Fast Gaussian Naïve Bayes for searchlight classification analysis
The searchlight technique is a variant of multivariate pattern analysis (MVPA) that examines neural activity across large sets of small regions, exhaustively covering the whole brain. This usually involves application of classifier algorithms across all searchlights, which entails large computationa...
Saved in:
| Published in | NeuroImage (Orlando, Fla.) Vol. 163; pp. 471 - 479 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Inc
01.12.2017
Elsevier Limited |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1053-8119 1095-9572 1095-9572 |
| DOI | 10.1016/j.neuroimage.2017.09.001 |
Cover
| Abstract | The searchlight technique is a variant of multivariate pattern analysis (MVPA) that examines neural activity across large sets of small regions, exhaustively covering the whole brain. This usually involves application of classifier algorithms across all searchlights, which entails large computational costs especially when testing the statistical significance of the accuracies with permutation methods. In this article, a new implementation of the Gaussian Naive Bayes classifier is presented (henceforth massive-GNB). This approach allows classification in all searchlights simultaneously, and is faster than previously published searchlight GNB implementations, as well as other more complex classifiers including support vector machines (SVM). To ensure that the gain in speed for GNB would be useful in searchlight analysis, we compared the accuracies of massive-GNB and SVM in detecting the lateral occipital complex (LOC) in an fMRI localizer experiment (26 subjects). Moreover, this region as defined in a meta-analysis of many activation studies was used as a gold standard to compare error rates for both classifiers. In individual searchlights, SVM was somewhat more accurate than massive-GNB and more selective in detecting the meta-analytic LOC. However, with multiple comparison correction at the cluster-level the two classifiers performed equivalently. Thus for cluster-level analysis, massive-GNB produces an accuracy similar to more sophisticated classifiers but with a substantial gain in speed. Massive-GNB (available as a public Matlab toolbox) could facilitate the more widespread use of searchlight analysis.
•A fast version of GNB (massive-GNB) was developed for searchlight MVPA.•A great gain of speed was evinced compared to previous GNB versions and SVM.•Massive-GNB expedites permutation tests in the searchlight context.•In real fMRI data, GNB had a similar accuracy to SVM at a cluster-level analysis.•These results facilitate more widespread usage of searchlight MVPA. |
|---|---|
| AbstractList | The searchlight technique is a variant of multivariate pattern analysis (MVPA) that examines neural activity across large sets of small regions, exhaustively covering the whole brain. This usually involves application of classifier algorithms across all searchlights, which entails large computational costs especially when testing the statistical significance of the accuracies with permutation methods. In this article, a new implementation of the Gaussian Naive Bayes classifier is presented (henceforth massive-GNB). This approach allows classification in all searchlights simultaneously, and is faster than previously published searchlight GNB implementations, as well as other more complex classifiers including support vector machines (SVM). To ensure that the gain in speed for GNB would be useful in searchlight analysis, we compared the accuracies of massive-GNB and SVM in detecting the lateral occipital complex (LOC) in an fMRI localizer experiment (26 subjects). Moreover, this region as defined in a meta-analysis of many activation studies was used as a gold standard to compare error rates for both classifiers. In individual searchlights, SVM was somewhat more accurate than massive-GNB and more selective in detecting the meta-analytic LOC. However, with multiple comparison correction at the cluster-level the two classifiers performed equivalently. Thus for cluster-level analysis, massive-GNB produces an accuracy similar to more sophisticated classifiers but with a substantial gain in speed. Massive-GNB (available as a public Matlab toolbox) could facilitate the more widespread use of searchlight analysis. The searchlight technique is a variant of multivariate pattern analysis (MVPA) that examines neural activity across large sets of small regions, exhaustively covering the whole brain. This usually involves application of classifier algorithms across all searchlights, which entails large computational costs especially when testing the statistical significance of the accuracies with permutation methods. In this article, a new implementation of the Gaussian Naive Bayes classifier is presented (henceforth massive-GNB). This approach allows classification in all searchlights simultaneously, and is faster than previously published searchlight GNB implementations, as well as other more complex classifiers including support vector machines (SVM). To ensure that the gain in speed for GNB would be useful in searchlight analysis, we compared the accuracies of massive-GNB and SVM in detecting the lateral occipital complex (LOC) in an fMRI localizer experiment (26 subjects). Moreover, this region as defined in a meta-analysis of many activation studies was used as a gold standard to compare error rates for both classifiers. In individual searchlights, SVM was somewhat more accurate than massive-GNB and more selective in detecting the meta-analytic LOC. However, with multiple comparison correction at the cluster-level the two classifiers performed equivalently. Thus for cluster-level analysis, massive-GNB produces an accuracy similar to more sophisticated classifiers but with a substantial gain in speed. Massive-GNB (available as a public Matlab toolbox) could facilitate the more widespread use of searchlight analysis. •A fast version of GNB (massive-GNB) was developed for searchlight MVPA.•A great gain of speed was evinced compared to previous GNB versions and SVM.•Massive-GNB expedites permutation tests in the searchlight context.•In real fMRI data, GNB had a similar accuracy to SVM at a cluster-level analysis.•These results facilitate more widespread usage of searchlight MVPA. The searchlight technique is a variant of multivariate pattern analysis (MVPA) that examines neural activity across large sets of small regions, exhaustively covering the whole brain. This usually involves application of classifier algorithms across all searchlights, which entails large computational costs especially when testing the statistical significance of the accuracies with permutation methods. In this article, a new implementation of the Gaussian Naive Bayes classifier is presented (henceforth massive-GNB). This approach allows classification in all searchlights simultaneously, and is faster than previously published searchlight GNB implementations, as well as other more complex classifiers including support vector machines (SVM). To ensure that the gain in speed for GNB would be useful in searchlight analysis, we compared the accuracies of massive-GNB and SVM in detecting the lateral occipital complex (LOC) in an fMRI localizer experiment (26 subjects). Moreover, this region as defined in a meta-analysis of many activation studies was used as a gold standard to compare error rates for both classifiers. In individual searchlights, SVM was somewhat more accurate than massive-GNB and more selective in detecting the meta-analytic LOC. However, with multiple comparison correction at the cluster-level the two classifiers performed equivalently. Thus for cluster-level analysis, massive-GNB produces an accuracy similar to more sophisticated classifiers but with a substantial gain in speed. Massive-GNB (available as a public Matlab toolbox) could facilitate the more widespread use of searchlight analysis.The searchlight technique is a variant of multivariate pattern analysis (MVPA) that examines neural activity across large sets of small regions, exhaustively covering the whole brain. This usually involves application of classifier algorithms across all searchlights, which entails large computational costs especially when testing the statistical significance of the accuracies with permutation methods. In this article, a new implementation of the Gaussian Naive Bayes classifier is presented (henceforth massive-GNB). This approach allows classification in all searchlights simultaneously, and is faster than previously published searchlight GNB implementations, as well as other more complex classifiers including support vector machines (SVM). To ensure that the gain in speed for GNB would be useful in searchlight analysis, we compared the accuracies of massive-GNB and SVM in detecting the lateral occipital complex (LOC) in an fMRI localizer experiment (26 subjects). Moreover, this region as defined in a meta-analysis of many activation studies was used as a gold standard to compare error rates for both classifiers. In individual searchlights, SVM was somewhat more accurate than massive-GNB and more selective in detecting the meta-analytic LOC. However, with multiple comparison correction at the cluster-level the two classifiers performed equivalently. Thus for cluster-level analysis, massive-GNB produces an accuracy similar to more sophisticated classifiers but with a substantial gain in speed. Massive-GNB (available as a public Matlab toolbox) could facilitate the more widespread use of searchlight analysis. |
| Author | Valente, Giancarlo Valdes-Sosa, Mitchell Ontivero-Ortega, Marlis Lage-Castellanos, Agustin Goebel, Rainer |
| Author_xml | – sequence: 1 givenname: Marlis surname: Ontivero-Ortega fullname: Ontivero-Ortega, Marlis organization: Department of NeuroInformatics, Cuban Center for Neuroscience, Cuba – sequence: 2 givenname: Agustin surname: Lage-Castellanos fullname: Lage-Castellanos, Agustin organization: Department of NeuroInformatics, Cuban Center for Neuroscience, Cuba – sequence: 3 givenname: Giancarlo surname: Valente fullname: Valente, Giancarlo organization: Department of Cognitive Neuroscience, Maastricht University, Netherlands – sequence: 4 givenname: Rainer surname: Goebel fullname: Goebel, Rainer organization: Department of Cognitive Neuroscience, Maastricht University, Netherlands – sequence: 5 givenname: Mitchell surname: Valdes-Sosa fullname: Valdes-Sosa, Mitchell email: mitchell@cneuro.edu.cu organization: Department of Cognitive Neuroscience Cuban, Center for Neuroscience, Cuba |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28877514$$D View this record in MEDLINE/PubMed |
| BookMark | eNqVkc1u1DAURiNURH_gFVAkNmwSruMktjcIpqIFqYINrC3Hvm49eJzBToryVDwEL4aHKSDNaljZi_N9uvfc8-IkjAGLoiRQEyD9q3UdcI6j26hbrBsgrAZRA5BHxRkB0VWiY83J7t_RihMiTovzlNYAIEjLnxSnDeeMdaQ9K1ZXKk3ltZpTciqUH9XPH_dYrtSCqbRjLBOqqO-8u72bSu1VpqzTanJjKFVQfkkuPS0eW-UTPnt4L4ovV-8-X76vbj5df7h8e1PpDsRU8cZQ0w09qKGlnQHaEgA29IMxFphhVBjo-qZF1WhrBaLltu16RqHlA7WMXhRi3zuHrVq-K-_lNmYFcZEE5M6LXMt_XuTOiwQhs5ecfbnPbuP4bcY0yY1LGr1XAcc5SSJo3ze05ZDRFwfoepxj3nVHMUoIE4xn6vkDNQ8bNH8n-WM2A6_3gI5jShGt1G76LW6KyvljRuYHBf-x7WofxXyOe4dRJu0waDQuop6kGd0xJW8OSrR3IR_ff8XluIpfeqXUVg |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2024_124465 crossref_primary_10_1016_j_prmcm_2022_100124 crossref_primary_10_1186_s12245_025_00861_z crossref_primary_10_1093_cercor_bhy228 crossref_primary_10_1186_s12872_024_03723_3 crossref_primary_10_3390_molecules26061734 crossref_primary_10_1186_s12911_023_02377_z crossref_primary_10_1051_e3sconf_202450803010 crossref_primary_10_1016_j_buildenv_2022_108790 crossref_primary_10_1038_s41598_022_14566_3 crossref_primary_10_3390_brainsci14010039 crossref_primary_10_1016_j_foreco_2021_118986 crossref_primary_10_57173_ritc_v1n17a2 crossref_primary_10_1093_bib_bbad349 crossref_primary_10_1038_s41598_020_61435_y crossref_primary_10_1109_TGRS_2021_3097717 crossref_primary_10_1109_TUFFC_2024_3433407 crossref_primary_10_1109_TVT_2024_3377716 crossref_primary_10_1016_j_eswa_2023_122320 crossref_primary_10_3390_biomedicines12020409 crossref_primary_10_1016_j_cej_2019_122818 crossref_primary_10_1016_j_eswa_2019_06_018 crossref_primary_10_1021_acs_chemrestox_3c00155 crossref_primary_10_5812_ijpbs_118000 crossref_primary_10_1038_s41598_023_34127_6 crossref_primary_10_1109_JSEN_2022_3144689 crossref_primary_10_1088_1742_6596_1282_1_012005 crossref_primary_10_1177_00220345241311888 crossref_primary_10_1007_s00357_024_09474_2 crossref_primary_10_1016_j_iswa_2024_200371 crossref_primary_10_1021_acs_jcim_4c00433 crossref_primary_10_1186_s12882_024_03907_1 crossref_primary_10_1007_s10586_024_04734_7 crossref_primary_10_1007_s42761_020_00023_9 crossref_primary_10_1007_s44227_024_00039_8 crossref_primary_10_1523_ENEURO_0252_17_2018 crossref_primary_10_1109_ACCESS_2022_3155531 crossref_primary_10_1038_s41598_024_85063_y crossref_primary_10_2139_ssrn_4097411 crossref_primary_10_3349_ymj_2024_0082 crossref_primary_10_1002_int_22838 crossref_primary_10_3390_s22228808 crossref_primary_10_1016_j_heliyon_2024_e38101 crossref_primary_10_1007_s10639_024_12698_9 crossref_primary_10_1007_s12355_025_01553_x crossref_primary_10_1016_j_jfranklin_2019_10_028 crossref_primary_10_1007_s11069_024_06759_y crossref_primary_10_1016_j_ipm_2024_104043 crossref_primary_10_1109_JIOT_2022_3195320 crossref_primary_10_3390_land14020299 crossref_primary_10_1016_j_geoderma_2021_115362 crossref_primary_10_3390_computers12030054 crossref_primary_10_1016_j_asoc_2024_112678 crossref_primary_10_1016_j_wneu_2020_11_037 crossref_primary_10_3390_biomimetics9070440 crossref_primary_10_7717_peerj_cs_1697 crossref_primary_10_1016_j_ins_2023_01_133 crossref_primary_10_3390_mi14040749 crossref_primary_10_35234_fumbd_1556260 crossref_primary_10_3934_era_2023127 crossref_primary_10_1016_j_comcom_2022_10_006 crossref_primary_10_1007_s11440_021_01443_y crossref_primary_10_1016_j_patrec_2020_02_010 crossref_primary_10_1080_00207454_2022_2030327 crossref_primary_10_1142_S0129065720500112 crossref_primary_10_1177_14750902221105377 crossref_primary_10_3389_fendo_2023_1165178 crossref_primary_10_3389_fphy_2024_1347648 crossref_primary_10_1016_j_jclepro_2024_144612 crossref_primary_10_1109_ACCESS_2024_3393981 crossref_primary_10_3390_math12101582 crossref_primary_10_1016_j_jneumeth_2020_108599 crossref_primary_10_1142_S0219622021500644 crossref_primary_10_3390_app8091512 crossref_primary_10_1016_j_eswa_2022_118152 crossref_primary_10_1109_TIM_2021_3090177 crossref_primary_10_3934_mbe_2022091 crossref_primary_10_1016_j_csbj_2020_10_032 crossref_primary_10_3389_fnins_2023_1132088 crossref_primary_10_1109_ACCESS_2020_3044946 crossref_primary_10_3390_su14010040 crossref_primary_10_3390_s24072297 crossref_primary_10_1016_j_neuroimage_2021_118545 crossref_primary_10_3390_electronics12183870 crossref_primary_10_1007_s41019_024_00260_z crossref_primary_10_1016_j_jneumeth_2021_109334 crossref_primary_10_1016_j_neuroimage_2021_118145 crossref_primary_10_3390_su15043482 crossref_primary_10_36930_40320513 crossref_primary_10_1007_s11814_021_0865_6 crossref_primary_10_3390_ijms232214081 crossref_primary_10_1088_1741_2552_ad83f4 crossref_primary_10_3390_math11143153 |
| Cites_doi | 10.1016/j.neuroimage.2016.07.040 10.1016/j.neuroimage.2012.09.063 10.1016/j.neuroimage.2012.08.043 10.1016/j.neuroimage.2005.12.062 10.1016/S0042-6989(01)00073-6 10.1002/hbm.23140 10.1371/journal.pone.0069566 10.1073/pnas.0600244103 10.3389/fninf.2014.00024 10.1016/j.nicl.2014.04.004 10.3389/fninf.2016.00027 10.1016/j.neuroimage.2013.11.043 10.1016/j.neuroimage.2010.04.270 10.1002/hbm.1058 10.1016/j.neuroimage.2008.11.007 10.2307/1932409 10.1016/j.neuroimage.2008.05.021 10.1037/0278-7393.6.2.174 10.1016/j.neuropsychologia.2011.11.007 10.1093/cercor/bhr357 10.1016/j.neuroimage.2010.05.051 10.1016/j.neuron.2015.05.025 10.1016/j.mri.2008.02.016 10.1016/j.neuroimage.2013.03.041 10.3758/s13415-013-0186-2 10.1002/hbm.20169 10.1016/j.neuroimage.2003.08.003 10.1016/j.neuroimage.2010.05.026 10.1016/j.neuroimage.2008.03.061 10.1016/j.neuroimage.2015.10.022 10.1002/hbm.22318 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier Inc. Copyright © 2017 Elsevier Inc. All rights reserved. Copyright Elsevier Limited Dec 2017 |
| Copyright_xml | – notice: 2017 Elsevier Inc. – notice: Copyright © 2017 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Dec 2017 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 ADTOC UNPAY |
| DOI | 10.1016/j.neuroimage.2017.09.001 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Psychology Database ProQuest Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology [Accès UNIL ; CHUV ; HEP Vaud ; Sites BCUL] ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE ProQuest One Psychology MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1095-9572 |
| EndPage | 479 |
| ExternalDocumentID | 10.1016/j.neuroimage.2017.09.001 28877514 10_1016_j_neuroimage_2017_09_001 S1053811917307371 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACLOT ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFGL ADFRT ADMUD ADNMO ADVLN ADXHL AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRLJ AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CAG CCPQU COF CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HDW HEI HMCUK HMK HMO HMQ HVGLF HZ~ IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SES SEW SNS SSH SSN SSZ T5K TEORI UKHRP UV1 WUQ XPP YK3 Z5R ZMT ZU3 ~G- ~HD 3V. 6I. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 LCYCR NCXOZ RIG ZA5 AAYXX CITATION PUEGO AGCQF AGRNS ALIPV CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c509t-82d3d5b60ab435d0341007b6bddf07d739d05624ea2cff9eef8f45673048b3f73 |
| IEDL.DBID | UNPAY |
| ISSN | 1053-8119 1095-9572 |
| IngestDate | Sun Oct 26 03:32:56 EDT 2025 Sun Sep 28 00:12:04 EDT 2025 Tue Oct 07 06:32:56 EDT 2025 Mon Jul 21 06:00:19 EDT 2025 Wed Oct 01 03:43:08 EDT 2025 Thu Apr 24 23:04:24 EDT 2025 Fri Feb 23 02:25:10 EST 2024 Tue Oct 14 19:31:24 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Gaussian Naïve Bayes Permutation tests Support vector machine Searchlight MVPA |
| Language | English |
| License | Copyright © 2017 Elsevier Inc. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c509t-82d3d5b60ab435d0341007b6bddf07d739d05624ea2cff9eef8f45673048b3f73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.sciencedirect.com/science/article/pii/S1053811917307371 |
| PMID | 28877514 |
| PQID | 1973117978 |
| PQPubID | 2031077 |
| PageCount | 9 |
| ParticipantIDs | unpaywall_primary_10_1016_j_neuroimage_2017_09_001 proquest_miscellaneous_1936623480 proquest_journals_1973117978 pubmed_primary_28877514 crossref_citationtrail_10_1016_j_neuroimage_2017_09_001 crossref_primary_10_1016_j_neuroimage_2017_09_001 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2017_09_001 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2017_09_001 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | December 2017 2017-12-00 2017-Dec 20171201 |
| PublicationDateYYYYMMDD | 2017-12-01 |
| PublicationDate_xml | – month: 12 year: 2017 text: December 2017 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Amsterdam |
| PublicationTitle | NeuroImage (Orlando, Fla.) |
| PublicationTitleAlternate | Neuroimage |
| PublicationYear | 2017 |
| Publisher | Elsevier Inc Elsevier Limited |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
| References | Chumbley, Friston (bib5) 2009; 44 Stelzer, Chen, Turner (bib35) 2013; 65 Wang, Hutchinson, Mitchell (bib37) 2004 Oosterhof, Connolly, Haxby (bib27) 2016; 10 Krzanowski (bib19) 1988 Ku, Gretton, Macke, Logothetis (bib20) 2008; 26 Pereira, Mitchell, Botvinick (bib29) 2009; 45 Zhang, Jiang, Sun, Zhang (bib38) 2017 Eklund, Dufort, Villani, LaConte (bib8) 2014; 8 Jimura, Poldrack (bib17) 2012; 50 Nichols, Holmes (bib23) 2002; 15 Pereira, Botvinick (bib28) 2011; 56 Ojala, Garriga (bib25) 2010; 11 Golomb, Kanwisher (bib11) 2011; 22 Allefeld, Haynes (bib1) 2014; 89 Haynes (bib14) 2015; 87 Valente, Castellanos, Vanacore, Formisano (bib36) 2014; 35 Chang, Lin (bib4) 2011; 2 Hebart, Görgen, Haynes (bib15) 2015; 8 Grill-Spector, Kourtzi, Kanwisher (bib12) 2001; 41 Oosterhof, Wiestler, Downing, Diedrichsen (bib26) 2011; 56 Saxe, Brett, Kanwisher (bib31) 2006; 30 Noirhomme, Lesenfants, Gomez, Soddu, Schrouff, Garraux, Laureys (bib24) 2014; 4 Bishop (bib3) 2006 Kriegeskorte, Goebel, Bandettini (bib18) 2006; 103 Misaki, Kim, Bandettini, Kriegeskorte (bib22) 2010; 53 Etzel, Zacks, Braver (bib10) 2013; 78 Raizada, Lee (bib30) 2013; 8 Coutanche (bib6) 2013; 13 Hayasaka, Nichols (bib13) 2003; 20 Allefeld, Görgen, Haynes (bib2) 2016; 141 Emmerling, Zimmermann, Sorger, Frost, Goebel (bib9) 2016; 125 Jamalabadi, Alizadeh, Schönauer, Leibold, Gais (bib16) 2016; 37 Smith, Nichols (bib32) 2009; 44 MacEvoy, Yang (bib21) 2012; 63 Dice (bib7) 1945; 26 Spiridon, Fischl, Kanwisher (bib34) 2006; 27 Snodgrass, Vanderwart (bib33) 1980; 6 Smith (10.1016/j.neuroimage.2017.09.001_bib32) 2009; 44 Snodgrass (10.1016/j.neuroimage.2017.09.001_bib33) 1980; 6 Misaki (10.1016/j.neuroimage.2017.09.001_bib22) 2010; 53 Kriegeskorte (10.1016/j.neuroimage.2017.09.001_bib18) 2006; 103 Raizada (10.1016/j.neuroimage.2017.09.001_bib30) 2013; 8 Coutanche (10.1016/j.neuroimage.2017.09.001_bib6) 2013; 13 Zhang (10.1016/j.neuroimage.2017.09.001_bib38) 2017 Chumbley (10.1016/j.neuroimage.2017.09.001_bib5) 2009; 44 Pereira (10.1016/j.neuroimage.2017.09.001_bib29) 2009; 45 Golomb (10.1016/j.neuroimage.2017.09.001_bib11) 2011; 22 Jamalabadi (10.1016/j.neuroimage.2017.09.001_bib16) 2016; 37 Krzanowski (10.1016/j.neuroimage.2017.09.001_bib19) 1988 Valente (10.1016/j.neuroimage.2017.09.001_bib36) 2014; 35 Oosterhof (10.1016/j.neuroimage.2017.09.001_bib27) 2016; 10 Pereira (10.1016/j.neuroimage.2017.09.001_bib28) 2011; 56 Ku (10.1016/j.neuroimage.2017.09.001_bib20) 2008; 26 MacEvoy (10.1016/j.neuroimage.2017.09.001_bib21) 2012; 63 Etzel (10.1016/j.neuroimage.2017.09.001_bib10) 2013; 78 Spiridon (10.1016/j.neuroimage.2017.09.001_bib34) 2006; 27 Grill-Spector (10.1016/j.neuroimage.2017.09.001_bib12) 2001; 41 Oosterhof (10.1016/j.neuroimage.2017.09.001_bib26) 2011; 56 Hayasaka (10.1016/j.neuroimage.2017.09.001_bib13) 2003; 20 Allefeld (10.1016/j.neuroimage.2017.09.001_bib2) 2016; 141 Bishop (10.1016/j.neuroimage.2017.09.001_bib3) 2006 Dice (10.1016/j.neuroimage.2017.09.001_bib7) 1945; 26 Saxe (10.1016/j.neuroimage.2017.09.001_bib31) 2006; 30 Chang (10.1016/j.neuroimage.2017.09.001_bib4) 2011; 2 Emmerling (10.1016/j.neuroimage.2017.09.001_bib9) 2016; 125 Jimura (10.1016/j.neuroimage.2017.09.001_bib17) 2012; 50 Wang (10.1016/j.neuroimage.2017.09.001_bib37) 2004 Hebart (10.1016/j.neuroimage.2017.09.001_bib15) 2015; 8 Ojala (10.1016/j.neuroimage.2017.09.001_bib25) 2010; 11 Nichols (10.1016/j.neuroimage.2017.09.001_bib23) 2002; 15 Haynes (10.1016/j.neuroimage.2017.09.001_bib14) 2015; 87 Stelzer (10.1016/j.neuroimage.2017.09.001_bib35) 2013; 65 Eklund (10.1016/j.neuroimage.2017.09.001_bib8) 2014; 8 Allefeld (10.1016/j.neuroimage.2017.09.001_bib1) 2014; 89 Noirhomme (10.1016/j.neuroimage.2017.09.001_bib24) 2014; 4 |
| References_xml | – volume: 53 start-page: 103 year: 2010 end-page: 118 ident: bib22 article-title: Comparison of multivariate classifiers and response normalizations for pattern-information fMRI publication-title: Neuroimage – year: 1988 ident: bib19 article-title: Principles of Multivariate Analysis: a User's Perspective. Clarendon – volume: 56 start-page: 476 year: 2011 end-page: 496 ident: bib28 article-title: Information mapping with pattern classifiers: a comparative study publication-title: Neuroimage – volume: 30 start-page: 1088 year: 2006 end-page: 1096 ident: bib31 article-title: Divide and conquer: a defense of functional localizers publication-title: Neuroimage – volume: 89 start-page: 345 year: 2014 end-page: 357 ident: bib1 article-title: Searchlight-based multi-voxel pattern analysis of fMRI by cross-validated MANOVA publication-title: Neuroimage – year: 2006 ident: bib3 article-title: Pattern Recognition and Machine Learning – volume: 44 start-page: 62 year: 2009 end-page: 70 ident: bib5 article-title: False discovery rate revisited: FDR and topological inference using Gaussian random fields publication-title: Neuroimage – volume: 26 start-page: 297 year: 1945 end-page: 302 ident: bib7 article-title: Measures of the amount of ecologic association between species publication-title: Ecology – volume: 125 start-page: 61 year: 2016 end-page: 73 ident: bib9 article-title: Decoding the direction of imagined visual motion using 7T ultra-high field fMRI publication-title: Neuroimage – volume: 2 start-page: 27 year: 2011 ident: bib4 article-title: LIBSVM: a library for support vector machines publication-title: ACM Trans. Intelligent Syst. Technol. (TIST) – volume: 8 start-page: 24 year: 2014 ident: bib8 article-title: BROCCOLI: software for fast fMRI analysis on many-core CPUs and GPUs publication-title: Front. Neuroinf. – volume: 87 start-page: 257 year: 2015 end-page: 270 ident: bib14 article-title: A primer on pattern-based approaches to fMRI: principles, pitfalls, and perspectives publication-title: Neuron – volume: 8 year: 2015 ident: bib15 article-title: The Decoding Toolbox (TDT): a versatile software package for multivariate analyses of functional imaging data publication-title: Front. Neuroinf. – volume: 26 start-page: 1007 year: 2008 end-page: 1014 ident: bib20 article-title: Comparison of pattern recognition methods in classifying high-resolution BOLD signals obtained at high magnetic field in monkeys publication-title: Magn. Reson. Imaging – volume: 44 start-page: 83 year: 2009 end-page: 98 ident: bib32 article-title: Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference publication-title: Neuroimage – start-page: 709 year: 2004 end-page: 716 ident: bib37 article-title: Training fMRI classifiers to discriminate cognitive state across multiple human subjects publication-title: Proceedings of the 18th Annual Conference on Neural Information Processing Systems – volume: 4 start-page: 687 year: 2014 end-page: 694 ident: bib24 article-title: Biased binomial assessment of cross-validated estimation of classification accuracies illustrated in diagnosis predictions publication-title: Neuroimage Clin. – volume: 6 start-page: 174 year: 1980 ident: bib33 article-title: A standardized set of 260 pictures: norms for name agreement, image agreement, familiarity, and visual complexity publication-title: J. Exp. Psychol. Hum. Learn. Mem. – volume: 8 year: 2013 ident: bib30 article-title: Smoothness without smoothing: why gaussian naive bayes is not naive for multi-subject searchlight studies publication-title: PLoS One – volume: 63 start-page: 1901 year: 2012 end-page: 1908 ident: bib21 article-title: Joint neuronal tuning for object form and position in the human lateral occipital complex publication-title: Neuroimage – volume: 41 start-page: 1409 year: 2001 end-page: 1422 ident: bib12 article-title: The lateral occipital complex and its role in object recognition publication-title: Vis. Res. – volume: 141 start-page: 378 year: 2016 end-page: 392 ident: bib2 article-title: Valid population inference for information-based imaging: from the second-level t-test to prevalence inference publication-title: Neuroimage – volume: 50 start-page: 544 year: 2012 end-page: 552 ident: bib17 article-title: Analyses of regional-average activation and multivoxel pattern information tell complementary stories publication-title: Neuropsychologia – volume: 27 start-page: 77 year: 2006 end-page: 89 ident: bib34 article-title: Location and spatial profile of category-specific regions in human extrastriate cortex publication-title: Hum. Brain Mapp. – volume: 11 start-page: 1833 year: 2010 end-page: 1863 ident: bib25 article-title: Permutation tests for studying classifier performance publication-title: J. Mach. Learn. Res. – volume: 35 start-page: 2163 year: 2014 end-page: 2177 ident: bib36 article-title: Multivariate linear regression of high-dimensional fMRI data with multiple target variables publication-title: Hum. Brain Mapp. – volume: 10 year: 2016 ident: bib27 article-title: CoSMoMVPA: multi-modal multivariate pattern analysis of neuroimaging data in Matlab/GNU Octave publication-title: Front. Neuroinf. – volume: 22 start-page: 2794 year: 2011 end-page: 2810 ident: bib11 article-title: Higher level visual cortex represents retinotopic, not spatiotopic, object location publication-title: Cereb. Cortex – volume: 56 start-page: 593 year: 2011 end-page: 600 ident: bib26 article-title: A comparison of volume-based and surface-based multi-voxel pattern analysis publication-title: Neuroimage – volume: 13 start-page: 667 year: 2013 end-page: 673 ident: bib6 article-title: Distinguishing multi-voxel patterns and mean activation: why, how, and what does it tell us? publication-title: Cognitive, Affect. Behav. Neurosci. – volume: 15 start-page: 1 year: 2002 end-page: 25 ident: bib23 article-title: Nonparametric permutation tests for functional neuroimaging: a primer with examples publication-title: Hum. Brain Mapp. – volume: 37 start-page: 1842 year: 2016 end-page: 1855 ident: bib16 article-title: Classification based hypothesis testing in neuroscience: below-chance level classification rates and overlooked statistical properties of linear parametric classifiers publication-title: Hum. Brain Mapp. – volume: 20 start-page: 2343 year: 2003 end-page: 2356 ident: bib13 article-title: Validating cluster size inference: random field and permutation methods publication-title: Neuroimage – volume: 65 start-page: 69 year: 2013 end-page: 82 ident: bib35 article-title: Statistical inference and multiple testing correction in classification-based multi-voxel pattern analysis (MVPA): random permutations and cluster size control publication-title: Neuroimage – volume: 78 start-page: 261 year: 2013 end-page: 269 ident: bib10 article-title: Searchlight analysis: promise, pitfalls, and potential publication-title: Neuroimage – volume: 45 start-page: 199 year: 2009 end-page: 209 ident: bib29 article-title: Machine learning classi!ers and fMRI: a tutorial overview publication-title: Neuroimage – volume: 103 start-page: 3863 year: 2006 end-page: 3868 ident: bib18 article-title: Information-based functional brain mapping publication-title: Proc. Natl. Acad. Sci. – start-page: 1 year: 2017 end-page: 8 ident: bib38 article-title: Potential for false positive results from multi-voxel pattern analysis on functional imaging data publication-title: Technol. Health Care, (Preprint) – volume: 141 start-page: 378 year: 2016 ident: 10.1016/j.neuroimage.2017.09.001_bib2 article-title: Valid population inference for information-based imaging: from the second-level t-test to prevalence inference publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.07.040 – volume: 65 start-page: 69 year: 2013 ident: 10.1016/j.neuroimage.2017.09.001_bib35 article-title: Statistical inference and multiple testing correction in classification-based multi-voxel pattern analysis (MVPA): random permutations and cluster size control publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.09.063 – volume: 63 start-page: 1901 issue: 4 year: 2012 ident: 10.1016/j.neuroimage.2017.09.001_bib21 article-title: Joint neuronal tuning for object form and position in the human lateral occipital complex publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.08.043 – volume: 30 start-page: 1088 year: 2006 ident: 10.1016/j.neuroimage.2017.09.001_bib31 article-title: Divide and conquer: a defense of functional localizers publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.12.062 – volume: 2 start-page: 27 issue: 3 year: 2011 ident: 10.1016/j.neuroimage.2017.09.001_bib4 article-title: LIBSVM: a library for support vector machines publication-title: ACM Trans. Intelligent Syst. Technol. (TIST) – volume: 41 start-page: 1409 issue: 10 year: 2001 ident: 10.1016/j.neuroimage.2017.09.001_bib12 article-title: The lateral occipital complex and its role in object recognition publication-title: Vis. Res. doi: 10.1016/S0042-6989(01)00073-6 – volume: 37 start-page: 1842 issue: 5 year: 2016 ident: 10.1016/j.neuroimage.2017.09.001_bib16 article-title: Classification based hypothesis testing in neuroscience: below-chance level classification rates and overlooked statistical properties of linear parametric classifiers publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.23140 – volume: 8 issue: 7 year: 2013 ident: 10.1016/j.neuroimage.2017.09.001_bib30 article-title: Smoothness without smoothing: why gaussian naive bayes is not naive for multi-subject searchlight studies publication-title: PLoS One doi: 10.1371/journal.pone.0069566 – volume: 103 start-page: 3863 year: 2006 ident: 10.1016/j.neuroimage.2017.09.001_bib18 article-title: Information-based functional brain mapping publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0600244103 – volume: 8 start-page: 24 year: 2014 ident: 10.1016/j.neuroimage.2017.09.001_bib8 article-title: BROCCOLI: software for fast fMRI analysis on many-core CPUs and GPUs publication-title: Front. Neuroinf. doi: 10.3389/fninf.2014.00024 – volume: 4 start-page: 687 year: 2014 ident: 10.1016/j.neuroimage.2017.09.001_bib24 article-title: Biased binomial assessment of cross-validated estimation of classification accuracies illustrated in diagnosis predictions publication-title: Neuroimage Clin. doi: 10.1016/j.nicl.2014.04.004 – year: 2006 ident: 10.1016/j.neuroimage.2017.09.001_bib3 – volume: 10 year: 2016 ident: 10.1016/j.neuroimage.2017.09.001_bib27 article-title: CoSMoMVPA: multi-modal multivariate pattern analysis of neuroimaging data in Matlab/GNU Octave publication-title: Front. Neuroinf. doi: 10.3389/fninf.2016.00027 – year: 1988 ident: 10.1016/j.neuroimage.2017.09.001_bib19 – volume: 8 issue: 88 year: 2015 ident: 10.1016/j.neuroimage.2017.09.001_bib15 article-title: The Decoding Toolbox (TDT): a versatile software package for multivariate analyses of functional imaging data publication-title: Front. Neuroinf. – volume: 89 start-page: 345 year: 2014 ident: 10.1016/j.neuroimage.2017.09.001_bib1 article-title: Searchlight-based multi-voxel pattern analysis of fMRI by cross-validated MANOVA publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.11.043 – volume: 56 start-page: 593 issue: 2 year: 2011 ident: 10.1016/j.neuroimage.2017.09.001_bib26 article-title: A comparison of volume-based and surface-based multi-voxel pattern analysis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.04.270 – volume: 15 start-page: 1 issue: 1 year: 2002 ident: 10.1016/j.neuroimage.2017.09.001_bib23 article-title: Nonparametric permutation tests for functional neuroimaging: a primer with examples publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.1058 – volume: 45 start-page: 199 year: 2009 ident: 10.1016/j.neuroimage.2017.09.001_bib29 article-title: Machine learning classi!ers and fMRI: a tutorial overview publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.11.007 – volume: 26 start-page: 297 issue: 3 year: 1945 ident: 10.1016/j.neuroimage.2017.09.001_bib7 article-title: Measures of the amount of ecologic association between species publication-title: Ecology doi: 10.2307/1932409 – volume: 44 start-page: 62 issue: 1 year: 2009 ident: 10.1016/j.neuroimage.2017.09.001_bib5 article-title: False discovery rate revisited: FDR and topological inference using Gaussian random fields publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.05.021 – volume: 6 start-page: 174 issue: 2 year: 1980 ident: 10.1016/j.neuroimage.2017.09.001_bib33 article-title: A standardized set of 260 pictures: norms for name agreement, image agreement, familiarity, and visual complexity publication-title: J. Exp. Psychol. Hum. Learn. Mem. doi: 10.1037/0278-7393.6.2.174 – volume: 50 start-page: 544 issue: 4 year: 2012 ident: 10.1016/j.neuroimage.2017.09.001_bib17 article-title: Analyses of regional-average activation and multivoxel pattern information tell complementary stories publication-title: Neuropsychologia doi: 10.1016/j.neuropsychologia.2011.11.007 – volume: 22 start-page: 2794 issue: 12 year: 2011 ident: 10.1016/j.neuroimage.2017.09.001_bib11 article-title: Higher level visual cortex represents retinotopic, not spatiotopic, object location publication-title: Cereb. Cortex doi: 10.1093/cercor/bhr357 – volume: 53 start-page: 103 issue: 1 year: 2010 ident: 10.1016/j.neuroimage.2017.09.001_bib22 article-title: Comparison of multivariate classifiers and response normalizations for pattern-information fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.05.051 – start-page: 709 year: 2004 ident: 10.1016/j.neuroimage.2017.09.001_bib37 article-title: Training fMRI classifiers to discriminate cognitive state across multiple human subjects – volume: 87 start-page: 257 issue: 2 year: 2015 ident: 10.1016/j.neuroimage.2017.09.001_bib14 article-title: A primer on pattern-based approaches to fMRI: principles, pitfalls, and perspectives publication-title: Neuron doi: 10.1016/j.neuron.2015.05.025 – volume: 26 start-page: 1007 issue: 7 year: 2008 ident: 10.1016/j.neuroimage.2017.09.001_bib20 article-title: Comparison of pattern recognition methods in classifying high-resolution BOLD signals obtained at high magnetic field in monkeys publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2008.02.016 – volume: 78 start-page: 261 year: 2013 ident: 10.1016/j.neuroimage.2017.09.001_bib10 article-title: Searchlight analysis: promise, pitfalls, and potential publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.03.041 – volume: 13 start-page: 667 issue: 3 year: 2013 ident: 10.1016/j.neuroimage.2017.09.001_bib6 article-title: Distinguishing multi-voxel patterns and mean activation: why, how, and what does it tell us? publication-title: Cognitive, Affect. Behav. Neurosci. doi: 10.3758/s13415-013-0186-2 – volume: 27 start-page: 77 issue: 1 year: 2006 ident: 10.1016/j.neuroimage.2017.09.001_bib34 article-title: Location and spatial profile of category-specific regions in human extrastriate cortex publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20169 – volume: 20 start-page: 2343 issue: 4 year: 2003 ident: 10.1016/j.neuroimage.2017.09.001_bib13 article-title: Validating cluster size inference: random field and permutation methods publication-title: Neuroimage doi: 10.1016/j.neuroimage.2003.08.003 – volume: 11 start-page: 1833 issue: Jun year: 2010 ident: 10.1016/j.neuroimage.2017.09.001_bib25 article-title: Permutation tests for studying classifier performance publication-title: J. Mach. Learn. Res. – volume: 56 start-page: 476 year: 2011 ident: 10.1016/j.neuroimage.2017.09.001_bib28 article-title: Information mapping with pattern classifiers: a comparative study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.05.026 – volume: 44 start-page: 83 issue: 1 year: 2009 ident: 10.1016/j.neuroimage.2017.09.001_bib32 article-title: Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.03.061 – volume: 125 start-page: 61 year: 2016 ident: 10.1016/j.neuroimage.2017.09.001_bib9 article-title: Decoding the direction of imagined visual motion using 7T ultra-high field fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.10.022 – volume: 35 start-page: 2163 issue: 5 year: 2014 ident: 10.1016/j.neuroimage.2017.09.001_bib36 article-title: Multivariate linear regression of high-dimensional fMRI data with multiple target variables publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22318 – start-page: 1 year: 2017 ident: 10.1016/j.neuroimage.2017.09.001_bib38 article-title: Potential for false positive results from multi-voxel pattern analysis on functional imaging data publication-title: Technol. Health Care, (Preprint) |
| SSID | ssj0009148 |
| Score | 2.5620143 |
| Snippet | The searchlight technique is a variant of multivariate pattern analysis (MVPA) that examines neural activity across large sets of small regions, exhaustively... |
| SourceID | unpaywall proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 471 |
| SubjectTerms | Bayes Theorem Bayesian analysis Binomial distribution Brain - physiology Brain mapping Brain Mapping - methods Classification Computational neuroscience Functional magnetic resonance imaging Gaussian Naïve Bayes Humans Magnetic Resonance Imaging - methods Pattern Recognition, Automated - methods Permutation tests Searchlight MVPA Studies Support Vector Machine Systematic review |
| SummonAdditionalLinks | – databaseName: Science Direct dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB4hDtAeqkL_0gIyUq9h8-ONHfUEiAVVggtF4mbZsS1ttQ2r7m4rLn2lPkRfrDOxE1qhSiv1mMSjxOPxzOf4mzHAe5NJnvvGpTZ3Vcq55amsK5t6Z8u8cHnhu18Xl1fVxQ3_eDu-3YDTPheGaJXR9wef3nnreGcUtTmaT6eja0QGGG5ovUF22uWRcy7oFIOjHw80jzrnIR1uXKbUOrJ5Aserqxk5_YIzl0he4igUr_xXiHoMQZ_C9qqd6_vvejb7IyxNnsOziCfZcfjkHdhw7S5sXcYd8xdwMtGLJTvXqwVlS7Ir_evnN8dO9L1bMMSrLFj6jJborCEkTdShbrSYjvVKXsLN5OzT6UUaz01IGwz_y1QWtrRjU2XaIBiyGQYqRAKmMtb6TFhR1pZgD3e6aLyvnfPSI45CNXJpSi_KV7DZ3rXuDTCLK-dx6bzwGeqW5ybDVwhufFVI76VIQPSqUk0sKk5nW8xUzx77rB6UrEjJKquJSJdAPkjOQ2GNNWTqfjRUnziKrk6h919D9sMg-5eBrSm91w--ipN8oXI69gsdmpAJHA6PcXrSnotu3d2K2pQVIkwuswReB6MZuluggxcIWBMoBitaWxdv_6s_7-AJXQVezh5sLr-u3D6iq6U56KbPb7TRI6k priority: 102 providerName: Elsevier – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3ditQwFD6ss6DuxeK_1VUieBtt2kyTIiI7suMi7CDiwt6FpElAGTujM-OyT-VD-GKeNGlHEGWum0Pb5Px8Sc75DsBzk0vOfOOoZa6inFtOZV1Z6p0tWeFY4buji7NZdXrO31-ML_Zg1tfChLTK3id2jtoumnBG_pKFHkuoPUK-WX6joWtUuF3tW2jo1FrBvu4oxq7BfhGYsUawPzmZffi4peFlPBbHjUsqGatTbk_M-OoYJD9_RTsOKV_iRaSy_FfA-huQHsCNTbvUV5d6Pv8jSE1vwWFCl-Q4qsNt2HPtHbh-lu7P78Jkqldr8k5vVqF2ksz0r58_HJnoK7ciiF5J1Pt52LCTJuDqkEjUrR3Rib3kHpxPTz69PaWpiwJtEAysqSxsacemyrVBaGRzDFuIC0xlrPW5sKKsbQBB3Omi8b52zkuPqAotn0tTelHeh1G7aN1DIBb30ePSeeFzzhGKmBxfIbjxVSG9lyID0U-VahLFeOh0MVd9LtkXtZ1kFSZZ5XVIq8uADZLLSLOxg0zdr4bqy0jR8SmMBTvIvhpkE9SIEGJH6aN-8VUy-ZXaKmgGz4bHaKzhBka3brEJY8oK8SaXeQYPotIMv1uguxcIXzMoBi3aeS4e_f-LHsPNMDim4RzBaP19454gmFqbp8lCfgPwTh7n priority: 102 providerName: ProQuest |
| Title | Fast Gaussian Naïve Bayes for searchlight classification analysis |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811917307371 https://dx.doi.org/10.1016/j.neuroimage.2017.09.001 https://www.ncbi.nlm.nih.gov/pubmed/28877514 https://www.proquest.com/docview/1973117978 https://www.proquest.com/docview/1936623480 https://www.sciencedirect.com/science/article/pii/S1053811917307371 |
| UnpaywallVersion | publishedVersion |
| Volume | 163 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection unibz customDbUrl: eissn: 1095-9572 dateEnd: 20191231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: ACRLP dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1095-9572 dateEnd: 20191231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AIKHN dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AKRWK dateStart: 19920801 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1095-9572 dateEnd: 20250905 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: 7X7 dateStart: 20020801 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1095-9572 dateEnd: 20250905 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: BENPR dateStart: 19980501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB4trQTiwJslaKmCxDVtHk6ciFNbbSmPjaqFSuUU2bEtlS3Ziiag5bB_aX8Ef4xx4oSXkCq4xFHiUWLPeOazPTMGeMbdmHgql47wZOQQIogTJ5FwlBSB50vPV_XSxUkazZfk1SpcHcC0jYXRbpVG9zc6vdbW5snI9OZou16P3iIyQHOj5xtaTnUceT8KEZD3oL9MF-P39T5nGDi6Tn2vTyUMaevP03h51Vkj1x9x7Go3Lzps0lf-zUj9CUJvwo2q2LKLL2yz-ckwzW6DaJvU-KOcDauSD_Ovv2V7_M8234FbBrja46beXTiQxT24fmK25u_DZMZ2pf2CVTsdlmmn7NvVZ2lP2IXc2QiM7WZIbfRagJ1ryK59lGqxsJlJjPIAlrPjd9O5Yw5ocHLEGaUT-yIQIY9cxhF1CRctIkIOHnEhlEsFDRKh8RWRzM-VSqRUsULAhv9OYh4oGjyEXnFeyEdgC5yih4FUVLmEIMrhLn6CEq4iP1YqphbQliNZbrKX60M0NlnrpvYh-8HLTPMycxPtsWeB11Fumwwee9AkLdOzNkIVdWqGZmYP2ucd7S9c3ZP6qJWxzGiTXebp88VQc9LYgqfda9QDenOHFfK80nWCCKEsiV0LDhvZ7JrroyWhiIwt8Dth3bsvHv8L0RH0yk-VfIKAreQDuDa89PBKV3QA_fH09M1Cly9fz1MsJ8fp4nRgBu13_YNInw |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NTWLwgPhPYICR4DEscdzYEZoQhZWOrRVCm7Q348S2tKmkhbRM_VR8A174YpwTJ0VCoL7sObn8OZ_vfrZ_dwfwPI8Ei21hQh2bNGRMs1BkqQ6t0UlMTUxtvXUxGqfDE_bhtHe6AT_bXBhHq2x9Yu2o9bRwe-S7seuxhNbDxevZ19B1jXKnq20LDeVbK-i9usSYT-w4NMsLXMJVewfvcLxfUDrYP347DH2XgbDAYDkPBdWJ7uVppHKEDjpCt45xM09zrW3ENU8y7UACM4oW1mbGWGERdeDMYCJPLE_wuVdgiyUsw8XfVn9__PHTquxvzJpkvF4SijjOPJeoYZjVFSvPvqDfcBQz_rIpnfmvAPk3AL4O24typpYXajL5IygObsINj2bJm8b8bsGGKW_D1ZE_r78D_YGq5uS9WlQuV5OM1a8f3w3pq6WpCKJl0ihw4jYISOFwvCMu1bZClK-WchdOLkWf92CznJbmARCN6_ZeYiy3EWMIffIIX8FZblMqrBU8AN6qSha-pLnrrDGRLXftXK6ULJ2SZZQ5Gl8AcSc5a8p6rCGTtaMh27RVdLQSY88asq86WQ9tGsiypvROO_jSu5hKriZEAM-6y-gc3ImPKs104e5JUsS3TEQB3G-MpvtdiuGFI1wOgHZWtLYuHv7_i57C9vB4dCSPDsaHj-CaE2woQDuwOf-2MI8RyM3zJ362EPh82RP0NwlBW6c |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhU4IN4EChgJjqGJ7Y0dIYQoZWkpXXGg0t5cJ7Ylqm12IbtU-6u4c-WPMY6TLBIC7aXnZPIYz-Oz_XkG4FmRSJ660sYmtVnMueGxzDMTO2tYSm1KXbN0cTTK9o_5h_FgvAE_u7MwnlbZxcQmUJtp6dfId1LfYwmtR8gd19IiPu0NX8--xr6DlN9p7dppBBM5tMtznL7Vrw72cKyfUzp89_ntftx2GIhLTJTzWFLDzKDIEl0gbDAJhnTMmUVWGOMSYQTLjQcI3GpaOpdb66RDxIFewWXBnGD43EtwWTCWezqhGItVwd-Uh2N4AxbLNM1bFlHgljW1Kr-cYcTw5DLxIhTN_Fdq_Bv6XoMri2qml-d6MvkjHQ5vwPUWx5I3wfBuwoatbsHWUbtTfxt2h7qek_d6UftTmmSkf_34bsmuXtqaIE4mQX0TvzRASo_gPWWpsRKi2zopd-D4QrR5FzaraWXvAzE4Yx8w64RLOEfQUyT4CsELl1HpnBQRiE5VqmyLmfueGhPVsdZO1UrJyitZJbkn8EWQ9pKzUNBjDZm8Gw3VHVjFEKsw66wh-7KXbUFNACtrSm93g6_a4FKrlStE8LS_jGHB7_Xoyk4X_h6WIbLlMongXjCa_ncpJhaBQDkC2lvR2rp48P8vegJb6Jbq48Ho8CFc9XKB-7MNm_NvC_sIEdy8eNy4CoGTi_bN34V1WUE |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ti9QwEB6OPVD8cL5r5ZQIfu1uX9ImxU93h-sh3CLowvmpJE0Cq2tvcduT80_5I_xjzrRpfUNY9FtpM7TpTGaeJM9MAJ7pSPLYVTY0sc1Dzg0PZZGb0FmTxomNE9ctXZwt8tMlf3Wene_ByZALQ7RK7_t7n955a39n5v_mbLNazd4gMsBwQ_MNslPKI9_PMwTkE9hfLl4fvev2ObM0pDbdNZ1KmImBz9OzvLqqkauPOHaJ5iWmffnKvwWpP0HoDbje1ht19Vmt1z8FpvlNMEOXej7Kh2nb6Gn15bdqj__Z51tw4IErO-rb3YY9W9-Ba2d-a_4uHM_VtmEvVbultEy2UN--Xlp2rK7sliEwZv2QWtNaAKsIshNHqTMLpnxhlHuwnL94e3Ia-gMawgpxRhPKxKQm03mkNKIuE2FERMihc22Mi4QRaWEIX3Grksq5wlonHQI2_HYudepEeh8m9UVtHwIzOEXPUuuEizhHlKMjfIXg2uWJdE6KAMSgkbLy1cvpEI11OdDU3pc_dFmSLsuoIMZeAPEouekreOwgUwxKL4cMVfSpJYaZHWSfj7K_aHVH6cPBxkrvTbZlTOeLoecUMoCn42P0A7S5o2p70VKbNEcoy2UUwIPeNsfuJhhJBCLjAJLRWHf-F4_-RegQJs2n1j5GwNboJ35AfgdPbkH9 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+Gaussian+Na%C3%AFve+Bayes+for+searchlight+classification+analysis&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Ontivero-Ortega%2C+Marlis&rft.au=Lage-Castellanos%2C+Agustin&rft.au=Valente%2C+Giancarlo&rft.au=Goebel%2C+Rainer&rft.date=2017-12-01&rft.pub=Elsevier+Limited&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=163&rft.spage=471&rft_id=info:doi/10.1016%2Fj.neuroimage.2017.09.001&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |