Fast and accurate Slicewise OutLIer Detection (SOLID) with informed model estimation for diffusion MRI data

The accurate characterization of the diffusion process in tissue using diffusion MRI is greatly challenged by the presence of artefacts. Subject motion causes not only spatial misalignments between diffusion weighted images, but often also slicewise signal intensity errors. Voxelwise robust model es...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 181; pp. 331 - 346
Main Authors Sairanen, Viljami, Leemans, A., Tax, C.M.W.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.11.2018
Elsevier Limited
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
1095-9572
DOI10.1016/j.neuroimage.2018.07.003

Cover

Abstract The accurate characterization of the diffusion process in tissue using diffusion MRI is greatly challenged by the presence of artefacts. Subject motion causes not only spatial misalignments between diffusion weighted images, but often also slicewise signal intensity errors. Voxelwise robust model estimation is commonly used to exclude intensity errors as outliers. Slicewise outliers, however, become distributed over multiple adjacent slices after image registration and transformation. This challenges outlier detection with voxelwise procedures due to partial volume effects. Detecting the outlier slices before any transformations are applied to diffusion weighted images is therefore required. In this work, we present i) an automated tool coined SOLID for slicewise outlier detection prior to geometrical image transformation, and ii) a framework to naturally interpret data uncertainty information from SOLID and include it as such in model estimators. SOLID uses a straightforward intensity metric, is independent of the choice of the diffusion MRI model, and can handle datasets with a few or irregularly distributed gradient directions. The SOLID-informed estimation framework prevents the need to completely reject diffusion weighted images or individual voxel measurements by downweighting measurements with their degree of uncertainty, thereby supporting convergence and well-conditioning of iterative estimation algorithms. In comprehensive simulation experiments, SOLID detects outliers with a high sensitivity and specificity, and can achieve higher or at least similar sensitivity and specificity compared to other tools that are based on more complex and time-consuming procedures for the scenarios investigated. SOLID was further validated on data from 54 neonatal subjects which were visually inspected for outlier slices with the interactive tool developed as part of this study, showing its potential to quickly highlight problematic volumes and slices in large population studies. The informed model estimation framework was evaluated both in simulations and in vivo human data. •Slicewise artefacts due to subject motion or hardware issues are a common issue in diffusion MRI.•We propose a model-free slicewise outlier detection for diffusion MRI, coined SOLID.•We propose a model-free slicewise outlier detection algorithm for diffusion data, coined SOLID.•SOLID is validated with manually labelled outliers from 54 newborn subjects and extensive simulations.•SOLID-information is used as measurement uncertainty to provide robust diffusion and kurtosis tensor estimates.
AbstractList The accurate characterization of the diffusion process in tissue using diffusion MRI is greatly challenged by the presence of artefacts. Subject motion causes not only spatial misalignments between diffusion weighted images, but often also slicewise signal intensity errors. Voxelwise robust model estimation is commonly used to exclude intensity errors as outliers. Slicewise outliers, however, become distributed over multiple adjacent slices after image registration and transformation. This challenges outlier detection with voxelwise procedures due to partial volume effects. Detecting the outlier slices before any transformations are applied to diffusion weighted images is therefore required. In this work, we present i) an automated tool coined SOLID for slicewise outlier detection prior to geometrical image transformation, and ii) a framework to naturally interpret data uncertainty information from SOLID and include it as such in model estimators. SOLID uses a straightforward intensity metric, is independent of the choice of the diffusion MRI model, and can handle datasets with a few or irregularly distributed gradient directions. The SOLID-informed estimation framework prevents the need to completely reject diffusion weighted images or individual voxel measurements by downweighting measurements with their degree of uncertainty, thereby supporting convergence and well-conditioning of iterative estimation algorithms. In comprehensive simulation experiments, SOLID detects outliers with a high sensitivity and specificity, and can achieve higher or at least similar sensitivity and specificity compared to other tools that are based on more complex and time-consuming procedures for the scenarios investigated. SOLID was further validated on data from 54 neonatal subjects which were visually inspected for outlier slices with the interactive tool developed as part of this study, showing its potential to quickly highlight problematic volumes and slices in large population studies. The informed model estimation framework was evaluated both in simulations and in vivo human data.
The accurate characterization of the diffusion process in tissue using diffusion MRI is greatly challenged by the presence of artefacts. Subject motion causes not only spatial misalignments between diffusion weighted images, but often also slicewise signal intensity errors. Voxelwise robust model estimation is commonly used to exclude intensity errors as outliers. Slicewise outliers, however, become distributed over multiple adjacent slices after image registration and transformation. This challenges outlier detection with voxelwise procedures due to partial volume effects. Detecting the outlier slices before any transformations are applied to diffusion weighted images is therefore required. In this work, we present i) an automated tool coined SOLID for slicewise outlier detection prior to geometrical image transformation, and ii) a framework to naturally interpret data uncertainty information from SOLID and include it as such in model estimators. SOLID uses a straightforward intensity metric, is independent of the choice of the diffusion MRI model, and can handle datasets with a few or irregularly distributed gradient directions. The SOLID-informed estimation framework prevents the need to completely reject diffusion weighted images or individual voxel measurements by downweighting measurements with their degree of uncertainty, thereby supporting convergence and well-conditioning of iterative estimation algorithms. In comprehensive simulation experiments, SOLID detects outliers with a high sensitivity and specificity, and can achieve higher or at least similar sensitivity and specificity compared to other tools that are based on more complex and time-consuming procedures for the scenarios investigated. SOLID was further validated on data from 54 neonatal subjects which were visually inspected for outlier slices with the interactive tool developed as part of this study, showing its potential to quickly highlight problematic volumes and slices in large population studies. The informed model estimation framework was evaluated both in simulations and in vivo human data.The accurate characterization of the diffusion process in tissue using diffusion MRI is greatly challenged by the presence of artefacts. Subject motion causes not only spatial misalignments between diffusion weighted images, but often also slicewise signal intensity errors. Voxelwise robust model estimation is commonly used to exclude intensity errors as outliers. Slicewise outliers, however, become distributed over multiple adjacent slices after image registration and transformation. This challenges outlier detection with voxelwise procedures due to partial volume effects. Detecting the outlier slices before any transformations are applied to diffusion weighted images is therefore required. In this work, we present i) an automated tool coined SOLID for slicewise outlier detection prior to geometrical image transformation, and ii) a framework to naturally interpret data uncertainty information from SOLID and include it as such in model estimators. SOLID uses a straightforward intensity metric, is independent of the choice of the diffusion MRI model, and can handle datasets with a few or irregularly distributed gradient directions. The SOLID-informed estimation framework prevents the need to completely reject diffusion weighted images or individual voxel measurements by downweighting measurements with their degree of uncertainty, thereby supporting convergence and well-conditioning of iterative estimation algorithms. In comprehensive simulation experiments, SOLID detects outliers with a high sensitivity and specificity, and can achieve higher or at least similar sensitivity and specificity compared to other tools that are based on more complex and time-consuming procedures for the scenarios investigated. SOLID was further validated on data from 54 neonatal subjects which were visually inspected for outlier slices with the interactive tool developed as part of this study, showing its potential to quickly highlight problematic volumes and slices in large population studies. The informed model estimation framework was evaluated both in simulations and in vivo human data.
The accurate characterization of the diffusion process in tissue using diffusion MRI is greatly challenged by the presence of artefacts. Subject motion causes not only spatial misalignments between diffusion weighted images, but often also slicewise signal intensity errors. Voxelwise robust model estimation is commonly used to exclude intensity errors as outliers. Slicewise outliers, however, become distributed over multiple adjacent slices after image registration and transformation. This challenges outlier detection with voxelwise procedures due to partial volume effects. Detecting the outlier slices before any transformations are applied to diffusion weighted images is therefore required. In this work, we present i) an automated tool coined SOLID for slicewise outlier detection prior to geometrical image transformation, and ii) a framework to naturally interpret data uncertainty information from SOLID and include it as such in model estimators. SOLID uses a straightforward intensity metric, is independent of the choice of the diffusion MRI model, and can handle datasets with a few or irregularly distributed gradient directions. The SOLID-informed estimation framework prevents the need to completely reject diffusion weighted images or individual voxel measurements by downweighting measurements with their degree of uncertainty, thereby supporting convergence and well-conditioning of iterative estimation algorithms. In comprehensive simulation experiments, SOLID detects outliers with a high sensitivity and specificity, and can achieve higher or at least similar sensitivity and specificity compared to other tools that are based on more complex and time-consuming procedures for the scenarios investigated. SOLID was further validated on data from 54 neonatal subjects which were visually inspected for outlier slices with the interactive tool developed as part of this study, showing its potential to quickly highlight problematic volumes and slices in large population studies. The informed model estimation framework was evaluated both in simulations and in vivo human data. •Slicewise artefacts due to subject motion or hardware issues are a common issue in diffusion MRI.•We propose a model-free slicewise outlier detection for diffusion MRI, coined SOLID.•We propose a model-free slicewise outlier detection algorithm for diffusion data, coined SOLID.•SOLID is validated with manually labelled outliers from 54 newborn subjects and extensive simulations.•SOLID-information is used as measurement uncertainty to provide robust diffusion and kurtosis tensor estimates.
Author Sairanen, Viljami
Tax, C.M.W.
Leemans, A.
Author_xml – sequence: 1
  givenname: Viljami
  surname: Sairanen
  fullname: Sairanen, Viljami
  email: viljami.sairanen@helsinki.fi
  organization: Department of Physics, University of Helsinki, Helsinki, Finland
– sequence: 2
  givenname: A.
  surname: Leemans
  fullname: Leemans, A.
  organization: Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands
– sequence: 3
  givenname: C.M.W.
  surname: Tax
  fullname: Tax, C.M.W.
  organization: Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29981481$$D View this record in MEDLINE/PubMed
BookMark eNqVkU1vEzEQhleoiH7AX0CWuJTDLrb3y74goKUQKSgShbPl2GNw6nhT20uUf4-3KSDlFE4ej5559c4758WJHzwUBSK4Iph0b1aVhzEMdi1_QEUxYRXuK4zrJ8UZwbwtedvTk6lu65IRwk-L8xhXGGNOGvasOKWcs1yRs-LuRsaEpNdIKjUGmQDdOqtgayOgxZjmMwjoGhKoZAePLm8X89n1a7S16Sey3gxhDRqtBw0OQUzZ0AOW-0hbY8Y4_b58nSEtk3xePDXSRXjx-F4U328-frv6XM4Xn2ZX7-elajFPJdOmqdul7Dpuamp62SvgmNG2B8I14VI2yx6r3Deq73tGu2ZpONSMKsVaTeuLgu91R7-Ru610TmxCthZ2gmAxBShW4l-AYgpQ4F7kAPPs5X52E4b7Ma8k1jYqcE56GMaY2a5rWNM2PKOvDtDVMAafNxOUYFrXTddNZl4-UuMyZ_XXyZ8TZODtHlBhiDGAEcqmhxhTkNYdY5kdCPzHth_2o5DP8ctCEFFZ8Aq0DfniQg_2GJF3ByLKWW-VdHewO07iN90r4Wg
CitedBy_id crossref_primary_10_1016_j_neuroimage_2022_119423
crossref_primary_10_1016_j_neuroimage_2023_120397
crossref_primary_10_1007_s11682_020_00363_x
crossref_primary_10_1016_j_nicl_2023_103419
crossref_primary_10_1002_mrm_27893
crossref_primary_10_2139_ssrn_4123879
crossref_primary_10_1016_j_media_2024_103386
crossref_primary_10_1007_s00415_023_12086_2
crossref_primary_10_1016_j_neuroimage_2020_116534
crossref_primary_10_1016_j_neuroimage_2021_117967
crossref_primary_10_1016_j_jad_2021_08_120
crossref_primary_10_1002_mrm_28544
crossref_primary_10_1016_j_neuroimage_2020_116793
crossref_primary_10_1016_j_neuroimage_2019_01_077
crossref_primary_10_1371_journal_pone_0280055
crossref_primary_10_1002_nbm_5229
crossref_primary_10_7554_eLife_101069
crossref_primary_10_1016_j_neuroimage_2021_118830
crossref_primary_10_1016_j_neuroimage_2020_117163
crossref_primary_10_1007_s11831_023_09898_w
crossref_primary_10_1002_hbm_26211
crossref_primary_10_1016_j_nicl_2021_102818
crossref_primary_10_1002_hbm_24691
crossref_primary_10_1002_mrm_30351
crossref_primary_10_1038_s41380_023_02178_w
crossref_primary_10_1162_netn_a_00378
crossref_primary_10_1002_brb3_3048
crossref_primary_10_1016_j_neuroimage_2021_118802
crossref_primary_10_1212_WNL_0000000000209695
crossref_primary_10_7554_eLife_101069_3
crossref_primary_10_1016_j_ijnurstu_2020_103551
crossref_primary_10_1002_hbm_24964
crossref_primary_10_1002_hbm_25859
crossref_primary_10_1162_imag_a_00012
crossref_primary_10_1016_j_neuroimage_2019_06_020
Cites_doi 10.1002/mrm.20642
10.1002/mrm.20279
10.1002/mrm.22835
10.1016/S1053-8119(03)00336-7
10.1016/j.media.2016.02.010
10.1002/hbm.22756
10.1016/j.neuroimage.2013.05.028
10.1002/mrm.26124
10.1002/mrm.1910390518
10.1371/journal.pone.0049764
10.1002/mrm.24173
10.3174/ajnr.A3465
10.1016/j.cmpb.2005.08.004
10.1016/j.neuroimage.2017.02.081
10.1002/mrm.22032
10.1006/jmrb.1994.1037
10.1016/j.nicl.2016.03.022
10.1016/j.mri.2010.06.022
10.1007/3-540-45468-3_23
10.1016/0031-3203(95)00067-4
10.1006/jmre.2000.2209
10.1002/mrm.22924
10.1016/j.neuroimage.2017.04.064
10.1016/j.media.2017.03.007
10.1002/nbm.1543
10.1002/mrm.26259
10.1016/j.neuroimage.2015.07.067
10.1002/mrm.10677
10.1016/j.neuroimage.2004.07.037
10.1109/TMI.2013.2284014
10.1016/j.cortex.2008.05.002
10.1007/BF00127126
10.1002/mrm.25165
10.1002/mrm.22786
10.1016/j.neuroimage.2016.11.061
10.1016/j.cortex.2011.05.018
10.1016/j.neuroimage.2015.10.019
10.1002/(SICI)1522-2594(199909)42:3<515::AID-MRM14>3.0.CO;2-Q
10.1016/j.neuroimage.2011.09.015
10.1002/jmri.20683
10.1016/j.neuroimage.2012.07.022
10.1016/j.media.2017.04.010
10.1109/TMI.2009.2037915
10.1002/mrm.25351
10.1016/S1361-8415(02)00079-8
10.1093/med/9780195369779.003.0018
10.1016/j.neuroimage.2007.02.016
10.1002/mrm.10491
10.1371/journal.pone.0061737
10.1109/TMI.2016.2555244
10.1016/j.jneumeth.2015.09.029
10.1016/j.neuroimage.2016.06.058
10.3389/fninf.2014.00004
10.1523/JNEUROSCI.5162-14.2015
10.1016/j.neuroimage.2008.05.053
10.1016/j.neuroimage.2017.02.085
10.1002/mrm.20426
10.1016/j.mri.2004.08.024
10.1063/1.1695690
10.1007/s12021-009-9061-2
ContentType Journal Article
Copyright 2018 Elsevier Inc.
Copyright © 2018 Elsevier Inc. All rights reserved.
2018. Elsevier Inc.
Copyright_xml – notice: 2018 Elsevier Inc.
– notice: Copyright © 2018 Elsevier Inc. All rights reserved.
– notice: 2018. Elsevier Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
ADTOC
UNPAY
DOI 10.1016/j.neuroimage.2018.07.003
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (Proquest)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database (Proquest)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

ProQuest One Psychology

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central Database Suite (ProQuest)
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 346
ExternalDocumentID oai:helda.helsinki.fi:10138/310910
29981481
10_1016_j_neuroimage_2018_07_003
S1053811918305950
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Netherlands
GeographicLocations_xml – name: Netherlands
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACLOT
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
~HD
3V.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJOXV
AMFUW
C45
HMQ
LCYCR
RIG
SNS
ZA5
29N
53G
AAFWJ
AAQXK
AAYXX
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADVLN
ADXHL
AFPKN
AGHFR
AGQPQ
AIGII
AKRLJ
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
OK1
R2-
SEW
WUQ
XPP
ZMT
AGCQF
AGRNS
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
PUEGO
ADTOC
UNPAY
ID FETCH-LOGICAL-c509t-8df435ba669f32f7a7ce908257e19d19aa4b70c7a7fc7778264bf9e382cc85d23
IEDL.DBID .~1
ISSN 1053-8119
1095-9572
IngestDate Sun Oct 26 04:17:21 EDT 2025
Sun Sep 28 02:16:33 EDT 2025
Tue Oct 07 06:35:56 EDT 2025
Mon Jul 21 05:59:13 EDT 2025
Sat Oct 25 05:52:32 EDT 2025
Thu Apr 24 23:10:24 EDT 2025
Fri Feb 23 02:45:24 EST 2024
Tue Oct 14 19:31:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License Copyright © 2018 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-8df435ba669f32f7a7ce908257e19d19aa4b70c7a7fc7778264bf9e382cc85d23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=http://hdl.handle.net/10138/310910
PMID 29981481
PQID 2102334662
PQPubID 2031077
PageCount 16
ParticipantIDs unpaywall_primary_10_1016_j_neuroimage_2018_07_003
proquest_miscellaneous_2066484549
proquest_journals_2102334662
pubmed_primary_29981481
crossref_citationtrail_10_1016_j_neuroimage_2018_07_003
crossref_primary_10_1016_j_neuroimage_2018_07_003
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2018_07_003
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2018_07_003
PublicationCentury 2000
PublicationDate 2018-11-01
2018-11-00
20181101
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2018
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Lucas (bib36) 2010; 8
Veraart (bib67) 2013; 81
Ferrante, Paragios (bib16) 2017; 39
Veraart, Van Hecke, Sijbers (bib68) 2011; 66
Sairanen (bib54) 2017; 147
Collier (bib14) 2015; 73
Wedeen (bib70) 2005; 54
St-Jean, Coupé, Descoteaux (bib57) 2016; 32
Jones, Horsfield, Simmons (bib27) 1999; 42
Liu, Gasbarra, Railavo (bib34) 2016; 257
Scelfo (bib55) 2012
Jenkinson (bib1a) 2012; 62.2
Jiang (bib24) 2009; 62
Poot (bib52) 2010; 29
Andersson, Skare (bib1) 2010
Jones, Cercignani (bib26) 2010; 23
Andersson (bib3) 2008; 42
Marami, Scherrer, Afacan, Warfield (bib40) 2016
Nielsen, Ghugre, Panigrahy (bib43) 2004; 22
Stejskal, Tanner (bib58) 1965; 42
Tournier, Calamante, Connelly (bib65) 2007; 35
Cook (bib15) 2006; vol. 14
Oguz (bib46) 2014; 8
Mangin (bib37) 2002; 6
Jones (bib25) 2008; 44
Andersson (bib2) 2016; 141
Pierpaoli, Walker (bib51) 2010; 51
Tax (bib60) 2017; 39
Tuch (bib66) 2004; 52
Odish (bib45) 2015; 36
Batchelor (bib9) 2003; 49
Le Bihan (bib11) 2006; 24
Tax (bib61) 2015; vol. 73
Andersson (bib4) 2017; 152
Morris (bib42) 2011; 66
Leemans (bib32) 2009; 17
Pannek (bib48) 2015
Li (bib33) 2013; 8
Tax, Vos, Leemans (bib62) 2016
Lauzon (bib31) 2013; 8
Mangin (bib38) 2001; 2208
Andersson, Sotiropoulos (bib6) 2016; 125
Norman, Streiner (bib44) 2007
Tournier (bib64) 2004; 23
Langen (bib30) 2012; 48
Rohde (bib53) 2004; 51
Hämäläinen (bib19) 2017; 152
Liu (bib35) 2010
Zhou (bib71) 2011; 29
Ojala, Pietikäinen, Harwood (bib47) 1996; 29
Fogtmann (bib17) 2014; 33
Heemskerk (bib20) 2013; 34
Vos (bib69) 2017; 77
Baum, Stevenson (bib10) 2016
Froeling (bib18) 2017; 77
Chang, Walker, Pierpaoli (bib13) 2012; 68
Marami, Scherrer, Afacan, Erem (bib39) 2016; 35
Stjerna (bib59) 2015; 35
Pierpaoli (bib50) 2010
Pannek (bib49) 2012; 63
Jezzard, Barnett, Pierpaoli (bib22) 1998; 39
Tournier, Mori, Leemans (bib63) 2011; 65
Jiang (bib23) 2006; 81
Knutsson, Westin (bib29) 1993
Andersson, Skare, Ashburner (bib5) 2003; 20
Kennis (bib28) 2016; 11
Chang, Jones, Pierpaoli (bib12) 2005; 53
Harms (bib2a) 2017; 155
Iglewicz, Hoaglin (bib21) 1993; 62
Basser, Mattiello, Lebihan (bib8) 1994; 103
Andersson, Sotiropoulos (bib7) 2015; 122
Meer (bib41) 1991; 6
Skare (bib56) 2000; 147
Li (10.1016/j.neuroimage.2018.07.003_bib33) 2013; 8
Pierpaoli (10.1016/j.neuroimage.2018.07.003_bib50) 2010
Norman (10.1016/j.neuroimage.2018.07.003_bib44) 2007
Andersson (10.1016/j.neuroimage.2018.07.003_bib5) 2003; 20
Ferrante (10.1016/j.neuroimage.2018.07.003_bib16) 2017; 39
Chang (10.1016/j.neuroimage.2018.07.003_bib12) 2005; 53
Harms (10.1016/j.neuroimage.2018.07.003_bib2a) 2017; 155
Morris (10.1016/j.neuroimage.2018.07.003_bib42) 2011; 66
Veraart (10.1016/j.neuroimage.2018.07.003_bib67) 2013; 81
Liu (10.1016/j.neuroimage.2018.07.003_bib35) 2010
Andersson (10.1016/j.neuroimage.2018.07.003_bib2) 2016; 141
Jones (10.1016/j.neuroimage.2018.07.003_bib25) 2008; 44
Marami (10.1016/j.neuroimage.2018.07.003_bib39) 2016; 35
Andersson (10.1016/j.neuroimage.2018.07.003_bib1) 2010
Meer (10.1016/j.neuroimage.2018.07.003_bib41) 1991; 6
Baum (10.1016/j.neuroimage.2018.07.003_bib10) 2016
Chang (10.1016/j.neuroimage.2018.07.003_bib13) 2012; 68
Jones (10.1016/j.neuroimage.2018.07.003_bib26) 2010; 23
Mangin (10.1016/j.neuroimage.2018.07.003_bib38) 2001; 2208
Cook (10.1016/j.neuroimage.2018.07.003_bib15) 2006; vol. 14
Heemskerk (10.1016/j.neuroimage.2018.07.003_bib20) 2013; 34
Stjerna (10.1016/j.neuroimage.2018.07.003_bib59) 2015; 35
Tournier (10.1016/j.neuroimage.2018.07.003_bib64) 2004; 23
Jiang (10.1016/j.neuroimage.2018.07.003_bib23) 2006; 81
Knutsson (10.1016/j.neuroimage.2018.07.003_bib29) 1993
Tax (10.1016/j.neuroimage.2018.07.003_bib62) 2016
Andersson (10.1016/j.neuroimage.2018.07.003_bib6) 2016; 125
Pierpaoli (10.1016/j.neuroimage.2018.07.003_bib51) 2010; 51
Langen (10.1016/j.neuroimage.2018.07.003_bib30) 2012; 48
St-Jean (10.1016/j.neuroimage.2018.07.003_bib57) 2016; 32
Tax (10.1016/j.neuroimage.2018.07.003_bib60) 2017; 39
Leemans (10.1016/j.neuroimage.2018.07.003_bib32) 2009; 17
Tournier (10.1016/j.neuroimage.2018.07.003_bib63) 2011; 65
Jiang (10.1016/j.neuroimage.2018.07.003_bib24) 2009; 62
Fogtmann (10.1016/j.neuroimage.2018.07.003_bib17) 2014; 33
Odish (10.1016/j.neuroimage.2018.07.003_bib45) 2015; 36
Scelfo (10.1016/j.neuroimage.2018.07.003_bib55) 2012
Tax (10.1016/j.neuroimage.2018.07.003_bib61) 2015; vol. 73
Pannek (10.1016/j.neuroimage.2018.07.003_bib48) 2015
Basser (10.1016/j.neuroimage.2018.07.003_bib8) 1994; 103
Lucas (10.1016/j.neuroimage.2018.07.003_bib36) 2010; 8
Rohde (10.1016/j.neuroimage.2018.07.003_bib53) 2004; 51
Andersson (10.1016/j.neuroimage.2018.07.003_bib4) 2017; 152
Mangin (10.1016/j.neuroimage.2018.07.003_bib37) 2002; 6
Andersson (10.1016/j.neuroimage.2018.07.003_bib3) 2008; 42
Froeling (10.1016/j.neuroimage.2018.07.003_bib18) 2017; 77
Ojala (10.1016/j.neuroimage.2018.07.003_bib47) 1996; 29
Zhou (10.1016/j.neuroimage.2018.07.003_bib71) 2011; 29
Lauzon (10.1016/j.neuroimage.2018.07.003_bib31) 2013; 8
Stejskal (10.1016/j.neuroimage.2018.07.003_bib58) 1965; 42
Le Bihan (10.1016/j.neuroimage.2018.07.003_bib11) 2006; 24
Collier (10.1016/j.neuroimage.2018.07.003_bib14) 2015; 73
Marami (10.1016/j.neuroimage.2018.07.003_bib40) 2016
Veraart (10.1016/j.neuroimage.2018.07.003_bib68) 2011; 66
Vos (10.1016/j.neuroimage.2018.07.003_bib69) 2017; 77
Nielsen (10.1016/j.neuroimage.2018.07.003_bib43) 2004; 22
Tournier (10.1016/j.neuroimage.2018.07.003_bib65) 2007; 35
Batchelor (10.1016/j.neuroimage.2018.07.003_bib9) 2003; 49
Skare (10.1016/j.neuroimage.2018.07.003_bib56) 2000; 147
Tuch (10.1016/j.neuroimage.2018.07.003_bib66) 2004; 52
Jenkinson (10.1016/j.neuroimage.2018.07.003_bib1a) 2012; 62.2
Jezzard (10.1016/j.neuroimage.2018.07.003_bib22) 1998; 39
Hämäläinen (10.1016/j.neuroimage.2018.07.003_bib19) 2017; 152
Andersson (10.1016/j.neuroimage.2018.07.003_bib7) 2015; 122
Sairanen (10.1016/j.neuroimage.2018.07.003_bib54) 2017; 147
Poot (10.1016/j.neuroimage.2018.07.003_bib52) 2010; 29
Liu (10.1016/j.neuroimage.2018.07.003_bib34) 2016; 257
Jones (10.1016/j.neuroimage.2018.07.003_bib27) 1999; 42
Oguz (10.1016/j.neuroimage.2018.07.003_bib46) 2014; 8
Wedeen (10.1016/j.neuroimage.2018.07.003_bib70) 2005; 54
Kennis (10.1016/j.neuroimage.2018.07.003_bib28) 2016; 11
Iglewicz (10.1016/j.neuroimage.2018.07.003_bib21) 1993; 62
Pannek (10.1016/j.neuroimage.2018.07.003_bib49) 2012; 63
References_xml – volume: 33
  start-page: 272
  year: 2014
  end-page: 289
  ident: bib17
  article-title: A unified approach to diffusion direction sensitive slice registration and 3-d DTI reconstruction from moving fetal brain anatomy
  publication-title: IEEE Trans. Med. Imag.
– volume: 51
  start-page: 103
  year: 2004
  end-page: 114
  ident: bib53
  article-title: Comprehensive approach for correction of motion and distortion in diffusion-weighted MRI
  publication-title: Magn. Reson. Med.
– volume: 62
  start-page: 645
  year: 2009
  end-page: 655
  ident: bib24
  article-title: Diffusion tensor imaging (DTI) of the brain in moving subjects: application to in-utero fetal and ex-utero studies
  publication-title: Magn. Reson. Med.
– year: 2015
  ident: bib48
  article-title: Combined slicewise and voxelwise outlier detection in diffusion MRI data of preterm born infants
  publication-title: Ohbm
– volume: 35
  start-page: 1459
  year: 2007
  end-page: 1472
  ident: bib65
  article-title: Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution
  publication-title: Neuroimage
– volume: 141
  start-page: 556
  year: 2016
  end-page: 572
  ident: bib2
  article-title: Incorporating outlier detection and replacement into a non-parametric framework for movement and distortion correction of diffusion MR images
  publication-title: Neuroimage
– volume: 125
  start-page: 1063
  year: 2016
  end-page: 1078
  ident: bib6
  article-title: An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging
  publication-title: Neuroimage
– volume: 147
  year: 2000
  ident: bib56
  article-title: Condition number as a measure of noise performance of diffusion tensor data acquisition schemes with MRI
  publication-title: J. Magn. Reson.
– volume: 51
  start-page: 2010
  year: 2010
  ident: bib51
  article-title: TORTOISE: an integrated software package for processing of diffusion MRI data
  publication-title: Processing of Diffusion …
– volume: 8
  year: 2013
  ident: bib31
  article-title: Simultaneous analysis and quality assurance for diffusion tensor imaging
  publication-title: PLoS One
– volume: 23
  start-page: 803
  year: 2010
  end-page: 820
  ident: bib26
  article-title: Twenty-five pitfalls in the analysis of diffusion MRI data
  publication-title: NMR Biomed.
– volume: 8
  start-page: 4
  year: 2014
  ident: bib46
  article-title: DTIPrep: quality control of diffusion-weighted images
  publication-title: Front. Neuroinf.
– volume: 62.2
  start-page: 782
  year: 2012
  end-page: 790
  ident: bib1a
  article-title: Fsl
  publication-title: Neuroimage
– year: 2007
  ident: bib44
  article-title: Biostatistics: the Bare Essentials, PMPH-USA
– volume: 29
  start-page: 819
  year: 2010
  end-page: 829
  ident: bib52
  article-title: Optimal experimental design for diffusion kurtosis imaging
  publication-title: IEEE Trans. Med. Imag.
– volume: 11
  start-page: 539
  year: 2016
  end-page: 547
  ident: bib28
  article-title: Choosing the polarity of the phase-encoding direction in diffusion MRI: does it matter for group analysis?
  publication-title: Neuroimage: Clinica
– volume: 17
  start-page: 3537
  year: 2009
  ident: bib32
  article-title: ExploreDTI: a graphical toolbox for processing, analyzing, and visualizing diffusion MR data
  publication-title: Proceedings 17th Scientific Meeting, International Society for Magnetic Resonance in Medicine
– volume: 23
  start-page: 1176
  year: 2004
  end-page: 1185
  ident: bib64
  article-title: Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution
  publication-title: Neuroimage
– start-page: 285
  year: 2010
  end-page: 302
  ident: bib1
  article-title: Image distortion and its correction in diffusion MRI
  publication-title: Diffusion MRI: Theory, Methods, and Applications
– volume: 39
  start-page: 162
  year: 2017
  end-page: 177
  ident: bib60
  article-title: Quantifying the brain's sheet structure with normalized convolution
  publication-title: Med. Image Anal.
– volume: 81
  start-page: 106
  year: 2006
  end-page: 116
  ident: bib23
  article-title: DtiStudio: resource program for diffusion tensor computation and fiber bundle tracking
  publication-title: Comput. Meth. Progr. Biomed.
– volume: 29
  start-page: 51
  year: 1996
  end-page: 59
  ident: bib47
  article-title: A comparative study of texture measures with classification based on feature distributions
  publication-title: Pattern Recogn.
– volume: 155
  start-page: 82
  year: 2017
  end-page: 96
  ident: bib2a
  article-title: Robust and fast nonlinear optimization of diffusion MRI microstructure models
  publication-title: Neuroimage
– start-page: 76280J
  year: 2010
  ident: bib35
  article-title: Quality control of diffusion weighted images
  publication-title: Proceedings of SPIE–the International Society for Optical Engineering. NIH Public Access
– volume: 2208
  start-page: 186
  year: 2001
  end-page: 194
  ident: bib38
  article-title: Eddy-current distortion correction and Robust tensor estimation for MR diffusion imaging
  publication-title: Lect. Notes Comput. Sci.
– volume: 22
  start-page: 1319
  year: 2004
  end-page: 1323
  ident: bib43
  article-title: Affine and polynomial mutual information coregistration for artifact elimination in diffusion tensor imaging of newborns
  publication-title: Magn. Reson. Imag.
– volume: 39
  start-page: 801
  year: 1998
  end-page: 812
  ident: bib22
  article-title: Characterization of and correction for eddy current artifacts in echo planar diffusion imaging
  publication-title: Magn. Reson. Med.
– start-page: 303
  year: 2010
  end-page: 317
  ident: bib50
  article-title: Artifacts in diffusion MRI
  publication-title: In Diffusion MRI: Theory, methods, and applications
– volume: 147
  start-page: 57
  year: 2017
  end-page: 65
  ident: bib54
  article-title: A novel measure of reliability in Diffusion Tensor Imaging after data rejections due to subject motion
  publication-title: Neuroimage
– volume: 54
  start-page: 1377
  year: 2005
  end-page: 1386
  ident: bib70
  article-title: Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging
  publication-title: Magn. Reson. Med.
– volume: 48
  start-page: 183
  year: 2012
  end-page: 193
  ident: bib30
  article-title: Fronto-striatal circuitry and inhibitory control in autism: findings from diffusion tensor imaging tractography
  publication-title: Cortex
– volume: 34
  start-page: 1496
  year: 2013
  end-page: 1505
  ident: bib20
  article-title: Acquisition guidelines and quality assessment tools for analyzing neonatal diffusion tensor MRI data
  publication-title: Am. J. Neuroradiol.
– volume: 32
  start-page: 115
  year: 2016
  end-page: 130
  ident: bib57
  article-title: Non Local Spatial and Angular Matching: enabling higher spatial resolution diffusion MRI datasets through adaptive denoising
  publication-title: Med. Image Anal.
– volume: 77
  start-page: 1797
  year: 2017
  end-page: 1809
  ident: bib18
  article-title: ?MASSIVE? brain dataset: multiple acquisitions for standardization of structural imaging validation and evaluation
  publication-title: Magn. Reson. Med.
– volume: 65
  start-page: 1532
  year: 2011
  end-page: 1556
  ident: bib63
  article-title: Diffusion tensor imaging and beyond
  publication-title: Magn. Reson. Med.
– volume: 42
  start-page: 1340
  year: 2008
  end-page: 1356
  ident: bib3
  article-title: Maximum a posteriori estimation of diffusion tensor parameters using a Rician noise model: why, how and but
  publication-title: Neuroimage
– volume: 152
  start-page: 249
  year: 2017
  end-page: 257
  ident: bib19
  article-title: Bilingualism modulates the white matter structure of language-related pathways
  publication-title: Neuroimage
– volume: 6
  start-page: 191
  year: 2002
  end-page: 198
  ident: bib37
  article-title: Distortion correction and robust tensor estimation for MR diffusion imaging
  publication-title: Med. Image Anal.
– volume: vol. 73
  start-page: 794
  year: 2015
  end-page: 808
  ident: bib61
  article-title: REKINDLE: Robust extraction of kurtosis INDices with linear estimation
  publication-title: Magn. Reson. Med.
– volume: 8
  start-page: 5
  year: 2010
  end-page: 17
  ident: bib36
  article-title: The Java Image Science Toolkit (JIST) for rapid prototyping and publishing of neuroimaging software
  publication-title: Neuroinformatics
– start-page: 515
  year: 1993
  end-page: 523
  ident: bib29
  article-title: Normalized and differential convolution: methods for interpolation and filtering of incomplete and uncertain data
  publication-title: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June(16–19)
– volume: 73
  start-page: 2174
  year: 2015
  end-page: 2184
  ident: bib14
  article-title: Iterative reweighted linear least squares for accurate, fast, and robust estimation of diffusion magnetic resonance parameters
  publication-title: Magn. Reson. Med.
– volume: 81
  start-page: 335
  year: 2013
  end-page: 346
  ident: bib67
  article-title: Weighted linear least squares estimation of diffusion MRI parameters: strengths, limitations, and pitfalls
  publication-title: Neuroimage
– volume: 42
  start-page: 515
  year: 1999
  end-page: 525
  ident: bib27
  article-title: Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging
  publication-title: Magn. Reson. Med.
– volume: 6
  start-page: 59
  year: 1991
  end-page: 70
  ident: bib41
  article-title: Robust regression methods for computer vision: a review
  publication-title: Int. J. Comput. Vis.
– volume: 122
  start-page: 166
  year: 2015
  end-page: 176
  ident: bib7
  article-title: Non-parametric representation and prediction of single- and multi-shell diffusion-weighted MRI data using Gaussian processes
  publication-title: Neuroimage
– volume: 36
  start-page: 2061
  year: 2015
  end-page: 2074
  ident: bib45
  article-title: Microstructural brain abnormalities in Huntington's disease: a two-year follow-up
  publication-title: Hum. Brain Mapp.
– volume: 8
  start-page: e49764
  year: 2013
  ident: bib33
  article-title: Image corruption detection in diffusion tensor imaging for post-processing and real-time monitoring K. Herholz
  publication-title: PLoS One
– volume: 62
  start-page: 782
  year: 1993
  end-page: 790
  ident: bib21
  article-title: How to Detect and Handle Outliers, Jenkinson, M. et al., 2012
  publication-title: Fsl. NeuroImage
– start-page: 544
  year: 2016
  end-page: 552
  ident: bib40
  article-title: Motion-robust reconstruction based on simultaneous multi-slice registration for diffusion-weighted MRI of moving subjects
  publication-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
– volume: 35
  start-page: 4824
  year: 2015
  end-page: 4829
  ident: bib59
  article-title: Visual fixation in human newborns correlates with extensive white matter networks and predicts long-term neurocognitive development
  publication-title: J. Neurosci.
– volume: 103
  start-page: 247
  year: 1994
  end-page: 254
  ident: bib8
  article-title: Estimation of the effective self-diffusion tensor from the NMR spin echo
  publication-title: J. Magn. Reson., Ser. B
– volume: 66
  start-page: 92
  year: 2011
  end-page: 101
  ident: bib42
  article-title: Preterm neonatal diffusion processing using detection and replacement of outliers prior to resampling
  publication-title: Magn. Reson. Med.
– volume: 66
  start-page: 678
  year: 2011
  end-page: 686
  ident: bib68
  article-title: Constrained maximum likelihood estimation of the diffusion kurtosis tensor using a Rician noise model
  publication-title: Magn. Reson. Med.
– volume: 152
  start-page: 450
  year: 2017
  end-page: 466
  ident: bib4
  article-title: Towards a comprehensive framework for movement and distortion correction of diffusion MR images: within volume movement
  publication-title: Neuroimage
– volume: 35
  start-page: 2258
  year: 2016
  end-page: 2269
  ident: bib39
  article-title: Motion-robust diffusion-weighted brain MRI reconstruction through slice-level registration-based motion tracking
  publication-title: IEEE Trans. Med. Imag.
– volume: 44
  start-page: 936
  year: 2008
  end-page: 952
  ident: bib25
  article-title: Studying connections in the living human brain with diffusion MRI
  publication-title: Cortex
– volume: 24
  start-page: 478
  year: 2006
  end-page: 488
  ident: bib11
  article-title: Artifacts and pitfalls in diffusion MRI
  publication-title: J. Magn. Reson. Imag.
– volume: 49
  start-page: 1143
  year: 2003
  end-page: 1151
  ident: bib9
  article-title: Anisotropic noise propagation in diffusion tensor MRI sampling schemes
  publication-title: Magn. Reson. Med.
– start-page: 3553
  year: 2012
  ident: bib55
  article-title: Automated detection, evaluation and removal of DWI-related artifacts
  publication-title: In Proc. Intl. Soc. Mag. Reson. Med
– volume: 257
  start-page: 147
  year: 2016
  end-page: 158
  ident: bib34
  article-title: Fast estimation of diffusion tensors under Rician noise by the EM algorithm
  publication-title: J. Neurosci. Meth.
– volume: 52
  start-page: 1358
  year: 2004
  end-page: 1372
  ident: bib66
  article-title: Q-ball imaging
  publication-title: Magn. Reson. Med.
– start-page: 4824
  year: 2016
  end-page: 4829
  ident: bib10
  article-title: Commentary: visual fixation in human newborns correlates with extensive white matter networks and predicts long-term neurocognitive development
  publication-title: Front. Neurosci.
– volume: 42
  start-page: 288
  year: 1965
  end-page: 292
  ident: bib58
  article-title: Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient
  publication-title: J. Chem. Phys.
– volume: 77
  start-page: 285
  year: 2017
  end-page: 299
  ident: bib69
  article-title: The importance of correcting for signal drift in diffusion MRI
  publication-title: Magn. Reson. Med.
– volume: 39
  start-page: 101
  year: 2017
  end-page: 123
  ident: bib16
  article-title: Slice-to-volume medical image registration: a survey
  publication-title: Med. Image Anal.
– volume: 20
  start-page: 870
  year: 2003
  end-page: 888
  ident: bib5
  article-title: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging
  publication-title: Neuroimage
– volume: 53
  start-page: 1088
  year: 2005
  end-page: 1095
  ident: bib12
  article-title: RESTORE: robust estimation of tensors by outlier rejection
  publication-title: Magn. Reson. Med.
– volume: 63
  start-page: 835
  year: 2012
  end-page: 842
  ident: bib49
  article-title: HOMOR: higher order model outlier rejection for high b-value MR diffusion data
  publication-title: Neuroimage
– volume: 29
  start-page: 230
  year: 2011
  end-page: 242
  ident: bib71
  article-title: Automated artifact detection and removal for improved tensor estimation in motion-corrupted DTI data sets using the combination of local binary patterns and 2D partial least squares
  publication-title: Magn. Reson. Imag.
– volume: 68
  start-page: 1654
  year: 2012
  end-page: 1663
  ident: bib13
  article-title: Informed RESTORE: a method for robust estimation of diffusion tensor from low redundancy datasets in the presence of physiological noise artifacts
  publication-title: Magn. Reson. Med.
– start-page: 127
  year: 2016
  end-page: 150
  ident: bib62
  article-title: Checking and correcting DTI data
  publication-title: Diffusion Tensor Imaging
– volume: vol. 14
  start-page: 2759
  year: 2006
  ident: bib15
  article-title: Camino: open-source diffusion-MRI reconstruction and processing
  publication-title: 14th Scientific Meeting of the International Society for Magnetic Resonance in Medicine
– volume: 54
  start-page: 1377
  issue: 6
  year: 2005
  ident: 10.1016/j.neuroimage.2018.07.003_bib70
  article-title: Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.20642
– start-page: 285
  year: 2010
  ident: 10.1016/j.neuroimage.2018.07.003_bib1
  article-title: Image distortion and its correction in diffusion MRI
– start-page: 3553
  year: 2012
  ident: 10.1016/j.neuroimage.2018.07.003_bib55
  article-title: Automated detection, evaluation and removal of DWI-related artifacts
  publication-title: In Proc. Intl. Soc. Mag. Reson. Med
– volume: 52
  start-page: 1358
  issue: 6
  year: 2004
  ident: 10.1016/j.neuroimage.2018.07.003_bib66
  article-title: Q-ball imaging
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.20279
– volume: 66
  start-page: 678
  issue: 3
  year: 2011
  ident: 10.1016/j.neuroimage.2018.07.003_bib68
  article-title: Constrained maximum likelihood estimation of the diffusion kurtosis tensor using a Rician noise model
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22835
– volume: 20
  start-page: 870
  issue: 2
  year: 2003
  ident: 10.1016/j.neuroimage.2018.07.003_bib5
  article-title: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(03)00336-7
– volume: 32
  start-page: 115
  year: 2016
  ident: 10.1016/j.neuroimage.2018.07.003_bib57
  article-title: Non Local Spatial and Angular Matching: enabling higher spatial resolution diffusion MRI datasets through adaptive denoising
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.02.010
– volume: 36
  start-page: 2061
  issue: 6
  year: 2015
  ident: 10.1016/j.neuroimage.2018.07.003_bib45
  article-title: Microstructural brain abnormalities in Huntington's disease: a two-year follow-up
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22756
– start-page: 544
  year: 2016
  ident: 10.1016/j.neuroimage.2018.07.003_bib40
  article-title: Motion-robust reconstruction based on simultaneous multi-slice registration for diffusion-weighted MRI of moving subjects
– volume: vol. 14
  start-page: 2759
  year: 2006
  ident: 10.1016/j.neuroimage.2018.07.003_bib15
  article-title: Camino: open-source diffusion-MRI reconstruction and processing
– volume: 81
  start-page: 335
  year: 2013
  ident: 10.1016/j.neuroimage.2018.07.003_bib67
  article-title: Weighted linear least squares estimation of diffusion MRI parameters: strengths, limitations, and pitfalls
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.028
– start-page: 76280J
  year: 2010
  ident: 10.1016/j.neuroimage.2018.07.003_bib35
  article-title: Quality control of diffusion weighted images
– volume: 77
  start-page: 285
  issue: 1
  year: 2017
  ident: 10.1016/j.neuroimage.2018.07.003_bib69
  article-title: The importance of correcting for signal drift in diffusion MRI
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.26124
– volume: 39
  start-page: 801
  issue: 5
  year: 1998
  ident: 10.1016/j.neuroimage.2018.07.003_bib22
  article-title: Characterization of and correction for eddy current artifacts in echo planar diffusion imaging
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910390518
– volume: 8
  start-page: e49764
  issue: 10
  year: 2013
  ident: 10.1016/j.neuroimage.2018.07.003_bib33
  article-title: Image corruption detection in diffusion tensor imaging for post-processing and real-time monitoring K. Herholz
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0049764
– volume: 68
  start-page: 1654
  issue: 5
  year: 2012
  ident: 10.1016/j.neuroimage.2018.07.003_bib13
  article-title: Informed RESTORE: a method for robust estimation of diffusion tensor from low redundancy datasets in the presence of physiological noise artifacts
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.24173
– volume: 34
  start-page: 1496
  issue: 8
  year: 2013
  ident: 10.1016/j.neuroimage.2018.07.003_bib20
  article-title: Acquisition guidelines and quality assessment tools for analyzing neonatal diffusion tensor MRI data
  publication-title: Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A3465
– volume: 81
  start-page: 106
  issue: 2
  year: 2006
  ident: 10.1016/j.neuroimage.2018.07.003_bib23
  article-title: DtiStudio: resource program for diffusion tensor computation and fiber bundle tracking
  publication-title: Comput. Meth. Progr. Biomed.
  doi: 10.1016/j.cmpb.2005.08.004
– volume: 152
  start-page: 249
  year: 2017
  ident: 10.1016/j.neuroimage.2018.07.003_bib19
  article-title: Bilingualism modulates the white matter structure of language-related pathways
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.02.081
– year: 2015
  ident: 10.1016/j.neuroimage.2018.07.003_bib48
  article-title: Combined slicewise and voxelwise outlier detection in diffusion MRI data of preterm born infants
  publication-title: Ohbm
– volume: 62
  start-page: 645
  issue: 3
  year: 2009
  ident: 10.1016/j.neuroimage.2018.07.003_bib24
  article-title: Diffusion tensor imaging (DTI) of the brain in moving subjects: application to in-utero fetal and ex-utero studies
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22032
– volume: 103
  start-page: 247
  issue: 3
  year: 1994
  ident: 10.1016/j.neuroimage.2018.07.003_bib8
  article-title: Estimation of the effective self-diffusion tensor from the NMR spin echo
  publication-title: J. Magn. Reson., Ser. B
  doi: 10.1006/jmrb.1994.1037
– volume: 11
  start-page: 539
  year: 2016
  ident: 10.1016/j.neuroimage.2018.07.003_bib28
  article-title: Choosing the polarity of the phase-encoding direction in diffusion MRI: does it matter for group analysis?
  publication-title: Neuroimage: Clinica
  doi: 10.1016/j.nicl.2016.03.022
– volume: 29
  start-page: 230
  issue: 2
  year: 2011
  ident: 10.1016/j.neuroimage.2018.07.003_bib71
  article-title: Automated artifact detection and removal for improved tensor estimation in motion-corrupted DTI data sets using the combination of local binary patterns and 2D partial least squares
  publication-title: Magn. Reson. Imag.
  doi: 10.1016/j.mri.2010.06.022
– volume: 2208
  start-page: 186
  year: 2001
  ident: 10.1016/j.neuroimage.2018.07.003_bib38
  article-title: Eddy-current distortion correction and Robust tensor estimation for MR diffusion imaging
  publication-title: Lect. Notes Comput. Sci.
  doi: 10.1007/3-540-45468-3_23
– volume: 29
  start-page: 51
  issue: 1
  year: 1996
  ident: 10.1016/j.neuroimage.2018.07.003_bib47
  article-title: A comparative study of texture measures with classification based on feature distributions
  publication-title: Pattern Recogn.
  doi: 10.1016/0031-3203(95)00067-4
– volume: 147
  issue: 2
  year: 2000
  ident: 10.1016/j.neuroimage.2018.07.003_bib56
  article-title: Condition number as a measure of noise performance of diffusion tensor data acquisition schemes with MRI
  publication-title: J. Magn. Reson.
  doi: 10.1006/jmre.2000.2209
– volume: 65
  start-page: 1532
  issue: 6
  year: 2011
  ident: 10.1016/j.neuroimage.2018.07.003_bib63
  article-title: Diffusion tensor imaging and beyond
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22924
– volume: 155
  start-page: 82
  year: 2017
  ident: 10.1016/j.neuroimage.2018.07.003_bib2a
  article-title: Robust and fast nonlinear optimization of diffusion MRI microstructure models
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.04.064
– volume: 39
  start-page: 162
  year: 2017
  ident: 10.1016/j.neuroimage.2018.07.003_bib60
  article-title: Quantifying the brain's sheet structure with normalized convolution
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.03.007
– volume: 23
  start-page: 803
  issue: 7
  year: 2010
  ident: 10.1016/j.neuroimage.2018.07.003_bib26
  article-title: Twenty-five pitfalls in the analysis of diffusion MRI data
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.1543
– volume: 77
  start-page: 1797
  issue: 5
  year: 2017
  ident: 10.1016/j.neuroimage.2018.07.003_bib18
  article-title: ?MASSIVE? brain dataset: multiple acquisitions for standardization of structural imaging validation and evaluation
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.26259
– volume: 122
  start-page: 166
  year: 2015
  ident: 10.1016/j.neuroimage.2018.07.003_bib7
  article-title: Non-parametric representation and prediction of single- and multi-shell diffusion-weighted MRI data using Gaussian processes
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.07.067
– volume: 51
  start-page: 103
  issue: 1
  year: 2004
  ident: 10.1016/j.neuroimage.2018.07.003_bib53
  article-title: Comprehensive approach for correction of motion and distortion in diffusion-weighted MRI
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.10677
– start-page: 4824
  year: 2016
  ident: 10.1016/j.neuroimage.2018.07.003_bib10
  article-title: Commentary: visual fixation in human newborns correlates with extensive white matter networks and predicts long-term neurocognitive development
  publication-title: Front. Neurosci.
– volume: 23
  start-page: 1176
  issue: 3
  year: 2004
  ident: 10.1016/j.neuroimage.2018.07.003_bib64
  article-title: Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.07.037
– volume: 51
  start-page: 2010
  issue: 1
  year: 2010
  ident: 10.1016/j.neuroimage.2018.07.003_bib51
  article-title: TORTOISE: an integrated software package for processing of diffusion MRI data
  publication-title: Processing of Diffusion …
– volume: 33
  start-page: 272
  issue: 2
  year: 2014
  ident: 10.1016/j.neuroimage.2018.07.003_bib17
  article-title: A unified approach to diffusion direction sensitive slice registration and 3-d DTI reconstruction from moving fetal brain anatomy
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2013.2284014
– volume: 44
  start-page: 936
  issue: 8
  year: 2008
  ident: 10.1016/j.neuroimage.2018.07.003_bib25
  article-title: Studying connections in the living human brain with diffusion MRI
  publication-title: Cortex
  doi: 10.1016/j.cortex.2008.05.002
– volume: 6
  start-page: 59
  issue: 1
  year: 1991
  ident: 10.1016/j.neuroimage.2018.07.003_bib41
  article-title: Robust regression methods for computer vision: a review
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/BF00127126
– volume: vol. 73
  start-page: 794
  issue: 2
  year: 2015
  ident: 10.1016/j.neuroimage.2018.07.003_bib61
  article-title: REKINDLE: Robust extraction of kurtosis INDices with linear estimation
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.25165
– volume: 66
  start-page: 92
  issue: 1
  year: 2011
  ident: 10.1016/j.neuroimage.2018.07.003_bib42
  article-title: Preterm neonatal diffusion processing using detection and replacement of outliers prior to resampling
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22786
– volume: 147
  start-page: 57
  year: 2017
  ident: 10.1016/j.neuroimage.2018.07.003_bib54
  article-title: A novel measure of reliability in Diffusion Tensor Imaging after data rejections due to subject motion
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.11.061
– volume: 48
  start-page: 183
  issue: 2
  year: 2012
  ident: 10.1016/j.neuroimage.2018.07.003_bib30
  article-title: Fronto-striatal circuitry and inhibitory control in autism: findings from diffusion tensor imaging tractography
  publication-title: Cortex
  doi: 10.1016/j.cortex.2011.05.018
– volume: 125
  start-page: 1063
  year: 2016
  ident: 10.1016/j.neuroimage.2018.07.003_bib6
  article-title: An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.10.019
– volume: 42
  start-page: 515
  issue: 3
  year: 1999
  ident: 10.1016/j.neuroimage.2018.07.003_bib27
  article-title: Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging
  publication-title: Magn. Reson. Med.
  doi: 10.1002/(SICI)1522-2594(199909)42:3<515::AID-MRM14>3.0.CO;2-Q
– volume: 62.2
  start-page: 782
  year: 2012
  ident: 10.1016/j.neuroimage.2018.07.003_bib1a
  article-title: Fsl
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.09.015
– volume: 24
  start-page: 478
  issue: 3
  year: 2006
  ident: 10.1016/j.neuroimage.2018.07.003_bib11
  article-title: Artifacts and pitfalls in diffusion MRI
  publication-title: J. Magn. Reson. Imag.
  doi: 10.1002/jmri.20683
– volume: 63
  start-page: 835
  issue: 2
  year: 2012
  ident: 10.1016/j.neuroimage.2018.07.003_bib49
  article-title: HOMOR: higher order model outlier rejection for high b-value MR diffusion data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.07.022
– volume: 39
  start-page: 101
  year: 2017
  ident: 10.1016/j.neuroimage.2018.07.003_bib16
  article-title: Slice-to-volume medical image registration: a survey
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.04.010
– volume: 29
  start-page: 819
  issue: 3
  year: 2010
  ident: 10.1016/j.neuroimage.2018.07.003_bib52
  article-title: Optimal experimental design for diffusion kurtosis imaging
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2009.2037915
– volume: 73
  start-page: 2174
  issue: 6
  year: 2015
  ident: 10.1016/j.neuroimage.2018.07.003_bib14
  article-title: Iterative reweighted linear least squares for accurate, fast, and robust estimation of diffusion magnetic resonance parameters
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.25351
– volume: 6
  start-page: 191
  year: 2002
  ident: 10.1016/j.neuroimage.2018.07.003_bib37
  article-title: Distortion correction and robust tensor estimation for MR diffusion imaging
  publication-title: Med. Image Anal.
  doi: 10.1016/S1361-8415(02)00079-8
– volume: 62
  start-page: 782
  issue: 2
  year: 1993
  ident: 10.1016/j.neuroimage.2018.07.003_bib21
  article-title: How to Detect and Handle Outliers, Jenkinson, M. et al., 2012
  publication-title: Fsl. NeuroImage
– start-page: 303
  year: 2010
  ident: 10.1016/j.neuroimage.2018.07.003_bib50
  article-title: Artifacts in diffusion MRI
  publication-title: In Diffusion MRI: Theory, methods, and applications
  doi: 10.1093/med/9780195369779.003.0018
– volume: 35
  start-page: 1459
  issue: 4
  year: 2007
  ident: 10.1016/j.neuroimage.2018.07.003_bib65
  article-title: Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.02.016
– volume: 49
  start-page: 1143
  issue: 6
  year: 2003
  ident: 10.1016/j.neuroimage.2018.07.003_bib9
  article-title: Anisotropic noise propagation in diffusion tensor MRI sampling schemes
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.10491
– volume: 8
  issue: 4
  year: 2013
  ident: 10.1016/j.neuroimage.2018.07.003_bib31
  article-title: Simultaneous analysis and quality assurance for diffusion tensor imaging
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0061737
– volume: 35
  start-page: 2258
  issue: 10
  year: 2016
  ident: 10.1016/j.neuroimage.2018.07.003_bib39
  article-title: Motion-robust diffusion-weighted brain MRI reconstruction through slice-level registration-based motion tracking
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2016.2555244
– volume: 257
  start-page: 147
  year: 2016
  ident: 10.1016/j.neuroimage.2018.07.003_bib34
  article-title: Fast estimation of diffusion tensors under Rician noise by the EM algorithm
  publication-title: J. Neurosci. Meth.
  doi: 10.1016/j.jneumeth.2015.09.029
– volume: 141
  start-page: 556
  year: 2016
  ident: 10.1016/j.neuroimage.2018.07.003_bib2
  article-title: Incorporating outlier detection and replacement into a non-parametric framework for movement and distortion correction of diffusion MR images
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.06.058
– volume: 17
  start-page: 3537
  issue: 2
  year: 2009
  ident: 10.1016/j.neuroimage.2018.07.003_bib32
  article-title: ExploreDTI: a graphical toolbox for processing, analyzing, and visualizing diffusion MR data
  publication-title: Proceedings 17th Scientific Meeting, International Society for Magnetic Resonance in Medicine
– start-page: 515
  year: 1993
  ident: 10.1016/j.neuroimage.2018.07.003_bib29
  article-title: Normalized and differential convolution: methods for interpolation and filtering of incomplete and uncertain data
– start-page: 127
  year: 2016
  ident: 10.1016/j.neuroimage.2018.07.003_bib62
  article-title: Checking and correcting DTI data
– volume: 8
  start-page: 4
  year: 2014
  ident: 10.1016/j.neuroimage.2018.07.003_bib46
  article-title: DTIPrep: quality control of diffusion-weighted images
  publication-title: Front. Neuroinf.
  doi: 10.3389/fninf.2014.00004
– volume: 35
  start-page: 4824
  issue: 12
  year: 2015
  ident: 10.1016/j.neuroimage.2018.07.003_bib59
  article-title: Visual fixation in human newborns correlates with extensive white matter networks and predicts long-term neurocognitive development
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5162-14.2015
– year: 2007
  ident: 10.1016/j.neuroimage.2018.07.003_bib44
– volume: 42
  start-page: 1340
  issue: 4
  year: 2008
  ident: 10.1016/j.neuroimage.2018.07.003_bib3
  article-title: Maximum a posteriori estimation of diffusion tensor parameters using a Rician noise model: why, how and but
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.05.053
– volume: 152
  start-page: 450
  year: 2017
  ident: 10.1016/j.neuroimage.2018.07.003_bib4
  article-title: Towards a comprehensive framework for movement and distortion correction of diffusion MR images: within volume movement
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.02.085
– volume: 53
  start-page: 1088
  issue: 5
  year: 2005
  ident: 10.1016/j.neuroimage.2018.07.003_bib12
  article-title: RESTORE: robust estimation of tensors by outlier rejection
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.20426
– volume: 22
  start-page: 1319
  issue: 9
  year: 2004
  ident: 10.1016/j.neuroimage.2018.07.003_bib43
  article-title: Affine and polynomial mutual information coregistration for artifact elimination in diffusion tensor imaging of newborns
  publication-title: Magn. Reson. Imag.
  doi: 10.1016/j.mri.2004.08.024
– volume: 42
  start-page: 288
  issue: 1
  year: 1965
  ident: 10.1016/j.neuroimage.2018.07.003_bib58
  article-title: Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1695690
– volume: 8
  start-page: 5
  issue: 1
  year: 2010
  ident: 10.1016/j.neuroimage.2018.07.003_bib36
  article-title: The Java Image Science Toolkit (JIST) for rapid prototyping and publishing of neuroimaging software
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-009-9061-2
SSID ssj0009148
Score 2.4645922
Snippet The accurate characterization of the diffusion process in tissue using diffusion MRI is greatly challenged by the presence of artefacts. Subject motion causes...
SourceID unpaywall
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 331
SubjectTerms Algorithms
Artefacts
Brain - diagnostic imaging
Brain research
Data Interpretation, Statistical
Diffusion Magnetic Resonance Imaging - methods
Diffusion Magnetic Resonance Imaging - standards
Humans
Image processing
Infant, Newborn
Magnetic resonance imaging
Models, Theoretical
Neonates
Neuroimaging - methods
Neuroimaging - standards
Population studies
Sensitivity and Specificity
Simulation
Spatial distribution
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEB_qFfx4EL8brbKCD_oQzMcmmyBSqu3Rk95VWgt9C5v9gOqZu_YSiv-9M8kmJxTkXpMMJNnZ2d_szvx-AO-0KEupJWaqmTU-5zHGQaW4j0mciTMu40BRo_B0lh6d828XycUWzPpeGCqr7GNiG6j1QtEe-UdKTeKYp2m0t7zySTWKTld7CQ3ppBX055Zi7A5sR8SMNYLtL4ez76drGt6Qd81xSexnYZi72p6u4qtlkLz8jfOYSr6yltSzF9O6vWDdBqQP4F5TLeWfGzmf_7NIjR_BQ4cu2X7nDo9hy1RP4O7UnZ8_hV9juaqZrDTDT2mIJYKdzTFU3FyuDDtp6uOJuWYHpm7rsyr2_uzkeHLwgdFmLesoVo1mrXgOI3aOru2R4XVGQisN7byx6emEUd3pMzgfH_74euQ7uQVfIWqo_UxbxE6lTNPcxpEVUihDguiJMGGuw1xKXopA4XWrhEBkkfLS5jiikVJZoqP4OYyqRWV2gGFSkyourC1zTP-sLEUYaRVwmQUmMYH2QPT_tFCOi5wkMeZFX3T2s1iPRkGjUQR0UB57EA6Wy46PYwObvB-2ou83xQhZ4KKxge2nwdZhkg5rbGi923tJ4WLDqlh7sgdvh9s4q-moRlZm0eAziAR5xjF59-BF513D5yKAyNCNQw-iwd02_hcv__9Gr-A-Pdw1W-7CqL5uzGtEXXX5xk2lvyKCLM4
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VWwnEgfcjqCAjcYBDShI7sSNOVcuqi7otoqxUTpbt2FLpklbdRBX8esZJHBAroRVXx3NwZjz-xjP-BuB1xbVWlcJIVTgbM0bRDxrDYgziLBVM0cT4h8Lz4-JwwT6e5WdbELqu_UUvkPo82ruOvBLD8u0iR7w9ge3F8ae9r10aM6exSLvuHTgnj8uch3KdvoirI4U8_45b01dxiY6nM_THWj-D1jHmHbjd1lfqx41aLv84d6b3YD-83unLTS5220bvmp_rZI7_WNJ9uDvATrLX28kD2LL1Q7g1HxLrj-BiqlYNQXmijGk9fQQ5XaIPuTlfWXLSNkcze00ObNMVbtXkzenJ0ezgLfG3uKTnXrUV6brqEE_b0b-HJDhOfAeW1l_JkfnnGfEFqY9hMf3wZf8wHvowxAbhRBOLyiGo0qooSkczxxU31ndKz7lNyyotlWKaJwbHneEcIUfBtCtR1ZkxIq8y-gQm9WVtnwHBaKcwjDunS4wLndI8zSqTMCUSm9ukioAHzUgzkJT7XhlLGarRvsnfOpVepzLxGXQaQTpKXvVEHRvIlEH5MjxERdcp8TTZQPb9KDuAlR6EbCi9E2xNDk5jJX30TSkriiyCV-Nn3O4-h6Nqe9niHISITDCM6iN42tvouFxEFgKj2zSCbDTajf_F8_8R2oFJc93aF4jLGv1y2Ji_AIEFN1M
  priority: 102
  providerName: Unpaywall
Title Fast and accurate Slicewise OutLIer Detection (SOLID) with informed model estimation for diffusion MRI data
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811918305950
https://dx.doi.org/10.1016/j.neuroimage.2018.07.003
https://www.ncbi.nlm.nih.gov/pubmed/29981481
https://www.proquest.com/docview/2102334662
https://www.proquest.com/docview/2066484549
http://hdl.handle.net/10138/310910
UnpaywallVersion submittedVersion
Volume 181
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20191231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: ACRLP
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20191231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AIKHN
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AKRWK
  dateStart: 19920801
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20250905
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: 7X7
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central Database Suite (ProQuest)
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1095-9572
  dateEnd: 20250905
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: BENPR
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na9swFH-UFvZxKN1X564rGuywHbz4Q7ZsdsrShmRL0pAskJ2MLMuQLXVDY1N22d_e9_zVjV4Cu1hY1gNLenr6Pel9ALxPRBzLRKKmGqTa5NxFOagUN1GJ027ApWspchQeT_zBgn9dess96DW-MGRWWcv-SqaX0rqu6dSj2dmsVp05IgPcblDfCJBnw1Jv51xQFoNPf-7NPEKbV-5wnmtS69qap7LxKmNGrq5w5ZKRV1CG8WzSZz3coh5C0KfwuMg28vetXK__2pb6R3BY40nWrX75Gezp7Dk8Gtc35i_gV19ucyazhEmlCooLweZrFA63q61ml0U-Guobdq7z0iIrYx_ml6Ph-UdGx7OsCqqqE1amy2EUj6NydGRYzyi1SkFnbWw8GzKyNH0Ji_7F997ArBMsmApxQm4GSYpoKZa-H6aukwoplKYU6J7QdpjYoZQ8FpbC-lQJgVjC53Ea4hw6SgVe4rivYD-7zvRrYKjG-IqLNI1DVPhSGQvbSZTFZWBpT1uJAaIZ00jV0ccpCcY6aszMfkb3sxHRbEQWXY27Btgt5aaKwLEDTdhMW9R4mKJMjHCb2IH2c0v7DyfuSH3acElUS4NtRGq163Lfdwx4137GdUyXMzLT1wW2QezHA47qugHHFXe13UXIECAb2wY4LbvtPBYn_9WfN_CE3irvy1PYz28K_RZhWB6flesMn2IpzuCg25uNplQOvw0mWH65mExnWC4m0-6PO86EORc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamTWLwgLgTGGAkkOAhWi5OnAhNCOiqlrUd2kXam3FsR9pW0rImqvbn-G2ckzgp0iTUl70mOVJsH5-Lfc73EfJO8yyTWkKmmuTGZSwEO6gUcyGJM2HCZOgpbBQeT-LBKft-Fp1tkD9tLwyWVbY2sTbUeqbwjHwXU5MwZHEcfJ7_dpE1Cm9XWwoNaakV9F4NMWYbOw7M9RJSuMXesAfr_T4I-vsn3wauZRlwFTjL0k10DiFDJuM4zcMg55IrgzzgETd-qv1USpZxT8HzXHEODjVmWZ7CQAKlkkgj8AG4gC0WshSSv62v-5MfRyvYX581zXhR6Ca-n9paoqbCrEasPP8FdgNLzJIaRLQl77rpIG8GwPfIdlXM5fVSTqf_OMX-A3LfRrP0S6N-D8mGKR6RO2N7X_-YXPbloqSy0BSmrkJUCno8BdO0PF8YeliVo6G5oj1T1vVgBf1wfDga9j5SPBymDaSr0bQm66GIBtK0WVJ4TpHYpcKTPjo-GlKsc31CTm9l4p-SzWJWmOeEQhIVK8bzPEsh3cxlxv1AK4_JxDOR8bRDeDunQlnsc6TgmIq2yO1CrFZD4GoIDy_mQ4f4neS8wf9YQyZtl020_a1gkQU4qTVkP3WyNgZqYps1pXdaLRHWFi3Eauc45G33GqwIXg3Jwswq-AYiT5awiKUOedZoVzdcCFgSUGPfIUGnbmvPxYv__9Ebsj04GY_EaDg5eEnuomDT6LlDNsuryryCiK_MXtttRcnP297JfwE0y2nY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemIQ14QHwTGGAkkOAhWhI7cSKEEKJUK2s3xJjUN-PYjrStpGVNVO1f46_jLk5SpEmoL3tNclJsn-_D_t3vCHltRJ4royBTTQvrc87ADmrNfUjiLEu5YoHGQuHJYbJ_wr9O4-kW-dPVwiCssrOJjaE2c41n5HuYmjDGkyTaK1pYxLfB8OPit48dpPCmtWun4VTkwF6uIH1bfhgNYK3fRNHwy4_P-37bYcDX4CgrPzUFhAu5SpKsYFEhlNAWe4DHwoaZCTOleC4CDc8LLQQ404TnRQaDiLROY4OkB2D-bwjGMoQTiqlYE_6G3JXhxcxPwzBrUUQOW9ZwVZ7-AouB4LK0oQ_t2nZddY1XQ9_b5GZdLtTlSs1m_7jD4V1yp41j6SenePfIli3vk51Je1P_gJwP1bKiqjRUaV0jHwU9noFRWp0uLT2qq_HIXtCBrRokWEnfHh-NR4N3FI-FqSNztYY2bXoo8oC4AksKzym2dKnxjI9Ovo8oIlwfkpNrmfZHZLucl_YJoZA-JZqLosgzSDQLlYswMjrgKg1sbAPjEdHNqdQt6zk235jJDt52JterIXE1ZIBX8swjYS-5cMwfG8hk3bLJrrIVbLEE97SB7Pteto1-XFSzofRupyWytUJLud4zHnnVvwb7gZdCqrTzGr6BmJOnPOaZRx477eqHC6FKCmoceiTq1W3juXj6_z96SXZg_8rx6PDgGbmFcq7Cc5dsVxe1fQ6hXpW_aPYUJT-vexP_BU0sZ3I
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VWwnEgfcjqCAjcYBDShI7sSNOVcuqi7otoqxUTpbt2FLpklbdRBX8esZJHBAroRVXx3NwZjz-xjP-BuB1xbVWlcJIVTgbM0bRDxrDYgziLBVM0cT4h8Lz4-JwwT6e5WdbELqu_UUvkPo82ruOvBLD8u0iR7w9ge3F8ae9r10aM6exSLvuHTgnj8uch3KdvoirI4U8_45b01dxiY6nM_THWj-D1jHmHbjd1lfqx41aLv84d6b3YD-83unLTS5220bvmp_rZI7_WNJ9uDvATrLX28kD2LL1Q7g1HxLrj-BiqlYNQXmijGk9fQQ5XaIPuTlfWXLSNkcze00ObNMVbtXkzenJ0ezgLfG3uKTnXrUV6brqEE_b0b-HJDhOfAeW1l_JkfnnGfEFqY9hMf3wZf8wHvowxAbhRBOLyiGo0qooSkczxxU31ndKz7lNyyotlWKaJwbHneEcIUfBtCtR1ZkxIq8y-gQm9WVtnwHBaKcwjDunS4wLndI8zSqTMCUSm9ukioAHzUgzkJT7XhlLGarRvsnfOpVepzLxGXQaQTpKXvVEHRvIlEH5MjxERdcp8TTZQPb9KDuAlR6EbCi9E2xNDk5jJX30TSkriiyCV-Nn3O4-h6Nqe9niHISITDCM6iN42tvouFxEFgKj2zSCbDTajf_F8_8R2oFJc93aF4jLGv1y2Ji_AIEFN1M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+and+accurate+Slicewise+OutLIer+Detection+%28SOLID%29+with+informed+model+estimation+for+diffusion+MRI+data&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Sairanen%2C+Viljami&rft.au=Leemans%2C+A.&rft.au=Tax%2C+C.M.W.&rft.date=2018-11-01&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=181&rft.spage=331&rft.epage=346&rft_id=info:doi/10.1016%2Fj.neuroimage.2018.07.003&rft.externalDocID=S1053811918305950
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon