson. Med. doi: 10.1002/mrm.24173 – volume: 34 start-page: 1496 issue: 8 year: 2013 ident: 10.1016/j.neuroimage.2018.07.003_bib20 article-title: Acquisition guidelines and quality assessment tools for analyzing neonatal diffusion tensor MRI data publication-title: Am. J. Neuroradiol. doi: 10.3174/ajnr.A3465 – volume: 81 start-page: 106 issue: 2 year: 2006 ident: 10.1016/j.neuroimage.2018.07.003_bib23 article-title: DtiStudio: resource program for diffusion tensor computation and fiber bundle tracking publication-title: Comput. Meth. Progr. Biomed. doi: 10.1016/j.cmpb.2005.08.004 – volume: 152 start-page: 249 year: 2017 ident: 10.1016/j.neuroimage.2018.07.003_bib19 article-title: Bilingualism modulates the white matter structure of language-related pathways publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.02.081 – year: 2015 ident: 10.1016/j.neuroimage.2018.07.003_bib48 article-title: Combined slicewise and voxelwise outlier detection in diffusion MRI data of preterm born infants publication-title: Ohbm – volume: 62 start-page: 645 issue: 3 year: 2009 ident: 10.1016/j.neuroimage.2018.07.003_bib24 article-title: Diffusion tensor imaging (DTI) of the brain in moving subjects: application to in-utero fetal and ex-utero studies publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22032 – volume: 103 start-page: 247 issue: 3 year: 1994 ident: 10.1016/j.neuroimage.2018.07.003_bib8 article-title: Estimation of the effective self-diffusion tensor from the NMR spin echo publication-title: J. Magn. Reson., Ser. B doi: 10.1006/jmrb.1994.1037 – volume: 11 start-page: 539 year: 2016 ident: 10.1016/j.neuroimage.2018.07.003_bib28 article-title: Choosing the polarity of the phase-encoding direction in diffusion MRI: does it matter for group analysis? publication-title: Neuroimage: Clinica doi: 10.1016/j.nicl.2016.03.022 – volume: 29 start-page: 230 issue: 2 year: 2011 ident: 10.1016/j.neuroimage.2018.07.003_bib71 article-title: Automated artifact detection and removal for improved tensor estimation in motion-corrupted DTI data sets using the combination of local binary patterns and 2D partial least squares publication-title: Magn. Reson. Imag. doi: 10.1016/j.mri.2010.06.022 – volume: 2208 start-page: 186 year: 2001 ident: 10.1016/j.neuroimage.2018.07.003_bib38 article-title: Eddy-current distortion correction and Robust tensor estimation for MR diffusion imaging publication-title: Lect. Notes Comput. Sci. doi: 10.1007/3-540-45468-3_23 – volume: 29 start-page: 51 issue: 1 year: 1996 ident: 10.1016/j.neuroimage.2018.07.003_bib47 article-title: A comparative study of texture measures with classification based on feature distributions publication-title: Pattern Recogn. doi: 10.1016/0031-3203(95)00067-4 – volume: 147 issue: 2 year: 2000 ident: 10.1016/j.neuroimage.2018.07.003_bib56 article-title: Condition number as a measure of noise performance of diffusion tensor data acquisition schemes with MRI publication-title: J. Magn. Reson. doi: 10.1006/jmre.2000.2209 – volume: 65 start-page: 1532 issue: 6 year: 2011 ident: 10.1016/j.neuroimage.2018.07.003_bib63 article-title: Diffusion tensor imaging and beyond publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22924 – volume: 155 start-page: 82 year: 2017 ident: 10.1016/j.neuroimage.2018.07.003_bib2a article-title: Robust and fast nonlinear optimization of diffusion MRI microstructure models publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.04.064 – volume: 39 start-page: 162 year: 2017 ident: 10.1016/j.neuroimage.2018.07.003_bib60 article-title: Quantifying the brain's sheet structure with normalized convolution publication-title: Med. Image Anal. doi: 10.1016/j.media.2017.03.007 – volume: 23 start-page: 803 issue: 7 year: 2010 ident: 10.1016/j.neuroimage.2018.07.003_bib26 article-title: Twenty-five pitfalls in the analysis of diffusion MRI data publication-title: NMR Biomed. doi: 10.1002/nbm.1543 – volume: 77 start-page: 1797 issue: 5 year: 2017 ident: 10.1016/j.neuroimage.2018.07.003_bib18 article-title: ?MASSIVE? brain dataset: multiple acquisitions for standardization of structural imaging validation and evaluation publication-title: Magn. Reson. Med. doi: 10.1002/mrm.26259 – volume: 122 start-page: 166 year: 2015 ident: 10.1016/j.neuroimage.2018.07.003_bib7 article-title: Non-parametric representation and prediction of single- and multi-shell diffusion-weighted MRI data using Gaussian processes publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.07.067 – volume: 51 start-page: 103 issue: 1 year: 2004 ident: 10.1016/j.neuroimage.2018.07.003_bib53 article-title: Comprehensive approach for correction of motion and distortion in diffusion-weighted MRI publication-title: Magn. Reson. Med. doi: 10.1002/mrm.10677 – start-page: 4824 year: 2016 ident: 10.1016/j.neuroimage.2018.07.003_bib10 article-title: Commentary: visual fixation in human newborns correlates with extensive white matter networks and predicts long-term neurocognitive development publication-title: Front. Neurosci. – volume: 23 start-page: 1176 issue: 3 year: 2004 ident: 10.1016/j.neuroimage.2018.07.003_bib64 article-title: Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.07.037 – volume: 51 start-page: 2010 issue: 1 year: 2010 ident: 10.1016/j.neuroimage.2018.07.003_bib51 article-title: TORTOISE: an integrated software package for processing of diffusion MRI data publication-title: Processing of Diffusion … – volume: 33 start-page: 272 issue: 2 year: 2014 ident: 10.1016/j.neuroimage.2018.07.003_bib17 article-title: A unified approach to diffusion direction sensitive slice registration and 3-d DTI reconstruction from moving fetal brain anatomy publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2013.2284014 – volume: 44 start-page: 936 issue: 8 year: 2008 ident: 10.1016/j.neuroimage.2018.07.003_bib25 article-title: Studying connections in the living human brain with diffusion MRI publication-title: Cortex doi: 10.1016/j.cortex.2008.05.002 – volume: 6 start-page: 59 issue: 1 year: 1991 ident: 10.1016/j.neuroimage.2018.07.003_bib41 article-title: Robust regression methods for computer vision: a review publication-title: Int. J. Comput. Vis. doi: 10.1007/BF00127126 – volume: vol. 73 start-page: 794 issue: 2 year: 2015 ident: 10.1016/j.neuroimage.2018.07.003_bib61 article-title: REKINDLE: Robust extraction of kurtosis INDices with linear estimation publication-title: Magn. Reson. Med. doi: 10.1002/mrm.25165 – volume: 66 start-page: 92 issue: 1 year: 2011 ident: 10.1016/j.neuroimage.2018.07.003_bib42 article-title: Preterm neonatal diffusion processing using detection and replacement of outliers prior to resampling publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22786 – volume: 147 start-page: 57 year: 2017 ident: 10.1016/j.neuroimage.2018.07.003_bib54 article-title: A novel measure of reliability in Diffusion Tensor Imaging after data rejections due to subject motion publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.11.061 – volume: 48 start-page: 183 issue: 2 year: 2012 ident: 10.1016/j.neuroimage.2018.07.003_bib30 article-title: Fronto-striatal circuitry and inhibitory control in autism: findings from diffusion tensor imaging tractography publication-title: Cortex doi: 10.1016/j.cortex.2011.05.018 – volume: 125 start-page: 1063 year: 2016 ident: 10.1016/j.neuroimage.2018.07.003_bib6 article-title: An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.10.019 – volume: 42 start-page: 515 issue: 3 year: 1999 ident: 10.1016/j.neuroimage.2018.07.003_bib27 article-title: Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging publication-title: Magn. Reson. Med. doi: 10.1002/(SICI)1522-2594(199909)42:3<515::AID-MRM14>3.0.CO;2-Q – volume: 62.2 start-page: 782 year: 2012 ident: 10.1016/j.neuroimage.2018.07.003_bib1a article-title: Fsl publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.09.015 – volume: 24 start-page: 478 issue: 3 year: 2006 ident: 10.1016/j.neuroimage.2018.07.003_bib11 article-title: Artifacts and pitfalls in diffusion MRI publication-title: J. Magn. Reson. Imag. doi: 10.1002/jmri.20683 – volume: 63 start-page: 835 issue: 2 year: 2012 ident: 10.1016/j.neuroimage.2018.07.003_bib49 article-title: HOMOR: higher order model outlier rejection for high b-value MR diffusion data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.07.022 – volume: 39 start-page: 101 year: 2017 ident: 10.1016/j.neuroimage.2018.07.003_bib16 article-title: Slice-to-volume medical image registration: a survey publication-title: Med. Image Anal. doi: 10.1016/j.media.2017.04.010 – volume: 29 start-page: 819 issue: 3 year: 2010 ident: 10.1016/j.neuroimage.2018.07.003_bib52 article-title: Optimal experimental design for diffusion kurtosis imaging publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2009.2037915 – volume: 73 start-page: 2174 issue: 6 year: 2015 ident: 10.1016/j.neuroimage.2018.07.003_bib14 article-title: Iterative reweighted linear least squares for accurate, fast, and robust estimation of diffusion magnetic resonance parameters publication-title: Magn. Reson. Med. doi: 10.1002/mrm.25351 – volume: 6 start-page: 191 year: 2002 ident: 10.1016/j.neuroimage.2018.07.003_bib37 article-title: Distortion correction and robust tensor estimation for MR diffusion imaging publication-title: Med. Image Anal. doi: 10.1016/S1361-8415(02)00079-8 – volume: 62 start-page: 782 issue: 2 year: 1993 ident: 10.1016/j.neuroimage.2018.07.003_bib21 article-title: How to Detect and Handle Outliers, Jenkinson, M. et al., 2012 publication-title: Fsl. NeuroImage – start-page: 303 year: 2010 ident: 10.1016/j.neuroimage.2018.07.003_bib50 article-title: Artifacts in diffusion MRI publication-title: In Diffusion MRI: Theory, methods, and applications doi: 10.1093/med/9780195369779.003.0018 – volume: 35 start-page: 1459 issue: 4 year: 2007 ident: 10.1016/j.neuroimage.2018.07.003_bib65 article-title: Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.02.016 – volume: 49 start-page: 1143 issue: 6 year: 2003 ident: 10.1016/j.neuroimage.2018.07.003_bib9 article-title: Anisotropic noise propagation in diffusion tensor MRI sampling schemes publication-title: Magn. Reson. Med. doi: 10.1002/mrm.10491 – volume: 8 issue: 4 year: 2013 ident: 10.1016/j.neuroimage.2018.07.003_bib31 article-title: Simultaneous analysis and quality assurance for diffusion tensor imaging publication-title: PLoS One doi: 10.1371/journal.pone.0061737 – volume: 35 start-page: 2258 issue: 10 year: 2016 ident: 10.1016/j.neuroimage.2018.07.003_bib39 article-title: Motion-robust diffusion-weighted brain MRI reconstruction through slice-level registration-based motion tracking publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2016.2555244 – volume: 257 start-page: 147 year: 2016 ident: 10.1016/j.neuroimage.2018.07.003_bib34 article-title: Fast estimation of diffusion tensors under Rician noise by the EM algorithm publication-title: J. Neurosci. Meth. doi: 10.1016/j.jneumeth.2015.09.029 – volume: 141 start-page: 556 year: 2016 ident: 10.1016/j.neuroimage.2018.07.003_bib2 article-title: Incorporating outlier detection and replacement into a non-parametric framework for movement and distortion correction of diffusion MR images publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.06.058 – volume: 17 start-page: 3537 issue: 2 year: 2009 ident: 10.1016/j.neuroimage.2018.07.003_bib32 article-title: ExploreDTI: a graphical toolbox for processing, analyzing, and visualizing diffusion MR data publication-title: Proceedings 17th Scientific Meeting, International Society for Magnetic Resonance in Medicine – start-page: 515 year: 1993 ident: 10.1016/j.neuroimage.2018.07.003_bib29 article-title: Normalized and differential convolution: methods for interpolation and filtering of incomplete and uncertain data – start-page: 127 year: 2016 ident: 10.1016/j.neuroimage.2018.07.003_bib62 article-title: Checking and correcting DTI data – volume: 8 start-page: 4 year: 2014 ident: 10.1016/j.neuroimage.2018.07.003_bib46 article-title: DTIPrep: quality control of diffusion-weighted images publication-title: Front. Neuroinf. doi: 10.3389/fninf.2014.00004 – volume: 35 start-page: 4824 issue: 12 year: 2015 ident: 10.1016/j.neuroimage.2018.07.003_bib59 article-title: Visual fixation in human newborns correlates with extensive white matter networks and predicts long-term neurocognitive development publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5162-14.2015 – year: 2007 ident: 10.1016/j.neuroimage.2018.07.003_bib44 – volume: 42 start-page: 1340 issue: 4 year: 2008 ident: 10.1016/j.neuroimage.2018.07.003_bib3 article-title: Maximum a posteriori estimation of diffusion tensor parameters using a Rician noise model: why, how and but publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.05.053 – volume: 152 start-page: 450 year: 2017 ident: 10.1016/j.neuroimage.2018.07.003_bib4 article-title: Towards a comprehensive framework for movement and distortion correction of diffusion MR images: within volume movement publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.02.085 – volume: 53 start-page: 1088 issue: 5 year: 2005 ident: 10.1016/j.neuroimage.2018.07.003_bib12 article-title: RESTORE: robust estimation of tensors by outlier rejection publication-title: Magn. Reson. Med. doi: 10.1002/mrm.20426 – volume: 22 start-page: 1319 issue: 9 year: 2004 ident: 10.1016/j.neuroimage.2018.07.003_bib43 article-title: Affine and polynomial mutual information coregistration for artifact elimination in diffusion tensor imaging of newborns publication-title: Magn. Reson. Imag. doi: 10.1016/j.mri.2004.08.024 – volume: 42 start-page: 288 issue: 1 year: 1965 ident: 10.1016/j.neuroimage.2018.07.003_bib58 article-title: Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient publication-title: J. Chem. Phys. doi: 10.1063/1.1695690 – volume: 8 start-page: 5 issue: 1 year: 2010 ident: 10.1016/j.neuroimage.2018.07.003_bib36 article-title: The Java Image Science Toolkit (JIST) for rapid prototyping and publishing of neuroimaging software publication-title: Neuroinformatics doi: 10.1007/s12021-009-9061-2 |
| SSID | ssj0009148 |
| Score | 2.4645922 |
| Snippet | The accurate characterization of the diffusion process in tissue using diffusion MRI is greatly challenged by the presence of artefacts. Subject motion causes... |
| SourceID | unpaywall proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 331 |
| SubjectTerms | Algorithms Artefacts Brain - diagnostic imaging Brain research Data Interpretation, Statistical Diffusion Magnetic Resonance Imaging - methods Diffusion Magnetic Resonance Imaging - standards Humans Image processing Infant, Newborn Magnetic resonance imaging Models, Theoretical Neonates Neuroimaging - methods Neuroimaging - standards Population studies Sensitivity and Specificity Simulation Spatial distribution |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEB_qFfx4EL8brbKCD_oQzMcmmyBSqu3Rk95VWgt9C5v9gOqZu_YSiv-9M8kmJxTkXpMMJNnZ2d_szvx-AO-0KEupJWaqmTU-5zHGQaW4j0mciTMu40BRo_B0lh6d828XycUWzPpeGCqr7GNiG6j1QtEe-UdKTeKYp2m0t7zySTWKTld7CQ3ppBX055Zi7A5sR8SMNYLtL4ez76drGt6Qd81xSexnYZi72p6u4qtlkLz8jfOYSr6yltSzF9O6vWDdBqQP4F5TLeWfGzmf_7NIjR_BQ4cu2X7nDo9hy1RP4O7UnZ8_hV9juaqZrDTDT2mIJYKdzTFU3FyuDDtp6uOJuWYHpm7rsyr2_uzkeHLwgdFmLesoVo1mrXgOI3aOru2R4XVGQisN7byx6emEUd3pMzgfH_74euQ7uQVfIWqo_UxbxE6lTNPcxpEVUihDguiJMGGuw1xKXopA4XWrhEBkkfLS5jiikVJZoqP4OYyqRWV2gGFSkyourC1zTP-sLEUYaRVwmQUmMYH2QPT_tFCOi5wkMeZFX3T2s1iPRkGjUQR0UB57EA6Wy46PYwObvB-2ou83xQhZ4KKxge2nwdZhkg5rbGi923tJ4WLDqlh7sgdvh9s4q-moRlZm0eAziAR5xjF59-BF513D5yKAyNCNQw-iwd02_hcv__9Gr-A-Pdw1W-7CqL5uzGtEXXX5xk2lvyKCLM4 priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VWwnEgfcjqCAjcYBDShI7sSNOVcuqi7otoqxUTpbt2FLpklbdRBX8esZJHBAroRVXx3NwZjz-xjP-BuB1xbVWlcJIVTgbM0bRDxrDYgziLBVM0cT4h8Lz4-JwwT6e5WdbELqu_UUvkPo82ruOvBLD8u0iR7w9ge3F8ae9r10aM6exSLvuHTgnj8uch3KdvoirI4U8_45b01dxiY6nM_THWj-D1jHmHbjd1lfqx41aLv84d6b3YD-83unLTS5220bvmp_rZI7_WNJ9uDvATrLX28kD2LL1Q7g1HxLrj-BiqlYNQXmijGk9fQQ5XaIPuTlfWXLSNkcze00ObNMVbtXkzenJ0ezgLfG3uKTnXrUV6brqEE_b0b-HJDhOfAeW1l_JkfnnGfEFqY9hMf3wZf8wHvowxAbhRBOLyiGo0qooSkczxxU31ndKz7lNyyotlWKaJwbHneEcIUfBtCtR1ZkxIq8y-gQm9WVtnwHBaKcwjDunS4wLndI8zSqTMCUSm9ukioAHzUgzkJT7XhlLGarRvsnfOpVepzLxGXQaQTpKXvVEHRvIlEH5MjxERdcp8TTZQPb9KDuAlR6EbCi9E2xNDk5jJX30TSkriiyCV-Nn3O4-h6Nqe9niHISITDCM6iN42tvouFxEFgKj2zSCbDTajf_F8_8R2oFJc93aF4jLGv1y2Ji_AIEFN1M priority: 102 providerName: Unpaywall |
| Title | Fast and accurate Slicewise OutLIer Detection (SOLID) with informed model estimation for diffusion MRI data |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811918305950 https://dx.doi.org/10.1016/j.neuroimage.2018.07.003 https://www.ncbi.nlm.nih.gov/pubmed/29981481 https://www.proquest.com/docview/2102334662 https://www.proquest.com/docview/2066484549 http://hdl.handle.net/10138/310910 |
| UnpaywallVersion | submittedVersion |
| Volume | 181 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1095-9572 dateEnd: 20191231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: ACRLP dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1095-9572 dateEnd: 20191231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AIKHN dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AKRWK dateStart: 19920801 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1095-9572 dateEnd: 20250905 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: 7X7 dateStart: 20020801 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central Database Suite (ProQuest) customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1095-9572 dateEnd: 20250905 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: BENPR dateStart: 19980501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na9swFH-UFvZxKN1X564rGuywHbz4Q7ZsdsrShmRL0pAskJ2MLMuQLXVDY1N22d_e9_zVjV4Cu1hY1gNLenr6Pel9ALxPRBzLRKKmGqTa5NxFOagUN1GJ027ApWspchQeT_zBgn9dess96DW-MGRWWcv-SqaX0rqu6dSj2dmsVp05IgPcblDfCJBnw1Jv51xQFoNPf-7NPEKbV-5wnmtS69qap7LxKmNGrq5w5ZKRV1CG8WzSZz3coh5C0KfwuMg28vetXK__2pb6R3BY40nWrX75Gezp7Dk8Gtc35i_gV19ucyazhEmlCooLweZrFA63q61ml0U-Guobdq7z0iIrYx_ml6Ph-UdGx7OsCqqqE1amy2EUj6NydGRYzyi1SkFnbWw8GzKyNH0Ji_7F997ArBMsmApxQm4GSYpoKZa-H6aukwoplKYU6J7QdpjYoZQ8FpbC-lQJgVjC53Ea4hw6SgVe4rivYD-7zvRrYKjG-IqLNI1DVPhSGQvbSZTFZWBpT1uJAaIZ00jV0ccpCcY6aszMfkb3sxHRbEQWXY27Btgt5aaKwLEDTdhMW9R4mKJMjHCb2IH2c0v7DyfuSH3acElUS4NtRGq163Lfdwx4137GdUyXMzLT1wW2QezHA47qugHHFXe13UXIECAb2wY4LbvtPBYn_9WfN_CE3irvy1PYz28K_RZhWB6flesMn2IpzuCg25uNplQOvw0mWH65mExnWC4m0-6PO86EORc |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamTWLwgLgTGGAkkOAhWi5OnAhNCOiqlrUd2kXam3FsR9pW0rImqvbn-G2ckzgp0iTUl70mOVJsH5-Lfc73EfJO8yyTWkKmmuTGZSwEO6gUcyGJM2HCZOgpbBQeT-LBKft-Fp1tkD9tLwyWVbY2sTbUeqbwjHwXU5MwZHEcfJ7_dpE1Cm9XWwoNaakV9F4NMWYbOw7M9RJSuMXesAfr_T4I-vsn3wauZRlwFTjL0k10DiFDJuM4zcMg55IrgzzgETd-qv1USpZxT8HzXHEODjVmWZ7CQAKlkkgj8AG4gC0WshSSv62v-5MfRyvYX581zXhR6Ca-n9paoqbCrEasPP8FdgNLzJIaRLQl77rpIG8GwPfIdlXM5fVSTqf_OMX-A3LfRrP0S6N-D8mGKR6RO2N7X_-YXPbloqSy0BSmrkJUCno8BdO0PF8YeliVo6G5oj1T1vVgBf1wfDga9j5SPBymDaSr0bQm66GIBtK0WVJ4TpHYpcKTPjo-GlKsc31CTm9l4p-SzWJWmOeEQhIVK8bzPEsh3cxlxv1AK4_JxDOR8bRDeDunQlnsc6TgmIq2yO1CrFZD4GoIDy_mQ4f4neS8wf9YQyZtl020_a1gkQU4qTVkP3WyNgZqYps1pXdaLRHWFi3Eauc45G33GqwIXg3Jwswq-AYiT5awiKUOedZoVzdcCFgSUGPfIUGnbmvPxYv__9Ebsj04GY_EaDg5eEnuomDT6LlDNsuryryCiK_MXtttRcnP297JfwE0y2nY |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemIQ14QHwTGGAkkOAhWhI7cSKEEKJUK2s3xJjUN-PYjrStpGVNVO1f46_jLk5SpEmoL3tNclJsn-_D_t3vCHltRJ4royBTTQvrc87ADmrNfUjiLEu5YoHGQuHJYbJ_wr9O4-kW-dPVwiCssrOJjaE2c41n5HuYmjDGkyTaK1pYxLfB8OPit48dpPCmtWun4VTkwF6uIH1bfhgNYK3fRNHwy4_P-37bYcDX4CgrPzUFhAu5SpKsYFEhlNAWe4DHwoaZCTOleC4CDc8LLQQ404TnRQaDiLROY4OkB2D-bwjGMoQTiqlYE_6G3JXhxcxPwzBrUUQOW9ZwVZ7-AouB4LK0oQ_t2nZddY1XQ9_b5GZdLtTlSs1m_7jD4V1yp41j6SenePfIli3vk51Je1P_gJwP1bKiqjRUaV0jHwU9noFRWp0uLT2qq_HIXtCBrRokWEnfHh-NR4N3FI-FqSNztYY2bXoo8oC4AksKzym2dKnxjI9Ovo8oIlwfkpNrmfZHZLucl_YJoZA-JZqLosgzSDQLlYswMjrgKg1sbAPjEdHNqdQt6zk235jJDt52JterIXE1ZIBX8swjYS-5cMwfG8hk3bLJrrIVbLEE97SB7Pteto1-XFSzofRupyWytUJLud4zHnnVvwb7gZdCqrTzGr6BmJOnPOaZRx477eqHC6FKCmoceiTq1W3juXj6_z96SXZg_8rx6PDgGbmFcq7Cc5dsVxe1fQ6hXpW_aPYUJT-vexP_BU0sZ3I |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VWwnEgfcjqCAjcYBDShI7sSNOVcuqi7otoqxUTpbt2FLpklbdRBX8esZJHBAroRVXx3NwZjz-xjP-BuB1xbVWlcJIVTgbM0bRDxrDYgziLBVM0cT4h8Lz4-JwwT6e5WdbELqu_UUvkPo82ruOvBLD8u0iR7w9ge3F8ae9r10aM6exSLvuHTgnj8uch3KdvoirI4U8_45b01dxiY6nM_THWj-D1jHmHbjd1lfqx41aLv84d6b3YD-83unLTS5220bvmp_rZI7_WNJ9uDvATrLX28kD2LL1Q7g1HxLrj-BiqlYNQXmijGk9fQQ5XaIPuTlfWXLSNkcze00ObNMVbtXkzenJ0ezgLfG3uKTnXrUV6brqEE_b0b-HJDhOfAeW1l_JkfnnGfEFqY9hMf3wZf8wHvowxAbhRBOLyiGo0qooSkczxxU31ndKz7lNyyotlWKaJwbHneEcIUfBtCtR1ZkxIq8y-gQm9WVtnwHBaKcwjDunS4wLndI8zSqTMCUSm9ukioAHzUgzkJT7XhlLGarRvsnfOpVepzLxGXQaQTpKXvVEHRvIlEH5MjxERdcp8TTZQPb9KDuAlR6EbCi9E2xNDk5jJX30TSkriiyCV-Nn3O4-h6Nqe9niHISITDCM6iN42tvouFxEFgKj2zSCbDTajf_F8_8R2oFJc93aF4jLGv1y2Ji_AIEFN1M |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+and+accurate+Slicewise+OutLIer+Detection+%28SOLID%29+with+informed+model+estimation+for+diffusion+MRI+data&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Sairanen%2C+Viljami&rft.au=Leemans%2C+A.&rft.au=Tax%2C+C.M.W.&rft.date=2018-11-01&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=181&rft.spage=331&rft.epage=346&rft_id=info:doi/10.1016%2Fj.neuroimage.2018.07.003&rft.externalDocID=S1053811918305950 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |