Fast Gaussian Naïve Bayes for searchlight classification analysis

The searchlight technique is a variant of multivariate pattern analysis (MVPA) that examines neural activity across large sets of small regions, exhaustively covering the whole brain. This usually involves application of classifier algorithms across all searchlights, which entails large computationa...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 163; pp. 471 - 479
Main Authors Ontivero-Ortega, Marlis, Lage-Castellanos, Agustin, Valente, Giancarlo, Goebel, Rainer, Valdes-Sosa, Mitchell
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.12.2017
Elsevier Limited
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
1095-9572
DOI10.1016/j.neuroimage.2017.09.001

Cover

Abstract The searchlight technique is a variant of multivariate pattern analysis (MVPA) that examines neural activity across large sets of small regions, exhaustively covering the whole brain. This usually involves application of classifier algorithms across all searchlights, which entails large computational costs especially when testing the statistical significance of the accuracies with permutation methods. In this article, a new implementation of the Gaussian Naive Bayes classifier is presented (henceforth massive-GNB). This approach allows classification in all searchlights simultaneously, and is faster than previously published searchlight GNB implementations, as well as other more complex classifiers including support vector machines (SVM). To ensure that the gain in speed for GNB would be useful in searchlight analysis, we compared the accuracies of massive-GNB and SVM in detecting the lateral occipital complex (LOC) in an fMRI localizer experiment (26 subjects). Moreover, this region as defined in a meta-analysis of many activation studies was used as a gold standard to compare error rates for both classifiers. In individual searchlights, SVM was somewhat more accurate than massive-GNB and more selective in detecting the meta-analytic LOC. However, with multiple comparison correction at the cluster-level the two classifiers performed equivalently. Thus for cluster-level analysis, massive-GNB produces an accuracy similar to more sophisticated classifiers but with a substantial gain in speed. Massive-GNB (available as a public Matlab toolbox) could facilitate the more widespread use of searchlight analysis. •A fast version of GNB (massive-GNB) was developed for searchlight MVPA.•A great gain of speed was evinced compared to previous GNB versions and SVM.•Massive-GNB expedites permutation tests in the searchlight context.•In real fMRI data, GNB had a similar accuracy to SVM at a cluster-level analysis.•These results facilitate more widespread usage of searchlight MVPA.
AbstractList The searchlight technique is a variant of multivariate pattern analysis (MVPA) that examines neural activity across large sets of small regions, exhaustively covering the whole brain. This usually involves application of classifier algorithms across all searchlights, which entails large computational costs especially when testing the statistical significance of the accuracies with permutation methods. In this article, a new implementation of the Gaussian Naive Bayes classifier is presented (henceforth massive-GNB). This approach allows classification in all searchlights simultaneously, and is faster than previously published searchlight GNB implementations, as well as other more complex classifiers including support vector machines (SVM). To ensure that the gain in speed for GNB would be useful in searchlight analysis, we compared the accuracies of massive-GNB and SVM in detecting the lateral occipital complex (LOC) in an fMRI localizer experiment (26 subjects). Moreover, this region as defined in a meta-analysis of many activation studies was used as a gold standard to compare error rates for both classifiers. In individual searchlights, SVM was somewhat more accurate than massive-GNB and more selective in detecting the meta-analytic LOC. However, with multiple comparison correction at the cluster-level the two classifiers performed equivalently. Thus for cluster-level analysis, massive-GNB produces an accuracy similar to more sophisticated classifiers but with a substantial gain in speed. Massive-GNB (available as a public Matlab toolbox) could facilitate the more widespread use of searchlight analysis.
The searchlight technique is a variant of multivariate pattern analysis (MVPA) that examines neural activity across large sets of small regions, exhaustively covering the whole brain. This usually involves application of classifier algorithms across all searchlights, which entails large computational costs especially when testing the statistical significance of the accuracies with permutation methods. In this article, a new implementation of the Gaussian Naive Bayes classifier is presented (henceforth massive-GNB). This approach allows classification in all searchlights simultaneously, and is faster than previously published searchlight GNB implementations, as well as other more complex classifiers including support vector machines (SVM). To ensure that the gain in speed for GNB would be useful in searchlight analysis, we compared the accuracies of massive-GNB and SVM in detecting the lateral occipital complex (LOC) in an fMRI localizer experiment (26 subjects). Moreover, this region as defined in a meta-analysis of many activation studies was used as a gold standard to compare error rates for both classifiers. In individual searchlights, SVM was somewhat more accurate than massive-GNB and more selective in detecting the meta-analytic LOC. However, with multiple comparison correction at the cluster-level the two classifiers performed equivalently. Thus for cluster-level analysis, massive-GNB produces an accuracy similar to more sophisticated classifiers but with a substantial gain in speed. Massive-GNB (available as a public Matlab toolbox) could facilitate the more widespread use of searchlight analysis. •A fast version of GNB (massive-GNB) was developed for searchlight MVPA.•A great gain of speed was evinced compared to previous GNB versions and SVM.•Massive-GNB expedites permutation tests in the searchlight context.•In real fMRI data, GNB had a similar accuracy to SVM at a cluster-level analysis.•These results facilitate more widespread usage of searchlight MVPA.
The searchlight technique is a variant of multivariate pattern analysis (MVPA) that examines neural activity across large sets of small regions, exhaustively covering the whole brain. This usually involves application of classifier algorithms across all searchlights, which entails large computational costs especially when testing the statistical significance of the accuracies with permutation methods. In this article, a new implementation of the Gaussian Naive Bayes classifier is presented (henceforth massive-GNB). This approach allows classification in all searchlights simultaneously, and is faster than previously published searchlight GNB implementations, as well as other more complex classifiers including support vector machines (SVM). To ensure that the gain in speed for GNB would be useful in searchlight analysis, we compared the accuracies of massive-GNB and SVM in detecting the lateral occipital complex (LOC) in an fMRI localizer experiment (26 subjects). Moreover, this region as defined in a meta-analysis of many activation studies was used as a gold standard to compare error rates for both classifiers. In individual searchlights, SVM was somewhat more accurate than massive-GNB and more selective in detecting the meta-analytic LOC. However, with multiple comparison correction at the cluster-level the two classifiers performed equivalently. Thus for cluster-level analysis, massive-GNB produces an accuracy similar to more sophisticated classifiers but with a substantial gain in speed. Massive-GNB (available as a public Matlab toolbox) could facilitate the more widespread use of searchlight analysis.The searchlight technique is a variant of multivariate pattern analysis (MVPA) that examines neural activity across large sets of small regions, exhaustively covering the whole brain. This usually involves application of classifier algorithms across all searchlights, which entails large computational costs especially when testing the statistical significance of the accuracies with permutation methods. In this article, a new implementation of the Gaussian Naive Bayes classifier is presented (henceforth massive-GNB). This approach allows classification in all searchlights simultaneously, and is faster than previously published searchlight GNB implementations, as well as other more complex classifiers including support vector machines (SVM). To ensure that the gain in speed for GNB would be useful in searchlight analysis, we compared the accuracies of massive-GNB and SVM in detecting the lateral occipital complex (LOC) in an fMRI localizer experiment (26 subjects). Moreover, this region as defined in a meta-analysis of many activation studies was used as a gold standard to compare error rates for both classifiers. In individual searchlights, SVM was somewhat more accurate than massive-GNB and more selective in detecting the meta-analytic LOC. However, with multiple comparison correction at the cluster-level the two classifiers performed equivalently. Thus for cluster-level analysis, massive-GNB produces an accuracy similar to more sophisticated classifiers but with a substantial gain in speed. Massive-GNB (available as a public Matlab toolbox) could facilitate the more widespread use of searchlight analysis.
Author Valente, Giancarlo
Valdes-Sosa, Mitchell
Ontivero-Ortega, Marlis
Lage-Castellanos, Agustin
Goebel, Rainer
Author_xml – sequence: 1
  givenname: Marlis
  surname: Ontivero-Ortega
  fullname: Ontivero-Ortega, Marlis
  organization: Department of NeuroInformatics, Cuban Center for Neuroscience, Cuba
– sequence: 2
  givenname: Agustin
  surname: Lage-Castellanos
  fullname: Lage-Castellanos, Agustin
  organization: Department of NeuroInformatics, Cuban Center for Neuroscience, Cuba
– sequence: 3
  givenname: Giancarlo
  surname: Valente
  fullname: Valente, Giancarlo
  organization: Department of Cognitive Neuroscience, Maastricht University, Netherlands
– sequence: 4
  givenname: Rainer
  surname: Goebel
  fullname: Goebel, Rainer
  organization: Department of Cognitive Neuroscience, Maastricht University, Netherlands
– sequence: 5
  givenname: Mitchell
  surname: Valdes-Sosa
  fullname: Valdes-Sosa, Mitchell
  email: mitchell@cneuro.edu.cu
  organization: Department of Cognitive Neuroscience Cuban, Center for Neuroscience, Cuba
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28877514$$D View this record in MEDLINE/PubMed
BookMark eNqVkc1u1DAURiNURH_gFVAkNmwSruMktjcIpqIFqYINrC3Hvm49eJzBToryVDwEL4aHKSDNaljZi_N9uvfc8-IkjAGLoiRQEyD9q3UdcI6j26hbrBsgrAZRA5BHxRkB0VWiY83J7t_RihMiTovzlNYAIEjLnxSnDeeMdaQ9K1ZXKk3ltZpTciqUH9XPH_dYrtSCqbRjLBOqqO-8u72bSu1VpqzTanJjKFVQfkkuPS0eW-UTPnt4L4ovV-8-X76vbj5df7h8e1PpDsRU8cZQ0w09qKGlnQHaEgA29IMxFphhVBjo-qZF1WhrBaLltu16RqHlA7WMXhRi3zuHrVq-K-_lNmYFcZEE5M6LXMt_XuTOiwQhs5ecfbnPbuP4bcY0yY1LGr1XAcc5SSJo3ze05ZDRFwfoepxj3nVHMUoIE4xn6vkDNQ8bNH8n-WM2A6_3gI5jShGt1G76LW6KyvljRuYHBf-x7WofxXyOe4dRJu0waDQuop6kGd0xJW8OSrR3IR_ff8XluIpfeqXUVg
CitedBy_id crossref_primary_10_1016_j_eswa_2024_124465
crossref_primary_10_1016_j_prmcm_2022_100124
crossref_primary_10_1186_s12245_025_00861_z
crossref_primary_10_1093_cercor_bhy228
crossref_primary_10_1186_s12872_024_03723_3
crossref_primary_10_3390_molecules26061734
crossref_primary_10_1186_s12911_023_02377_z
crossref_primary_10_1051_e3sconf_202450803010
crossref_primary_10_1016_j_buildenv_2022_108790
crossref_primary_10_1038_s41598_022_14566_3
crossref_primary_10_3390_brainsci14010039
crossref_primary_10_1016_j_foreco_2021_118986
crossref_primary_10_57173_ritc_v1n17a2
crossref_primary_10_1093_bib_bbad349
crossref_primary_10_1038_s41598_020_61435_y
crossref_primary_10_1109_TGRS_2021_3097717
crossref_primary_10_1109_TUFFC_2024_3433407
crossref_primary_10_1109_TVT_2024_3377716
crossref_primary_10_1016_j_eswa_2023_122320
crossref_primary_10_3390_biomedicines12020409
crossref_primary_10_1016_j_cej_2019_122818
crossref_primary_10_1016_j_eswa_2019_06_018
crossref_primary_10_1021_acs_chemrestox_3c00155
crossref_primary_10_5812_ijpbs_118000
crossref_primary_10_1038_s41598_023_34127_6
crossref_primary_10_1109_JSEN_2022_3144689
crossref_primary_10_1088_1742_6596_1282_1_012005
crossref_primary_10_1177_00220345241311888
crossref_primary_10_1007_s00357_024_09474_2
crossref_primary_10_1016_j_iswa_2024_200371
crossref_primary_10_1021_acs_jcim_4c00433
crossref_primary_10_1186_s12882_024_03907_1
crossref_primary_10_1007_s10586_024_04734_7
crossref_primary_10_1007_s42761_020_00023_9
crossref_primary_10_1007_s44227_024_00039_8
crossref_primary_10_1523_ENEURO_0252_17_2018
crossref_primary_10_1109_ACCESS_2022_3155531
crossref_primary_10_1038_s41598_024_85063_y
crossref_primary_10_2139_ssrn_4097411
crossref_primary_10_3349_ymj_2024_0082
crossref_primary_10_1002_int_22838
crossref_primary_10_3390_s22228808
crossref_primary_10_1016_j_heliyon_2024_e38101
crossref_primary_10_1007_s10639_024_12698_9
crossref_primary_10_1007_s12355_025_01553_x
crossref_primary_10_1016_j_jfranklin_2019_10_028
crossref_primary_10_1007_s11069_024_06759_y
crossref_primary_10_1016_j_ipm_2024_104043
crossref_primary_10_1109_JIOT_2022_3195320
crossref_primary_10_3390_land14020299
crossref_primary_10_1016_j_geoderma_2021_115362
crossref_primary_10_3390_computers12030054
crossref_primary_10_1016_j_asoc_2024_112678
crossref_primary_10_1016_j_wneu_2020_11_037
crossref_primary_10_3390_biomimetics9070440
crossref_primary_10_7717_peerj_cs_1697
crossref_primary_10_1016_j_ins_2023_01_133
crossref_primary_10_3390_mi14040749
crossref_primary_10_35234_fumbd_1556260
crossref_primary_10_3934_era_2023127
crossref_primary_10_1016_j_comcom_2022_10_006
crossref_primary_10_1007_s11440_021_01443_y
crossref_primary_10_1016_j_patrec_2020_02_010
crossref_primary_10_1080_00207454_2022_2030327
crossref_primary_10_1142_S0129065720500112
crossref_primary_10_1177_14750902221105377
crossref_primary_10_3389_fendo_2023_1165178
crossref_primary_10_3389_fphy_2024_1347648
crossref_primary_10_1016_j_jclepro_2024_144612
crossref_primary_10_1109_ACCESS_2024_3393981
crossref_primary_10_3390_math12101582
crossref_primary_10_1016_j_jneumeth_2020_108599
crossref_primary_10_1142_S0219622021500644
crossref_primary_10_3390_app8091512
crossref_primary_10_1016_j_eswa_2022_118152
crossref_primary_10_1109_TIM_2021_3090177
crossref_primary_10_3934_mbe_2022091
crossref_primary_10_1016_j_csbj_2020_10_032
crossref_primary_10_3389_fnins_2023_1132088
crossref_primary_10_1109_ACCESS_2020_3044946
crossref_primary_10_3390_su14010040
crossref_primary_10_3390_s24072297
crossref_primary_10_1016_j_neuroimage_2021_118545
crossref_primary_10_3390_electronics12183870
crossref_primary_10_1007_s41019_024_00260_z
crossref_primary_10_1016_j_jneumeth_2021_109334
crossref_primary_10_1016_j_neuroimage_2021_118145
crossref_primary_10_3390_su15043482
crossref_primary_10_36930_40320513
crossref_primary_10_1007_s11814_021_0865_6
crossref_primary_10_3390_ijms232214081
crossref_primary_10_1088_1741_2552_ad83f4
crossref_primary_10_3390_math11143153
Cites_doi 10.1016/j.neuroimage.2016.07.040
10.1016/j.neuroimage.2012.09.063
10.1016/j.neuroimage.2012.08.043
10.1016/j.neuroimage.2005.12.062
10.1016/S0042-6989(01)00073-6
10.1002/hbm.23140
10.1371/journal.pone.0069566
10.1073/pnas.0600244103
10.3389/fninf.2014.00024
10.1016/j.nicl.2014.04.004
10.3389/fninf.2016.00027
10.1016/j.neuroimage.2013.11.043
10.1016/j.neuroimage.2010.04.270
10.1002/hbm.1058
10.1016/j.neuroimage.2008.11.007
10.2307/1932409
10.1016/j.neuroimage.2008.05.021
10.1037/0278-7393.6.2.174
10.1016/j.neuropsychologia.2011.11.007
10.1093/cercor/bhr357
10.1016/j.neuroimage.2010.05.051
10.1016/j.neuron.2015.05.025
10.1016/j.mri.2008.02.016
10.1016/j.neuroimage.2013.03.041
10.3758/s13415-013-0186-2
10.1002/hbm.20169
10.1016/j.neuroimage.2003.08.003
10.1016/j.neuroimage.2010.05.026
10.1016/j.neuroimage.2008.03.061
10.1016/j.neuroimage.2015.10.022
10.1002/hbm.22318
ContentType Journal Article
Copyright 2017 Elsevier Inc.
Copyright © 2017 Elsevier Inc. All rights reserved.
Copyright Elsevier Limited Dec 2017
Copyright_xml – notice: 2017 Elsevier Inc.
– notice: Copyright © 2017 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited Dec 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
ADTOC
UNPAY
DOI 10.1016/j.neuroimage.2017.09.001
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Psychology Database
ProQuest Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology [Accès UNIL ; CHUV ; HEP Vaud ; Sites BCUL]
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
ProQuest One Psychology

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 479
ExternalDocumentID 10.1016/j.neuroimage.2017.09.001
28877514
10_1016_j_neuroimage_2017_09_001
S1053811917307371
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACLOT
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFGL
ADFRT
ADMUD
ADNMO
ADVLN
ADXHL
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRLJ
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HDW
HEI
HMCUK
HMK
HMO
HMQ
HVGLF
HZ~
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SNS
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
WUQ
XPP
YK3
Z5R
ZMT
ZU3
~G-
~HD
3V.
6I.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
LCYCR
NCXOZ
RIG
ZA5
AAYXX
CITATION
PUEGO
AGCQF
AGRNS
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c509t-82d3d5b60ab435d0341007b6bddf07d739d05624ea2cff9eef8f45673048b3f73
IEDL.DBID UNPAY
ISSN 1053-8119
1095-9572
IngestDate Sun Oct 26 03:32:56 EDT 2025
Sun Sep 28 00:12:04 EDT 2025
Tue Oct 07 06:32:56 EDT 2025
Mon Jul 21 06:00:19 EDT 2025
Wed Oct 01 03:43:08 EDT 2025
Thu Apr 24 23:04:24 EDT 2025
Fri Feb 23 02:25:10 EST 2024
Tue Oct 14 19:31:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Gaussian Naïve Bayes
Permutation tests
Support vector machine
Searchlight MVPA
Language English
License Copyright © 2017 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-82d3d5b60ab435d0341007b6bddf07d739d05624ea2cff9eef8f45673048b3f73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.sciencedirect.com/science/article/pii/S1053811917307371
PMID 28877514
PQID 1973117978
PQPubID 2031077
PageCount 9
ParticipantIDs unpaywall_primary_10_1016_j_neuroimage_2017_09_001
proquest_miscellaneous_1936623480
proquest_journals_1973117978
pubmed_primary_28877514
crossref_citationtrail_10_1016_j_neuroimage_2017_09_001
crossref_primary_10_1016_j_neuroimage_2017_09_001
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2017_09_001
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2017_09_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2017
2017-12-00
2017-Dec
20171201
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: December 2017
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2017
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Chumbley, Friston (bib5) 2009; 44
Stelzer, Chen, Turner (bib35) 2013; 65
Wang, Hutchinson, Mitchell (bib37) 2004
Oosterhof, Connolly, Haxby (bib27) 2016; 10
Krzanowski (bib19) 1988
Ku, Gretton, Macke, Logothetis (bib20) 2008; 26
Pereira, Mitchell, Botvinick (bib29) 2009; 45
Zhang, Jiang, Sun, Zhang (bib38) 2017
Eklund, Dufort, Villani, LaConte (bib8) 2014; 8
Jimura, Poldrack (bib17) 2012; 50
Nichols, Holmes (bib23) 2002; 15
Pereira, Botvinick (bib28) 2011; 56
Ojala, Garriga (bib25) 2010; 11
Golomb, Kanwisher (bib11) 2011; 22
Allefeld, Haynes (bib1) 2014; 89
Haynes (bib14) 2015; 87
Valente, Castellanos, Vanacore, Formisano (bib36) 2014; 35
Chang, Lin (bib4) 2011; 2
Hebart, Görgen, Haynes (bib15) 2015; 8
Grill-Spector, Kourtzi, Kanwisher (bib12) 2001; 41
Oosterhof, Wiestler, Downing, Diedrichsen (bib26) 2011; 56
Saxe, Brett, Kanwisher (bib31) 2006; 30
Noirhomme, Lesenfants, Gomez, Soddu, Schrouff, Garraux, Laureys (bib24) 2014; 4
Bishop (bib3) 2006
Kriegeskorte, Goebel, Bandettini (bib18) 2006; 103
Misaki, Kim, Bandettini, Kriegeskorte (bib22) 2010; 53
Etzel, Zacks, Braver (bib10) 2013; 78
Raizada, Lee (bib30) 2013; 8
Coutanche (bib6) 2013; 13
Hayasaka, Nichols (bib13) 2003; 20
Allefeld, Görgen, Haynes (bib2) 2016; 141
Emmerling, Zimmermann, Sorger, Frost, Goebel (bib9) 2016; 125
Jamalabadi, Alizadeh, Schönauer, Leibold, Gais (bib16) 2016; 37
Smith, Nichols (bib32) 2009; 44
MacEvoy, Yang (bib21) 2012; 63
Dice (bib7) 1945; 26
Spiridon, Fischl, Kanwisher (bib34) 2006; 27
Snodgrass, Vanderwart (bib33) 1980; 6
Smith (10.1016/j.neuroimage.2017.09.001_bib32) 2009; 44
Snodgrass (10.1016/j.neuroimage.2017.09.001_bib33) 1980; 6
Misaki (10.1016/j.neuroimage.2017.09.001_bib22) 2010; 53
Kriegeskorte (10.1016/j.neuroimage.2017.09.001_bib18) 2006; 103
Raizada (10.1016/j.neuroimage.2017.09.001_bib30) 2013; 8
Coutanche (10.1016/j.neuroimage.2017.09.001_bib6) 2013; 13
Zhang (10.1016/j.neuroimage.2017.09.001_bib38) 2017
Chumbley (10.1016/j.neuroimage.2017.09.001_bib5) 2009; 44
Pereira (10.1016/j.neuroimage.2017.09.001_bib29) 2009; 45
Golomb (10.1016/j.neuroimage.2017.09.001_bib11) 2011; 22
Jamalabadi (10.1016/j.neuroimage.2017.09.001_bib16) 2016; 37
Krzanowski (10.1016/j.neuroimage.2017.09.001_bib19) 1988
Valente (10.1016/j.neuroimage.2017.09.001_bib36) 2014; 35
Oosterhof (10.1016/j.neuroimage.2017.09.001_bib27) 2016; 10
Pereira (10.1016/j.neuroimage.2017.09.001_bib28) 2011; 56
Ku (10.1016/j.neuroimage.2017.09.001_bib20) 2008; 26
MacEvoy (10.1016/j.neuroimage.2017.09.001_bib21) 2012; 63
Etzel (10.1016/j.neuroimage.2017.09.001_bib10) 2013; 78
Spiridon (10.1016/j.neuroimage.2017.09.001_bib34) 2006; 27
Grill-Spector (10.1016/j.neuroimage.2017.09.001_bib12) 2001; 41
Oosterhof (10.1016/j.neuroimage.2017.09.001_bib26) 2011; 56
Hayasaka (10.1016/j.neuroimage.2017.09.001_bib13) 2003; 20
Allefeld (10.1016/j.neuroimage.2017.09.001_bib2) 2016; 141
Bishop (10.1016/j.neuroimage.2017.09.001_bib3) 2006
Dice (10.1016/j.neuroimage.2017.09.001_bib7) 1945; 26
Saxe (10.1016/j.neuroimage.2017.09.001_bib31) 2006; 30
Chang (10.1016/j.neuroimage.2017.09.001_bib4) 2011; 2
Emmerling (10.1016/j.neuroimage.2017.09.001_bib9) 2016; 125
Jimura (10.1016/j.neuroimage.2017.09.001_bib17) 2012; 50
Wang (10.1016/j.neuroimage.2017.09.001_bib37) 2004
Hebart (10.1016/j.neuroimage.2017.09.001_bib15) 2015; 8
Ojala (10.1016/j.neuroimage.2017.09.001_bib25) 2010; 11
Nichols (10.1016/j.neuroimage.2017.09.001_bib23) 2002; 15
Haynes (10.1016/j.neuroimage.2017.09.001_bib14) 2015; 87
Stelzer (10.1016/j.neuroimage.2017.09.001_bib35) 2013; 65
Eklund (10.1016/j.neuroimage.2017.09.001_bib8) 2014; 8
Allefeld (10.1016/j.neuroimage.2017.09.001_bib1) 2014; 89
Noirhomme (10.1016/j.neuroimage.2017.09.001_bib24) 2014; 4
References_xml – volume: 53
  start-page: 103
  year: 2010
  end-page: 118
  ident: bib22
  article-title: Comparison of multivariate classifiers and response normalizations for pattern-information fMRI
  publication-title: Neuroimage
– year: 1988
  ident: bib19
  article-title: Principles of Multivariate Analysis: a User's Perspective. Clarendon
– volume: 56
  start-page: 476
  year: 2011
  end-page: 496
  ident: bib28
  article-title: Information mapping with pattern classifiers: a comparative study
  publication-title: Neuroimage
– volume: 30
  start-page: 1088
  year: 2006
  end-page: 1096
  ident: bib31
  article-title: Divide and conquer: a defense of functional localizers
  publication-title: Neuroimage
– volume: 89
  start-page: 345
  year: 2014
  end-page: 357
  ident: bib1
  article-title: Searchlight-based multi-voxel pattern analysis of fMRI by cross-validated MANOVA
  publication-title: Neuroimage
– year: 2006
  ident: bib3
  article-title: Pattern Recognition and Machine Learning
– volume: 44
  start-page: 62
  year: 2009
  end-page: 70
  ident: bib5
  article-title: False discovery rate revisited: FDR and topological inference using Gaussian random fields
  publication-title: Neuroimage
– volume: 26
  start-page: 297
  year: 1945
  end-page: 302
  ident: bib7
  article-title: Measures of the amount of ecologic association between species
  publication-title: Ecology
– volume: 125
  start-page: 61
  year: 2016
  end-page: 73
  ident: bib9
  article-title: Decoding the direction of imagined visual motion using 7T ultra-high field fMRI
  publication-title: Neuroimage
– volume: 2
  start-page: 27
  year: 2011
  ident: bib4
  article-title: LIBSVM: a library for support vector machines
  publication-title: ACM Trans. Intelligent Syst. Technol. (TIST)
– volume: 8
  start-page: 24
  year: 2014
  ident: bib8
  article-title: BROCCOLI: software for fast fMRI analysis on many-core CPUs and GPUs
  publication-title: Front. Neuroinf.
– volume: 87
  start-page: 257
  year: 2015
  end-page: 270
  ident: bib14
  article-title: A primer on pattern-based approaches to fMRI: principles, pitfalls, and perspectives
  publication-title: Neuron
– volume: 8
  year: 2015
  ident: bib15
  article-title: The Decoding Toolbox (TDT): a versatile software package for multivariate analyses of functional imaging data
  publication-title: Front. Neuroinf.
– volume: 26
  start-page: 1007
  year: 2008
  end-page: 1014
  ident: bib20
  article-title: Comparison of pattern recognition methods in classifying high-resolution BOLD signals obtained at high magnetic field in monkeys
  publication-title: Magn. Reson. Imaging
– volume: 44
  start-page: 83
  year: 2009
  end-page: 98
  ident: bib32
  article-title: Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference
  publication-title: Neuroimage
– start-page: 709
  year: 2004
  end-page: 716
  ident: bib37
  article-title: Training fMRI classifiers to discriminate cognitive state across multiple human subjects
  publication-title: Proceedings of the 18th Annual Conference on Neural Information Processing Systems
– volume: 4
  start-page: 687
  year: 2014
  end-page: 694
  ident: bib24
  article-title: Biased binomial assessment of cross-validated estimation of classification accuracies illustrated in diagnosis predictions
  publication-title: Neuroimage Clin.
– volume: 6
  start-page: 174
  year: 1980
  ident: bib33
  article-title: A standardized set of 260 pictures: norms for name agreement, image agreement, familiarity, and visual complexity
  publication-title: J. Exp. Psychol. Hum. Learn. Mem.
– volume: 8
  year: 2013
  ident: bib30
  article-title: Smoothness without smoothing: why gaussian naive bayes is not naive for multi-subject searchlight studies
  publication-title: PLoS One
– volume: 63
  start-page: 1901
  year: 2012
  end-page: 1908
  ident: bib21
  article-title: Joint neuronal tuning for object form and position in the human lateral occipital complex
  publication-title: Neuroimage
– volume: 41
  start-page: 1409
  year: 2001
  end-page: 1422
  ident: bib12
  article-title: The lateral occipital complex and its role in object recognition
  publication-title: Vis. Res.
– volume: 141
  start-page: 378
  year: 2016
  end-page: 392
  ident: bib2
  article-title: Valid population inference for information-based imaging: from the second-level t-test to prevalence inference
  publication-title: Neuroimage
– volume: 50
  start-page: 544
  year: 2012
  end-page: 552
  ident: bib17
  article-title: Analyses of regional-average activation and multivoxel pattern information tell complementary stories
  publication-title: Neuropsychologia
– volume: 27
  start-page: 77
  year: 2006
  end-page: 89
  ident: bib34
  article-title: Location and spatial profile of category-specific regions in human extrastriate cortex
  publication-title: Hum. Brain Mapp.
– volume: 11
  start-page: 1833
  year: 2010
  end-page: 1863
  ident: bib25
  article-title: Permutation tests for studying classifier performance
  publication-title: J. Mach. Learn. Res.
– volume: 35
  start-page: 2163
  year: 2014
  end-page: 2177
  ident: bib36
  article-title: Multivariate linear regression of high-dimensional fMRI data with multiple target variables
  publication-title: Hum. Brain Mapp.
– volume: 10
  year: 2016
  ident: bib27
  article-title: CoSMoMVPA: multi-modal multivariate pattern analysis of neuroimaging data in Matlab/GNU Octave
  publication-title: Front. Neuroinf.
– volume: 22
  start-page: 2794
  year: 2011
  end-page: 2810
  ident: bib11
  article-title: Higher level visual cortex represents retinotopic, not spatiotopic, object location
  publication-title: Cereb. Cortex
– volume: 56
  start-page: 593
  year: 2011
  end-page: 600
  ident: bib26
  article-title: A comparison of volume-based and surface-based multi-voxel pattern analysis
  publication-title: Neuroimage
– volume: 13
  start-page: 667
  year: 2013
  end-page: 673
  ident: bib6
  article-title: Distinguishing multi-voxel patterns and mean activation: why, how, and what does it tell us?
  publication-title: Cognitive, Affect. Behav. Neurosci.
– volume: 15
  start-page: 1
  year: 2002
  end-page: 25
  ident: bib23
  article-title: Nonparametric permutation tests for functional neuroimaging: a primer with examples
  publication-title: Hum. Brain Mapp.
– volume: 37
  start-page: 1842
  year: 2016
  end-page: 1855
  ident: bib16
  article-title: Classification based hypothesis testing in neuroscience: below-chance level classification rates and overlooked statistical properties of linear parametric classifiers
  publication-title: Hum. Brain Mapp.
– volume: 20
  start-page: 2343
  year: 2003
  end-page: 2356
  ident: bib13
  article-title: Validating cluster size inference: random field and permutation methods
  publication-title: Neuroimage
– volume: 65
  start-page: 69
  year: 2013
  end-page: 82
  ident: bib35
  article-title: Statistical inference and multiple testing correction in classification-based multi-voxel pattern analysis (MVPA): random permutations and cluster size control
  publication-title: Neuroimage
– volume: 78
  start-page: 261
  year: 2013
  end-page: 269
  ident: bib10
  article-title: Searchlight analysis: promise, pitfalls, and potential
  publication-title: Neuroimage
– volume: 45
  start-page: 199
  year: 2009
  end-page: 209
  ident: bib29
  article-title: Machine learning classi!ers and fMRI: a tutorial overview
  publication-title: Neuroimage
– volume: 103
  start-page: 3863
  year: 2006
  end-page: 3868
  ident: bib18
  article-title: Information-based functional brain mapping
  publication-title: Proc. Natl. Acad. Sci.
– start-page: 1
  year: 2017
  end-page: 8
  ident: bib38
  article-title: Potential for false positive results from multi-voxel pattern analysis on functional imaging data
  publication-title: Technol. Health Care, (Preprint)
– volume: 141
  start-page: 378
  year: 2016
  ident: 10.1016/j.neuroimage.2017.09.001_bib2
  article-title: Valid population inference for information-based imaging: from the second-level t-test to prevalence inference
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.07.040
– volume: 65
  start-page: 69
  year: 2013
  ident: 10.1016/j.neuroimage.2017.09.001_bib35
  article-title: Statistical inference and multiple testing correction in classification-based multi-voxel pattern analysis (MVPA): random permutations and cluster size control
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.09.063
– volume: 63
  start-page: 1901
  issue: 4
  year: 2012
  ident: 10.1016/j.neuroimage.2017.09.001_bib21
  article-title: Joint neuronal tuning for object form and position in the human lateral occipital complex
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.08.043
– volume: 30
  start-page: 1088
  year: 2006
  ident: 10.1016/j.neuroimage.2017.09.001_bib31
  article-title: Divide and conquer: a defense of functional localizers
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.12.062
– volume: 2
  start-page: 27
  issue: 3
  year: 2011
  ident: 10.1016/j.neuroimage.2017.09.001_bib4
  article-title: LIBSVM: a library for support vector machines
  publication-title: ACM Trans. Intelligent Syst. Technol. (TIST)
– volume: 41
  start-page: 1409
  issue: 10
  year: 2001
  ident: 10.1016/j.neuroimage.2017.09.001_bib12
  article-title: The lateral occipital complex and its role in object recognition
  publication-title: Vis. Res.
  doi: 10.1016/S0042-6989(01)00073-6
– volume: 37
  start-page: 1842
  issue: 5
  year: 2016
  ident: 10.1016/j.neuroimage.2017.09.001_bib16
  article-title: Classification based hypothesis testing in neuroscience: below-chance level classification rates and overlooked statistical properties of linear parametric classifiers
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.23140
– volume: 8
  issue: 7
  year: 2013
  ident: 10.1016/j.neuroimage.2017.09.001_bib30
  article-title: Smoothness without smoothing: why gaussian naive bayes is not naive for multi-subject searchlight studies
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0069566
– volume: 103
  start-page: 3863
  year: 2006
  ident: 10.1016/j.neuroimage.2017.09.001_bib18
  article-title: Information-based functional brain mapping
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0600244103
– volume: 8
  start-page: 24
  year: 2014
  ident: 10.1016/j.neuroimage.2017.09.001_bib8
  article-title: BROCCOLI: software for fast fMRI analysis on many-core CPUs and GPUs
  publication-title: Front. Neuroinf.
  doi: 10.3389/fninf.2014.00024
– volume: 4
  start-page: 687
  year: 2014
  ident: 10.1016/j.neuroimage.2017.09.001_bib24
  article-title: Biased binomial assessment of cross-validated estimation of classification accuracies illustrated in diagnosis predictions
  publication-title: Neuroimage Clin.
  doi: 10.1016/j.nicl.2014.04.004
– year: 2006
  ident: 10.1016/j.neuroimage.2017.09.001_bib3
– volume: 10
  year: 2016
  ident: 10.1016/j.neuroimage.2017.09.001_bib27
  article-title: CoSMoMVPA: multi-modal multivariate pattern analysis of neuroimaging data in Matlab/GNU Octave
  publication-title: Front. Neuroinf.
  doi: 10.3389/fninf.2016.00027
– year: 1988
  ident: 10.1016/j.neuroimage.2017.09.001_bib19
– volume: 8
  issue: 88
  year: 2015
  ident: 10.1016/j.neuroimage.2017.09.001_bib15
  article-title: The Decoding Toolbox (TDT): a versatile software package for multivariate analyses of functional imaging data
  publication-title: Front. Neuroinf.
– volume: 89
  start-page: 345
  year: 2014
  ident: 10.1016/j.neuroimage.2017.09.001_bib1
  article-title: Searchlight-based multi-voxel pattern analysis of fMRI by cross-validated MANOVA
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.11.043
– volume: 56
  start-page: 593
  issue: 2
  year: 2011
  ident: 10.1016/j.neuroimage.2017.09.001_bib26
  article-title: A comparison of volume-based and surface-based multi-voxel pattern analysis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.04.270
– volume: 15
  start-page: 1
  issue: 1
  year: 2002
  ident: 10.1016/j.neuroimage.2017.09.001_bib23
  article-title: Nonparametric permutation tests for functional neuroimaging: a primer with examples
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.1058
– volume: 45
  start-page: 199
  year: 2009
  ident: 10.1016/j.neuroimage.2017.09.001_bib29
  article-title: Machine learning classi!ers and fMRI: a tutorial overview
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.11.007
– volume: 26
  start-page: 297
  issue: 3
  year: 1945
  ident: 10.1016/j.neuroimage.2017.09.001_bib7
  article-title: Measures of the amount of ecologic association between species
  publication-title: Ecology
  doi: 10.2307/1932409
– volume: 44
  start-page: 62
  issue: 1
  year: 2009
  ident: 10.1016/j.neuroimage.2017.09.001_bib5
  article-title: False discovery rate revisited: FDR and topological inference using Gaussian random fields
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.05.021
– volume: 6
  start-page: 174
  issue: 2
  year: 1980
  ident: 10.1016/j.neuroimage.2017.09.001_bib33
  article-title: A standardized set of 260 pictures: norms for name agreement, image agreement, familiarity, and visual complexity
  publication-title: J. Exp. Psychol. Hum. Learn. Mem.
  doi: 10.1037/0278-7393.6.2.174
– volume: 50
  start-page: 544
  issue: 4
  year: 2012
  ident: 10.1016/j.neuroimage.2017.09.001_bib17
  article-title: Analyses of regional-average activation and multivoxel pattern information tell complementary stories
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2011.11.007
– volume: 22
  start-page: 2794
  issue: 12
  year: 2011
  ident: 10.1016/j.neuroimage.2017.09.001_bib11
  article-title: Higher level visual cortex represents retinotopic, not spatiotopic, object location
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhr357
– volume: 53
  start-page: 103
  issue: 1
  year: 2010
  ident: 10.1016/j.neuroimage.2017.09.001_bib22
  article-title: Comparison of multivariate classifiers and response normalizations for pattern-information fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.05.051
– start-page: 709
  year: 2004
  ident: 10.1016/j.neuroimage.2017.09.001_bib37
  article-title: Training fMRI classifiers to discriminate cognitive state across multiple human subjects
– volume: 87
  start-page: 257
  issue: 2
  year: 2015
  ident: 10.1016/j.neuroimage.2017.09.001_bib14
  article-title: A primer on pattern-based approaches to fMRI: principles, pitfalls, and perspectives
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.05.025
– volume: 26
  start-page: 1007
  issue: 7
  year: 2008
  ident: 10.1016/j.neuroimage.2017.09.001_bib20
  article-title: Comparison of pattern recognition methods in classifying high-resolution BOLD signals obtained at high magnetic field in monkeys
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2008.02.016
– volume: 78
  start-page: 261
  year: 2013
  ident: 10.1016/j.neuroimage.2017.09.001_bib10
  article-title: Searchlight analysis: promise, pitfalls, and potential
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.03.041
– volume: 13
  start-page: 667
  issue: 3
  year: 2013
  ident: 10.1016/j.neuroimage.2017.09.001_bib6
  article-title: Distinguishing multi-voxel patterns and mean activation: why, how, and what does it tell us?
  publication-title: Cognitive, Affect. Behav. Neurosci.
  doi: 10.3758/s13415-013-0186-2
– volume: 27
  start-page: 77
  issue: 1
  year: 2006
  ident: 10.1016/j.neuroimage.2017.09.001_bib34
  article-title: Location and spatial profile of category-specific regions in human extrastriate cortex
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20169
– volume: 20
  start-page: 2343
  issue: 4
  year: 2003
  ident: 10.1016/j.neuroimage.2017.09.001_bib13
  article-title: Validating cluster size inference: random field and permutation methods
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2003.08.003
– volume: 11
  start-page: 1833
  issue: Jun
  year: 2010
  ident: 10.1016/j.neuroimage.2017.09.001_bib25
  article-title: Permutation tests for studying classifier performance
  publication-title: J. Mach. Learn. Res.
– volume: 56
  start-page: 476
  year: 2011
  ident: 10.1016/j.neuroimage.2017.09.001_bib28
  article-title: Information mapping with pattern classifiers: a comparative study
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.05.026
– volume: 44
  start-page: 83
  issue: 1
  year: 2009
  ident: 10.1016/j.neuroimage.2017.09.001_bib32
  article-title: Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.03.061
– volume: 125
  start-page: 61
  year: 2016
  ident: 10.1016/j.neuroimage.2017.09.001_bib9
  article-title: Decoding the direction of imagined visual motion using 7T ultra-high field fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.10.022
– volume: 35
  start-page: 2163
  issue: 5
  year: 2014
  ident: 10.1016/j.neuroimage.2017.09.001_bib36
  article-title: Multivariate linear regression of high-dimensional fMRI data with multiple target variables
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22318
– start-page: 1
  year: 2017
  ident: 10.1016/j.neuroimage.2017.09.001_bib38
  article-title: Potential for false positive results from multi-voxel pattern analysis on functional imaging data
  publication-title: Technol. Health Care, (Preprint)
SSID ssj0009148
Score 2.5620143
Snippet The searchlight technique is a variant of multivariate pattern analysis (MVPA) that examines neural activity across large sets of small regions, exhaustively...
SourceID unpaywall
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 471
SubjectTerms Bayes Theorem
Bayesian analysis
Binomial distribution
Brain - physiology
Brain mapping
Brain Mapping - methods
Classification
Computational neuroscience
Functional magnetic resonance imaging
Gaussian Naïve Bayes
Humans
Magnetic Resonance Imaging - methods
Pattern Recognition, Automated - methods
Permutation tests
Searchlight MVPA
Studies
Support Vector Machine
Systematic review
SummonAdditionalLinks – databaseName: Science Direct
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB4hDtAeqkL_0gIyUq9h8-ONHfUEiAVVggtF4mbZsS1ttQ2r7m4rLn2lPkRfrDOxE1qhSiv1mMSjxOPxzOf4mzHAe5NJnvvGpTZ3Vcq55amsK5t6Z8u8cHnhu18Xl1fVxQ3_eDu-3YDTPheGaJXR9wef3nnreGcUtTmaT6eja0QGGG5ovUF22uWRcy7oFIOjHw80jzrnIR1uXKbUOrJ5Aserqxk5_YIzl0he4igUr_xXiHoMQZ_C9qqd6_vvejb7IyxNnsOziCfZcfjkHdhw7S5sXcYd8xdwMtGLJTvXqwVlS7Ir_evnN8dO9L1bMMSrLFj6jJborCEkTdShbrSYjvVKXsLN5OzT6UUaz01IGwz_y1QWtrRjU2XaIBiyGQYqRAKmMtb6TFhR1pZgD3e6aLyvnfPSI45CNXJpSi_KV7DZ3rXuDTCLK-dx6bzwGeqW5ybDVwhufFVI76VIQPSqUk0sKk5nW8xUzx77rB6UrEjJKquJSJdAPkjOQ2GNNWTqfjRUnziKrk6h919D9sMg-5eBrSm91w--ipN8oXI69gsdmpAJHA6PcXrSnotu3d2K2pQVIkwuswReB6MZuluggxcIWBMoBitaWxdv_6s_7-AJXQVezh5sLr-u3D6iq6U56KbPb7TRI6k
  priority: 102
  providerName: Elsevier
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3ditQwFD6ss6DuxeK_1VUieBtt2kyTIiI7suMi7CDiwt6FpElAGTujM-OyT-VD-GKeNGlHEGWum0Pb5Px8Sc75DsBzk0vOfOOoZa6inFtOZV1Z6p0tWeFY4buji7NZdXrO31-ML_Zg1tfChLTK3id2jtoumnBG_pKFHkuoPUK-WX6joWtUuF3tW2jo1FrBvu4oxq7BfhGYsUawPzmZffi4peFlPBbHjUsqGatTbk_M-OoYJD9_RTsOKV_iRaSy_FfA-huQHsCNTbvUV5d6Pv8jSE1vwWFCl-Q4qsNt2HPtHbh-lu7P78Jkqldr8k5vVqF2ksz0r58_HJnoK7ciiF5J1Pt52LCTJuDqkEjUrR3Rib3kHpxPTz69PaWpiwJtEAysqSxsacemyrVBaGRzDFuIC0xlrPW5sKKsbQBB3Omi8b52zkuPqAotn0tTelHeh1G7aN1DIBb30ePSeeFzzhGKmBxfIbjxVSG9lyID0U-VahLFeOh0MVd9LtkXtZ1kFSZZ5XVIq8uADZLLSLOxg0zdr4bqy0jR8SmMBTvIvhpkE9SIEGJH6aN-8VUy-ZXaKmgGz4bHaKzhBka3brEJY8oK8SaXeQYPotIMv1uguxcIXzMoBi3aeS4e_f-LHsPNMDim4RzBaP19454gmFqbp8lCfgPwTh7n
  priority: 102
  providerName: ProQuest
Title Fast Gaussian Naïve Bayes for searchlight classification analysis
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811917307371
https://dx.doi.org/10.1016/j.neuroimage.2017.09.001
https://www.ncbi.nlm.nih.gov/pubmed/28877514
https://www.proquest.com/docview/1973117978
https://www.proquest.com/docview/1936623480
https://www.sciencedirect.com/science/article/pii/S1053811917307371
UnpaywallVersion publishedVersion
Volume 163
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection unibz
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20191231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: ACRLP
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20191231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AIKHN
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AKRWK
  dateStart: 19920801
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20250905
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: 7X7
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1095-9572
  dateEnd: 20250905
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: BENPR
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB4trQTiwJslaKmCxDVtHk6ciFNbbSmPjaqFSuUU2bEtlS3Ziiag5bB_aX8Ef4xx4oSXkCq4xFHiUWLPeOazPTMGeMbdmHgql47wZOQQIogTJ5FwlBSB50vPV_XSxUkazZfk1SpcHcC0jYXRbpVG9zc6vdbW5snI9OZou16P3iIyQHOj5xtaTnUceT8KEZD3oL9MF-P39T5nGDi6Tn2vTyUMaevP03h51Vkj1x9x7Go3Lzps0lf-zUj9CUJvwo2q2LKLL2yz-ckwzW6DaJvU-KOcDauSD_Ovv2V7_M8234FbBrja46beXTiQxT24fmK25u_DZMZ2pf2CVTsdlmmn7NvVZ2lP2IXc2QiM7WZIbfRagJ1ryK59lGqxsJlJjPIAlrPjd9O5Yw5ocHLEGaUT-yIQIY9cxhF1CRctIkIOHnEhlEsFDRKh8RWRzM-VSqRUsULAhv9OYh4oGjyEXnFeyEdgC5yih4FUVLmEIMrhLn6CEq4iP1YqphbQliNZbrKX60M0NlnrpvYh-8HLTPMycxPtsWeB11Fumwwee9AkLdOzNkIVdWqGZmYP2ucd7S9c3ZP6qJWxzGiTXebp88VQc9LYgqfda9QDenOHFfK80nWCCKEsiV0LDhvZ7JrroyWhiIwt8Dth3bsvHv8L0RH0yk-VfIKAreQDuDa89PBKV3QA_fH09M1Cly9fz1MsJ8fp4nRgBu13_YNInw
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NTWLwgPhPYICR4DEscdzYEZoQhZWOrRVCm7Q348S2tKmkhbRM_VR8A174YpwTJ0VCoL7sObn8OZ_vfrZ_dwfwPI8Ei21hQh2bNGRMs1BkqQ6t0UlMTUxtvXUxGqfDE_bhtHe6AT_bXBhHq2x9Yu2o9bRwe-S7seuxhNbDxevZ19B1jXKnq20LDeVbK-i9usSYT-w4NMsLXMJVewfvcLxfUDrYP347DH2XgbDAYDkPBdWJ7uVppHKEDjpCt45xM09zrW3ENU8y7UACM4oW1mbGWGERdeDMYCJPLE_wuVdgiyUsw8XfVn9__PHTquxvzJpkvF4SijjOPJeoYZjVFSvPvqDfcBQz_rIpnfmvAPk3AL4O24typpYXajL5IygObsINj2bJm8b8bsGGKW_D1ZE_r78D_YGq5uS9WlQuV5OM1a8f3w3pq6WpCKJl0ihw4jYISOFwvCMu1bZClK-WchdOLkWf92CznJbmARCN6_ZeYiy3EWMIffIIX8FZblMqrBU8AN6qSha-pLnrrDGRLXftXK6ULJ2SZZQ5Gl8AcSc5a8p6rCGTtaMh27RVdLQSY88asq86WQ9tGsiypvROO_jSu5hKriZEAM-6y-gc3ImPKs104e5JUsS3TEQB3G-MpvtdiuGFI1wOgHZWtLYuHv7_i57C9vB4dCSPDsaHj-CaE2woQDuwOf-2MI8RyM3zJ362EPh82RP0NwlBW6c
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhU4IN4EChgJjqGJ7Y0dIYQoZWkpXXGg0t5cJ7Ylqm12IbtU-6u4c-WPMY6TLBIC7aXnZPIYz-Oz_XkG4FmRSJ660sYmtVnMueGxzDMTO2tYSm1KXbN0cTTK9o_5h_FgvAE_u7MwnlbZxcQmUJtp6dfId1LfYwmtR8gd19IiPu0NX8--xr6DlN9p7dppBBM5tMtznL7Vrw72cKyfUzp89_ntftx2GIhLTJTzWFLDzKDIEl0gbDAJhnTMmUVWGOMSYQTLjQcI3GpaOpdb66RDxIFewWXBnGD43EtwWTCWezqhGItVwd-Uh2N4AxbLNM1bFlHgljW1Kr-cYcTw5DLxIhTN_Fdq_Bv6XoMri2qml-d6MvkjHQ5vwPUWx5I3wfBuwoatbsHWUbtTfxt2h7qek_d6UftTmmSkf_34bsmuXtqaIE4mQX0TvzRASo_gPWWpsRKi2zopd-D4QrR5FzaraWXvAzE4Yx8w64RLOEfQUyT4CsELl1HpnBQRiE5VqmyLmfueGhPVsdZO1UrJyitZJbkn8EWQ9pKzUNBjDZm8Gw3VHVjFEKsw66wh-7KXbUFNACtrSm93g6_a4FKrlStE8LS_jGHB7_Xoyk4X_h6WIbLlMongXjCa_ncpJhaBQDkC2lvR2rp48P8vegJb6Jbq48Ho8CFc9XKB-7MNm_NvC_sIEdy8eNy4CoGTi_bN34V1WUE
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ti9QwEB6OPVD8cL5r5ZQIfu1uX9ImxU93h-sh3CLowvmpJE0Cq2tvcduT80_5I_xjzrRpfUNY9FtpM7TpTGaeJM9MAJ7pSPLYVTY0sc1Dzg0PZZGb0FmTxomNE9ctXZwt8tMlf3Wene_ByZALQ7RK7_t7n955a39n5v_mbLNazd4gMsBwQ_MNslPKI9_PMwTkE9hfLl4fvev2ObM0pDbdNZ1KmImBz9OzvLqqkauPOHaJ5iWmffnKvwWpP0HoDbje1ht19Vmt1z8FpvlNMEOXej7Kh2nb6Gn15bdqj__Z51tw4IErO-rb3YY9W9-Ba2d-a_4uHM_VtmEvVbultEy2UN--Xlp2rK7sliEwZv2QWtNaAKsIshNHqTMLpnxhlHuwnL94e3Ia-gMawgpxRhPKxKQm03mkNKIuE2FERMihc22Mi4QRaWEIX3Grksq5wlonHQI2_HYudepEeh8m9UVtHwIzOEXPUuuEizhHlKMjfIXg2uWJdE6KAMSgkbLy1cvpEI11OdDU3pc_dFmSLsuoIMZeAPEouekreOwgUwxKL4cMVfSpJYaZHWSfj7K_aHVH6cPBxkrvTbZlTOeLoecUMoCn42P0A7S5o2p70VKbNEcoy2UUwIPeNsfuJhhJBCLjAJLRWHf-F4_-RegQJs2n1j5GwNboJ35AfgdPbkH9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+Gaussian+Na%C3%AFve+Bayes+for+searchlight+classification+analysis&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Ontivero-Ortega%2C+Marlis&rft.au=Lage-Castellanos%2C+Agustin&rft.au=Valente%2C+Giancarlo&rft.au=Goebel%2C+Rainer&rft.date=2017-12-01&rft.pub=Elsevier+Limited&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=163&rft.spage=471&rft_id=info:doi/10.1016%2Fj.neuroimage.2017.09.001&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon