Species-specific disruption of STING-dependent antiviral cellular defenses by the Zika virus NS2B3 protease
The limited host tropism of numerous viruses causing disease in humans remains incompletely understood. One example is Zika virus (ZIKV), an RNA virus that has reemerged in recent years. Here, we demonstrate that ZIKV efficiently infects fibroblasts from humans, great apes, New and Old World monkeys...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 115; no. 27; pp. E6310 - E6318 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
03.07.2018
|
Series | PNAS Plus |
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.1803406115 |
Cover
Abstract | The limited host tropism of numerous viruses causing disease in humans remains incompletely understood. One example is Zika virus (ZIKV), an RNA virus that has reemerged in recent years. Here, we demonstrate that ZIKV efficiently infects fibroblasts from humans, great apes, New and Old World monkeys, but not rodents. ZIKV infection in human—but not murine—cells impairs responses to agonists of the cGMP-AMP synthase/stimulator of IFN genes (cGAS/STING) signaling pathway, suggesting that viral mechanisms to evade antiviral defenses are less effective in rodent cells. Indeed, human, but not mouse, STING is subject to cleavage by proteases encoded by ZIKV, dengue virus, West Nile virus, and Japanese encephalitis virus, but not that of yellow fever virus. The protease cleavage site, located between positions 78/79 of human STING, is only partially conserved in nonhuman primates and rodents, rendering these orthologs resistant to degradation. Genetic disruption of STING increases the susceptibility of mouse—but not human—cells to ZIKV. Accordingly, expression of only mouse, not human, STING in murine STING knockout cells rescues the ZIKV suppression phenotype. STING-deficient mice, however, did not exhibit increased susceptibility, suggesting that other redundant antiviral pathways control ZIKV infection in vivo. Collectively, our data demonstrate that numerous RNA viruses evade cGAS/STING-dependent signaling and affirm the importance of this pathway in shaping the host range of ZIKV. Furthermore, our results explain—at least in part—the decreased permissivity of rodent cells to ZIKV, which could aid in the development of mice model with inheritable susceptibility to ZIKV and other flaviviruses. |
---|---|
AbstractList | The limited host tropism of numerous viruses causing disease in humans remains incompletely understood. One example is Zika virus (ZIKV), an RNA virus that has reemerged in recent years. Here, we demonstrate that ZIKV efficiently infects fibroblasts from humans, great apes, New and Old World monkeys, but not rodents. ZIKV infection in human—but not murine—cells impairs responses to agonists of the cGMP-AMP synthase/stimulator of IFN genes (cGAS/STING) signaling pathway, suggesting that viral mechanisms to evade antiviral defenses are less effective in rodent cells. Indeed, human, but not mouse, STING is subject to cleavage by proteases encoded by ZIKV, dengue virus, West Nile virus, and Japanese encephalitis virus, but not that of yellow fever virus. The protease cleavage site, located between positions 78/79 of human STING, is only partially conserved in nonhuman primates and rodents, rendering these orthologs resistant to degradation. Genetic disruption of STING increases the susceptibility of mouse—but not human—cells to ZIKV. Accordingly, expression of only mouse, not human, STING in murine STING knockout cells rescues the ZIKV suppression phenotype. STING-deficient mice, however, did not exhibit increased susceptibility, suggesting that other redundant antiviral pathways control ZIKV infection in vivo. Collectively, our data demonstrate that numerous RNA viruses evade cGAS/STING-dependent signaling and affirm the importance of this pathway in shaping the host range of ZIKV. Furthermore, our results explain—at least in part—the decreased permissivity of rodent cells to ZIKV, which could aid in the development of mice model with inheritable susceptibility to ZIKV and other flaviviruses. The limited host tropism of numerous viruses causing disease in humans remains incompletely understood. One example is Zika virus (ZIKV), an RNA virus that has reemerged in recent years. Here, we demonstrate that ZIKV efficiently infects fibroblasts from humans, great apes, New and Old World monkeys, but not rodents. ZIKV infection in human-but not murine-cells impairs responses to agonists of the cGMP-AMP synthase/stimulator of IFN genes (cGAS/STING) signaling pathway, suggesting that viral mechanisms to evade antiviral defenses are less effective in rodent cells. Indeed, human, but not mouse, STING is subject to cleavage by proteases encoded by ZIKV, dengue virus, West Nile virus, and Japanese encephalitis virus, but not that of yellow fever virus. The protease cleavage site, located between positions 78/79 of human STING, is only partially conserved in nonhuman primates and rodents, rendering these orthologs resistant to degradation. Genetic disruption of STING increases the susceptibility of mouse-but not human-cells to ZIKV. Accordingly, expression of only mouse, not human, STING in murine STING knockout cells rescues the ZIKV suppression phenotype. STING-deficient mice, however, did not exhibit increased susceptibility, suggesting that other redundant antiviral pathways control ZIKV infection in vivo. Collectively, our data demonstrate that numerous RNA viruses evade cGAS/STING-dependent signaling and affirm the importance of this pathway in shaping the host range of ZIKV. Furthermore, our results explain-at least in part-the decreased permissivity of rodent cells to ZIKV, which could aid in the development of mice model with inheritable susceptibility to ZIKV and other flaviviruses.The limited host tropism of numerous viruses causing disease in humans remains incompletely understood. One example is Zika virus (ZIKV), an RNA virus that has reemerged in recent years. Here, we demonstrate that ZIKV efficiently infects fibroblasts from humans, great apes, New and Old World monkeys, but not rodents. ZIKV infection in human-but not murine-cells impairs responses to agonists of the cGMP-AMP synthase/stimulator of IFN genes (cGAS/STING) signaling pathway, suggesting that viral mechanisms to evade antiviral defenses are less effective in rodent cells. Indeed, human, but not mouse, STING is subject to cleavage by proteases encoded by ZIKV, dengue virus, West Nile virus, and Japanese encephalitis virus, but not that of yellow fever virus. The protease cleavage site, located between positions 78/79 of human STING, is only partially conserved in nonhuman primates and rodents, rendering these orthologs resistant to degradation. Genetic disruption of STING increases the susceptibility of mouse-but not human-cells to ZIKV. Accordingly, expression of only mouse, not human, STING in murine STING knockout cells rescues the ZIKV suppression phenotype. STING-deficient mice, however, did not exhibit increased susceptibility, suggesting that other redundant antiviral pathways control ZIKV infection in vivo. Collectively, our data demonstrate that numerous RNA viruses evade cGAS/STING-dependent signaling and affirm the importance of this pathway in shaping the host range of ZIKV. Furthermore, our results explain-at least in part-the decreased permissivity of rodent cells to ZIKV, which could aid in the development of mice model with inheritable susceptibility to ZIKV and other flaviviruses. To shed light on the host range of Zika virus (ZIKV), we surveyed the virus’ ability to infect cells of evolutionarily diverse species. ZIKV replicates efficiently in human, great ape, Old and New World monkey, but not rodent cells. These observations correlated with ZIKV’s ability to blunt the cGAS/STING signaling pathway in all primate cells tested but not in mice. We demonstrate that an enzyme shared by many flaviviruses (NS2B3) is responsible for functionally inactivating this antiviral defense. Our results highlight the importance of the cGAS/STING pathway in shaping the host range of ZIKV, which in turn may guide the development of murine models with inheritable susceptibility to ZIKV and other flaviviruses. The limited host tropism of numerous viruses causing disease in humans remains incompletely understood. One example is Zika virus (ZIKV), an RNA virus that has reemerged in recent years. Here, we demonstrate that ZIKV efficiently infects fibroblasts from humans, great apes, New and Old World monkeys, but not rodents. ZIKV infection in human—but not murine—cells impairs responses to agonists of the cGMP-AMP synthase/stimulator of IFN genes (cGAS/STING) signaling pathway, suggesting that viral mechanisms to evade antiviral defenses are less effective in rodent cells. Indeed, human, but not mouse, STING is subject to cleavage by proteases encoded by ZIKV, dengue virus, West Nile virus, and Japanese encephalitis virus, but not that of yellow fever virus. The protease cleavage site, located between positions 78/79 of human STING, is only partially conserved in nonhuman primates and rodents, rendering these orthologs resistant to degradation. Genetic disruption of STING increases the susceptibility of mouse—but not human—cells to ZIKV. Accordingly, expression of only mouse, not human, STING in murine STING knockout cells rescues the ZIKV suppression phenotype. STING-deficient mice, however, did not exhibit increased susceptibility, suggesting that other redundant antiviral pathways control ZIKV infection in vivo. Collectively, our data demonstrate that numerous RNA viruses evade cGAS/STING-dependent signaling and affirm the importance of this pathway in shaping the host range of ZIKV. Furthermore, our results explain—at least in part—the decreased permissivity of rodent cells to ZIKV, which could aid in the development of mice model with inheritable susceptibility to ZIKV and other flaviviruses. |
Author | Heller, Brigitte Ding, Qiang Douam, Florian Ploss, Alexander Wei, Lei Balev, Metodi Kim, David Gaska, Jenna M. |
Author_xml | – sequence: 1 givenname: Qiang surname: Ding fullname: Ding, Qiang – sequence: 2 givenname: Jenna M. surname: Gaska fullname: Gaska, Jenna M. – sequence: 3 givenname: Florian surname: Douam fullname: Douam, Florian – sequence: 4 givenname: Lei surname: Wei fullname: Wei, Lei – sequence: 5 givenname: David surname: Kim fullname: Kim, David – sequence: 6 givenname: Metodi surname: Balev fullname: Balev, Metodi – sequence: 7 givenname: Brigitte surname: Heller fullname: Heller, Brigitte – sequence: 8 givenname: Alexander surname: Ploss fullname: Ploss, Alexander |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29915078$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kkFv1DAQhS1URLeFMyeQJS5c0o6dOE4uSKWCUqkqh90TF8txxtTbrB3spFL_PY62pVCJ08jy957e-PmIHPjgkZC3DE4YyPJ09DqdsAbKCmrGxAuyYtCyoq5aOCArAC6LpuLVITlKaQsArWjgFTnkbcsEyGZFbtcjGoepSMu0ztDepTiPkwueBkvXm8vri6LHEX2PfqLaT-7ORT1Qg8MwDzrSHi36hIl293S6QfrD3WqamTnR6zX_XNIxhgl1wtfkpdVDwjcP85hsvn7ZnH8rrr5fXJ6fXRVGQDsVshKyNV1bas7LNg_bIJi-ruqGdzUXUleMM1FaKzttuDVou3wCC1BDX5bH5NPedpy7HfYmx8551RjdTsd7FbRT_954d6N-hjtVs4pzWWWDjw8GMfyaMU1q59KyrvYY5qQ4CJkfWzCZ0Q_P0G2Yo8_bKc6AtRIkNJl6_3eiP1Eea8iA2AMmhpQiWmXcpJcOckA3KAZqqVstdaunurPu9Jnu0fr_ind7xTZNIT4lqQVj-euUvwEgarcx |
CitedBy_id | crossref_primary_10_1080_22221751_2024_2341144 crossref_primary_10_1096_fj_202402209R crossref_primary_10_3389_fmicb_2020_01990 crossref_primary_10_1128_jvi_01332_22 crossref_primary_10_3390_pathogens11050522 crossref_primary_10_3389_fncel_2021_670298 crossref_primary_10_3389_fcimb_2020_576263 crossref_primary_10_1111_1748_5967_12439 crossref_primary_10_1186_s12929_020_0618_6 crossref_primary_10_3390_cells11193043 crossref_primary_10_1002_wsbm_1597 crossref_primary_10_1038_s12276_019_0333_0 crossref_primary_10_1007_s12250_020_00208_3 crossref_primary_10_3389_fimmu_2021_637399 crossref_primary_10_1084_jem_20240694 crossref_primary_10_4049_jimmunol_1900956 crossref_primary_10_1016_j_coviro_2022_101206 crossref_primary_10_1128_mbio_01308_22 crossref_primary_10_1371_journal_ppat_1008773 crossref_primary_10_1016_j_brainresbull_2021_03_010 crossref_primary_10_3390_v13112116 crossref_primary_10_1016_j_neuron_2019_01_010 crossref_primary_10_1128_JVI_01555_20 crossref_primary_10_1073_pnas_2403235121 crossref_primary_10_3389_fimmu_2021_769543 crossref_primary_10_1038_s41467_021_27670_1 crossref_primary_10_1016_j_immuni_2019_03_025 crossref_primary_10_3389_fimmu_2022_829433 crossref_primary_10_1128_JVI_00618_20 crossref_primary_10_1152_jn_00848_2018 crossref_primary_10_3390_biology11010143 crossref_primary_10_1371_journal_ppat_1011132 crossref_primary_10_1016_j_antiviral_2019_02_001 crossref_primary_10_1038_s41586_018_0446_y crossref_primary_10_14336_AD_2021_0304 crossref_primary_10_1016_j_phrs_2024_107063 crossref_primary_10_1371_journal_pntd_0008083 crossref_primary_10_1098_rsob_220227 crossref_primary_10_3390_v12090979 crossref_primary_10_1099_jgv_0_001954 crossref_primary_10_3389_fmicb_2021_744348 crossref_primary_10_1002_jmv_28243 crossref_primary_10_3390_ijms252312680 crossref_primary_10_3390_ijms24109032 crossref_primary_10_3390_v14010044 crossref_primary_10_1128_jvi_00188_23 crossref_primary_10_3390_cells13070598 crossref_primary_10_1016_j_virusres_2020_198087 crossref_primary_10_1038_s41564_019_0421_x crossref_primary_10_1371_journal_ppat_1011641 crossref_primary_10_1016_j_chom_2019_09_012 crossref_primary_10_1016_j_coi_2020_04_002 crossref_primary_10_1242_jcs_260682 crossref_primary_10_1016_j_biochi_2019_05_004 crossref_primary_10_1021_acsinfecdis_4c00504 crossref_primary_10_1002_asia_202101215 crossref_primary_10_1128_jvi_00483_24 crossref_primary_10_1016_j_coi_2022_102250 crossref_primary_10_1002_rmv_2343 crossref_primary_10_1186_s12985_024_02359_1 crossref_primary_10_3390_v12040418 crossref_primary_10_4110_in_2019_19_e40 crossref_primary_10_3389_fmicb_2023_1257024 crossref_primary_10_1016_j_micinf_2019_04_005 crossref_primary_10_1128_msphere_00914_21 crossref_primary_10_1080_21505594_2021_1996059 crossref_primary_10_3389_fcimb_2022_954581 crossref_primary_10_3389_fimmu_2020_00051 crossref_primary_10_1016_j_isci_2021_102385 crossref_primary_10_1093_nar_gkz650 crossref_primary_10_1089_vim_2019_0076 crossref_primary_10_1016_j_cytogfr_2020_06_004 crossref_primary_10_1073_pnas_2025373118 crossref_primary_10_1007_s11427_020_1818_4 crossref_primary_10_1021_acsinfecdis_0c00866 crossref_primary_10_3390_v11100960 crossref_primary_10_1096_fj_202101916RRR crossref_primary_10_3390_vaccines9030294 crossref_primary_10_1016_j_biopha_2020_110945 crossref_primary_10_1080_21505594_2021_1935613 crossref_primary_10_1177_10738584211009149 crossref_primary_10_1016_j_jmb_2021_167374 crossref_primary_10_2217_fvl_2019_0037 crossref_primary_10_1016_j_coi_2024_102424 crossref_primary_10_1016_j_celrep_2020_107566 crossref_primary_10_1038_s41392_022_01252_z crossref_primary_10_3389_fcimb_2021_662447 crossref_primary_10_7554_eLife_80529 crossref_primary_10_1038_s41564_020_00850_3 crossref_primary_10_3390_v11100961 crossref_primary_10_1016_j_molcel_2023_03_029 crossref_primary_10_1128_mbio_01373_23 crossref_primary_10_4049_jimmunol_2001030 crossref_primary_10_1007_s12250_021_00442_3 crossref_primary_10_3389_fcimb_2023_1172739 crossref_primary_10_1016_j_virol_2018_11_009 crossref_primary_10_1128_JVI_00758_19 crossref_primary_10_1038_s41598_019_50918_2 crossref_primary_10_1089_vim_2019_0082 crossref_primary_10_1016_j_virusres_2024_199344 crossref_primary_10_1111_imm_13030 crossref_primary_10_3390_v11100970 crossref_primary_10_3390_pathogens8040195 crossref_primary_10_1371_journal_ppat_1007992 crossref_primary_10_1089_mab_2020_0038 crossref_primary_10_1016_j_virol_2024_110084 crossref_primary_10_1186_s13578_019_0308_9 crossref_primary_10_1590_0001_3765202220211189 crossref_primary_10_1016_j_ijbiomac_2024_136074 crossref_primary_10_3390_v14081808 crossref_primary_10_3390_v16050727 crossref_primary_10_3390_vaccines8030530 crossref_primary_10_1016_j_virol_2022_03_014 crossref_primary_10_1038_s41598_019_46291_9 crossref_primary_10_1016_j_isci_2021_103055 crossref_primary_10_1093_infdis_jiz338 crossref_primary_10_3390_v13030369 crossref_primary_10_4103_apjtm_apjtm_491_24 crossref_primary_10_3390_biomedicines11020642 crossref_primary_10_1080_15548627_2024_2390810 crossref_primary_10_1146_annurev_pathmechdis_031521_034739 crossref_primary_10_1016_j_celrep_2024_113706 crossref_primary_10_1007_s00018_020_03671_z crossref_primary_10_1038_s41564_023_01586_6 crossref_primary_10_3389_fviro_2021_783407 crossref_primary_10_1016_j_antiviral_2022_105500 crossref_primary_10_3390_v16081282 crossref_primary_10_1016_j_ejmech_2019_111591 crossref_primary_10_1261_rna_078739_121 crossref_primary_10_3390_cells9081893 crossref_primary_10_3390_v13050763 crossref_primary_10_1021_acs_jcim_2c00315 crossref_primary_10_1016_j_hlife_2025_02_007 crossref_primary_10_1021_acsnano_4c18553 crossref_primary_10_1128_jvi_00816_22 crossref_primary_10_1016_j_jbc_2023_104866 crossref_primary_10_1111_1348_0421_12669 |
Cites_doi | 10.1371/journal.ppat.1002780 10.1073/pnas.1618029113 10.1016/j.cell.2005.08.012 10.1128/MCB.00640-08 10.1016/j.coviro.2017.06.011 10.1128/mBio.00819-17 10.1016/S0140-6736(17)31450-2 10.1016/j.chom.2016.05.009 10.1016/j.jhep.2013.03.019 10.1038/nature08476 10.1038/nmicrobiol.2017.37 10.1371/journal.pntd.0004658 10.1038/nature12060 10.1016/j.chom.2016.07.004 10.1038/nature09534 10.1126/science.aai9137 10.1038/ni1243 10.1128/IAI.00999-10 10.1038/nature18952 10.1002/hep.26017 10.1038/nature21428 10.1038/nature22365 10.1016/j.cell.2017.03.016 10.1146/annurev-immunol-051116-052331 10.1038/nature04193 10.1126/science.aah6157 10.1016/j.antiviral.2016.11.020 10.1038/s41598-017-04138-1 10.1038/nature12427 10.1016/j.immuni.2008.09.003 10.1038/nature07317 10.1128/JVI.02234-16 10.1073/pnas.0900850106 10.1016/0035-9203(53)90021-2 10.1126/science.aaf8325 10.1371/journal.ppat.1003467 10.1038/nm.4184 10.1016/j.stem.2016.04.017 10.1016/j.antiviral.2017.10.001 10.1016/0035-9203(52)90042-4 10.1016/j.celrep.2016.12.068 10.1016/j.molcel.2005.08.014 10.1371/journal.ppat.1006258 10.7554/eLife.31919 10.1016/j.virol.2013.05.036 10.1016/j.chom.2016.03.010 10.1016/j.chom.2016.01.010 10.1038/celldisc.2017.6 10.4049/jimmunol.172.5.2731 10.1099/jgv.0.000992 10.1371/journal.pntd.0004695 10.1126/scitranslmed.aaa4304 10.1038/nature20556 10.1371/journal.ppat.1002934 10.1016/j.celrep.2017.03.071 10.1038/s41467-017-02816-2 10.1371/journal.pntd.0004682 10.1146/annurev-genet-112414-054823 |
ContentType | Journal Article |
Copyright | Volumes 1–89 and 106–115, copyright as a collective work only; author(s) retains copyright to individual articles Copyright National Academy of Sciences Jul 3, 2018 2018 |
Copyright_xml | – notice: Volumes 1–89 and 106–115, copyright as a collective work only; author(s) retains copyright to individual articles – notice: Copyright National Academy of Sciences Jul 3, 2018 – notice: 2018 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.1803406115 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Virology and AIDS Abstracts CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | E6318 |
ExternalDocumentID | PMC6142274 29915078 10_1073_pnas_1803406115 26511109 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: K08 DK101754 – fundername: NIAID NIH HHS grantid: R01 AI107301 – fundername: NIDDK NIH HHS grantid: R03 DK117252 – fundername: NIAID NIH HHS grantid: R21 AI117213 – fundername: NCI NIH HHS grantid: P30 CA072720 – fundername: HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID) grantid: R21AI117213 – fundername: HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID) grantid: R01 AI107301 – fundername: New Jersey Commission on Cancer Research grantid: DHFS16PPC007 – fundername: Burroughs Wellcome Fund (BWF) grantid: 1015389 – fundername: New Jersey Commission on Cancer Research grantid: DFHS17PPC011 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c509t-74579cb93a223993af8e0cd64682b6257a412153ff7bac2fcefb53f0f0060d33 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 13:53:49 EDT 2025 Fri Sep 05 10:13:36 EDT 2025 Mon Jun 30 08:15:12 EDT 2025 Thu Apr 03 07:00:34 EDT 2025 Thu Apr 24 22:54:43 EDT 2025 Tue Jul 01 03:19:50 EDT 2025 Fri May 30 11:17:15 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 27 |
Keywords | viral evasion Zika virus antiviral immunity species tropism flavivirus |
Language | English |
License | Published under the PNAS license. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c509t-74579cb93a223993af8e0cd64682b6257a412153ff7bac2fcefb53f0f0060d33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Author contributions: Q.D. and A.P. designed research; Q.D., J.M.G., F.D., L.W., D.K., M.B., B.H., and A.P. performed research; Q.D. and A.P. analyzed data; and Q.D. and A.P. wrote the paper. Edited by Michael B. A. Oldstone, The Scripps Research Institute, La Jolla, CA, and approved May 30, 2018 (received for review February 25, 2018) |
ORCID | 0000-0001-9322-7252 |
OpenAccessLink | https://www.pnas.org/content/pnas/115/27/E6310.full.pdf |
PMID | 29915078 |
PQID | 2101970708 |
PQPubID | 42026 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6142274 proquest_miscellaneous_2057115517 proquest_journals_2101970708 pubmed_primary_29915078 crossref_citationtrail_10_1073_pnas_1803406115 crossref_primary_10_1073_pnas_1803406115 jstor_primary_26511109 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-07-03 |
PublicationDateYYYYMMDD | 2018-07-03 |
PublicationDate_xml | – month: 07 year: 2018 text: 2018-07-03 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationSeriesTitle | PNAS Plus |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2018 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_3_50_2 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_58_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_56_2 e_1_3_3_33_2 e_1_3_3_54_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_40_2 Aliota MT (e_1_3_3_24_2) 2016; 10 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_51_2 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_57_2 e_1_3_3_32_2 e_1_3_3_55_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_53_2 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 |
References_xml | – ident: e_1_3_3_40_2 doi: 10.1371/journal.ppat.1002780 – ident: e_1_3_3_7_2 doi: 10.1073/pnas.1618029113 – ident: e_1_3_3_26_2 doi: 10.1016/j.cell.2005.08.012 – ident: e_1_3_3_32_2 doi: 10.1128/MCB.00640-08 – ident: e_1_3_3_21_2 doi: 10.1016/j.coviro.2017.06.011 – ident: e_1_3_3_49_2 doi: 10.1128/mBio.00819-17 – ident: e_1_3_3_4_2 doi: 10.1016/S0140-6736(17)31450-2 – ident: e_1_3_3_52_2 doi: 10.1016/j.chom.2016.05.009 – ident: e_1_3_3_36_2 doi: 10.1016/j.jhep.2013.03.019 – ident: e_1_3_3_55_2 doi: 10.1038/nature08476 – ident: e_1_3_3_41_2 doi: 10.1038/nmicrobiol.2017.37 – ident: e_1_3_3_56_2 doi: 10.1371/journal.pntd.0004658 – ident: e_1_3_3_2_2 doi: 10.1038/nature12060 – ident: e_1_3_3_10_2 doi: 10.1016/j.chom.2016.07.004 – ident: e_1_3_3_42_2 doi: 10.1038/nature09534 – ident: e_1_3_3_17_2 doi: 10.1126/science.aai9137 – ident: e_1_3_3_27_2 doi: 10.1038/ni1243 – ident: e_1_3_3_43_2 doi: 10.1128/IAI.00999-10 – ident: e_1_3_3_18_2 doi: 10.1038/nature18952 – ident: e_1_3_3_37_2 doi: 10.1002/hep.26017 – ident: e_1_3_3_16_2 doi: 10.1038/nature21428 – ident: e_1_3_3_5_2 doi: 10.1038/nature22365 – ident: e_1_3_3_15_2 doi: 10.1016/j.cell.2017.03.016 – ident: e_1_3_3_34_2 doi: 10.1146/annurev-immunol-051116-052331 – ident: e_1_3_3_29_2 doi: 10.1038/nature04193 – ident: e_1_3_3_19_2 doi: 10.1126/science.aah6157 – ident: e_1_3_3_13_2 doi: 10.1016/j.antiviral.2016.11.020 – ident: e_1_3_3_53_2 doi: 10.1038/s41598-017-04138-1 – ident: e_1_3_3_47_2 doi: 10.1038/nature12427 – ident: e_1_3_3_31_2 doi: 10.1016/j.immuni.2008.09.003 – ident: e_1_3_3_30_2 doi: 10.1038/nature07317 – ident: e_1_3_3_54_2 doi: 10.1128/JVI.02234-16 – ident: e_1_3_3_33_2 doi: 10.1073/pnas.0900850106 – ident: e_1_3_3_3_2 doi: 10.1016/0035-9203(53)90021-2 – ident: e_1_3_3_45_2 doi: 10.1126/science.aaf8325 – ident: e_1_3_3_1_2 doi: 10.1371/journal.ppat.1003467 – ident: e_1_3_3_14_2 doi: 10.1038/nm.4184 – ident: e_1_3_3_6_2 doi: 10.1016/j.stem.2016.04.017 – ident: e_1_3_3_57_2 doi: 10.1016/j.antiviral.2017.10.001 – ident: e_1_3_3_20_2 doi: 10.1016/0035-9203(52)90042-4 – ident: e_1_3_3_9_2 doi: 10.1016/j.celrep.2016.12.068 – ident: e_1_3_3_28_2 doi: 10.1016/j.molcel.2005.08.014 – ident: e_1_3_3_25_2 doi: 10.1371/journal.ppat.1006258 – ident: e_1_3_3_39_2 doi: 10.7554/eLife.31919 – ident: e_1_3_3_46_2 doi: 10.1016/j.virol.2013.05.036 – ident: e_1_3_3_23_2 doi: 10.1016/j.chom.2016.03.010 – ident: e_1_3_3_35_2 doi: 10.1016/j.chom.2016.01.010 – ident: e_1_3_3_51_2 doi: 10.1038/celldisc.2017.6 – ident: e_1_3_3_22_2 doi: 10.4049/jimmunol.172.5.2731 – ident: e_1_3_3_58_2 doi: 10.1099/jgv.0.000992 – ident: e_1_3_3_11_2 doi: 10.1371/journal.pntd.0004695 – ident: e_1_3_3_48_2 doi: 10.1126/scitranslmed.aaa4304 – ident: e_1_3_3_8_2 doi: 10.1038/nature20556 – ident: e_1_3_3_38_2 doi: 10.1371/journal.ppat.1002934 – ident: e_1_3_3_12_2 doi: 10.1016/j.celrep.2017.03.071 – ident: e_1_3_3_50_2 doi: 10.1038/s41467-017-02816-2 – volume: 10 start-page: e0004682 year: 2016 ident: e_1_3_3_24_2 article-title: Characterization of lethal Zika virus infection in AG129 mice publication-title: PLoS Negl Trop Dis doi: 10.1371/journal.pntd.0004682 – ident: e_1_3_3_44_2 doi: 10.1146/annurev-genet-112414-054823 |
SSID | ssj0009580 |
Score | 2.60742 |
Snippet | The limited host tropism of numerous viruses causing disease in humans remains incompletely understood. One example is Zika virus (ZIKV), an RNA virus that has... To shed light on the host range of Zika virus (ZIKV), we surveyed the virus’ ability to infect cells of evolutionarily diverse species. ZIKV replicates... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | E6310 |
SubjectTerms | Animals Antiviral drugs Apes Biodiversity Biological Sciences Chlorocebus aethiops Cleavage Cyclic GMP Dengue fever Disease control Disruption Encephalitis Fever Fibroblasts HEK293 Cells Host range Humans Immunity, Innate Interferon Membrane Proteins - genetics Membrane Proteins - immunology Mice Monkeys Peptide Hydrolases - genetics Peptide Hydrolases - immunology Permissivity Phenotypes PNAS Plus Primates Protease Proteases Proteinase Proteolysis Ribonucleic acid RNA RNA viruses Rodents Signal transduction Signal Transduction - genetics Signal Transduction - immunology Signaling Species Specificity Stimulators Tropism Vector-borne diseases Vero Cells Viral diseases Viral Nonstructural Proteins - genetics Viral Nonstructural Proteins - immunology Viruses West Nile virus Zika virus Zika Virus - genetics Zika Virus - immunology |
Title | Species-specific disruption of STING-dependent antiviral cellular defenses by the Zika virus NS2B3 protease |
URI | https://www.jstor.org/stable/26511109 https://www.ncbi.nlm.nih.gov/pubmed/29915078 https://www.proquest.com/docview/2101970708 https://www.proquest.com/docview/2057115517 https://pubmed.ncbi.nlm.nih.gov/PMC6142274 |
Volume | 115 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELaq8cILYsCgMJCReBiqUpo4jZPHARsDadXQiph4iWzXgaoonZbmAf4v_j_u_CtttSHgxWoSx7J8X893znd3hLyQmqkRq3Q0K6DBSKpIJlpGuVA6FoVKbXzF6SQ7-ZR-uBhf9Hq_1lhL7UoO1c9r40r-R6pwD-SKUbL_INkwKNyA3yBfaEHC0P6VjE3xeN1EGC6JlB_83HLVXnoj8Hz6fvIu8mVukUqOpSIwIh-P6w3_dKYr8GN1Y6xQQMyX-UIMoE8L6u88ec0GJo-D_4LjjNizsOk1nmIw8WeKh12EilMbzSAanE26esdvXRWVjwDMr4H-I5qF8GwbMTgdht7L1kL2GKmCHZQ_axvWrefr5xZxbjiurKN1_GFe6wo7gU00tWHWQ211NJg4UZbaKqNBidugUIdWm27A6eSjjDnmrA7X-bW7B6g7LHlci2YY5yOGto4bdjMld5KBmRpj2OithIPJ5g-JQq7n3EY-ubn7jFKcvdoae8MYsnzY6zydbcLumgU0vUvuONeFHloc7pKeru-RXb-a9MBlMH95nyy2gUk7YNJlRbeASQMwqQcm9cCk8gcFgFEEJjXApAaY1APzAZkeH03fnESuqkekwDhdRTwd80LJgokE46qZqHI9UrMszfJEgjfORYoZT1hVcSlUUildSbgaVZg6aMbYHtmpl7V-RCiWIxKKj9WYy1THTDINW6YS4yQr9GyU9cnQr26pXMZ7LLzyvTTMC85KFEfZiaNPDsILlzbZy81d94y4Qj-PiT7Z9_IrnapoygQ2voLD7pr3yfPwGBQ5rqqo9bKFPuA5xejA8D55aMXdDQ5eHDhu8DbfAELogEniN5_U828mWXyGh7w8fXzTfJ-Q292_c5_srK5a_RTs7JV8ZlD9GzFC1HA |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Species-specific+disruption+of+STING-dependent+antiviral+cellular+defenses+by+the+Zika+virus+NS2B3+protease&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Ding%2C+Qiang&rft.au=Gaska%2C+Jenna+M.&rft.au=Douam%2C+Florian&rft.au=Wei%2C+Lei&rft.date=2018-07-03&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=115&rft.issue=27&rft.spage=E6310&rft.epage=E6318&rft_id=info:doi/10.1073%2Fpnas.1803406115&rft.externalDocID=26511109 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |