Lightweight SM-YOLOv5 Tomato Fruit Detection Algorithm for Plant Factory

Due to their rapid development and wide application in modern agriculture, robots, mobile terminals, and intelligent devices have become vital technologies and fundamental research topics for the development of intelligent and precision agriculture. Accurate and efficient target detection technology...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 23; no. 6; p. 3336
Main Authors Wang, Xinfa, Wu, Zhenwei, Jia, Meng, Xu, Tao, Pan, Canlin, Qi, Xuebin, Zhao, Mingfu
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 22.03.2023
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s23063336

Cover

Abstract Due to their rapid development and wide application in modern agriculture, robots, mobile terminals, and intelligent devices have become vital technologies and fundamental research topics for the development of intelligent and precision agriculture. Accurate and efficient target detection technology is required for mobile inspection terminals, picking robots, and intelligent sorting equipment in tomato production and management in plant factories. However, due to the limitations of computer power, storage capacity, and the complexity of the plant factory (PF) environment, the precision of small-target detection for tomatoes in real-world applications is inadequate. Therefore, we propose an improved Small MobileNet YOLOv5 (SM-YOLOv5) detection algorithm and model based on YOLOv5 for target detection by tomato-picking robots in plant factories. Firstly, MobileNetV3-Large was used as the backbone network to make the model structure lightweight and improve its running performance. Secondly, a small-target detection layer was added to improve the accuracy of small-target detection for tomatoes. The constructed PF tomato dataset was used for training. Compared with the YOLOv5 baseline model, the mAP of the improved SM-YOLOv5 model was increased by 1.4%, reaching 98.8%. The model size was only 6.33 MB, which was 42.48% that of YOLOv5, and it required only 7.6 GFLOPs, which was half that required by YOLOv5. The experiment showed that the improved SM-YOLOv5 model had a precision of 97.8% and a recall rate of 96.7%. The model is lightweight and has excellent detection performance, and so it can meet the real-time detection requirements of tomato-picking robots in plant factories.
AbstractList Due to their rapid development and wide application in modern agriculture, robots, mobile terminals, and intelligent devices have become vital technologies and fundamental research topics for the development of intelligent and precision agriculture. Accurate and efficient target detection technology is required for mobile inspection terminals, picking robots, and intelligent sorting equipment in tomato production and management in plant factories. However, due to the limitations of computer power, storage capacity, and the complexity of the plant factory (PF) environment, the precision of small-target detection for tomatoes in real-world applications is inadequate. Therefore, we propose an improved Small MobileNet YOLOv5 (SM-YOLOv5) detection algorithm and model based on YOLOv5 for target detection by tomato-picking robots in plant factories. Firstly, MobileNetV3-Large was used as the backbone network to make the model structure lightweight and improve its running performance. Secondly, a small-target detection layer was added to improve the accuracy of small-target detection for tomatoes. The constructed PF tomato dataset was used for training. Compared with the YOLOv5 baseline model, the mAP of the improved SM-YOLOv5 model was increased by 1.4%, reaching 98.8%. The model size was only 6.33 MB, which was 42.48% that of YOLOv5, and it required only 7.6 GFLOPs, which was half that required by YOLOv5. The experiment showed that the improved SM-YOLOv5 model had a precision of 97.8% and a recall rate of 96.7%. The model is lightweight and has excellent detection performance, and so it can meet the real-time detection requirements of tomato-picking robots in plant factories.
Due to their rapid development and wide application in modern agriculture, robots, mobile terminals, and intelligent devices have become vital technologies and fundamental research topics for the development of intelligent and precision agriculture. Accurate and efficient target detection technology is required for mobile inspection terminals, picking robots, and intelligent sorting equipment in tomato production and management in plant factories. However, due to the limitations of computer power, storage capacity, and the complexity of the plant factory (PF) environment, the precision of small-target detection for tomatoes in real-world applications is inadequate. Therefore, we propose an improved Small MobileNet YOLOv5 (SM-YOLOv5) detection algorithm and model based on YOLOv5 for target detection by tomato-picking robots in plant factories. Firstly, MobileNetV3-Large was used as the backbone network to make the model structure lightweight and improve its running performance. Secondly, a small-target detection layer was added to improve the accuracy of small-target detection for tomatoes. The constructed PF tomato dataset was used for training. Compared with the YOLOv5 baseline model, the mAP of the improved SM-YOLOv5 model was increased by 1.4%, reaching 98.8%. The model size was only 6.33 MB, which was 42.48% that of YOLOv5, and it required only 7.6 GFLOPs, which was half that required by YOLOv5. The experiment showed that the improved SM-YOLOv5 model had a precision of 97.8% and a recall rate of 96.7%. The model is lightweight and has excellent detection performance, and so it can meet the real-time detection requirements of tomato-picking robots in plant factories.Due to their rapid development and wide application in modern agriculture, robots, mobile terminals, and intelligent devices have become vital technologies and fundamental research topics for the development of intelligent and precision agriculture. Accurate and efficient target detection technology is required for mobile inspection terminals, picking robots, and intelligent sorting equipment in tomato production and management in plant factories. However, due to the limitations of computer power, storage capacity, and the complexity of the plant factory (PF) environment, the precision of small-target detection for tomatoes in real-world applications is inadequate. Therefore, we propose an improved Small MobileNet YOLOv5 (SM-YOLOv5) detection algorithm and model based on YOLOv5 for target detection by tomato-picking robots in plant factories. Firstly, MobileNetV3-Large was used as the backbone network to make the model structure lightweight and improve its running performance. Secondly, a small-target detection layer was added to improve the accuracy of small-target detection for tomatoes. The constructed PF tomato dataset was used for training. Compared with the YOLOv5 baseline model, the mAP of the improved SM-YOLOv5 model was increased by 1.4%, reaching 98.8%. The model size was only 6.33 MB, which was 42.48% that of YOLOv5, and it required only 7.6 GFLOPs, which was half that required by YOLOv5. The experiment showed that the improved SM-YOLOv5 model had a precision of 97.8% and a recall rate of 96.7%. The model is lightweight and has excellent detection performance, and so it can meet the real-time detection requirements of tomato-picking robots in plant factories.
Audience Academic
Author Wang, Xinfa
Xu, Tao
Jia, Meng
Wu, Zhenwei
Zhao, Mingfu
Pan, Canlin
Qi, Xuebin
AuthorAffiliation 2 Faculty of Engineering and Technology, Sumy National Agrarian University, 40000 Sumy, Ukraine
3 College of Mechanical and Electrical Engineering, Xinxiang University, Xinxiang 453003, China
1 School of Information Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China
4 Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
AuthorAffiliation_xml – name: 1 School of Information Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China
– name: 3 College of Mechanical and Electrical Engineering, Xinxiang University, Xinxiang 453003, China
– name: 4 Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
– name: 2 Faculty of Engineering and Technology, Sumy National Agrarian University, 40000 Sumy, Ukraine
Author_xml – sequence: 1
  givenname: Xinfa
  orcidid: 0000-0002-6293-5624
  surname: Wang
  fullname: Wang, Xinfa
– sequence: 2
  givenname: Zhenwei
  orcidid: 0000-0002-3635-7576
  surname: Wu
  fullname: Wu, Zhenwei
– sequence: 3
  givenname: Meng
  surname: Jia
  fullname: Jia, Meng
– sequence: 4
  givenname: Tao
  orcidid: 0000-0002-8821-4550
  surname: Xu
  fullname: Xu, Tao
– sequence: 5
  givenname: Canlin
  surname: Pan
  fullname: Pan, Canlin
– sequence: 6
  givenname: Xuebin
  surname: Qi
  fullname: Qi, Xuebin
– sequence: 7
  givenname: Mingfu
  orcidid: 0000-0002-3163-2110
  surname: Zhao
  fullname: Zhao, Mingfu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36992047$$D View this record in MEDLINE/PubMed
BookMark eNp1kl1v0zAUhi00xLbCBX8AReIGJnVz_JHYV6gaK5tUVCTGBVeW44_UVRIXx9nUf49DRrVNIEu2Zb_n8Tmvzyk46nxnAHibw3OMObzoEYYFxrh4AU5ygsicIQSPHu2PwWnfbyFEScRegWNccI4gKU_A9crVm3hvxjn7_nX-c71a39Hs1rcy-mwZBhezzyYaFZ3vskVT--Dips2sD9m3RnYxW0oVfdi_Bi-tbHrz5mGdgR_Lq9vL6_lq_eXmcrGaKwp5nFPDLbaGsIphZbiilZaMVxVmDFOmcVFoirTEFSM6NyXGldTUSmO14rmiBs_AzcTVXm7FLrhWhr3w0ok_Bz7UQoboVGMEwcRQiIyVFSIFKngyiRKtCkWZJYk9A2cTa-h2cn8vm-YAzKEYrRUHa5P40yTeDVVrtDJdDLJ5ksHTm85tRO3vEgrSnBV5Inx4IAT_azB9FK3rlWmSjcYPvUAlRxyWmI2PvX8m3fohdMnYUZWXEI5ZzcD5pKplKtd11qeHVRratE6lHrEunS9KgjkuEC9TwLvHNRyS_9sPSXAxCVTwfR-MFcpFOf59Irvmn7Z8fBbxfwt_AwXv0jc
CitedBy_id crossref_primary_10_3390_agriculture13061165
crossref_primary_10_1016_j_compag_2024_108728
crossref_primary_10_1016_j_dib_2023_109291
crossref_primary_10_1080_21642583_2023_2278905
crossref_primary_10_1007_s11694_023_02274_z
crossref_primary_10_3390_jmse11081564
crossref_primary_10_1038_s41598_024_69106_y
crossref_primary_10_3390_agriculture13081593
crossref_primary_10_1007_s11694_023_02020_5
crossref_primary_10_1016_j_fraope_2025_100243
crossref_primary_10_1007_s00530_024_01413_w
crossref_primary_10_3390_agronomy14123027
crossref_primary_10_3390_s23083956
crossref_primary_10_1109_ACCESS_2025_3533489
crossref_primary_10_1016_j_procs_2023_10_641
crossref_primary_10_1007_s42452_024_05914_1
crossref_primary_10_3390_rs16081350
crossref_primary_10_1080_0954898X_2024_2428713
crossref_primary_10_1016_j_asoc_2025_112971
crossref_primary_10_3390_agriengineering6020106
crossref_primary_10_3390_agriculture14050723
crossref_primary_10_1007_s12393_024_09385_3
crossref_primary_10_1007_s11119_024_10132_1
crossref_primary_10_3390_agriculture14091499
crossref_primary_10_1016_j_compag_2024_108833
crossref_primary_10_1049_ipr2_13028
crossref_primary_10_3390_agronomy15030535
Cites_doi 10.1109/ICPR.2006.479
10.1109/CVPR.2018.00745
10.1109/CVPR.2016.90
10.1186/s12880-015-0068-x
10.1109/WACV45572.2020.9093498
10.1007/s11263-013-0620-5
10.4249/scholarpedia.10491
10.3390/s22020682
10.1109/CVPR.2014.81
10.1007/978-3-319-10602-1_48
10.1109/5254.708428
10.1002/adma.202105009
10.1109/ICCV.2015.169
10.1016/j.biosystemseng.2019.04.024
10.4028/www.scientific.net/AMR.485.7
10.3390/app9183775
10.1016/j.foodres.2021.110811
10.1016/j.ijleo.2014.07.001
10.3390/agronomy12071638
10.3390/rs14174150
10.1109/CVPR.2017.690
10.1016/j.compag.2011.11.007
10.1007/s11263-009-0275-4
10.1109/CVPR.2016.91
10.1016/j.compag.2019.01.012
10.1007/978-3-319-46487-9
10.1007/s11431-020-1647-3
10.1109/ICCV.2019.00140
10.1007/978-3-030-01234-2_1
10.1038/s41598-022-12732-1
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/s23063336
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
Publicly Available Content Database



MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Agriculture
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_434e502efab24626906354dc6c58f473
10.3390/s23063336
PMC10051861
A743936297
36992047
10_3390_s23063336
Genre Journal Article
GrantInformation_xml – fundername: The Science and Technology Department of Henan Province
  grantid: 212102110234
– fundername: The education department of Henan province
  grantid: 22A210013
– fundername: The Science and Technology Bureau of XinXiang City of Henan Province
  grantid: 21ZD003
– fundername: The Science and Technology Department of Henan Province
  grantid: 222102320080
– fundername: Colleges and Universities Key Research Project of Henan Province
  grantid: 22A210013
– fundername: Key Science and Technology Program of Henan Province
  grantid: 212102110234; 222102320080; 232102111124
– fundername: Major Science and Technology Projects in Xinxiang City, Henan Province
  grantid: 21ZD003
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ADRAZ
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c509t-5e9f3fe48b83ce9c5bda89bb388358d366d52da3b84d1e733bad5faefdc91c5e3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Fri Oct 03 12:50:57 EDT 2025
Sun Oct 26 03:59:07 EDT 2025
Tue Sep 30 17:15:21 EDT 2025
Sun Aug 24 03:24:38 EDT 2025
Tue Oct 07 07:36:06 EDT 2025
Mon Oct 20 16:55:55 EDT 2025
Thu Apr 03 06:54:04 EDT 2025
Thu Oct 16 04:27:06 EDT 2025
Thu Apr 24 22:55:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords tomato detection
YOLOv5
small-target detection
lightweight
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-5e9f3fe48b83ce9c5bda89bb388358d366d52da3b84d1e733bad5faefdc91c5e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
ORCID 0000-0002-3163-2110
0000-0002-3635-7576
0000-0002-8821-4550
0000-0002-6293-5624
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s23063336
PMID 36992047
PQID 2791700063
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_434e502efab24626906354dc6c58f473
unpaywall_primary_10_3390_s23063336
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10051861
proquest_miscellaneous_2792907386
proquest_journals_2791700063
gale_infotracacademiconefile_A743936297
pubmed_primary_36992047
crossref_citationtrail_10_3390_s23063336
crossref_primary_10_3390_s23063336
PublicationCentury 2000
PublicationDate 20230322
PublicationDateYYYYMMDD 2023-03-22
PublicationDate_xml – month: 3
  year: 2023
  text: 20230322
  day: 22
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Li (ref_12) 2017; 33
ref_14
ref_35
Linker (ref_9) 2012; 81
Fu (ref_13) 2019; 183
ref_32
ref_30
Everingham (ref_34) 2010; 88
ref_19
Wang (ref_33) 2022; 12
ref_18
ref_17
ref_39
ref_38
ref_15
ref_37
Uijlings (ref_7) 2013; 104
Wei (ref_10) 2014; 125
Hearst (ref_6) 1998; 13
Wu (ref_11) 2012; 485
Xi (ref_1) 2022; 34
ref_25
Ren (ref_16) 2015; 28
ref_24
Lindeberg (ref_4) 2012; 7
ref_23
ref_22
ref_21
ref_20
Ares (ref_2) 2021; 150
ref_41
ref_40
ref_3
ref_29
ref_28
ref_27
ref_26
Li (ref_36) 2021; 1757
ref_8
Tian (ref_31) 2019; 157
ref_5
Qiu (ref_42) 2020; 63
References_xml – ident: ref_28
– ident: ref_37
  doi: 10.1109/ICPR.2006.479
– ident: ref_26
  doi: 10.1109/CVPR.2018.00745
– ident: ref_5
– ident: ref_3
– ident: ref_24
  doi: 10.1109/CVPR.2016.90
– ident: ref_35
  doi: 10.1186/s12880-015-0068-x
– ident: ref_41
  doi: 10.1109/WACV45572.2020.9093498
– volume: 104
  start-page: 154
  year: 2013
  ident: ref_7
  article-title: Selective Search for Object Recognition
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-013-0620-5
– volume: 7
  start-page: 10491
  year: 2012
  ident: ref_4
  article-title: Scale Invariant Feature Transform
  publication-title: Scholarpedia
  doi: 10.4249/scholarpedia.10491
– ident: ref_30
  doi: 10.3390/s22020682
– volume: 33
  start-page: 328
  year: 2017
  ident: ref_12
  article-title: Green Ripe Tomato Detection Method Based on Machine Vision in Greenhouse
  publication-title: Trans. Chin. Soc. Agric. Eng.
– ident: ref_14
  doi: 10.1109/CVPR.2014.81
– ident: ref_38
  doi: 10.1007/978-3-319-10602-1_48
– volume: 13
  start-page: 18
  year: 1998
  ident: ref_6
  article-title: Support Vector Machines
  publication-title: IEEE Intell. Syst. Their Appl.
  doi: 10.1109/5254.708428
– ident: ref_23
– volume: 34
  start-page: 2105009
  year: 2022
  ident: ref_1
  article-title: Novel Materials for Urban Farming
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202105009
– ident: ref_15
  doi: 10.1109/ICCV.2015.169
– ident: ref_21
– volume: 183
  start-page: 184
  year: 2019
  ident: ref_13
  article-title: A Novel Image Processing Algorithm to Separate Linearly Clustered Kiwifruits
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2019.04.024
– volume: 485
  start-page: 7
  year: 2012
  ident: ref_11
  article-title: An Effective Flame Segmentation Method Based on Ohta Color Space
  publication-title: Adv. Mater. Res.
  doi: 10.4028/www.scientific.net/AMR.485.7
– ident: ref_40
  doi: 10.3390/app9183775
– ident: ref_8
– ident: ref_25
– volume: 150
  start-page: 110811
  year: 2021
  ident: ref_2
  article-title: Consumer Attitudes to Vertical Farming (Indoor Plant Factory with Artificial Lighting) in China, Singapore, UK, and USA: A Multi-Method Study
  publication-title: Food Res. Int.
  doi: 10.1016/j.foodres.2021.110811
– volume: 125
  start-page: 5684
  year: 2014
  ident: ref_10
  article-title: Automatic Method of Fruit Object Extraction under Complex Agricultural Background for Vision System of Fruit Picking Robot
  publication-title: Optik
  doi: 10.1016/j.ijleo.2014.07.001
– ident: ref_32
  doi: 10.3390/agronomy12071638
– volume: 1757
  start-page: 012003
  year: 2021
  ident: ref_36
  article-title: Summary of Target Detection Algorithms
  publication-title: Proceedings of the Journal of Physics: Conference Series
– ident: ref_29
  doi: 10.3390/rs14174150
– ident: ref_19
  doi: 10.1109/CVPR.2017.690
– volume: 28
  start-page: 1
  year: 2015
  ident: ref_16
  article-title: Faster R-Cnn: Towards Real-Time Object Detection with Region Proposal Networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 81
  start-page: 45
  year: 2012
  ident: ref_9
  article-title: Determination of the Number of Green Apples in RGB Images Recorded in Orchards
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2011.11.007
– volume: 88
  start-page: 303
  year: 2010
  ident: ref_34
  article-title: The Pascal Visual Object Classes (Voc) Challenge
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-009-0275-4
– ident: ref_18
  doi: 10.1109/CVPR.2016.91
– volume: 157
  start-page: 417
  year: 2019
  ident: ref_31
  article-title: Apple Detection during Different Growth Stages in Orchards Using the Improved YOLO-V3 Model
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.01.012
– ident: ref_17
  doi: 10.1007/978-3-319-46487-9
– volume: 63
  start-page: 1872
  year: 2020
  ident: ref_42
  article-title: Pre-Trained Models for Natural Language Processing: A Survey
  publication-title: Sci. China Technol. Sci.
  doi: 10.1007/s11431-020-1647-3
– ident: ref_22
– ident: ref_20
– ident: ref_39
  doi: 10.1109/ICCV.2019.00140
– ident: ref_27
  doi: 10.1007/978-3-030-01234-2_1
– volume: 12
  start-page: 8686
  year: 2022
  ident: ref_33
  article-title: Online Recognition and Yield Estimation of Tomato in Plant Factory Based on YOLOv3
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-12732-1
SSID ssj0023338
Score 2.5813928
Snippet Due to their rapid development and wide application in modern agriculture, robots, mobile terminals, and intelligent devices have become vital technologies and...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3336
SubjectTerms Accuracy
Agriculture
Algorithms
Analysis
Apples
Cell Movement
Factories
Fruit
Fruits
Harvest
lightweight
Methods
Neural networks
Robots
small-target detection
Solanum lycopersicum
tomato detection
Tomatoes
Vegetable industry
YOLOv5
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL8ABlXdoQeYhwSXqrl-xj8tjtUItPdBK5WT52a60JNU2S9V_z9jJRrs8xIVrPLLG4xnPN4nzDUJvrDfOMG5KAmikZMqTUlUhlKknjhdRKZ4JTI--iNkp-3zGzzZafaU7YR09cGe4A0ZZ4CMSorGEAfpWkFM58044LiOrMs_nSKp1MdWXWhQqr45HiEJRf3CVgDY8E1vZJ5P0_34Ub-SiX-9J3l7Vl-bm2iwWG0louovu9egRTzqt76NboX6A7m5wCj5Es8NUbl_nN57461H57fjw-AfHJw1A0wZPl6t5iz-GNt_AqvFkcd4s5-3FdwzgFacORi2e5hY8N4_Q6fTTyYdZ2bdLKB1k_bbkQUUaA5NWUheU47APUllLJaAs6akQnhNvqJXMj0NFqTWeRxOid2rseKCP0U7d1OEpwpWywkmoNBxRgOiEjL7ynvrgorSRVgV6tzajdj2XeGppsdBQUySL68HiBXo1iF52BBp_Enqf9mIQSJzX-QF4gu49Qf_LEwr0Nu2kTpEJyjjT_2AAS0ocV3qSai_I1wrU319vtu5D9kqTSiWuQpi0QC-HYQi29AXF1KFZZRmiRqlPaoGedL4x6EyFUmTEYHK55TVbi9oeqecXmdB7nI5GKcYFej042N-N9ex_GGsP3SEQJuk2HSH7aKddrsJzgFetfZEj6SdRTCEb
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9NAFB6V9AAcEDsuBZlFgovVZBZ75oBQCo0i1KYIWqmcrNncVgp2mjpU_fe8N7FNwna1x9Ys78373izfR8hr47TVXOiEAhpJuHI0UZn3CWriuLRQSgQC04NJOj7mn07EyQaZtHdh8FhlOyeGidpVFtfId2imkEoOIur72UWCqlG4u9pKaOhGWsG9CxRjN8gmRWasHtnc3Zt8_tKlYAwysiW_EINkf-cSATg8S9eiUiDv_3OKXolRv5-fvLkoZ_r6Sk-nK8FpdJfcaVBlPFyawT2y4cv75PYK1-ADMt7HNPwqrITGXw-Sb4f7hz9EfFQBZK3i0XxxXscffR1OZpXxcHoKja_PvscAamNUNqrjUZDmuX5Ijkd7Rx_GSSOjkFhAA3UivCpY4bk0klmvrIDxkcoYJgF9ScfS1AnqNDOSu4HPGDPaiUL7wlk1sMKzR6RXVqV_QuJMmdRKyEAsVYD0Ulm4zDnmvC2kKVgWkbdtN-a24RhHqYtpDrkG9nje9XhEXnZFZ0tijb8V2sWx6AogF3Z4UM1P88a1cs64F33qC20oh_xMwbeCO5taIQuesYi8wZHM0WOhMlY3Fw-gSch9lQ8xJ4M4rqD62-1g540rX-a_DC8iL7rX4IS4s6JLXy1CGar6qJ8akcdL2-jqzFKlaJ_Dz-Wa1aw1av1NeX4WiL4HOGXKdBCRV52B_buztv5f-6fkFgUHwPNzlG6TXj1f-GcAqGrzvPGSnwBjIBA
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9NAEF5B-gA8cB-GgswhwYvrZC_vPqFwRBHqgUQjtU_uXm4jgh0lTqvy65l1NlZSQELi1R6vdj2zM9_Ys98g9EZbZRRlKsGARhIqLU5k5lzie-JYXkjJGgLTvX0-HNEvR-wo9Dmdh7JKSMXHjZP2p7ASiGDdFJOUp4QQnk5t8f48fEryvxBoBjGJXkdbnAEY76Ct0f7X_nFzpig8vOQTIpDcp3MPuP0wG1GoIev_3SWvxaSr9ZI3FuVUXV6oyWQtGA3uoJPVMpY1KN93FrXeMT-vMDz-xzrvotsBqMb9pWXdQ9dceR_dWqMvfICGuz6zv2g-rsbf9pLjg92DcxYfVoCCq3gwW4zr-JOrm2KvMu5PTqvZuD77EQNOjn2zpDoeNN1-Lh-i0eDz4cdhEjozJAYARp0wJwtSOCq0IMZJw0DlQmpNBAA6YQnnlmGriBbU9lxGiFaWFcoV1sieYY48Qp2yKt0TFGdScyMgqTFYAnjkorCZtcQ6UwhdkCxC71aayk2gLffdMyY5pC9eqXmr1Ai9akWnS66OPwl98OpuBTy9dnOhmp3mYbfmlFDHutgVSmMKKZ-EZxm1hhsmCpqRCL31xpJ7JwCTMSqcZYAleTqtvO_TPIAGEqa_vbKnPHiHeY4z6WkRYdAIvWxvw772P2tU6apFI4Nl17dkjdDjpfm1cyZcStylMLjYMMyNRW3eKcdnDXd4z3thwXsRet3a8N9f1tN_knqGbmKAfr4yD-Nt1KlnC_ccoFqtX4Tt-AtPXTdO
  priority: 102
  providerName: Unpaywall
Title Lightweight SM-YOLOv5 Tomato Fruit Detection Algorithm for Plant Factory
URI https://www.ncbi.nlm.nih.gov/pubmed/36992047
https://www.proquest.com/docview/2791700063
https://www.proquest.com/docview/2792907386
https://pubmed.ncbi.nlm.nih.gov/PMC10051861
https://www.mdpi.com/1424-8220/23/6/3336/pdf?version=1679472404
https://doaj.org/article/434e502efab24626906354dc6c58f473
UnpaywallVersion publishedVersion
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: HH5
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ABDBF
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ADMLS
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: RPM
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (Proquest)
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 8FG
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M48
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1Lb9NAEB71IUE5IN4YSmQeElwMyT7s3QNCKTREqEkraKT0ZK1312mkYBfXoeTfM-s4VgLtJVK8k2S9M-P5xt58H8CbxCitGFcBQTQSMGlIICNrA6eJY8JUSl4RmA6GYX_Evo35eAtWGpv1Al5e29o5PalRMXv_59fiEyb8R9dxYsv-4dLBaEppuA27WKCkU3AYsOZhAsEhsSQV2jTfg1s0lJK0nbbKWlWqyPv_v0Sv1ah_90_enmcXanGlZrO14tS7B3drVOl3l2FwH7Zs9gDudCdFzaxh8d0a8-BD6B-5pvyqui_q_xgEZ8dHx7-5f5ojgM39XjGflv4XW1b7tDK_O5vkxbQ8_-kjxPWdzlHp9yqhnsUjGPUOTz_3g1pUIdCIDcqAW5nS1DKRCKqt1By9JWSSUIFYTBgahoYTo2gimOnYiNJEGZ4qmxotO5pb-hh2sjyzT8GPZBJqgf2IJhJxXyhSExlDjdWpSFIaefButaixrhnHnfDFLMbOw7kiblzhwavG9GJJs3Gd0YHzTGPgmLGrA3kxietEixlllreJTVVCGHZrEj_LmdGh5iJlEfXgrfNr7CIKJ6NV_TcEPCXHhBV3XYeGVV3i9PdXro9XcRmTSDpGQ_xSD142w5iS7jmLymw-r2yIbDs1VQ-eLCOlmfMq4DwQGzG0cVKbI9n0vKL97rgLqAg7Hrxuwu3mxXp2408_hz2CSeE20hGyDztlMbcvEFmVSQu2o3GEr6L3tQW7B4fDk--t6i5Fq8ooPDYannTP_gKNsSWQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jc9MwFNaUcigcGHYMBcQ2cPE00WJLB4YJlExKk_ZAOhNORtbSdibYIXHI5E_xG3myHTdhu_Uqy5rnp7fa8vch9DI1SivGVUigGgmZNCSUsbWh58QxkZOSlwCmg6Ood8I-jfhoC_1c_Qvjj1WuYmIZqE2u_TvyPRJLDyUHGfXd5HvoWaP819UVhUZlFod2uYCWbfb2YB_29xUh3Y_DD72wZhUINSTHIuRWOuosE6mg2krNQVwh05QKKEaEoVFkODGKpoKZto0pTZXhTllntGxrbimsewVdZRRiCfhPPLpo8Cj0exV6EaWytTfz5T2MRRs5r6QG-DMBrGXA309n7syziVou1Hi8lvq6N9GNumbFncrIbqEtm91G19eQDO-gXt83-YvyPSv-PAi_HPePf3A8zKEgznF3Oj8v8L4tynNfGe6MT0G1xdk3DCUz9rxJBe6WxD_Lu-jkUtR5D21neWYfIBzLNNIC-htNJNSRkXAmNoYaq51IHY0D9GalxkTXCOaeSGOcQCfjNZ40Gg_Q82bqpILt-Nuk934vmgkeabscyKenSe24CaPM8haxTqWEQfcn4V7OjI40F47FNECv_U4mPh6AMFrVvzXAI3lkraTjOz6oEiSIv7va7KQOFLPkwqwD9Ky5DC7uv9uozObzcg6RLc_OGqD7lW00MtNIStJisLjYsJqNh9q8kp2flTDibR-QRdQO0IvGwP6trIf_l_4p2ukNB_2kf3B0-AhdI-AM_qQeIbtou5jO7WMo3Yr0SekvGH29bAf9BcRGWP0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGkGA8IK4jMMDcNF6itr4k9gNChVJ1rNuQ2KTyFBxftkklKW1K1b_Gr-M4TbOW29tebcc6OT5X5-Q7CL1MjdKKcRUSiEZCJg0JZWxt6HvimMhJyUsA04PDqHfCPg74YAP9XP4L48sqlzaxNNQm1_6OvEFi6aHkwKM2XFUW8anTfTv6HvoOUv5L67KdxkJE9u18Bunb5M1eB876FSHdD8fve2HVYSDU4CiLkFvpqLNMpIJqKzUH0oVMUyogMBGGRpHhxCiaCmZaNqY0VYY7ZZ3RsqW5pbDvFXQVJqQvJ4wHF8kehdxvgWQEk83GxIf6MBat-b-yTcCfzmDFG_5eqXl9mo3UfKaGwxU32L2FblbxK24vBO422rDZHXRjBdXwLur1fcI_K-9c8eeD8MtR_-gHx8c5BMc57o6n5wXu2KKsActwe3gKrC3OvmEIn7HvoVTgbtkEaH4PnVwKO--jzSzP7AOEY5lGWkCuo4mEmDISzsTGUGO1E6mjcYBeL9mY6ArN3DfVGCaQ1XiOJzXHA_S8XjpaQHj8bdE7fxb1Ao-6XQ7k49OkUuKEUWZ5k1inUsIgE5TwLGdGR5oLx2IaoF1_kom3DUCMVtUvDvBKHmUrafvsDyIGCeTvLA87qYzGJLkQ8QA9q6dB3f03HJXZfFquIbLpO7UGaHshGzXNNJKSNBlsLtakZu2l1mey87MSUrzljbOIWgF6UQvYv5n18P_UP0XXQDWT_t7h_iO0RUAXfNEeITtosxhP7WOI4or0SakuGH29bP38Bd5JXUA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9NAEF5B-gA8cB-GgswhwYvrZC_vPqFwRBHqgUQjtU_uXm4jgh0lTqvy65l1NlZSQELi1R6vdj2zM9_Ys98g9EZbZRRlKsGARhIqLU5k5lzie-JYXkjJGgLTvX0-HNEvR-wo9Dmdh7JKSMXHjZP2p7ASiGDdFJOUp4QQnk5t8f48fEryvxBoBjGJXkdbnAEY76Ct0f7X_nFzpig8vOQTIpDcp3MPuP0wG1GoIev_3SWvxaSr9ZI3FuVUXV6oyWQtGA3uoJPVMpY1KN93FrXeMT-vMDz-xzrvotsBqMb9pWXdQ9dceR_dWqMvfICGuz6zv2g-rsbf9pLjg92DcxYfVoCCq3gwW4zr-JOrm2KvMu5PTqvZuD77EQNOjn2zpDoeNN1-Lh-i0eDz4cdhEjozJAYARp0wJwtSOCq0IMZJw0DlQmpNBAA6YQnnlmGriBbU9lxGiFaWFcoV1sieYY48Qp2yKt0TFGdScyMgqTFYAnjkorCZtcQ6UwhdkCxC71aayk2gLffdMyY5pC9eqXmr1Ai9akWnS66OPwl98OpuBTy9dnOhmp3mYbfmlFDHutgVSmMKKZ-EZxm1hhsmCpqRCL31xpJ7JwCTMSqcZYAleTqtvO_TPIAGEqa_vbKnPHiHeY4z6WkRYdAIvWxvw772P2tU6apFI4Nl17dkjdDjpfm1cyZcStylMLjYMMyNRW3eKcdnDXd4z3thwXsRet3a8N9f1tN_knqGbmKAfr4yD-Nt1KlnC_ccoFqtX4Tt-AtPXTdO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lightweight+SM-YOLOv5+Tomato+Fruit+Detection+Algorithm+for+Plant+Factory&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Wang%2C+Xinfa&rft.au=Wu%2C+Zhenwei&rft.au=Jia%2C+Meng&rft.au=Xu%2C+Tao&rft.date=2023-03-22&rft.eissn=1424-8220&rft.volume=23&rft.issue=6&rft_id=info:doi/10.3390%2Fs23063336&rft_id=info%3Apmid%2F36992047&rft.externalDocID=36992047
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon