Species-specific disruption of STING-dependent antiviral cellular defenses by the Zika virus NS2B3 protease

The limited host tropism of numerous viruses causing disease in humans remains incompletely understood. One example is Zika virus (ZIKV), an RNA virus that has reemerged in recent years. Here, we demonstrate that ZIKV efficiently infects fibroblasts from humans, great apes, New and Old World monkeys...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 115; no. 27; pp. E6310 - E6318
Main Authors Ding, Qiang, Gaska, Jenna M., Douam, Florian, Wei, Lei, Kim, David, Balev, Metodi, Heller, Brigitte, Ploss, Alexander
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 03.07.2018
SeriesPNAS Plus
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.1803406115

Cover

Abstract The limited host tropism of numerous viruses causing disease in humans remains incompletely understood. One example is Zika virus (ZIKV), an RNA virus that has reemerged in recent years. Here, we demonstrate that ZIKV efficiently infects fibroblasts from humans, great apes, New and Old World monkeys, but not rodents. ZIKV infection in human—but not murine—cells impairs responses to agonists of the cGMP-AMP synthase/stimulator of IFN genes (cGAS/STING) signaling pathway, suggesting that viral mechanisms to evade antiviral defenses are less effective in rodent cells. Indeed, human, but not mouse, STING is subject to cleavage by proteases encoded by ZIKV, dengue virus, West Nile virus, and Japanese encephalitis virus, but not that of yellow fever virus. The protease cleavage site, located between positions 78/79 of human STING, is only partially conserved in nonhuman primates and rodents, rendering these orthologs resistant to degradation. Genetic disruption of STING increases the susceptibility of mouse—but not human—cells to ZIKV. Accordingly, expression of only mouse, not human, STING in murine STING knockout cells rescues the ZIKV suppression phenotype. STING-deficient mice, however, did not exhibit increased susceptibility, suggesting that other redundant antiviral pathways control ZIKV infection in vivo. Collectively, our data demonstrate that numerous RNA viruses evade cGAS/STING-dependent signaling and affirm the importance of this pathway in shaping the host range of ZIKV. Furthermore, our results explain—at least in part—the decreased permissivity of rodent cells to ZIKV, which could aid in the development of mice model with inheritable susceptibility to ZIKV and other flaviviruses.
AbstractList The limited host tropism of numerous viruses causing disease in humans remains incompletely understood. One example is Zika virus (ZIKV), an RNA virus that has reemerged in recent years. Here, we demonstrate that ZIKV efficiently infects fibroblasts from humans, great apes, New and Old World monkeys, but not rodents. ZIKV infection in human—but not murine—cells impairs responses to agonists of the cGMP-AMP synthase/stimulator of IFN genes (cGAS/STING) signaling pathway, suggesting that viral mechanisms to evade antiviral defenses are less effective in rodent cells. Indeed, human, but not mouse, STING is subject to cleavage by proteases encoded by ZIKV, dengue virus, West Nile virus, and Japanese encephalitis virus, but not that of yellow fever virus. The protease cleavage site, located between positions 78/79 of human STING, is only partially conserved in nonhuman primates and rodents, rendering these orthologs resistant to degradation. Genetic disruption of STING increases the susceptibility of mouse—but not human—cells to ZIKV. Accordingly, expression of only mouse, not human, STING in murine STING knockout cells rescues the ZIKV suppression phenotype. STING-deficient mice, however, did not exhibit increased susceptibility, suggesting that other redundant antiviral pathways control ZIKV infection in vivo. Collectively, our data demonstrate that numerous RNA viruses evade cGAS/STING-dependent signaling and affirm the importance of this pathway in shaping the host range of ZIKV. Furthermore, our results explain—at least in part—the decreased permissivity of rodent cells to ZIKV, which could aid in the development of mice model with inheritable susceptibility to ZIKV and other flaviviruses.
The limited host tropism of numerous viruses causing disease in humans remains incompletely understood. One example is Zika virus (ZIKV), an RNA virus that has reemerged in recent years. Here, we demonstrate that ZIKV efficiently infects fibroblasts from humans, great apes, New and Old World monkeys, but not rodents. ZIKV infection in human-but not murine-cells impairs responses to agonists of the cGMP-AMP synthase/stimulator of IFN genes (cGAS/STING) signaling pathway, suggesting that viral mechanisms to evade antiviral defenses are less effective in rodent cells. Indeed, human, but not mouse, STING is subject to cleavage by proteases encoded by ZIKV, dengue virus, West Nile virus, and Japanese encephalitis virus, but not that of yellow fever virus. The protease cleavage site, located between positions 78/79 of human STING, is only partially conserved in nonhuman primates and rodents, rendering these orthologs resistant to degradation. Genetic disruption of STING increases the susceptibility of mouse-but not human-cells to ZIKV. Accordingly, expression of only mouse, not human, STING in murine STING knockout cells rescues the ZIKV suppression phenotype. STING-deficient mice, however, did not exhibit increased susceptibility, suggesting that other redundant antiviral pathways control ZIKV infection in vivo. Collectively, our data demonstrate that numerous RNA viruses evade cGAS/STING-dependent signaling and affirm the importance of this pathway in shaping the host range of ZIKV. Furthermore, our results explain-at least in part-the decreased permissivity of rodent cells to ZIKV, which could aid in the development of mice model with inheritable susceptibility to ZIKV and other flaviviruses.The limited host tropism of numerous viruses causing disease in humans remains incompletely understood. One example is Zika virus (ZIKV), an RNA virus that has reemerged in recent years. Here, we demonstrate that ZIKV efficiently infects fibroblasts from humans, great apes, New and Old World monkeys, but not rodents. ZIKV infection in human-but not murine-cells impairs responses to agonists of the cGMP-AMP synthase/stimulator of IFN genes (cGAS/STING) signaling pathway, suggesting that viral mechanisms to evade antiviral defenses are less effective in rodent cells. Indeed, human, but not mouse, STING is subject to cleavage by proteases encoded by ZIKV, dengue virus, West Nile virus, and Japanese encephalitis virus, but not that of yellow fever virus. The protease cleavage site, located between positions 78/79 of human STING, is only partially conserved in nonhuman primates and rodents, rendering these orthologs resistant to degradation. Genetic disruption of STING increases the susceptibility of mouse-but not human-cells to ZIKV. Accordingly, expression of only mouse, not human, STING in murine STING knockout cells rescues the ZIKV suppression phenotype. STING-deficient mice, however, did not exhibit increased susceptibility, suggesting that other redundant antiviral pathways control ZIKV infection in vivo. Collectively, our data demonstrate that numerous RNA viruses evade cGAS/STING-dependent signaling and affirm the importance of this pathway in shaping the host range of ZIKV. Furthermore, our results explain-at least in part-the decreased permissivity of rodent cells to ZIKV, which could aid in the development of mice model with inheritable susceptibility to ZIKV and other flaviviruses.
To shed light on the host range of Zika virus (ZIKV), we surveyed the virus’ ability to infect cells of evolutionarily diverse species. ZIKV replicates efficiently in human, great ape, Old and New World monkey, but not rodent cells. These observations correlated with ZIKV’s ability to blunt the cGAS/STING signaling pathway in all primate cells tested but not in mice. We demonstrate that an enzyme shared by many flaviviruses (NS2B3) is responsible for functionally inactivating this antiviral defense. Our results highlight the importance of the cGAS/STING pathway in shaping the host range of ZIKV, which in turn may guide the development of murine models with inheritable susceptibility to ZIKV and other flaviviruses. The limited host tropism of numerous viruses causing disease in humans remains incompletely understood. One example is Zika virus (ZIKV), an RNA virus that has reemerged in recent years. Here, we demonstrate that ZIKV efficiently infects fibroblasts from humans, great apes, New and Old World monkeys, but not rodents. ZIKV infection in human—but not murine—cells impairs responses to agonists of the cGMP-AMP synthase/stimulator of IFN genes (cGAS/STING) signaling pathway, suggesting that viral mechanisms to evade antiviral defenses are less effective in rodent cells. Indeed, human, but not mouse, STING is subject to cleavage by proteases encoded by ZIKV, dengue virus, West Nile virus, and Japanese encephalitis virus, but not that of yellow fever virus. The protease cleavage site, located between positions 78/79 of human STING, is only partially conserved in nonhuman primates and rodents, rendering these orthologs resistant to degradation. Genetic disruption of STING increases the susceptibility of mouse—but not human—cells to ZIKV. Accordingly, expression of only mouse, not human, STING in murine STING knockout cells rescues the ZIKV suppression phenotype. STING-deficient mice, however, did not exhibit increased susceptibility, suggesting that other redundant antiviral pathways control ZIKV infection in vivo. Collectively, our data demonstrate that numerous RNA viruses evade cGAS/STING-dependent signaling and affirm the importance of this pathway in shaping the host range of ZIKV. Furthermore, our results explain—at least in part—the decreased permissivity of rodent cells to ZIKV, which could aid in the development of mice model with inheritable susceptibility to ZIKV and other flaviviruses.
Author Heller, Brigitte
Ding, Qiang
Douam, Florian
Ploss, Alexander
Wei, Lei
Balev, Metodi
Kim, David
Gaska, Jenna M.
Author_xml – sequence: 1
  givenname: Qiang
  surname: Ding
  fullname: Ding, Qiang
– sequence: 2
  givenname: Jenna M.
  surname: Gaska
  fullname: Gaska, Jenna M.
– sequence: 3
  givenname: Florian
  surname: Douam
  fullname: Douam, Florian
– sequence: 4
  givenname: Lei
  surname: Wei
  fullname: Wei, Lei
– sequence: 5
  givenname: David
  surname: Kim
  fullname: Kim, David
– sequence: 6
  givenname: Metodi
  surname: Balev
  fullname: Balev, Metodi
– sequence: 7
  givenname: Brigitte
  surname: Heller
  fullname: Heller, Brigitte
– sequence: 8
  givenname: Alexander
  surname: Ploss
  fullname: Ploss, Alexander
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29915078$$D View this record in MEDLINE/PubMed
BookMark eNp1kkFv1DAQhS1URLeFMyeQJS5c0o6dOE4uSKWCUqkqh90TF8txxtTbrB3spFL_PY62pVCJ08jy957e-PmIHPjgkZC3DE4YyPJ09DqdsAbKCmrGxAuyYtCyoq5aOCArAC6LpuLVITlKaQsArWjgFTnkbcsEyGZFbtcjGoepSMu0ztDepTiPkwueBkvXm8vri6LHEX2PfqLaT-7ORT1Qg8MwDzrSHi36hIl293S6QfrD3WqamTnR6zX_XNIxhgl1wtfkpdVDwjcP85hsvn7ZnH8rrr5fXJ6fXRVGQDsVshKyNV1bas7LNg_bIJi-ruqGdzUXUleMM1FaKzttuDVou3wCC1BDX5bH5NPedpy7HfYmx8551RjdTsd7FbRT_954d6N-hjtVs4pzWWWDjw8GMfyaMU1q59KyrvYY5qQ4CJkfWzCZ0Q_P0G2Yo8_bKc6AtRIkNJl6_3eiP1Eea8iA2AMmhpQiWmXcpJcOckA3KAZqqVstdaunurPu9Jnu0fr_ind7xTZNIT4lqQVj-euUvwEgarcx
CitedBy_id crossref_primary_10_1080_22221751_2024_2341144
crossref_primary_10_1096_fj_202402209R
crossref_primary_10_3389_fmicb_2020_01990
crossref_primary_10_1128_jvi_01332_22
crossref_primary_10_3390_pathogens11050522
crossref_primary_10_3389_fncel_2021_670298
crossref_primary_10_3389_fcimb_2020_576263
crossref_primary_10_1111_1748_5967_12439
crossref_primary_10_1186_s12929_020_0618_6
crossref_primary_10_3390_cells11193043
crossref_primary_10_1002_wsbm_1597
crossref_primary_10_1038_s12276_019_0333_0
crossref_primary_10_1007_s12250_020_00208_3
crossref_primary_10_3389_fimmu_2021_637399
crossref_primary_10_1084_jem_20240694
crossref_primary_10_4049_jimmunol_1900956
crossref_primary_10_1016_j_coviro_2022_101206
crossref_primary_10_1128_mbio_01308_22
crossref_primary_10_1371_journal_ppat_1008773
crossref_primary_10_1016_j_brainresbull_2021_03_010
crossref_primary_10_3390_v13112116
crossref_primary_10_1016_j_neuron_2019_01_010
crossref_primary_10_1128_JVI_01555_20
crossref_primary_10_1073_pnas_2403235121
crossref_primary_10_3389_fimmu_2021_769543
crossref_primary_10_1038_s41467_021_27670_1
crossref_primary_10_1016_j_immuni_2019_03_025
crossref_primary_10_3389_fimmu_2022_829433
crossref_primary_10_1128_JVI_00618_20
crossref_primary_10_1152_jn_00848_2018
crossref_primary_10_3390_biology11010143
crossref_primary_10_1371_journal_ppat_1011132
crossref_primary_10_1016_j_antiviral_2019_02_001
crossref_primary_10_1038_s41586_018_0446_y
crossref_primary_10_14336_AD_2021_0304
crossref_primary_10_1016_j_phrs_2024_107063
crossref_primary_10_1371_journal_pntd_0008083
crossref_primary_10_1098_rsob_220227
crossref_primary_10_3390_v12090979
crossref_primary_10_1099_jgv_0_001954
crossref_primary_10_3389_fmicb_2021_744348
crossref_primary_10_1002_jmv_28243
crossref_primary_10_3390_ijms252312680
crossref_primary_10_3390_ijms24109032
crossref_primary_10_3390_v14010044
crossref_primary_10_1128_jvi_00188_23
crossref_primary_10_3390_cells13070598
crossref_primary_10_1016_j_virusres_2020_198087
crossref_primary_10_1038_s41564_019_0421_x
crossref_primary_10_1371_journal_ppat_1011641
crossref_primary_10_1016_j_chom_2019_09_012
crossref_primary_10_1016_j_coi_2020_04_002
crossref_primary_10_1242_jcs_260682
crossref_primary_10_1016_j_biochi_2019_05_004
crossref_primary_10_1021_acsinfecdis_4c00504
crossref_primary_10_1002_asia_202101215
crossref_primary_10_1128_jvi_00483_24
crossref_primary_10_1016_j_coi_2022_102250
crossref_primary_10_1002_rmv_2343
crossref_primary_10_1186_s12985_024_02359_1
crossref_primary_10_3390_v12040418
crossref_primary_10_4110_in_2019_19_e40
crossref_primary_10_3389_fmicb_2023_1257024
crossref_primary_10_1016_j_micinf_2019_04_005
crossref_primary_10_1128_msphere_00914_21
crossref_primary_10_1080_21505594_2021_1996059
crossref_primary_10_3389_fcimb_2022_954581
crossref_primary_10_3389_fimmu_2020_00051
crossref_primary_10_1016_j_isci_2021_102385
crossref_primary_10_1093_nar_gkz650
crossref_primary_10_1089_vim_2019_0076
crossref_primary_10_1016_j_cytogfr_2020_06_004
crossref_primary_10_1073_pnas_2025373118
crossref_primary_10_1007_s11427_020_1818_4
crossref_primary_10_1021_acsinfecdis_0c00866
crossref_primary_10_3390_v11100960
crossref_primary_10_1096_fj_202101916RRR
crossref_primary_10_3390_vaccines9030294
crossref_primary_10_1016_j_biopha_2020_110945
crossref_primary_10_1080_21505594_2021_1935613
crossref_primary_10_1177_10738584211009149
crossref_primary_10_1016_j_jmb_2021_167374
crossref_primary_10_2217_fvl_2019_0037
crossref_primary_10_1016_j_coi_2024_102424
crossref_primary_10_1016_j_celrep_2020_107566
crossref_primary_10_1038_s41392_022_01252_z
crossref_primary_10_3389_fcimb_2021_662447
crossref_primary_10_7554_eLife_80529
crossref_primary_10_1038_s41564_020_00850_3
crossref_primary_10_3390_v11100961
crossref_primary_10_1016_j_molcel_2023_03_029
crossref_primary_10_1128_mbio_01373_23
crossref_primary_10_4049_jimmunol_2001030
crossref_primary_10_1007_s12250_021_00442_3
crossref_primary_10_3389_fcimb_2023_1172739
crossref_primary_10_1016_j_virol_2018_11_009
crossref_primary_10_1128_JVI_00758_19
crossref_primary_10_1038_s41598_019_50918_2
crossref_primary_10_1089_vim_2019_0082
crossref_primary_10_1016_j_virusres_2024_199344
crossref_primary_10_1111_imm_13030
crossref_primary_10_3390_v11100970
crossref_primary_10_3390_pathogens8040195
crossref_primary_10_1371_journal_ppat_1007992
crossref_primary_10_1089_mab_2020_0038
crossref_primary_10_1016_j_virol_2024_110084
crossref_primary_10_1186_s13578_019_0308_9
crossref_primary_10_1590_0001_3765202220211189
crossref_primary_10_1016_j_ijbiomac_2024_136074
crossref_primary_10_3390_v14081808
crossref_primary_10_3390_v16050727
crossref_primary_10_3390_vaccines8030530
crossref_primary_10_1016_j_virol_2022_03_014
crossref_primary_10_1038_s41598_019_46291_9
crossref_primary_10_1016_j_isci_2021_103055
crossref_primary_10_1093_infdis_jiz338
crossref_primary_10_3390_v13030369
crossref_primary_10_4103_apjtm_apjtm_491_24
crossref_primary_10_3390_biomedicines11020642
crossref_primary_10_1080_15548627_2024_2390810
crossref_primary_10_1146_annurev_pathmechdis_031521_034739
crossref_primary_10_1016_j_celrep_2024_113706
crossref_primary_10_1007_s00018_020_03671_z
crossref_primary_10_1038_s41564_023_01586_6
crossref_primary_10_3389_fviro_2021_783407
crossref_primary_10_1016_j_antiviral_2022_105500
crossref_primary_10_3390_v16081282
crossref_primary_10_1016_j_ejmech_2019_111591
crossref_primary_10_1261_rna_078739_121
crossref_primary_10_3390_cells9081893
crossref_primary_10_3390_v13050763
crossref_primary_10_1021_acs_jcim_2c00315
crossref_primary_10_1016_j_hlife_2025_02_007
crossref_primary_10_1021_acsnano_4c18553
crossref_primary_10_1128_jvi_00816_22
crossref_primary_10_1016_j_jbc_2023_104866
crossref_primary_10_1111_1348_0421_12669
Cites_doi 10.1371/journal.ppat.1002780
10.1073/pnas.1618029113
10.1016/j.cell.2005.08.012
10.1128/MCB.00640-08
10.1016/j.coviro.2017.06.011
10.1128/mBio.00819-17
10.1016/S0140-6736(17)31450-2
10.1016/j.chom.2016.05.009
10.1016/j.jhep.2013.03.019
10.1038/nature08476
10.1038/nmicrobiol.2017.37
10.1371/journal.pntd.0004658
10.1038/nature12060
10.1016/j.chom.2016.07.004
10.1038/nature09534
10.1126/science.aai9137
10.1038/ni1243
10.1128/IAI.00999-10
10.1038/nature18952
10.1002/hep.26017
10.1038/nature21428
10.1038/nature22365
10.1016/j.cell.2017.03.016
10.1146/annurev-immunol-051116-052331
10.1038/nature04193
10.1126/science.aah6157
10.1016/j.antiviral.2016.11.020
10.1038/s41598-017-04138-1
10.1038/nature12427
10.1016/j.immuni.2008.09.003
10.1038/nature07317
10.1128/JVI.02234-16
10.1073/pnas.0900850106
10.1016/0035-9203(53)90021-2
10.1126/science.aaf8325
10.1371/journal.ppat.1003467
10.1038/nm.4184
10.1016/j.stem.2016.04.017
10.1016/j.antiviral.2017.10.001
10.1016/0035-9203(52)90042-4
10.1016/j.celrep.2016.12.068
10.1016/j.molcel.2005.08.014
10.1371/journal.ppat.1006258
10.7554/eLife.31919
10.1016/j.virol.2013.05.036
10.1016/j.chom.2016.03.010
10.1016/j.chom.2016.01.010
10.1038/celldisc.2017.6
10.4049/jimmunol.172.5.2731
10.1099/jgv.0.000992
10.1371/journal.pntd.0004695
10.1126/scitranslmed.aaa4304
10.1038/nature20556
10.1371/journal.ppat.1002934
10.1016/j.celrep.2017.03.071
10.1038/s41467-017-02816-2
10.1371/journal.pntd.0004682
10.1146/annurev-genet-112414-054823
ContentType Journal Article
Copyright Volumes 1–89 and 106–115, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright National Academy of Sciences Jul 3, 2018
2018
Copyright_xml – notice: Volumes 1–89 and 106–115, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright National Academy of Sciences Jul 3, 2018
– notice: 2018
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1803406115
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Virology and AIDS Abstracts
CrossRef

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage E6318
ExternalDocumentID PMC6142274
29915078
10_1073_pnas_1803406115
26511109
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: K08 DK101754
– fundername: NIAID NIH HHS
  grantid: R01 AI107301
– fundername: NIDDK NIH HHS
  grantid: R03 DK117252
– fundername: NIAID NIH HHS
  grantid: R21 AI117213
– fundername: NCI NIH HHS
  grantid: P30 CA072720
– fundername: HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
  grantid: R21AI117213
– fundername: HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
  grantid: R01 AI107301
– fundername: New Jersey Commission on Cancer Research
  grantid: DHFS16PPC007
– fundername: Burroughs Wellcome Fund (BWF)
  grantid: 1015389
– fundername: New Jersey Commission on Cancer Research
  grantid: DFHS17PPC011
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c509t-74579cb93a223993af8e0cd64682b6257a412153ff7bac2fcefb53f0f0060d33
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 13:53:49 EDT 2025
Fri Sep 05 10:13:36 EDT 2025
Mon Jun 30 08:15:12 EDT 2025
Thu Apr 03 07:00:34 EDT 2025
Thu Apr 24 22:54:43 EDT 2025
Tue Jul 01 03:19:50 EDT 2025
Fri May 30 11:17:15 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 27
Keywords viral evasion
Zika virus
antiviral immunity
species tropism
flavivirus
Language English
License Published under the PNAS license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c509t-74579cb93a223993af8e0cd64682b6257a412153ff7bac2fcefb53f0f0060d33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Author contributions: Q.D. and A.P. designed research; Q.D., J.M.G., F.D., L.W., D.K., M.B., B.H., and A.P. performed research; Q.D. and A.P. analyzed data; and Q.D. and A.P. wrote the paper.
Edited by Michael B. A. Oldstone, The Scripps Research Institute, La Jolla, CA, and approved May 30, 2018 (received for review February 25, 2018)
ORCID 0000-0001-9322-7252
OpenAccessLink https://www.pnas.org/content/pnas/115/27/E6310.full.pdf
PMID 29915078
PQID 2101970708
PQPubID 42026
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6142274
proquest_miscellaneous_2057115517
proquest_journals_2101970708
pubmed_primary_29915078
crossref_citationtrail_10_1073_pnas_1803406115
crossref_primary_10_1073_pnas_1803406115
jstor_primary_26511109
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-07-03
PublicationDateYYYYMMDD 2018-07-03
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-03
  day: 03
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationSeriesTitle PNAS Plus
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2018
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_3_50_2
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_58_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_56_2
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_40_2
Aliota MT (e_1_3_3_24_2) 2016; 10
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_51_2
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_57_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_53_2
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
References_xml – ident: e_1_3_3_40_2
  doi: 10.1371/journal.ppat.1002780
– ident: e_1_3_3_7_2
  doi: 10.1073/pnas.1618029113
– ident: e_1_3_3_26_2
  doi: 10.1016/j.cell.2005.08.012
– ident: e_1_3_3_32_2
  doi: 10.1128/MCB.00640-08
– ident: e_1_3_3_21_2
  doi: 10.1016/j.coviro.2017.06.011
– ident: e_1_3_3_49_2
  doi: 10.1128/mBio.00819-17
– ident: e_1_3_3_4_2
  doi: 10.1016/S0140-6736(17)31450-2
– ident: e_1_3_3_52_2
  doi: 10.1016/j.chom.2016.05.009
– ident: e_1_3_3_36_2
  doi: 10.1016/j.jhep.2013.03.019
– ident: e_1_3_3_55_2
  doi: 10.1038/nature08476
– ident: e_1_3_3_41_2
  doi: 10.1038/nmicrobiol.2017.37
– ident: e_1_3_3_56_2
  doi: 10.1371/journal.pntd.0004658
– ident: e_1_3_3_2_2
  doi: 10.1038/nature12060
– ident: e_1_3_3_10_2
  doi: 10.1016/j.chom.2016.07.004
– ident: e_1_3_3_42_2
  doi: 10.1038/nature09534
– ident: e_1_3_3_17_2
  doi: 10.1126/science.aai9137
– ident: e_1_3_3_27_2
  doi: 10.1038/ni1243
– ident: e_1_3_3_43_2
  doi: 10.1128/IAI.00999-10
– ident: e_1_3_3_18_2
  doi: 10.1038/nature18952
– ident: e_1_3_3_37_2
  doi: 10.1002/hep.26017
– ident: e_1_3_3_16_2
  doi: 10.1038/nature21428
– ident: e_1_3_3_5_2
  doi: 10.1038/nature22365
– ident: e_1_3_3_15_2
  doi: 10.1016/j.cell.2017.03.016
– ident: e_1_3_3_34_2
  doi: 10.1146/annurev-immunol-051116-052331
– ident: e_1_3_3_29_2
  doi: 10.1038/nature04193
– ident: e_1_3_3_19_2
  doi: 10.1126/science.aah6157
– ident: e_1_3_3_13_2
  doi: 10.1016/j.antiviral.2016.11.020
– ident: e_1_3_3_53_2
  doi: 10.1038/s41598-017-04138-1
– ident: e_1_3_3_47_2
  doi: 10.1038/nature12427
– ident: e_1_3_3_31_2
  doi: 10.1016/j.immuni.2008.09.003
– ident: e_1_3_3_30_2
  doi: 10.1038/nature07317
– ident: e_1_3_3_54_2
  doi: 10.1128/JVI.02234-16
– ident: e_1_3_3_33_2
  doi: 10.1073/pnas.0900850106
– ident: e_1_3_3_3_2
  doi: 10.1016/0035-9203(53)90021-2
– ident: e_1_3_3_45_2
  doi: 10.1126/science.aaf8325
– ident: e_1_3_3_1_2
  doi: 10.1371/journal.ppat.1003467
– ident: e_1_3_3_14_2
  doi: 10.1038/nm.4184
– ident: e_1_3_3_6_2
  doi: 10.1016/j.stem.2016.04.017
– ident: e_1_3_3_57_2
  doi: 10.1016/j.antiviral.2017.10.001
– ident: e_1_3_3_20_2
  doi: 10.1016/0035-9203(52)90042-4
– ident: e_1_3_3_9_2
  doi: 10.1016/j.celrep.2016.12.068
– ident: e_1_3_3_28_2
  doi: 10.1016/j.molcel.2005.08.014
– ident: e_1_3_3_25_2
  doi: 10.1371/journal.ppat.1006258
– ident: e_1_3_3_39_2
  doi: 10.7554/eLife.31919
– ident: e_1_3_3_46_2
  doi: 10.1016/j.virol.2013.05.036
– ident: e_1_3_3_23_2
  doi: 10.1016/j.chom.2016.03.010
– ident: e_1_3_3_35_2
  doi: 10.1016/j.chom.2016.01.010
– ident: e_1_3_3_51_2
  doi: 10.1038/celldisc.2017.6
– ident: e_1_3_3_22_2
  doi: 10.4049/jimmunol.172.5.2731
– ident: e_1_3_3_58_2
  doi: 10.1099/jgv.0.000992
– ident: e_1_3_3_11_2
  doi: 10.1371/journal.pntd.0004695
– ident: e_1_3_3_48_2
  doi: 10.1126/scitranslmed.aaa4304
– ident: e_1_3_3_8_2
  doi: 10.1038/nature20556
– ident: e_1_3_3_38_2
  doi: 10.1371/journal.ppat.1002934
– ident: e_1_3_3_12_2
  doi: 10.1016/j.celrep.2017.03.071
– ident: e_1_3_3_50_2
  doi: 10.1038/s41467-017-02816-2
– volume: 10
  start-page: e0004682
  year: 2016
  ident: e_1_3_3_24_2
  article-title: Characterization of lethal Zika virus infection in AG129 mice
  publication-title: PLoS Negl Trop Dis
  doi: 10.1371/journal.pntd.0004682
– ident: e_1_3_3_44_2
  doi: 10.1146/annurev-genet-112414-054823
SSID ssj0009580
Score 2.60742
Snippet The limited host tropism of numerous viruses causing disease in humans remains incompletely understood. One example is Zika virus (ZIKV), an RNA virus that has...
To shed light on the host range of Zika virus (ZIKV), we surveyed the virus’ ability to infect cells of evolutionarily diverse species. ZIKV replicates...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage E6310
SubjectTerms Animals
Antiviral drugs
Apes
Biodiversity
Biological Sciences
Chlorocebus aethiops
Cleavage
Cyclic GMP
Dengue fever
Disease control
Disruption
Encephalitis
Fever
Fibroblasts
HEK293 Cells
Host range
Humans
Immunity, Innate
Interferon
Membrane Proteins - genetics
Membrane Proteins - immunology
Mice
Monkeys
Peptide Hydrolases - genetics
Peptide Hydrolases - immunology
Permissivity
Phenotypes
PNAS Plus
Primates
Protease
Proteases
Proteinase
Proteolysis
Ribonucleic acid
RNA
RNA viruses
Rodents
Signal transduction
Signal Transduction - genetics
Signal Transduction - immunology
Signaling
Species Specificity
Stimulators
Tropism
Vector-borne diseases
Vero Cells
Viral diseases
Viral Nonstructural Proteins - genetics
Viral Nonstructural Proteins - immunology
Viruses
West Nile virus
Zika virus
Zika Virus - genetics
Zika Virus - immunology
Title Species-specific disruption of STING-dependent antiviral cellular defenses by the Zika virus NS2B3 protease
URI https://www.jstor.org/stable/26511109
https://www.ncbi.nlm.nih.gov/pubmed/29915078
https://www.proquest.com/docview/2101970708
https://www.proquest.com/docview/2057115517
https://pubmed.ncbi.nlm.nih.gov/PMC6142274
Volume 115
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELaq8cILYsCgMJCReBiqUpo4jZPHARsDadXQiph4iWzXgaoonZbmAf4v_j_u_CtttSHgxWoSx7J8X893znd3hLyQmqkRq3Q0K6DBSKpIJlpGuVA6FoVKbXzF6SQ7-ZR-uBhf9Hq_1lhL7UoO1c9r40r-R6pwD-SKUbL_INkwKNyA3yBfaEHC0P6VjE3xeN1EGC6JlB_83HLVXnoj8Hz6fvIu8mVukUqOpSIwIh-P6w3_dKYr8GN1Y6xQQMyX-UIMoE8L6u88ec0GJo-D_4LjjNizsOk1nmIw8WeKh12EilMbzSAanE26esdvXRWVjwDMr4H-I5qF8GwbMTgdht7L1kL2GKmCHZQ_axvWrefr5xZxbjiurKN1_GFe6wo7gU00tWHWQ211NJg4UZbaKqNBidugUIdWm27A6eSjjDnmrA7X-bW7B6g7LHlci2YY5yOGto4bdjMld5KBmRpj2OithIPJ5g-JQq7n3EY-ubn7jFKcvdoae8MYsnzY6zydbcLumgU0vUvuONeFHloc7pKeru-RXb-a9MBlMH95nyy2gUk7YNJlRbeASQMwqQcm9cCk8gcFgFEEJjXApAaY1APzAZkeH03fnESuqkekwDhdRTwd80LJgokE46qZqHI9UrMszfJEgjfORYoZT1hVcSlUUildSbgaVZg6aMbYHtmpl7V-RCiWIxKKj9WYy1THTDINW6YS4yQr9GyU9cnQr26pXMZ7LLzyvTTMC85KFEfZiaNPDsILlzbZy81d94y4Qj-PiT7Z9_IrnapoygQ2voLD7pr3yfPwGBQ5rqqo9bKFPuA5xejA8D55aMXdDQ5eHDhu8DbfAELogEniN5_U828mWXyGh7w8fXzTfJ-Q292_c5_srK5a_RTs7JV8ZlD9GzFC1HA
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Species-specific+disruption+of+STING-dependent+antiviral+cellular+defenses+by+the+Zika+virus+NS2B3+protease&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Ding%2C+Qiang&rft.au=Gaska%2C+Jenna+M.&rft.au=Douam%2C+Florian&rft.au=Wei%2C+Lei&rft.date=2018-07-03&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=115&rft.issue=27&rft.spage=E6310&rft.epage=E6318&rft_id=info:doi/10.1073%2Fpnas.1803406115&rft.externalDocID=26511109
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon