FCCD-SAR: A Lightweight SAR ATR Algorithm Based on FasterNet
In recent times, the realm of remote sensing has witnessed a remarkable surge in the area of deep learning, specifically in the domain of target recognition within synthetic aperture radar (SAR) images. However, prevailing deep learning models have often placed undue emphasis on network depth and wi...
Saved in:
| Published in | Sensors (Basel, Switzerland) Vol. 23; no. 15; p. 6956 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
MDPI AG
05.08.2023
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1424-8220 1424-8220 |
| DOI | 10.3390/s23156956 |
Cover
| Abstract | In recent times, the realm of remote sensing has witnessed a remarkable surge in the area of deep learning, specifically in the domain of target recognition within synthetic aperture radar (SAR) images. However, prevailing deep learning models have often placed undue emphasis on network depth and width while disregarding the imperative requirement for a harmonious equilibrium between accuracy and speed. To address this concern, this paper presents FCCD-SAR, a SAR target recognition algorithm based on the lightweight FasterNet network. Initially, a lightweight and SAR-specific feature extraction backbone is meticulously crafted to better align with SAR image data. Subsequently, an agile upsampling operator named CARAFE is introduced, augmenting the extraction of scattering information and fortifying target recognition precision. Moreover, the inclusion of a rapid, lightweight module, denoted as C3-Faster, serves to heighten both recognition accuracy and computational efficiency. Finally, in cognizance of the diverse scales and vast variations exhibited by SAR targets, a detection head employing DyHead’s attention mechanism is implemented to adeptly capture feature information across multiple scales, elevating recognition performance on SAR targets. Exhaustive experimentation on the MSTAR dataset unequivocally demonstrates the exceptional prowess of our FCCD-SAR algorithm, boasting a mere 2.72 M parameters and 6.11 G FLOPs, culminating in an awe-inspiring 99.5% mean Average Precision (mAP) and epitomizing its unparalleled proficiency. |
|---|---|
| AbstractList | In recent times, the realm of remote sensing has witnessed a remarkable surge in the area of deep learning, specifically in the domain of target recognition within synthetic aperture radar (SAR) images. However, prevailing deep learning models have often placed undue emphasis on network depth and width while disregarding the imperative requirement for a harmonious equilibrium between accuracy and speed. To address this concern, this paper presents FCCD-SAR, a SAR target recognition algorithm based on the lightweight FasterNet network. Initially, a lightweight and SAR-specific feature extraction backbone is meticulously crafted to better align with SAR image data. Subsequently, an agile upsampling operator named CARAFE is introduced, augmenting the extraction of scattering information and fortifying target recognition precision. Moreover, the inclusion of a rapid, lightweight module, denoted as C3-Faster, serves to heighten both recognition accuracy and computational efficiency. Finally, in cognizance of the diverse scales and vast variations exhibited by SAR targets, a detection head employing DyHead's attention mechanism is implemented to adeptly capture feature information across multiple scales, elevating recognition performance on SAR targets. Exhaustive experimentation on the MSTAR dataset unequivocally demonstrates the exceptional prowess of our FCCD-SAR algorithm, boasting a mere 2.72 M parameters and 6.11 G FLOPs, culminating in an awe-inspiring 99.5% mean Average Precision (mAP) and epitomizing its unparalleled proficiency. In recent times, the realm of remote sensing has witnessed a remarkable surge in the area of deep learning, specifically in the domain of target recognition within synthetic aperture radar (SAR) images. However, prevailing deep learning models have often placed undue emphasis on network depth and width while disregarding the imperative requirement for a harmonious equilibrium between accuracy and speed. To address this concern, this paper presents FCCD-SAR, a SAR target recognition algorithm based on the lightweight FasterNet network. Initially, a lightweight and SAR-specific feature extraction backbone is meticulously crafted to better align with SAR image data. Subsequently, an agile upsampling operator named CARAFE is introduced, augmenting the extraction of scattering information and fortifying target recognition precision. Moreover, the inclusion of a rapid, lightweight module, denoted as C3-Faster, serves to heighten both recognition accuracy and computational efficiency. Finally, in cognizance of the diverse scales and vast variations exhibited by SAR targets, a detection head employing DyHead's attention mechanism is implemented to adeptly capture feature information across multiple scales, elevating recognition performance on SAR targets. Exhaustive experimentation on the MSTAR dataset unequivocally demonstrates the exceptional prowess of our FCCD-SAR algorithm, boasting a mere 2.72 M parameters and 6.11 G FLOPs, culminating in an awe-inspiring 99.5% mean Average Precision (mAP) and epitomizing its unparalleled proficiency.In recent times, the realm of remote sensing has witnessed a remarkable surge in the area of deep learning, specifically in the domain of target recognition within synthetic aperture radar (SAR) images. However, prevailing deep learning models have often placed undue emphasis on network depth and width while disregarding the imperative requirement for a harmonious equilibrium between accuracy and speed. To address this concern, this paper presents FCCD-SAR, a SAR target recognition algorithm based on the lightweight FasterNet network. Initially, a lightweight and SAR-specific feature extraction backbone is meticulously crafted to better align with SAR image data. Subsequently, an agile upsampling operator named CARAFE is introduced, augmenting the extraction of scattering information and fortifying target recognition precision. Moreover, the inclusion of a rapid, lightweight module, denoted as C3-Faster, serves to heighten both recognition accuracy and computational efficiency. Finally, in cognizance of the diverse scales and vast variations exhibited by SAR targets, a detection head employing DyHead's attention mechanism is implemented to adeptly capture feature information across multiple scales, elevating recognition performance on SAR targets. Exhaustive experimentation on the MSTAR dataset unequivocally demonstrates the exceptional prowess of our FCCD-SAR algorithm, boasting a mere 2.72 M parameters and 6.11 G FLOPs, culminating in an awe-inspiring 99.5% mean Average Precision (mAP) and epitomizing its unparalleled proficiency. |
| Audience | Academic |
| Author | Fang, Jiandong Li, Dong Dong, Xiang |
| AuthorAffiliation | The College of Information Engineering, Information and Communication Engineering, Inner Mongol University of Technology, Hohhot 010080, China |
| AuthorAffiliation_xml | – name: The College of Information Engineering, Information and Communication Engineering, Inner Mongol University of Technology, Hohhot 010080, China |
| Author_xml | – sequence: 1 givenname: Xiang surname: Dong fullname: Dong, Xiang – sequence: 2 givenname: Dong surname: Li fullname: Li, Dong – sequence: 3 givenname: Jiandong orcidid: 0000-0002-2920-9276 surname: Fang fullname: Fang, Jiandong |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37571739$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1ku9r1DAYx4NM3Hb6wn9ACr5RoVt-NEk7BKmnp4NDQefr8DRNezna5kxax_57c3Ye21BCfvDkm0_yfPOcoqPBDQah5wSfMVbg80AZ4aLg4hE6IRnN0pxSfHRnfYxOQ9hiTBlj-RN0zCSXRLLiBL1dLZcf0u_lt4ukTNa23YzXZj8mMZSUV7F3rfN23PTJewimTtyQrCCMxn8x41P0uIEumGe38wL9WH28Wn5O118_XS7Ldao5LsZUsqqShDPQVS5oY4iui5ozDTSrBBGGUAoVZQ3JsozLigLmRDakEVBzEHXBFuhy5tYOtmrnbQ_-Rjmw6k_A-VaBH63ujGpqkFw3RFaAI87kkSpIVjNjKAjKI-vNzJqGHdxcQ9cdgASrvZ3qYGcUv5vFu6nqTa3NMHro7r3g_s5gN6p1vyIqo5RxEgmvbgne_ZxMGFVvgzZdB4NxU1A055gRRgiO0pcPpFs3-SEaG1VZQTBmeO_F2axqIaZrh8bFi3VstemtjnXR2BgvpcCCSBw_eYFe3M3h8Pi_NRAF57NAexeCN43SdoTRun1KtvunLa8fnPi_hb8BHqLLSQ |
| CitedBy_id | crossref_primary_10_3390_rs16122233 crossref_primary_10_1088_1361_6501_ad9e18 crossref_primary_10_1109_JSTARS_2024_3419903 crossref_primary_10_1109_ACCESS_2024_3398142 |
| Cites_doi | 10.1016/j.eswa.2022.117342 10.1109/JSTARS.2021.3116979 10.1080/2150704X.2020.1730472 10.3390/rs15112807 10.1109/JSTARS.2021.3126688 10.1088/1742-6596/1626/1/012108 10.3390/rs14163924 10.1109/CVPR.2017.106 10.1109/ACCESS.2022.3193773 10.1109/TGRS.2019.2937175 10.1109/LGRS.2018.2879969 10.1109/TGRS.2019.2931620 10.1109/CVPR46437.2021.00729 10.1109/CVPR52729.2023.01157 10.1109/IGARSS39084.2020.9324210 10.1109/LGRS.2019.2939156 10.1109/JSTSP.2022.3207902 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3390/s23156956 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection (NC LIVE) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central (New) (NC LIVE) ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed Publicly Available Content Database CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_fda75cf17ba0444e8f14614d3ee2a625 10.3390/s23156956 PMC10422351 A760617017 37571739 10_3390_s23156956 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Inner Mongolia Autonomous Region Natural Science Foundation Project grantid: 2022QN06004 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M ALIPV NPM 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI 7X8 PUEGO 5PM ADRAZ ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c509t-73bb7153acb862fe1cd9d53ca24b616e122ab23f144457b2a0517f1f6ad5a6d93 |
| IEDL.DBID | M48 |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:51:02 EDT 2025 Sun Oct 26 03:56:16 EDT 2025 Tue Sep 30 17:12:10 EDT 2025 Thu Oct 02 12:11:05 EDT 2025 Tue Oct 07 07:33:41 EDT 2025 Mon Oct 20 17:19:39 EDT 2025 Thu Apr 03 07:06:25 EDT 2025 Thu Apr 24 22:55:34 EDT 2025 Thu Oct 16 04:34:54 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 15 |
| Keywords | deep learning automatic target recognition (ATR) synthetic aperture radar (SAR) fasterNet lightweight |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c509t-73bb7153acb862fe1cd9d53ca24b616e122ab23f144457b2a0517f1f6ad5a6d93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-2920-9276 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/1424-8220/23/15/6956/pdf?version=1691214225 |
| PMID | 37571739 |
| PQID | 2849100309 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_fda75cf17ba0444e8f14614d3ee2a625 unpaywall_primary_10_3390_s23156956 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10422351 proquest_miscellaneous_2850313110 proquest_journals_2849100309 gale_infotracacademiconefile_A760617017 pubmed_primary_37571739 crossref_citationtrail_10_3390_s23156956 crossref_primary_10_3390_s23156956 |
| PublicationCentury | 2000 |
| PublicationDate | 20230805 |
| PublicationDateYYYYMMDD | 2023-08-05 |
| PublicationDate_xml | – month: 8 year: 2023 text: 20230805 day: 5 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2023 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Wang (ref_9) 2021; 60 Dai (ref_30) 2021; 19 Wang (ref_13) 2021; 14 Zhang (ref_11) 2021; 60 ref_33 Zhou (ref_5) 2022; 60 ref_10 ref_32 ref_31 Wan (ref_3) 2021; 60 Zhang (ref_8) 2022; 17 Du (ref_19) 2019; 58 Zhang (ref_4) 2019; 17 Tsokas (ref_6) 2022; 205 Peng (ref_18) 2022; 19 Zhao (ref_14) 2019; 57 Wei (ref_16) 2020; 19 Wang (ref_2) 2022; 19 Li (ref_20) 2022; 19 Feng (ref_12) 2021; 14 ref_25 Zhang (ref_26) 2022; 19 ref_23 Yang (ref_28) 2022; 58 Du (ref_17) 2021; 19 ref_21 Yang (ref_1) 2018; 16 Li (ref_24) 2020; 19 ref_27 Song (ref_22) 2022; 19 Wang (ref_15) 2022; 10 ref_7 Zhang (ref_29) 2020; 11 |
| References_xml | – volume: 205 start-page: 117342 year: 2022 ident: ref_6 article-title: SAR data applications in earth observation: An overview publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.117342 – volume: 14 start-page: 10213 year: 2021 ident: ref_12 article-title: SAR target classification based on integration of ASC parts model and deep learning algorithm publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2021.3116979 – volume: 11 start-page: 485 year: 2020 ident: ref_29 article-title: A lossless lightweight CNN design for SAR target recognition publication-title: Remote Sens. Lett. doi: 10.1080/2150704X.2020.1730472 – ident: ref_7 doi: 10.3390/rs15112807 – ident: ref_32 – volume: 14 start-page: 12224 year: 2021 ident: ref_13 article-title: Attribute-guided multi-scale prototypical network for few-shot SAR target classification publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2021.3126688 – volume: 19 start-page: 1 year: 2022 ident: ref_26 article-title: SAR target recognition using only simulated data for training by hierarchically combining CNN and image similarity publication-title: IEEE Geosci. Remote Sens. Lett. – ident: ref_27 doi: 10.1088/1742-6596/1626/1/012108 – volume: 19 start-page: 1 year: 2022 ident: ref_20 article-title: A novel SAR target recognition method combining electromagnetic scattering information and GCN publication-title: IEEE Geosci. Remote Sens. Lett. – ident: ref_25 doi: 10.3390/rs14163924 – ident: ref_23 doi: 10.1109/CVPR.2017.106 – volume: 19 start-page: 1 year: 2020 ident: ref_16 article-title: Learn to Recognize Unknown SAR Targets From Reflection Similarity publication-title: IEEE Geosci. Remote Sens. Lett. – ident: ref_21 – volume: 10 start-page: 89534 year: 2022 ident: ref_15 article-title: Few-Shot SAR Target Recognition Based on Deep Kernel Learning publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3193773 – volume: 58 start-page: 461 year: 2019 ident: ref_19 article-title: Target discrimination based on weakly supervised learning for high-resolution SAR images in complex scenes publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2019.2937175 – volume: 60 start-page: 1 year: 2021 ident: ref_9 article-title: First demonstration of airborne MIMO SAR system for multimodal operation publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 16 start-page: 826 year: 2018 ident: ref_1 article-title: Unsupervised change detection of SAR images based on variational multivariate Gaussian mixture model and Shannon entropy publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2018.2879969 – volume: 19 start-page: 1 year: 2020 ident: ref_24 article-title: SAR target recognition based on efficient fully convolutional attention block CNN publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 57 start-page: 10116 year: 2019 ident: ref_14 article-title: Contrastive-regulated CNN in the complex domain: A method to learn physical scattering signatures from flexible PolSAR images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2019.2931620 – ident: ref_33 doi: 10.1109/CVPR46437.2021.00729 – volume: 60 start-page: 1 year: 2021 ident: ref_11 article-title: Domain knowledge powered two-stream deep network for few-shot SAR vehicle recognition publication-title: IEEE Trans. Geosci. Remote Sens. – ident: ref_31 doi: 10.1109/CVPR52729.2023.01157 – ident: ref_10 doi: 10.1109/IGARSS39084.2020.9324210 – volume: 19 start-page: 1 year: 2022 ident: ref_22 article-title: Two-stage cross-modality transfer learning method for military-civilian SAR ship recognition publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 17 start-page: 1008 year: 2019 ident: ref_4 article-title: SAR target small sample recognition based on CNN cascaded features and AdaBoost rotation forest publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2019.2939156 – volume: 58 start-page: 201 year: 2022 ident: ref_28 article-title: Improving YOLOv5’s lightweight helmet wear detection algorithm publication-title: J. Comput. Eng. Appl. – volume: 60 start-page: 1 year: 2022 ident: ref_5 article-title: FSODS: A Lightweight Metalearning Method for Few-Shot Object Detection on SAR Images publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 19 start-page: 1 year: 2021 ident: ref_17 article-title: Fast C&W: A fast adversarial attack algorithm to fool SAR target recognition with deep convolutional neural networks publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 17 start-page: 445 year: 2022 ident: ref_8 article-title: Multi-channel back-projection algorithm for mmwave automotive MIMO SAR imaging with Doppler-division multiplexing publication-title: IEEE J. Sel. Top. Signal Process. doi: 10.1109/JSTSP.2022.3207902 – volume: 60 start-page: 1 year: 2021 ident: ref_3 article-title: AFSar: An anchor-free SAR target detection algorithm based on multiscale enhancement representation learning publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 19 start-page: 1 year: 2022 ident: ref_18 article-title: Speckle-variant attack: Toward transferable adversarial attack to SAR target recognition publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 19 start-page: 1 year: 2021 ident: ref_30 article-title: SAR target recognition with modified convolutional random vector functional link network publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 19 start-page: 1 year: 2022 ident: ref_2 article-title: Global in local: A convolutional transformer for SAR ATR FSL publication-title: IEEE Geosci. Remote Sens. Lett. |
| SSID | ssj0023338 |
| Score | 2.4570537 |
| Snippet | In recent times, the realm of remote sensing has witnessed a remarkable surge in the area of deep learning, specifically in the domain of target recognition... |
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 6956 |
| SubjectTerms | Accuracy Algorithms Artificial satellites in remote sensing automatic target recognition (ATR) Classification Datasets Deep learning Design Efficiency fasterNet lightweight Machine learning Neural networks Synthetic aperture radar synthetic aperture radar (SAR) Target recognition Wavelet transforms |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hXoAD4k2gIPOQ4BI1iWN7g7ikC6sKQQ_QSr1ZftJKS7Zqs6r498wk2SjLQ1w45JB4EtkzHs-MPfkG4FXGLVqhYFJhuU1LG2VqTIa3ZQgyc5VTlvY7Ph_Kg-Py44k4mZT6opywHh64Z9xe9EYJF3NlDUGbhVmkStSl5yEUBp13Wn2zWbUJpoZQi2Pk1eMIcQzq9y7RixGyoirVE-vTgfT_vhRPbNGveZLX1825-XFllsuJEVrchluD98jqvtd34Fpo7sLNCabgPXi3mM_fp1_rL29ZzT5R6H3V7X4yfMTqI7yW31YXZ-3pd7aPFsyzVcMWhuASDkN7H44XH47mB-lQIiF1aOnbVHFrFS5axlkMTWLIna-84M4UpZW5DHlRGFtw5FlZCmULQ5BcMY_SeGGkr_gD2GlWTXgEzMdIMOIz79HDcN7S-WVmXGkrh99RNoE3G9ZpN-CHUxmLpcY4grisRy4n8GIkPe9BM_5EtE_8HwkI57p7gNLXg_T1v6SfwGuSniZtxM44M_xUgEMiXCtdK5l1kPMqgd2NgPWgppcabTO6S3TKlMDzsRkVjE5NTBNWa6IRhG-JblICD_v5MPaZK0FZDPj2bGumbA1qu6U5O-1AvHMCX-MiT-DlOKn-zqzH_4NZT-BGgarRpS-KXdhpL9bhKbpUrX3Wac9PsbUcVA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central (New) (NC LIVE) dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Zb9NAEB6V9AF4QNwYCjKHBC9Wba_XjhEIJaFRhSBCpZX6Zs1eLVJqp62jin_PjGObhOvBD_au7d3ZOff4BuBVKBRZIYuBVEIFiXJpgBjSbWJtGupcZ4rnO77M0v2j5NOxPN6CWXcWhrdVdjqxUdSm0jxHvktqlCwbLwh8WJwHnDWKV1e7FBrYplYw7xuIsWuwHTMy1gC2x3uzrwd9CCYoIlvhCwkK9ncvybuRac7Zq9esUgPe_6eKXrNRv--fvL4sF_jjCufzNeM0vQ23Wq_SH63Y4A5s2fIu3FzDGrwH76aTycfg2-jgrT_yP3NIftXMivr0yB8d0jU_of7Wp2f-mCyb8avSnyLDKMxsfR-OpnuHk_2gTZ0QaPIA6iATSmWkzFArClmcjbTJjRQa40SlUWqjOEYVC0fhVCIzFSNDdbnIpWgkpiYXD2BQVqV9BL5xjuHFh8aQ56GN4nXNEHWick3fyZQHbzrSFbrFFef0FvOC4gumctFT2YMXfdXFCkzjb5XGTP--AuNfNw-qi5OiFafCGcykdvR7ZMA7O3ScnzwxwtoYKaTz4DWPXsFSSo3R2B42oC4x3lUxytKwgaLPPNjpBrhoxfey-MVsHjzvi0nweDUFS1stuY5k3Etynzx4uOKHvs0ik7y7gd4ebnDKRqc2S8rvpw24d8SgbEJGHrzsmerfxHr8_9Y_gRsxMX2zYVHuwKC-WNqn5ETV6lkrGT8BP1UZ3w priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB5B9wAceD8CCwoPCS7ZPBw7LUJC2UK1QlAh2ErLKfJzt6KkVTdlBb-emSSN2gUkJA45JB4ndjz2fGOPPwM8i5hCK2RlwBVTQaqcCKSM8Da1VkR6oDNF8x0fxuJgkr474kcbu_gprBJd8Wk9SNMurAAtWBQmLIx5KBDMhwvjXn9v55KI6YU4wxJ-EXYERzTeg53J-GP-pd5U1OZuCIUYevfhKcIZTq_ZMkM1W__vY_KGUTofMHlpVS7kjzM5m21Yo9E1kOt6NEEoX_dWldrTP89RPP5PRa_D1Raq-nmjWzfggi1vwpUNAsNb8Go0HL4JPuefXvq5_578_LN6qtXHR35-iNfseL6cViff_H00l8afl_5IEjfD2Fa3YTJ6ezg8CNrzGAKNsKIKMqZUhiOk1Ar9IGdjbQaGMy2TVIlY2DhJpEqYQx8t5ZlKJPF_udgJabgUZsDuQK-cl_Ye-MY54izvG4NwRhtFi6WR1KkaaHxPpjx4sW6eQrdk5XRmxqxAp4Vasuha0oMnneiiYej4k9A-tXEnQKTa9YP58rho-2jhjMy4dvh5SSx6tu_o0PPUMGsTiX6iB89JQwrq-lgYLdsdDFglItEq8kxENb995sHuWomKdkw4LRAIIDajJS0PHnfJ2JtpiUaWdr4iGU5kmojJPLjb6FxXZpZxCpnA3P0tbdyq1HZKOT2pGcNjYnpjPPbgaae4f_9Z9_9J6gFcThDw1cGQfBd61XJlHyJAq9Sjtg_-Ako4MYg priority: 102 providerName: Unpaywall |
| Title | FCCD-SAR: A Lightweight SAR ATR Algorithm Based on FasterNet |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/37571739 https://www.proquest.com/docview/2849100309 https://www.proquest.com/docview/2850313110 https://pubmed.ncbi.nlm.nih.gov/PMC10422351 https://www.mdpi.com/1424-8220/23/15/6956/pdf?version=1691214225 https://doaj.org/article/fda75cf17ba0444e8f14614d3ee2a625 |
| UnpaywallVersion | publishedVersion |
| Volume | 23 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: HH5 dateStart: 20010101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ADMLS dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1424-8220 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M48 dateStart: 20030101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9NAEB71eAAeEDeGEplDghcX2-v1xgiEnNBQIRpVpZHCk7VnW8k4JU1U-u-ZcRwrgSLxYEveXdu7szM7M3t8A_AqZAq1kJUBV0wFiXJpIGWIj4m1aagzLRTNdxwM0_1R8mXMxxuwjLHZEPDiWteO4kmNpuXur59XH1HgP5DHiS772wu0UXiKhv4mbKOCyiiCw0HSLibEjNUBrelMV4D6MFwADK2_uqaWavT-v8foFSX15wbKG_PqXF5dyrJc0U6DO3C7MSv9fMEHd2HDVvfg1grY4H14P-j3PwXf8qN3fu5_JZ_8sp4W9THJz4_xKk8m07PZ6Q-_h6rN-JPKH0jCURja2QMYDfaO-_tBEzsh0GgCzALBlBI4mkmt0GdxNtImM5xpGScqjVIbxbFUMXPoTyVcqFgSVpeLXCoNl6nJ2EPYqiaVfQy-cY7wxbvGoOmhjaKFzVDqRGUavyOUB2-WpCt0AyxO8S3KAh0MonLRUtmDF23R8wWaxnWFekT_tgABYNcJk-lJ0chT4YwUXDv8vSTEO9t1FKA8MczaWKJP58Fr6r2CGAcro2Vz2gCbRIBXRS7SsMaiFx7sLDu4WLJfgUob7ShafvLgeZuNkkfLKbKykzmV4QR8ifaTB48W_NDWmQlO2xvw7e4ap6w1aj2nOjut0b0jQmVjPPLgZctU_ybWk_-h6FO4GaMY1PsW-Q5szaZz-wxtqZnqwKYYC7x3B587sN3bGx4edep5iU4tQ5g2Gh7m338DnnIeLw |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFH6qyqFwQOy4FDCb4GLV9njsGIGQmxKlNM0BUik3dza3lYIdmkRR_xS_kfe8NWG79eCDPWN75s1bZ_kewGuXSbRCRjhcMukEMgsdIVy8DYwJXRWrSNJ8x9Ew7B8HX8Z8vAE_m7MwtK2y0YmlotaFojnyXVSjaNloQeDT9IdDWaNodbVJoVGxxaG5XGLINvt4sI_j-8b3e59H3b5TZxVwFBrHuRMxKSOUc6EkevOZ8ZSONWdK-IEMvdB4vi-kzzKMNAIeSV8QilXmZaHQXISawJdQ5d8IGOoSlJ9ofBXgMYz3KvQixmJ3d4a-Ew9jyo29YvPK1AB_GoAVC_j77sytRT4Vl0sxmayYvt4duF37rHZSMdld2DD5Pbi1gmR4Hz70ut1951vy9b2d2AMK-JflnKuNj-xkhNfkFKk5P_tu76Hd1HaR2z1BIA1DM38Ax9dCwoewmRe5eQy2zjICL-9ojX6N0pJWTV2hAhkr_E4kLXjXkC5VNWo5Jc-YpBi9EJXTlsoWvGyrTiuojr9V2iP6txUIXbt8UFycprWwppkWEVcZ_l4QnJ7pZJT9PNDMGF9gwGjBWxq9lHQANkaJ-igDdonQtNIkCt0S6D6yYKcZ4LRWDrP0ipUteNEWo1jTWo3ITbGgOpxQNdE5s-BRxQ9tm1nEae8Evt1Z45S1Tq2X5OdnJXS4R5BvjHsWvGqZ6t_E2v5_65_DVn90NEgHB8PDJ3DTRwEot0byHdicXyzMU3TX5vJZKSM2nFy3UP4CQftQIA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB5VReJ4QNwYCphL8GLF9nq9MQKhNCFqaYkQbaW8mT1bpOCExlHUv8avY8Zx3ITrrQ9-sHdtr2fn3B1_A_AiZAqtkJUBV0wFiXJpIGWIp4m1aagzLRStd3wapDtHycchH27Az-W_MJRWudSJlaI2Y01r5C1Uo2jZaEOg5eq0iM-9_vvJj4AqSNFO67KcxoJF9uzZHMO36bvdHs71yzjufzjs7gR1hYFAo6EsA8GUEijzUiv07J2NtMkMZ1rGiUqj1EZxLFXMHEYdCRcqloRo5SKXSsNlagiICdX_JcFYRumEYnge7DGM_RZIRtgYtqboR_E0ozrZK_avKhPwpzFYsYa_Z2pemRUTeTaXo9GKGezfgOu1_-p3Fgx3EzZscQuuraAa3oa3_W63Fxx0vrzxO_4-Bf_zav3Vx0t-5xCP0TFSszz57m-jDTX-uPD7kgAbBra8A0cXQsK7sFmMC3sffOMcAZm3jUEfRxtFO6ih1InKND5HKA9eL0mX6xrBnAppjHKMZIjKeUNlD541XScL2I6_ddom-jcdCGm7ujA-Pc5rwc2dkYJrh6-XBK1n244qoSeGWRtLDB49eEWzl5M-wMFoWf_WgJ9EyFp5R6RhBXovPNhaTnBeK4ppfs7WHjxtmlHEad9GFnY8oz6cEDbRUfPg3oIfmjEzwSmPAu9ur3HK2kettxTfTioY8Yjg3xiPPHjeMNW_ifXg_6N_ApdRHPP93cHeQ7gaI_9XWZJ8CzbL05l9hJ5bqR5XIuLD14uWyV80D1Rj |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB5B9wAceD8CCwoPCS7ZPBw7LUJC2UK1QlAh2ErLKfJzt6KkVTdlBb-emSSN2gUkJA45JB4ndjz2fGOPPwM8i5hCK2RlwBVTQaqcCKSM8Da1VkR6oDNF8x0fxuJgkr474kcbu_gprBJd8Wk9SNMurAAtWBQmLIx5KBDMhwvjXn9v55KI6YU4wxJ-EXYERzTeg53J-GP-pd5U1OZuCIUYevfhKcIZTq_ZMkM1W__vY_KGUTofMHlpVS7kjzM5m21Yo9E1kOt6NEEoX_dWldrTP89RPP5PRa_D1Raq-nmjWzfggi1vwpUNAsNb8Go0HL4JPuefXvq5_578_LN6qtXHR35-iNfseL6cViff_H00l8afl_5IEjfD2Fa3YTJ6ezg8CNrzGAKNsKIKMqZUhiOk1Ar9IGdjbQaGMy2TVIlY2DhJpEqYQx8t5ZlKJPF_udgJabgUZsDuQK-cl_Ye-MY54izvG4NwRhtFi6WR1KkaaHxPpjx4sW6eQrdk5XRmxqxAp4Vasuha0oMnneiiYej4k9A-tXEnQKTa9YP58rho-2jhjMy4dvh5SSx6tu_o0PPUMGsTiX6iB89JQwrq-lgYLdsdDFglItEq8kxENb995sHuWomKdkw4LRAIIDajJS0PHnfJ2JtpiUaWdr4iGU5kmojJPLjb6FxXZpZxCpnA3P0tbdyq1HZKOT2pGcNjYnpjPPbgaae4f_9Z9_9J6gFcThDw1cGQfBd61XJlHyJAq9Sjtg_-Ako4MYg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FCCD-SAR%3A+A+Lightweight+SAR+ATR+Algorithm+Based+on+FasterNet&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Dong%2C+Xiang&rft.au=Li%2C+Dong&rft.au=Fang%2C+Jiandong&rft.date=2023-08-05&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=23&rft.issue=15&rft.spage=6956&rft_id=info:doi/10.3390%2Fs23156956&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s23156956 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |