Lightweight SM-YOLOv5 Tomato Fruit Detection Algorithm for Plant Factory
Due to their rapid development and wide application in modern agriculture, robots, mobile terminals, and intelligent devices have become vital technologies and fundamental research topics for the development of intelligent and precision agriculture. Accurate and efficient target detection technology...
Saved in:
| Published in | Sensors (Basel, Switzerland) Vol. 23; no. 6; p. 3336 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
MDPI AG
22.03.2023
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1424-8220 1424-8220 |
| DOI | 10.3390/s23063336 |
Cover
| Abstract | Due to their rapid development and wide application in modern agriculture, robots, mobile terminals, and intelligent devices have become vital technologies and fundamental research topics for the development of intelligent and precision agriculture. Accurate and efficient target detection technology is required for mobile inspection terminals, picking robots, and intelligent sorting equipment in tomato production and management in plant factories. However, due to the limitations of computer power, storage capacity, and the complexity of the plant factory (PF) environment, the precision of small-target detection for tomatoes in real-world applications is inadequate. Therefore, we propose an improved Small MobileNet YOLOv5 (SM-YOLOv5) detection algorithm and model based on YOLOv5 for target detection by tomato-picking robots in plant factories. Firstly, MobileNetV3-Large was used as the backbone network to make the model structure lightweight and improve its running performance. Secondly, a small-target detection layer was added to improve the accuracy of small-target detection for tomatoes. The constructed PF tomato dataset was used for training. Compared with the YOLOv5 baseline model, the mAP of the improved SM-YOLOv5 model was increased by 1.4%, reaching 98.8%. The model size was only 6.33 MB, which was 42.48% that of YOLOv5, and it required only 7.6 GFLOPs, which was half that required by YOLOv5. The experiment showed that the improved SM-YOLOv5 model had a precision of 97.8% and a recall rate of 96.7%. The model is lightweight and has excellent detection performance, and so it can meet the real-time detection requirements of tomato-picking robots in plant factories. |
|---|---|
| AbstractList | Due to their rapid development and wide application in modern agriculture, robots, mobile terminals, and intelligent devices have become vital technologies and fundamental research topics for the development of intelligent and precision agriculture. Accurate and efficient target detection technology is required for mobile inspection terminals, picking robots, and intelligent sorting equipment in tomato production and management in plant factories. However, due to the limitations of computer power, storage capacity, and the complexity of the plant factory (PF) environment, the precision of small-target detection for tomatoes in real-world applications is inadequate. Therefore, we propose an improved Small MobileNet YOLOv5 (SM-YOLOv5) detection algorithm and model based on YOLOv5 for target detection by tomato-picking robots in plant factories. Firstly, MobileNetV3-Large was used as the backbone network to make the model structure lightweight and improve its running performance. Secondly, a small-target detection layer was added to improve the accuracy of small-target detection for tomatoes. The constructed PF tomato dataset was used for training. Compared with the YOLOv5 baseline model, the mAP of the improved SM-YOLOv5 model was increased by 1.4%, reaching 98.8%. The model size was only 6.33 MB, which was 42.48% that of YOLOv5, and it required only 7.6 GFLOPs, which was half that required by YOLOv5. The experiment showed that the improved SM-YOLOv5 model had a precision of 97.8% and a recall rate of 96.7%. The model is lightweight and has excellent detection performance, and so it can meet the real-time detection requirements of tomato-picking robots in plant factories. Due to their rapid development and wide application in modern agriculture, robots, mobile terminals, and intelligent devices have become vital technologies and fundamental research topics for the development of intelligent and precision agriculture. Accurate and efficient target detection technology is required for mobile inspection terminals, picking robots, and intelligent sorting equipment in tomato production and management in plant factories. However, due to the limitations of computer power, storage capacity, and the complexity of the plant factory (PF) environment, the precision of small-target detection for tomatoes in real-world applications is inadequate. Therefore, we propose an improved Small MobileNet YOLOv5 (SM-YOLOv5) detection algorithm and model based on YOLOv5 for target detection by tomato-picking robots in plant factories. Firstly, MobileNetV3-Large was used as the backbone network to make the model structure lightweight and improve its running performance. Secondly, a small-target detection layer was added to improve the accuracy of small-target detection for tomatoes. The constructed PF tomato dataset was used for training. Compared with the YOLOv5 baseline model, the mAP of the improved SM-YOLOv5 model was increased by 1.4%, reaching 98.8%. The model size was only 6.33 MB, which was 42.48% that of YOLOv5, and it required only 7.6 GFLOPs, which was half that required by YOLOv5. The experiment showed that the improved SM-YOLOv5 model had a precision of 97.8% and a recall rate of 96.7%. The model is lightweight and has excellent detection performance, and so it can meet the real-time detection requirements of tomato-picking robots in plant factories.Due to their rapid development and wide application in modern agriculture, robots, mobile terminals, and intelligent devices have become vital technologies and fundamental research topics for the development of intelligent and precision agriculture. Accurate and efficient target detection technology is required for mobile inspection terminals, picking robots, and intelligent sorting equipment in tomato production and management in plant factories. However, due to the limitations of computer power, storage capacity, and the complexity of the plant factory (PF) environment, the precision of small-target detection for tomatoes in real-world applications is inadequate. Therefore, we propose an improved Small MobileNet YOLOv5 (SM-YOLOv5) detection algorithm and model based on YOLOv5 for target detection by tomato-picking robots in plant factories. Firstly, MobileNetV3-Large was used as the backbone network to make the model structure lightweight and improve its running performance. Secondly, a small-target detection layer was added to improve the accuracy of small-target detection for tomatoes. The constructed PF tomato dataset was used for training. Compared with the YOLOv5 baseline model, the mAP of the improved SM-YOLOv5 model was increased by 1.4%, reaching 98.8%. The model size was only 6.33 MB, which was 42.48% that of YOLOv5, and it required only 7.6 GFLOPs, which was half that required by YOLOv5. The experiment showed that the improved SM-YOLOv5 model had a precision of 97.8% and a recall rate of 96.7%. The model is lightweight and has excellent detection performance, and so it can meet the real-time detection requirements of tomato-picking robots in plant factories. |
| Audience | Academic |
| Author | Wang, Xinfa Xu, Tao Jia, Meng Wu, Zhenwei Zhao, Mingfu Pan, Canlin Qi, Xuebin |
| AuthorAffiliation | 2 Faculty of Engineering and Technology, Sumy National Agrarian University, 40000 Sumy, Ukraine 3 College of Mechanical and Electrical Engineering, Xinxiang University, Xinxiang 453003, China 1 School of Information Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China 4 Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China |
| AuthorAffiliation_xml | – name: 1 School of Information Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China – name: 3 College of Mechanical and Electrical Engineering, Xinxiang University, Xinxiang 453003, China – name: 4 Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China – name: 2 Faculty of Engineering and Technology, Sumy National Agrarian University, 40000 Sumy, Ukraine |
| Author_xml | – sequence: 1 givenname: Xinfa orcidid: 0000-0002-6293-5624 surname: Wang fullname: Wang, Xinfa – sequence: 2 givenname: Zhenwei orcidid: 0000-0002-3635-7576 surname: Wu fullname: Wu, Zhenwei – sequence: 3 givenname: Meng surname: Jia fullname: Jia, Meng – sequence: 4 givenname: Tao orcidid: 0000-0002-8821-4550 surname: Xu fullname: Xu, Tao – sequence: 5 givenname: Canlin surname: Pan fullname: Pan, Canlin – sequence: 6 givenname: Xuebin surname: Qi fullname: Qi, Xuebin – sequence: 7 givenname: Mingfu orcidid: 0000-0002-3163-2110 surname: Zhao fullname: Zhao, Mingfu |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36992047$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kl1v0zAUhi00xLbCBX8AReIGJnVz_JHYV6gaK5tUVCTGBVeW44_UVRIXx9nUf49DRrVNIEu2Zb_n8Tmvzyk46nxnAHibw3OMObzoEYYFxrh4AU5ygsicIQSPHu2PwWnfbyFEScRegWNccI4gKU_A9crVm3hvxjn7_nX-c71a39Hs1rcy-mwZBhezzyYaFZ3vskVT--Dips2sD9m3RnYxW0oVfdi_Bi-tbHrz5mGdgR_Lq9vL6_lq_eXmcrGaKwp5nFPDLbaGsIphZbiilZaMVxVmDFOmcVFoirTEFSM6NyXGldTUSmO14rmiBs_AzcTVXm7FLrhWhr3w0ok_Bz7UQoboVGMEwcRQiIyVFSIFKngyiRKtCkWZJYk9A2cTa-h2cn8vm-YAzKEYrRUHa5P40yTeDVVrtDJdDLJ5ksHTm85tRO3vEgrSnBV5Inx4IAT_azB9FK3rlWmSjcYPvUAlRxyWmI2PvX8m3fohdMnYUZWXEI5ZzcD5pKplKtd11qeHVRratE6lHrEunS9KgjkuEC9TwLvHNRyS_9sPSXAxCVTwfR-MFcpFOf59Irvmn7Z8fBbxfwt_AwXv0jc |
| CitedBy_id | crossref_primary_10_3390_agriculture13061165 crossref_primary_10_1016_j_compag_2024_108728 crossref_primary_10_1016_j_dib_2023_109291 crossref_primary_10_1080_21642583_2023_2278905 crossref_primary_10_1007_s11694_023_02274_z crossref_primary_10_3390_jmse11081564 crossref_primary_10_1038_s41598_024_69106_y crossref_primary_10_3390_agriculture13081593 crossref_primary_10_1007_s11694_023_02020_5 crossref_primary_10_1016_j_fraope_2025_100243 crossref_primary_10_1007_s00530_024_01413_w crossref_primary_10_3390_agronomy14123027 crossref_primary_10_3390_s23083956 crossref_primary_10_1109_ACCESS_2025_3533489 crossref_primary_10_1016_j_procs_2023_10_641 crossref_primary_10_1007_s42452_024_05914_1 crossref_primary_10_3390_rs16081350 crossref_primary_10_1080_0954898X_2024_2428713 crossref_primary_10_1016_j_asoc_2025_112971 crossref_primary_10_3390_agriengineering6020106 crossref_primary_10_3390_agriculture14050723 crossref_primary_10_1007_s12393_024_09385_3 crossref_primary_10_1007_s11119_024_10132_1 crossref_primary_10_3390_agriculture14091499 crossref_primary_10_1016_j_compag_2024_108833 crossref_primary_10_1049_ipr2_13028 crossref_primary_10_3390_agronomy15030535 |
| Cites_doi | 10.1109/ICPR.2006.479 10.1109/CVPR.2018.00745 10.1109/CVPR.2016.90 10.1186/s12880-015-0068-x 10.1109/WACV45572.2020.9093498 10.1007/s11263-013-0620-5 10.4249/scholarpedia.10491 10.3390/s22020682 10.1109/CVPR.2014.81 10.1007/978-3-319-10602-1_48 10.1109/5254.708428 10.1002/adma.202105009 10.1109/ICCV.2015.169 10.1016/j.biosystemseng.2019.04.024 10.4028/www.scientific.net/AMR.485.7 10.3390/app9183775 10.1016/j.foodres.2021.110811 10.1016/j.ijleo.2014.07.001 10.3390/agronomy12071638 10.3390/rs14174150 10.1109/CVPR.2017.690 10.1016/j.compag.2011.11.007 10.1007/s11263-009-0275-4 10.1109/CVPR.2016.91 10.1016/j.compag.2019.01.012 10.1007/978-3-319-46487-9 10.1007/s11431-020-1647-3 10.1109/ICCV.2019.00140 10.1007/978-3-030-01234-2_1 10.1038/s41598-022-12732-1 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3390/s23063336 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database Proquest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Agriculture |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_434e502efab24626906354dc6c58f473 10.3390/s23063336 PMC10051861 A743936297 36992047 10_3390_s23063336 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: The Science and Technology Department of Henan Province grantid: 212102110234 – fundername: The education department of Henan province grantid: 22A210013 – fundername: The Science and Technology Bureau of XinXiang City of Henan Province grantid: 21ZD003 – fundername: The Science and Technology Department of Henan Province grantid: 222102320080 – fundername: Colleges and Universities Key Research Project of Henan Province grantid: 22A210013 – fundername: Key Science and Technology Program of Henan Province grantid: 212102110234; 222102320080; 232102111124 – fundername: Major Science and Technology Projects in Xinxiang City, Henan Province grantid: 21ZD003 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M ALIPV CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM ADRAZ ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c509t-5e9f3fe48b83ce9c5bda89bb388358d366d52da3b84d1e733bad5faefdc91c5e3 |
| IEDL.DBID | M48 |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:50:57 EDT 2025 Sun Oct 26 03:59:07 EDT 2025 Tue Sep 30 17:15:21 EDT 2025 Sun Aug 24 03:24:38 EDT 2025 Tue Oct 07 07:36:06 EDT 2025 Mon Oct 20 16:55:55 EDT 2025 Thu Apr 03 06:54:04 EDT 2025 Thu Oct 16 04:27:06 EDT 2025 Thu Apr 24 22:55:34 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | tomato detection YOLOv5 small-target detection lightweight |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c509t-5e9f3fe48b83ce9c5bda89bb388358d366d52da3b84d1e733bad5faefdc91c5e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. |
| ORCID | 0000-0002-3163-2110 0000-0002-3635-7576 0000-0002-8821-4550 0000-0002-6293-5624 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s23063336 |
| PMID | 36992047 |
| PQID | 2791700063 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_434e502efab24626906354dc6c58f473 unpaywall_primary_10_3390_s23063336 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10051861 proquest_miscellaneous_2792907386 proquest_journals_2791700063 gale_infotracacademiconefile_A743936297 pubmed_primary_36992047 crossref_citationtrail_10_3390_s23063336 crossref_primary_10_3390_s23063336 |
| PublicationCentury | 2000 |
| PublicationDate | 20230322 |
| PublicationDateYYYYMMDD | 2023-03-22 |
| PublicationDate_xml | – month: 3 year: 2023 text: 20230322 day: 22 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2023 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Li (ref_12) 2017; 33 ref_14 ref_35 Linker (ref_9) 2012; 81 Fu (ref_13) 2019; 183 ref_32 ref_30 Everingham (ref_34) 2010; 88 ref_19 Wang (ref_33) 2022; 12 ref_18 ref_17 ref_39 ref_38 ref_15 ref_37 Uijlings (ref_7) 2013; 104 Wei (ref_10) 2014; 125 Hearst (ref_6) 1998; 13 Wu (ref_11) 2012; 485 Xi (ref_1) 2022; 34 ref_25 Ren (ref_16) 2015; 28 ref_24 Lindeberg (ref_4) 2012; 7 ref_23 ref_22 ref_21 ref_20 Ares (ref_2) 2021; 150 ref_41 ref_40 ref_3 ref_29 ref_28 ref_27 ref_26 Li (ref_36) 2021; 1757 ref_8 Tian (ref_31) 2019; 157 ref_5 Qiu (ref_42) 2020; 63 |
| References_xml | – ident: ref_28 – ident: ref_37 doi: 10.1109/ICPR.2006.479 – ident: ref_26 doi: 10.1109/CVPR.2018.00745 – ident: ref_5 – ident: ref_3 – ident: ref_24 doi: 10.1109/CVPR.2016.90 – ident: ref_35 doi: 10.1186/s12880-015-0068-x – ident: ref_41 doi: 10.1109/WACV45572.2020.9093498 – volume: 104 start-page: 154 year: 2013 ident: ref_7 article-title: Selective Search for Object Recognition publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-013-0620-5 – volume: 7 start-page: 10491 year: 2012 ident: ref_4 article-title: Scale Invariant Feature Transform publication-title: Scholarpedia doi: 10.4249/scholarpedia.10491 – ident: ref_30 doi: 10.3390/s22020682 – volume: 33 start-page: 328 year: 2017 ident: ref_12 article-title: Green Ripe Tomato Detection Method Based on Machine Vision in Greenhouse publication-title: Trans. Chin. Soc. Agric. Eng. – ident: ref_14 doi: 10.1109/CVPR.2014.81 – ident: ref_38 doi: 10.1007/978-3-319-10602-1_48 – volume: 13 start-page: 18 year: 1998 ident: ref_6 article-title: Support Vector Machines publication-title: IEEE Intell. Syst. Their Appl. doi: 10.1109/5254.708428 – ident: ref_23 – volume: 34 start-page: 2105009 year: 2022 ident: ref_1 article-title: Novel Materials for Urban Farming publication-title: Adv. Mater. doi: 10.1002/adma.202105009 – ident: ref_15 doi: 10.1109/ICCV.2015.169 – ident: ref_21 – volume: 183 start-page: 184 year: 2019 ident: ref_13 article-title: A Novel Image Processing Algorithm to Separate Linearly Clustered Kiwifruits publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2019.04.024 – volume: 485 start-page: 7 year: 2012 ident: ref_11 article-title: An Effective Flame Segmentation Method Based on Ohta Color Space publication-title: Adv. Mater. Res. doi: 10.4028/www.scientific.net/AMR.485.7 – ident: ref_40 doi: 10.3390/app9183775 – ident: ref_8 – ident: ref_25 – volume: 150 start-page: 110811 year: 2021 ident: ref_2 article-title: Consumer Attitudes to Vertical Farming (Indoor Plant Factory with Artificial Lighting) in China, Singapore, UK, and USA: A Multi-Method Study publication-title: Food Res. Int. doi: 10.1016/j.foodres.2021.110811 – volume: 125 start-page: 5684 year: 2014 ident: ref_10 article-title: Automatic Method of Fruit Object Extraction under Complex Agricultural Background for Vision System of Fruit Picking Robot publication-title: Optik doi: 10.1016/j.ijleo.2014.07.001 – ident: ref_32 doi: 10.3390/agronomy12071638 – volume: 1757 start-page: 012003 year: 2021 ident: ref_36 article-title: Summary of Target Detection Algorithms publication-title: Proceedings of the Journal of Physics: Conference Series – ident: ref_29 doi: 10.3390/rs14174150 – ident: ref_19 doi: 10.1109/CVPR.2017.690 – volume: 28 start-page: 1 year: 2015 ident: ref_16 article-title: Faster R-Cnn: Towards Real-Time Object Detection with Region Proposal Networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 81 start-page: 45 year: 2012 ident: ref_9 article-title: Determination of the Number of Green Apples in RGB Images Recorded in Orchards publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2011.11.007 – volume: 88 start-page: 303 year: 2010 ident: ref_34 article-title: The Pascal Visual Object Classes (Voc) Challenge publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-009-0275-4 – ident: ref_18 doi: 10.1109/CVPR.2016.91 – volume: 157 start-page: 417 year: 2019 ident: ref_31 article-title: Apple Detection during Different Growth Stages in Orchards Using the Improved YOLO-V3 Model publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2019.01.012 – ident: ref_17 doi: 10.1007/978-3-319-46487-9 – volume: 63 start-page: 1872 year: 2020 ident: ref_42 article-title: Pre-Trained Models for Natural Language Processing: A Survey publication-title: Sci. China Technol. Sci. doi: 10.1007/s11431-020-1647-3 – ident: ref_22 – ident: ref_20 – ident: ref_39 doi: 10.1109/ICCV.2019.00140 – ident: ref_27 doi: 10.1007/978-3-030-01234-2_1 – volume: 12 start-page: 8686 year: 2022 ident: ref_33 article-title: Online Recognition and Yield Estimation of Tomato in Plant Factory Based on YOLOv3 publication-title: Sci. Rep. doi: 10.1038/s41598-022-12732-1 |
| SSID | ssj0023338 |
| Score | 2.5813928 |
| Snippet | Due to their rapid development and wide application in modern agriculture, robots, mobile terminals, and intelligent devices have become vital technologies and... |
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 3336 |
| SubjectTerms | Accuracy Agriculture Algorithms Analysis Apples Cell Movement Factories Fruit Fruits Harvest lightweight Methods Neural networks Robots small-target detection Solanum lycopersicum tomato detection Tomatoes Vegetable industry YOLOv5 |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL8ABlXdoQeYhwSXqrl-xj8tjtUItPdBK5WT52a60JNU2S9V_z9jJRrs8xIVrPLLG4xnPN4nzDUJvrDfOMG5KAmikZMqTUlUhlKknjhdRKZ4JTI--iNkp-3zGzzZafaU7YR09cGe4A0ZZ4CMSorGEAfpWkFM58044LiOrMs_nSKp1MdWXWhQqr45HiEJRf3CVgDY8E1vZJ5P0_34Ub-SiX-9J3l7Vl-bm2iwWG0louovu9egRTzqt76NboX6A7m5wCj5Es8NUbl_nN57461H57fjw-AfHJw1A0wZPl6t5iz-GNt_AqvFkcd4s5-3FdwzgFacORi2e5hY8N4_Q6fTTyYdZ2bdLKB1k_bbkQUUaA5NWUheU47APUllLJaAs6akQnhNvqJXMj0NFqTWeRxOid2rseKCP0U7d1OEpwpWywkmoNBxRgOiEjL7ynvrgorSRVgV6tzajdj2XeGppsdBQUySL68HiBXo1iF52BBp_Enqf9mIQSJzX-QF4gu49Qf_LEwr0Nu2kTpEJyjjT_2AAS0ocV3qSai_I1wrU319vtu5D9kqTSiWuQpi0QC-HYQi29AXF1KFZZRmiRqlPaoGedL4x6EyFUmTEYHK55TVbi9oeqecXmdB7nI5GKcYFej042N-N9ex_GGsP3SEQJuk2HSH7aKddrsJzgFetfZEj6SdRTCEb priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9NAFB6V9AAcEDsuBZlFgovVZBZ75oBQCo0i1KYIWqmcrNncVgp2mjpU_fe8N7FNwna1x9Ys78373izfR8hr47TVXOiEAhpJuHI0UZn3CWriuLRQSgQC04NJOj7mn07EyQaZtHdh8FhlOyeGidpVFtfId2imkEoOIur72UWCqlG4u9pKaOhGWsG9CxRjN8gmRWasHtnc3Zt8_tKlYAwysiW_EINkf-cSATg8S9eiUiDv_3OKXolRv5-fvLkoZ_r6Sk-nK8FpdJfcaVBlPFyawT2y4cv75PYK1-ADMt7HNPwqrITGXw-Sb4f7hz9EfFQBZK3i0XxxXscffR1OZpXxcHoKja_PvscAamNUNqrjUZDmuX5Ijkd7Rx_GSSOjkFhAA3UivCpY4bk0klmvrIDxkcoYJgF9ScfS1AnqNDOSu4HPGDPaiUL7wlk1sMKzR6RXVqV_QuJMmdRKyEAsVYD0Ulm4zDnmvC2kKVgWkbdtN-a24RhHqYtpDrkG9nje9XhEXnZFZ0tijb8V2sWx6AogF3Z4UM1P88a1cs64F33qC20oh_xMwbeCO5taIQuesYi8wZHM0WOhMlY3Fw-gSch9lQ8xJ4M4rqD62-1g540rX-a_DC8iL7rX4IS4s6JLXy1CGar6qJ8akcdL2-jqzFKlaJ_Dz-Wa1aw1av1NeX4WiL4HOGXKdBCRV52B_buztv5f-6fkFgUHwPNzlG6TXj1f-GcAqGrzvPGSnwBjIBA priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9NAEF5B-gA8cB-GgswhwYvrZC_vPqFwRBHqgUQjtU_uXm4jgh0lTqvy65l1NlZSQELi1R6vdj2zM9_Ys98g9EZbZRRlKsGARhIqLU5k5lzie-JYXkjJGgLTvX0-HNEvR-wo9Dmdh7JKSMXHjZP2p7ASiGDdFJOUp4QQnk5t8f48fEryvxBoBjGJXkdbnAEY76Ct0f7X_nFzpig8vOQTIpDcp3MPuP0wG1GoIev_3SWvxaSr9ZI3FuVUXV6oyWQtGA3uoJPVMpY1KN93FrXeMT-vMDz-xzrvotsBqMb9pWXdQ9dceR_dWqMvfICGuz6zv2g-rsbf9pLjg92DcxYfVoCCq3gwW4zr-JOrm2KvMu5PTqvZuD77EQNOjn2zpDoeNN1-Lh-i0eDz4cdhEjozJAYARp0wJwtSOCq0IMZJw0DlQmpNBAA6YQnnlmGriBbU9lxGiFaWFcoV1sieYY48Qp2yKt0TFGdScyMgqTFYAnjkorCZtcQ6UwhdkCxC71aayk2gLffdMyY5pC9eqXmr1Ai9akWnS66OPwl98OpuBTy9dnOhmp3mYbfmlFDHutgVSmMKKZ-EZxm1hhsmCpqRCL31xpJ7JwCTMSqcZYAleTqtvO_TPIAGEqa_vbKnPHiHeY4z6WkRYdAIvWxvw772P2tU6apFI4Nl17dkjdDjpfm1cyZcStylMLjYMMyNRW3eKcdnDXd4z3thwXsRet3a8N9f1tN_knqGbmKAfr4yD-Nt1KlnC_ccoFqtX4Tt-AtPXTdO priority: 102 providerName: Unpaywall |
| Title | Lightweight SM-YOLOv5 Tomato Fruit Detection Algorithm for Plant Factory |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/36992047 https://www.proquest.com/docview/2791700063 https://www.proquest.com/docview/2792907386 https://pubmed.ncbi.nlm.nih.gov/PMC10051861 https://www.mdpi.com/1424-8220/23/6/3336/pdf?version=1679472404 https://doaj.org/article/434e502efab24626906354dc6c58f473 |
| UnpaywallVersion | publishedVersion |
| Volume | 23 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: HH5 dateStart: 20010101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ADMLS dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection (Proquest) customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1424-8220 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M48 dateStart: 20030101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1Lb9NAEB71IUE5IN4YSmQeElwMyT7s3QNCKTREqEkraKT0ZK1312mkYBfXoeTfM-s4VgLtJVK8k2S9M-P5xt58H8CbxCitGFcBQTQSMGlIICNrA6eJY8JUSl4RmA6GYX_Evo35eAtWGpv1Al5e29o5PalRMXv_59fiEyb8R9dxYsv-4dLBaEppuA27WKCkU3AYsOZhAsEhsSQV2jTfg1s0lJK0nbbKWlWqyPv_v0Sv1ah_90_enmcXanGlZrO14tS7B3drVOl3l2FwH7Zs9gDudCdFzaxh8d0a8-BD6B-5pvyqui_q_xgEZ8dHx7-5f5ojgM39XjGflv4XW1b7tDK_O5vkxbQ8_-kjxPWdzlHp9yqhnsUjGPUOTz_3g1pUIdCIDcqAW5nS1DKRCKqt1By9JWSSUIFYTBgahoYTo2gimOnYiNJEGZ4qmxotO5pb-hh2sjyzT8GPZBJqgf2IJhJxXyhSExlDjdWpSFIaefButaixrhnHnfDFLMbOw7kiblzhwavG9GJJs3Gd0YHzTGPgmLGrA3kxietEixlllreJTVVCGHZrEj_LmdGh5iJlEfXgrfNr7CIKJ6NV_TcEPCXHhBV3XYeGVV3i9PdXro9XcRmTSDpGQ_xSD142w5iS7jmLymw-r2yIbDs1VQ-eLCOlmfMq4DwQGzG0cVKbI9n0vKL97rgLqAg7Hrxuwu3mxXp2408_hz2CSeE20hGyDztlMbcvEFmVSQu2o3GEr6L3tQW7B4fDk--t6i5Fq8ooPDYannTP_gKNsSWQ |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jc9MwFNaUcigcGHYMBcQ2cPE00WJLB4YJlExKk_ZAOhNORtbSdibYIXHI5E_xG3myHTdhu_Uqy5rnp7fa8vch9DI1SivGVUigGgmZNCSUsbWh58QxkZOSlwCmg6Ood8I-jfhoC_1c_Qvjj1WuYmIZqE2u_TvyPRJLDyUHGfXd5HvoWaP819UVhUZlFod2uYCWbfb2YB_29xUh3Y_DD72wZhUINSTHIuRWOuosE6mg2krNQVwh05QKKEaEoVFkODGKpoKZto0pTZXhTllntGxrbimsewVdZRRiCfhPPLpo8Cj0exV6EaWytTfz5T2MRRs5r6QG-DMBrGXA309n7syziVou1Hi8lvq6N9GNumbFncrIbqEtm91G19eQDO-gXt83-YvyPSv-PAi_HPePf3A8zKEgznF3Oj8v8L4tynNfGe6MT0G1xdk3DCUz9rxJBe6WxD_Lu-jkUtR5D21neWYfIBzLNNIC-htNJNSRkXAmNoYaq51IHY0D9GalxkTXCOaeSGOcQCfjNZ40Gg_Q82bqpILt-Nuk934vmgkeabscyKenSe24CaPM8haxTqWEQfcn4V7OjI40F47FNECv_U4mPh6AMFrVvzXAI3lkraTjOz6oEiSIv7va7KQOFLPkwqwD9Ky5DC7uv9uozObzcg6RLc_OGqD7lW00MtNIStJisLjYsJqNh9q8kp2flTDibR-QRdQO0IvGwP6trIf_l_4p2ukNB_2kf3B0-AhdI-AM_qQeIbtou5jO7WMo3Yr0SekvGH29bAf9BcRGWP0 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGkGA8IK4jMMDcNF6itr4k9gNChVJ1rNuQ2KTyFBxftkklKW1K1b_Gr-M4TbOW29tebcc6OT5X5-Q7CL1MjdKKcRUSiEZCJg0JZWxt6HvimMhJyUsA04PDqHfCPg74YAP9XP4L48sqlzaxNNQm1_6OvEFi6aHkwKM2XFUW8anTfTv6HvoOUv5L67KdxkJE9u18Bunb5M1eB876FSHdD8fve2HVYSDU4CiLkFvpqLNMpIJqKzUH0oVMUyogMBGGRpHhxCiaCmZaNqY0VYY7ZZ3RsqW5pbDvFXQVJqQvJ4wHF8kehdxvgWQEk83GxIf6MBat-b-yTcCfzmDFG_5eqXl9mo3UfKaGwxU32L2FblbxK24vBO422rDZHXRjBdXwLur1fcI_K-9c8eeD8MtR_-gHx8c5BMc57o6n5wXu2KKsActwe3gKrC3OvmEIn7HvoVTgbtkEaH4PnVwKO--jzSzP7AOEY5lGWkCuo4mEmDISzsTGUGO1E6mjcYBeL9mY6ArN3DfVGCaQ1XiOJzXHA_S8XjpaQHj8bdE7fxb1Ao-6XQ7k49OkUuKEUWZ5k1inUsIgE5TwLGdGR5oLx2IaoF1_kom3DUCMVtUvDvBKHmUrafvsDyIGCeTvLA87qYzGJLkQ8QA9q6dB3f03HJXZfFquIbLpO7UGaHshGzXNNJKSNBlsLtakZu2l1mey87MSUrzljbOIWgF6UQvYv5n18P_UP0XXQDWT_t7h_iO0RUAXfNEeITtosxhP7WOI4or0SakuGH29bP38Bd5JXUA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9NAEF5B-gA8cB-GgswhwYvrZC_vPqFwRBHqgUQjtU_uXm4jgh0lTqvy65l1NlZSQELi1R6vdj2zM9_Ys98g9EZbZRRlKsGARhIqLU5k5lzie-JYXkjJGgLTvX0-HNEvR-wo9Dmdh7JKSMXHjZP2p7ASiGDdFJOUp4QQnk5t8f48fEryvxBoBjGJXkdbnAEY76Ct0f7X_nFzpig8vOQTIpDcp3MPuP0wG1GoIev_3SWvxaSr9ZI3FuVUXV6oyWQtGA3uoJPVMpY1KN93FrXeMT-vMDz-xzrvotsBqMb9pWXdQ9dceR_dWqMvfICGuz6zv2g-rsbf9pLjg92DcxYfVoCCq3gwW4zr-JOrm2KvMu5PTqvZuD77EQNOjn2zpDoeNN1-Lh-i0eDz4cdhEjozJAYARp0wJwtSOCq0IMZJw0DlQmpNBAA6YQnnlmGriBbU9lxGiFaWFcoV1sieYY48Qp2yKt0TFGdScyMgqTFYAnjkorCZtcQ6UwhdkCxC71aayk2gLffdMyY5pC9eqXmr1Ai9akWnS66OPwl98OpuBTy9dnOhmp3mYbfmlFDHutgVSmMKKZ-EZxm1hhsmCpqRCL31xpJ7JwCTMSqcZYAleTqtvO_TPIAGEqa_vbKnPHiHeY4z6WkRYdAIvWxvw772P2tU6apFI4Nl17dkjdDjpfm1cyZcStylMLjYMMyNRW3eKcdnDXd4z3thwXsRet3a8N9f1tN_knqGbmKAfr4yD-Nt1KlnC_ccoFqtX4Tt-AtPXTdO |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lightweight+SM-YOLOv5+Tomato+Fruit+Detection+Algorithm+for+Plant+Factory&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Wang%2C+Xinfa&rft.au=Wu%2C+Zhenwei&rft.au=Jia%2C+Meng&rft.au=Xu%2C+Tao&rft.date=2023-03-22&rft.eissn=1424-8220&rft.volume=23&rft.issue=6&rft_id=info:doi/10.3390%2Fs23063336&rft_id=info%3Apmid%2F36992047&rft.externalDocID=36992047 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |