A spatio-temporal reference model of the aging brain
Both normal aging and neurodegenerative disorders such as Alzheimer's disease (AD) cause morphological changes of the brain. It is generally difficult to distinguish these two causes of morphological change by visual inspection of magnetic resonance (MR) images. To facilitate making this distin...
Saved in:
| Published in | NeuroImage (Orlando, Fla.) Vol. 169; pp. 11 - 22 |
|---|---|
| Main Authors | , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Inc
01.04.2018
Elsevier Limited |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1053-8119 1095-9572 1095-9572 |
| DOI | 10.1016/j.neuroimage.2017.10.040 |
Cover
| Abstract | Both normal aging and neurodegenerative disorders such as Alzheimer's disease (AD) cause morphological changes of the brain. It is generally difficult to distinguish these two causes of morphological change by visual inspection of magnetic resonance (MR) images. To facilitate making this distinction and thus aid the diagnosis of neurodegenerative disorders, we propose a method for developing a spatio-temporal model of morphological differences in the brain due to normal aging. The method utilizes groupwise image registration to characterize morphological variation across brain scans of people with different ages. To extract the deformations that are due to normal aging we use partial least squares regression, which yields modes of deformations highly correlated with age, and corresponding scores for each input subject. Subsequently, we determine a distribution of morphologies as a function of age by fitting smooth percentile curves to these scores. This distribution is used as a reference to which a person's morphology score can be compared. We validate our method on two different datasets, using images from both cognitively normal subjects and patients with Alzheimer disease (AD). Results show that the proposed framework extracts the expected atrophy patterns. Moreover, the morphology scores of cognitively normal subjects are on average lower than the scores of AD subjects, indicating that morphology differences between AD subjects and healthy subjects can be partly explained by accelerated aging. With our methods we are able to assess accelerated brain aging on both population and individual level. A spatio-temporal aging brain model derived from 988 T1-weighted MR brain scans from a large population imaging study (age range 45.9–91.7y, mean age 68.3y) is made publicly available at www.agingbrain.nl.
•A model to assess morphological differences in the brain due to aging is developed.•The method can assess accelerated brain aging on population and individual level.•The model derived from 988 MR brain is made publicly available at www.agingbrain.nl. |
|---|---|
| AbstractList | Both normal aging and neurodegenerative disorders such as Alzheimer's disease (AD) cause morphological changes of the brain. It is generally difficult to distinguish these two causes of morphological change by visual inspection of magnetic resonance (MR) images. To facilitate making this distinction and thus aid the diagnosis of neurodegenerative disorders, we propose a method for developing a spatio-temporal model of morphological differences in the brain due to normal aging. The method utilizes groupwise image registration to characterize morphological variation across brain scans of people with different ages. To extract the deformations that are due to normal aging we use partial least squares regression, which yields modes of deformations highly correlated with age, and corresponding scores for each input subject. Subsequently, we determine a distribution of morphologies as a function of age by fitting smooth percentile curves to these scores. This distribution is used as a reference to which a person's morphology score can be compared. We validate our method on two different datasets, using images from both cognitively normal subjects and patients with Alzheimer disease (AD). Results show that the proposed framework extracts the expected atrophy patterns. Moreover, the morphology scores of cognitively normal subjects are on average lower than the scores of AD subjects, indicating that morphology differences between AD subjects and healthy subjects can be partly explained by accelerated aging. With our methods we are able to assess accelerated brain aging on both population and individual level. A spatio-temporal aging brain model derived from 988 T1-weighted MR brain scans from a large population imaging study (age range 45.9–91.7y, mean age 68.3y) is made publicly available at www.agingbrain.nl. Both normal aging and neurodegenerative disorders such as Alzheimer's disease (AD) cause morphological changes of the brain. It is generally difficult to distinguish these two causes of morphological change by visual inspection of magnetic resonance (MR) images. To facilitate making this distinction and thus aid the diagnosis of neurodegenerative disorders, we propose a method for developing a spatio-temporal model of morphological differences in the brain due to normal aging. The method utilizes groupwise image registration to characterize morphological variation across brain scans of people with different ages. To extract the deformations that are due to normal aging we use partial least squares regression, which yields modes of deformations highly correlated with age, and corresponding scores for each input subject. Subsequently, we determine a distribution of morphologies as a function of age by fitting smooth percentile curves to these scores. This distribution is used as a reference to which a person's morphology score can be compared. We validate our method on two different datasets, using images from both cognitively normal subjects and patients with Alzheimer disease (AD). Results show that the proposed framework extracts the expected atrophy patterns. Moreover, the morphology scores of cognitively normal subjects are on average lower than the scores of AD subjects, indicating that morphology differences between AD subjects and healthy subjects can be partly explained by accelerated aging. With our methods we are able to assess accelerated brain aging on both population and individual level. A spatio-temporal aging brain model derived from 988 T1-weighted MR brain scans from a large population imaging study (age range 45.9-91.7y, mean age 68.3y) is made publicly available at www.agingbrain.nl.Both normal aging and neurodegenerative disorders such as Alzheimer's disease (AD) cause morphological changes of the brain. It is generally difficult to distinguish these two causes of morphological change by visual inspection of magnetic resonance (MR) images. To facilitate making this distinction and thus aid the diagnosis of neurodegenerative disorders, we propose a method for developing a spatio-temporal model of morphological differences in the brain due to normal aging. The method utilizes groupwise image registration to characterize morphological variation across brain scans of people with different ages. To extract the deformations that are due to normal aging we use partial least squares regression, which yields modes of deformations highly correlated with age, and corresponding scores for each input subject. Subsequently, we determine a distribution of morphologies as a function of age by fitting smooth percentile curves to these scores. This distribution is used as a reference to which a person's morphology score can be compared. We validate our method on two different datasets, using images from both cognitively normal subjects and patients with Alzheimer disease (AD). Results show that the proposed framework extracts the expected atrophy patterns. Moreover, the morphology scores of cognitively normal subjects are on average lower than the scores of AD subjects, indicating that morphology differences between AD subjects and healthy subjects can be partly explained by accelerated aging. With our methods we are able to assess accelerated brain aging on both population and individual level. A spatio-temporal aging brain model derived from 988 T1-weighted MR brain scans from a large population imaging study (age range 45.9-91.7y, mean age 68.3y) is made publicly available at www.agingbrain.nl. Both normal aging and neurodegenerative disorders such as Alzheimer's disease (AD) cause morphological changes of the brain. It is generally difficult to distinguish these two causes of morphological change by visual inspection of magnetic resonance (MR) images. To facilitate making this distinction and thus aid the diagnosis of neurodegenerative disorders, we propose a method for developing a spatio-temporal model of morphological differences in the brain due to normal aging. The method utilizes groupwise image registration to characterize morphological variation across brain scans of people with different ages. To extract the deformations that are due to normal aging we use partial least squares regression, which yields modes of deformations highly correlated with age, and corresponding scores for each input subject. Subsequently, we determine a distribution of morphologies as a function of age by fitting smooth percentile curves to these scores. This distribution is used as a reference to which a person's morphology score can be compared. We validate our method on two different datasets, using images from both cognitively normal subjects and patients with Alzheimer disease (AD). Results show that the proposed framework extracts the expected atrophy patterns. Moreover, the morphology scores of cognitively normal subjects are on average lower than the scores of AD subjects, indicating that morphology differences between AD subjects and healthy subjects can be partly explained by accelerated aging. With our methods we are able to assess accelerated brain aging on both population and individual level. A spatio-temporal aging brain model derived from 988 T1-weighted MR brain scans from a large population imaging study (age range 45.9–91.7y, mean age 68.3y) is made publicly available at www.agingbrain.nl. •A model to assess morphological differences in the brain due to aging is developed.•The method can assess accelerated brain aging on population and individual level.•The model derived from 988 MR brain is made publicly available at www.agingbrain.nl. |
| Author | Niessen, W.J. Rueckert, D. Bron, E.E. Huizinga, W. Klein, S. Poot, D.H.J. Ikram, M.A. Vernooij, M.W. Roshchupkin, G.V. |
| Author_xml | – sequence: 1 givenname: W. surname: Huizinga fullname: Huizinga, W. email: w.huizinga@erasmusmc.nl organization: Biomedical Imaging Group Rotterdam, Depts. of Radiology & Medical Informatics, Erasmus MC, Rotterdam, The Netherlands – sequence: 2 givenname: D.H.J. surname: Poot fullname: Poot, D.H.J. organization: Biomedical Imaging Group Rotterdam, Depts. of Radiology & Medical Informatics, Erasmus MC, Rotterdam, The Netherlands – sequence: 3 givenname: M.W. surname: Vernooij fullname: Vernooij, M.W. organization: Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands – sequence: 4 givenname: G.V. surname: Roshchupkin fullname: Roshchupkin, G.V. organization: Biomedical Imaging Group Rotterdam, Depts. of Radiology & Medical Informatics, Erasmus MC, Rotterdam, The Netherlands – sequence: 5 givenname: E.E. surname: Bron fullname: Bron, E.E. organization: Biomedical Imaging Group Rotterdam, Depts. of Radiology & Medical Informatics, Erasmus MC, Rotterdam, The Netherlands – sequence: 6 givenname: M.A. surname: Ikram fullname: Ikram, M.A. organization: Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands – sequence: 7 givenname: D. surname: Rueckert fullname: Rueckert, D. organization: Biomedical Image Analysis Group, Department of Computing, Imperial College London, United Kingdom – sequence: 8 givenname: W.J. surname: Niessen fullname: Niessen, W.J. organization: Biomedical Imaging Group Rotterdam, Depts. of Radiology & Medical Informatics, Erasmus MC, Rotterdam, The Netherlands – sequence: 9 givenname: S. surname: Klein fullname: Klein, S. organization: Biomedical Imaging Group Rotterdam, Depts. of Radiology & Medical Informatics, Erasmus MC, Rotterdam, The Netherlands |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29203452$$D View this record in MEDLINE/PubMed |
| BookMark | eNqVkU2PFCEQholZ437oXzCdePHSI0VDT3Mxrhu_kk286JnQUD0y0tBCt2b-vXRm1WRO4wkCbz2peuqaXIQYkJAK6AYotK_2m4BLim7UO9wwCtvyvKGcPiJXQKWopdiyi_UumroDkJfkOuc9pVQC756QSyYZbbhgV4TfVnnSs4v1jOMUk_ZVwgETBoPVGC36Kg7V_A0rvXNhV_VJu_CUPB60z_js4bwhX9-_-3L3sb7__OHT3e19bQSVc82RW97CoIUEIVBYO2iUorO8h6HtBqG3DW8H0bY9FZZyRo3AvrSLFo1FbG6IPHKXMOnDL-29mlIZOh0UULWaUHv1z4RaTaw_xUSpfXmsnVL8sWCe1eiyQe91wLhkBXLbUCaAQYm-OInu45JCmWwl8kYCsLaknj-kln5E-7eTPy5LoDsGTIo5F4v_0-zrk1Lj5nUrYS6-_TmAt0cAlnX8dJhUNm7doXUJzaxsdOdA3pxAjHfBGe2_4-E8xG9BZ85B |
| CitedBy_id | crossref_primary_10_1109_TMI_2022_3161947 crossref_primary_10_1371_journal_pone_0242320 crossref_primary_10_1002_hbm_26165 crossref_primary_10_1007_s10654_020_00640_5 crossref_primary_10_1109_TMI_2019_2945219 crossref_primary_10_1038_s41598_021_95098_0 crossref_primary_10_1109_TVCG_2019_2915567 crossref_primary_10_1002_dad2_12559 crossref_primary_10_1038_s41380_019_0441_1 crossref_primary_10_1002_hbm_26558 crossref_primary_10_1016_j_media_2021_102257 crossref_primary_10_1038_s41380_022_01908_w crossref_primary_10_1093_brain_awab165 crossref_primary_10_1038_s41380_020_00882_5 crossref_primary_10_1089_fpsam_2024_0046 crossref_primary_10_1016_j_media_2022_102723 crossref_primary_10_1007_s10916_019_1401_7 crossref_primary_10_1016_j_neuroimage_2022_119699 crossref_primary_10_1038_s41598_022_16531_6 crossref_primary_10_1016_j_neuroimage_2023_119898 crossref_primary_10_1109_JPROC_2019_2943836 crossref_primary_10_3389_fdata_2021_577164 crossref_primary_10_1016_j_bspc_2025_107514 crossref_primary_10_1038_s41598_018_31474_7 crossref_primary_10_1038_s41398_020_00986_0 crossref_primary_10_1109_JSTSP_2020_3001525 crossref_primary_10_3389_fneur_2020_584682 crossref_primary_10_1016_j_media_2021_102169 crossref_primary_10_3389_fnins_2022_897226 crossref_primary_10_1098_rstb_2019_0661 crossref_primary_10_3389_fneur_2020_01021 |
| Cites_doi | 10.1016/j.media.2014.01.001 10.1016/j.neuroimage.2014.04.018 10.1109/TIP.2009.2030955 10.1007/s11263-010-0367-1 10.1016/j.biopsych.2015.12.023 10.1016/j.neuroimage.2013.05.088 10.1212/WNL.0b013e3182553be6 10.1016/j.neuroimage.2011.09.062 10.1002/cem.1086 10.1016/j.neuroimage.2007.11.034 10.1002/sim.4780111005 10.1002/hbm.10123 10.1016/j.neuroimage.2010.07.034 10.1155/2009/616581 10.1016/S0169-7439(01)00155-1 10.1016/j.media.2010.10.003 10.1016/j.nic.2011.11.007 10.1002/jmri.21049 10.1002/cem.1180020306 10.1016/0169-7439(93)85002-X 10.3389/fninf.2012.00003 10.1016/j.neuroimage.2010.06.013 10.1016/j.media.2013.08.004 10.1016/j.media.2015.12.004 10.1109/TMI.2010.2046908 10.1093/biomet/87.4.954 10.1002/(SICI)1097-0258(20000515)19:9<1141::AID-SIM479>3.0.CO;2-F 10.1016/j.neuroimage.2011.01.050 10.1109/TMI.2009.2035616 10.1098/rstb.2001.0915 10.1007/s10654-015-0105-7 10.1002/hbm.22522 10.1016/j.media.2017.03.008 10.1109/42.796284 10.1016/j.neuroimage.2008.10.048 10.1109/TMI.2016.2623608 |
| ContentType | Journal Article |
| Copyright | 2017 The Authors Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved. Copyright Elsevier Limited Apr 1, 2018 |
| Copyright_xml | – notice: 2017 The Authors – notice: Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Apr 1, 2018 |
| CorporateAuthor | the Alzheimer's Disease Neuroimaging Initiative Alzheimer's Disease Neuroimaging Initiative |
| CorporateAuthor_xml | – name: the Alzheimer's Disease Neuroimaging Initiative – name: Alzheimer's Disease Neuroimaging Initiative |
| DBID | 6I. AAFTH AAYXX CITATION NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 ADTOC UNPAY |
| DOI | 10.1016/j.neuroimage.2017.10.040 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed ProQuest Central (Corporate) Neurosciences Abstracts ProQuest Health & Medical Collection (NC LIVE) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Biological Science Collection ProQuest Central (New) (NC LIVE) ProQuest Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database ProQuest Psychology Database ProQuest Biological Science Database (NC LIVE) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef PubMed ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | ProQuest One Psychology MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1095-9572 |
| EndPage | 22 |
| ExternalDocumentID | 10.1016/j.neuroimage.2017.10.040 29203452 10_1016_j_neuroimage_2017_10_040 S1053811917308674 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACLOT ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- ~HD 3V. 6I. AACTN AADPK AAFTH AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 HMQ LCYCR RIG SNS ZA5 29N 53G AAFWJ AAQXK AAYXX ABXDB ACRPL ADFGL ADMUD ADNMO ADVLN ADXHL AFPKN AGHFR AGQPQ AIGII AKRLJ ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ OK1 R2- SEW WUQ XPP ZMT AGCQF AGRNS ALIPV NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 PUEGO ADTOC AFFHD UNPAY |
| ID | FETCH-LOGICAL-c509t-4e4d461fa59155e5ddfae958d4b1f68f5a7346f566b05d0420c5eb119edecdee3 |
| IEDL.DBID | .~1 |
| ISSN | 1053-8119 1095-9572 |
| IngestDate | Wed Oct 29 12:20:45 EDT 2025 Sun Sep 28 06:56:03 EDT 2025 Tue Oct 07 06:55:22 EDT 2025 Tue Aug 05 11:47:50 EDT 2025 Thu Apr 24 23:04:41 EDT 2025 Sat Oct 25 06:03:55 EDT 2025 Fri Feb 23 02:48:17 EST 2024 Tue Oct 14 19:31:21 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Aging Percentile curves Partial least squares regression Brain morphology Non-rigid groupwise registration Spatio-temporal atlas |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c509t-4e4d461fa59155e5ddfae958d4b1f68f5a7346f566b05d0420c5eb119edecdee3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1053811917308674 |
| PMID | 29203452 |
| PQID | 2014391126 |
| PQPubID | 2031077 |
| PageCount | 12 |
| ParticipantIDs | unpaywall_primary_10_1016_j_neuroimage_2017_10_040 proquest_miscellaneous_1973025121 proquest_journals_2014391126 pubmed_primary_29203452 crossref_primary_10_1016_j_neuroimage_2017_10_040 crossref_citationtrail_10_1016_j_neuroimage_2017_10_040 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2017_10_040 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2017_10_040 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-04-01 |
| PublicationDateYYYYMMDD | 2018-04-01 |
| PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Amsterdam |
| PublicationTitle | NeuroImage (Orlando, Fla.) |
| PublicationTitleAlternate | Neuroimage |
| PublicationYear | 2018 |
| Publisher | Elsevier Inc Elsevier Limited |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
| References | Ziegler, Dahnke, Winkler, Gaser (bib41) 2013; 82 de Jong (bib22) 1992; 18 Jack, Bernstein, Fox, Thompson, Alexander, Harvey, Borowski, Britson, Whitwell, Ward, Dale, Felmlee, Gunter, Hill, Killiany, Schuff, Fox-Bosetti, Lin, Studholme, DeCarli, Krueger, Ward, Metzger, Scott, Mallozzi, Blezek, Levy, Debbins, Fleisher, Albert, Green, Bartzokis, Glover, Mugler, Weiner (bib21) 2008; 27 Serag, Aljebar, Ball, Counsell, Boardman, Rutherford, Edwards, Hajnal, Rueckert (bib32) 2012; 59 Huizinga, Poot, Guyader, Klaassen, Coolen, van Kranenburg, van Geuns, Uitterdijk, Polfliet, Vandemeulebroucke, Leemans, Niessen, Klein (bib18) 2016; 29 Cole, Green (bib8) 1991; 11 Rueckert, Sonoda, Hayes, Hill, Leach, Hawkes (bib30) 1999; 18 Singh, Fletcher, Preston, King, Marronb, Weinerc, Joshi (bib33) 2014; 18 Tustison, Avants, Cook, Zheng, Egan, Yushkevich, Gee (bib35) 2010; 29 Yee (bib39) 2010; 32 Ziegler, Ridgway, Dahnke, Gaser (bib43) 2014; 97 Sokooti, Saygili, Glocker, Lelieveldt, Staring (bib34) 2016 Yeo, Johnson (bib40) 2000; 87 Dittrich, Raviv, kasprian, Donner, Brugger, Prayer, Langs (bib12) 2014; 18 de Onis, Onyango, Borghi, Siyam, Pinol (bib29) 2006 Schrijvers, Verhaaren, Koudstaal, Hofman, Ikram, Breteler (bib31) 2012; 78 Costafreda, Dinov, Tu, Shi, Liu, Kloszewska, Mecocci, Soininen, Tsolaki, Vellas, Wahlund, Spenger, Toga, Lovestone, Simmons (bib9) 2011; 56 Davis, Fletcher, Bullitt, Joshi (bib11) 2010; 90 Kybic (bib25) 2010; 19 Gousias, Rueckert, Heckemann, Dyet, Edwards, Hammers (bib15) 2008; 40 Metz, Klein, Schaap, van Walsum, Niessen (bib28) 2011; 15 Baloch, Davatzikos (bib3) 2009; 45 Carpenter, Bithell (bib7) 2000; 19 Vernooij, Smits (bib36) 2012; 22 Huizinga, Poot, Roschchupkin, Bron, Ikram, Vernooij, Rueckert, Niessen, Klein (bib19) 2016 Klein, Staring, Murphy, Viergever, Pluim (bib23) 2010; 29 Achterberg, van der Lijn, den Heijer, van der Lugt, Breteler, Niessen, de Bruijne (bib1) 2010 Balci, Golland, Shenton, Wells (bib2) 2007 Wold, Sjöström, Eriksson (bib38) 2001; 58 Hammers, Allom, Koepp, Free, Myers, Lemieux, Mitchell, Brooks, Duncan (bib16) 2003; 19 Wiklund, Nilsson, Eroksson, Sjöström, Wold, Faber (bib37) 2007; 21 Folgoc, Delingette, Criminisi, Ayache (bib14) 2016; 36 Brewer (bib5) 2009; 21 Ikram, van der Lugt, Niessen, Koudstaal, Krestin, Hofman, Bos, Vernooij (bib20) 2015; 30 Ziegler, Dhanke, Gaser (bib42) 2012; 6 Mazziotta, Toga, Evans, Fox, Lancaster, Zilles, Woods, Paus, Simpson, Pike, Holmes, Collins, Thompson, MacDonald, Iacoboni, Schormann, Amunts, Palomero-Gallagher, Geyer, Parsons, Narr, Kabani, Goualher, Boomsma, Cannon, Kawashima, Mazoyer (bib27) 2001; 356 Krishnan, Williams, McIntosh, Abdi (bib24) 2011; 56 Fishbaugh, Durrleman, Prastawa, Gerig (bib13) 2017; 39 Marquand, Rezek, Buitelaar, Beckmann (bib26) 2016; 80 Bron, Steketee, Houston, Oliver, Achterberg, Loog, van Swieten, Hammers, Niessen, Smits, Klein (bib6) 2014; 35 Cuingnet, Gerardin, Tessieras, Auzias, Leh’ericy, Habert, Chupin, Benali, Colliot (bib10) 2011; 56 Bhatia, Hajnal, Puri, Edwards, Rueckert (bib4) 2004 Höskuldsson (bib17) 1988; 2 Costafreda (10.1016/j.neuroimage.2017.10.040_bib9) 2011; 56 Kybic (10.1016/j.neuroimage.2017.10.040_bib25) 2010; 19 Singh (10.1016/j.neuroimage.2017.10.040_bib33) 2014; 18 Cole (10.1016/j.neuroimage.2017.10.040_bib8) 1991; 11 Metz (10.1016/j.neuroimage.2017.10.040_bib28) 2011; 15 Bhatia (10.1016/j.neuroimage.2017.10.040_bib4) 2004 Brewer (10.1016/j.neuroimage.2017.10.040_bib5) 2009; 21 Sokooti (10.1016/j.neuroimage.2017.10.040_bib34) 2016 Baloch (10.1016/j.neuroimage.2017.10.040_bib3) 2009; 45 Mazziotta (10.1016/j.neuroimage.2017.10.040_bib27) 2001; 356 Krishnan (10.1016/j.neuroimage.2017.10.040_bib24) 2011; 56 Bron (10.1016/j.neuroimage.2017.10.040_bib6) 2014; 35 Gousias (10.1016/j.neuroimage.2017.10.040_bib15) 2008; 40 de Jong (10.1016/j.neuroimage.2017.10.040_bib22) 1992; 18 Serag (10.1016/j.neuroimage.2017.10.040_bib32) 2012; 59 Jack (10.1016/j.neuroimage.2017.10.040_bib21) 2008; 27 Vernooij (10.1016/j.neuroimage.2017.10.040_bib36) 2012; 22 Fishbaugh (10.1016/j.neuroimage.2017.10.040_bib13) 2017; 39 Rueckert (10.1016/j.neuroimage.2017.10.040_bib30) 1999; 18 Achterberg (10.1016/j.neuroimage.2017.10.040_bib1) 2010 Hammers (10.1016/j.neuroimage.2017.10.040_bib16) 2003; 19 Höskuldsson (10.1016/j.neuroimage.2017.10.040_bib17) 1988; 2 Cuingnet (10.1016/j.neuroimage.2017.10.040_bib10) 2011; 56 Carpenter (10.1016/j.neuroimage.2017.10.040_bib7) 2000; 19 Wold (10.1016/j.neuroimage.2017.10.040_bib38) 2001; 58 Wiklund (10.1016/j.neuroimage.2017.10.040_bib37) 2007; 21 Marquand (10.1016/j.neuroimage.2017.10.040_bib26) 2016; 80 Folgoc (10.1016/j.neuroimage.2017.10.040_bib14) 2016; 36 Klein (10.1016/j.neuroimage.2017.10.040_bib23) 2010; 29 Ziegler (10.1016/j.neuroimage.2017.10.040_bib41) 2013; 82 Yee (10.1016/j.neuroimage.2017.10.040_bib39) 2010; 32 Ikram (10.1016/j.neuroimage.2017.10.040_bib20) 2015; 30 de Onis (10.1016/j.neuroimage.2017.10.040_bib29) 2006 Dittrich (10.1016/j.neuroimage.2017.10.040_bib12) 2014; 18 Huizinga (10.1016/j.neuroimage.2017.10.040_bib19) 2016 Yeo (10.1016/j.neuroimage.2017.10.040_bib40) 2000; 87 Ziegler (10.1016/j.neuroimage.2017.10.040_bib42) 2012; 6 Balci (10.1016/j.neuroimage.2017.10.040_bib2) 2007 Schrijvers (10.1016/j.neuroimage.2017.10.040_bib31) 2012; 78 Tustison (10.1016/j.neuroimage.2017.10.040_bib35) 2010; 29 Ziegler (10.1016/j.neuroimage.2017.10.040_bib43) 2014; 97 Davis (10.1016/j.neuroimage.2017.10.040_bib11) 2010; 90 Huizinga (10.1016/j.neuroimage.2017.10.040_bib18) 2016; 29 |
| References_xml | – volume: 90 start-page: 255 year: 2010 end-page: 266 ident: bib11 article-title: Population shape regression from random design data publication-title: Int. J. Comput. Vis. – volume: 36 start-page: 607 year: 2016 end-page: 617 ident: bib14 article-title: Quantifying registration uncertainty with sparse Bayesian modelling publication-title: IEEE Trans. Med. Imaging – volume: 15 start-page: 238 year: 2011 end-page: 249 ident: bib28 article-title: Nonrigid registration of dynamic medical imaging data using nD+t B-splines and a groupwise optimization approach publication-title: Med. Image Anal. – volume: 19 start-page: 1141 year: 2000 end-page: 1164 ident: bib7 article-title: Bootstrap confidence intervals: when, which, what? publication-title: Statistics Med. – volume: 78 year: 2012 ident: bib31 article-title: Is dementia incidence declining?: Trends in dementia incidence since 1990 in the Rotterdam Study publication-title: Neurology – volume: 19 start-page: 224 year: 2003 end-page: 247 ident: bib16 article-title: Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe publication-title: Hum. Brain Mapp. – volume: 59 start-page: 2255 year: 2012 end-page: 2265 ident: bib32 article-title: Construction of a consistent high-definition spatio-temporal atlas of the developing brain using adaptive kernel regression publication-title: NeuroImage – volume: 29 start-page: 1310 year: 2010 end-page: 1320 ident: bib35 article-title: N4ITK: improved N3 bias correction publication-title: IEEE Trans. Med. Imaging – start-page: 908 year: 2004 end-page: 911 ident: bib4 article-title: Consistent groupwise non-rigid registration for atlas construction publication-title: Proc. IEEE Int Symp on Biomed Imaging: Nano to Macro – start-page: 107 year: 2016 end-page: 115 ident: bib34 article-title: Accuracy estimation for medical image registration using regression forests publication-title: MICCAI 2016: Medical Image Computing and Computer-assisted Intervention – volume: 29 start-page: 65 year: 2016 end-page: 78 ident: bib18 article-title: PCA-based groupwise image registration for quantitative MRI publication-title: Med. Image Anal. – volume: 39 start-page: 1 year: 2017 end-page: 17 ident: bib13 article-title: Geodesic shape regression with multiple geometries and sparse parameters publication-title: Med. Image Anal. – volume: 19 start-page: 64 year: 2010 end-page: 73 ident: bib25 article-title: Bootstrap resampling for image registration uncertainty estimation without ground truth publication-title: IEEE Trans. Image Process. – volume: 82 start-page: 284 year: 2013 end-page: 294 ident: bib41 article-title: Partial least squares correlation of multivariate cognitive abilities and local brain structure in children and adolescents publication-title: NeuroImage – volume: 18 start-page: 616 year: 2014 end-page: 633 ident: bib33 article-title: Quantifying anatomical shape variations in neurological disorders publication-title: Med. Image Anal. – year: 2006 ident: bib29 article-title: WHO Child Growth Standards: Length/height-for-age, Weight-for-age, Weight-for-length, Weight-for height and Body Mass Index-for-age: Methods and Development. Technical Report – volume: 18 start-page: 251 year: 1992 end-page: 263 ident: bib22 article-title: SIMPLS: an alternative approach to partial least squares regression publication-title: Chemom. Intelligent Laboratory Syst. – volume: 11 start-page: 1305 year: 1991 end-page: 1319 ident: bib8 article-title: Smoothing reference centile curves: the LMS method and penalized likelihood publication-title: Stat. Med. – volume: 35 start-page: 4916 year: 2014 end-page: 4931 ident: bib6 article-title: Diagnostic classification of arterial spin labeling and structural MRI in presenile early stage dementia publication-title: Hum. Brain Mapp. – volume: 18 start-page: 712 year: 1999 end-page: 721 ident: bib30 article-title: Nonrigid registration using free-form deformations: application to breast MR images publication-title: IEEE Trans. Med. Imaging – volume: 56 year: 2011 ident: bib10 article-title: Automatic classification of patients with Alzheimers disease from structural MRI: a comparison of ten methods using the ADNI database publication-title: NeuroImage – volume: 97 start-page: 333 year: 2014 end-page: 348 ident: bib43 article-title: Individualized Gaussian process-based prediction and detection of local and global gray matter abnormalities in elderly subjects publication-title: NeuroImage – start-page: 23 year: 2007 end-page: 30 ident: bib2 article-title: Free-form B-spline deformation model for groupwise registration publication-title: Proceedings of Medical Image Computing and Compututer-assisted Intervention – volume: 6 start-page: 1 year: 2012 end-page: 16 ident: bib42 article-title: Models of the aging brain structure and individual decline publication-title: Front. Neuroinformatics – volume: 56 start-page: 212 year: 2011 end-page: 219 ident: bib9 article-title: Automated hippocampal shape analysis predicts the onset of dementia in mild cognitive impairment publication-title: Neuroimage – volume: 21 start-page: 427 year: 2007 end-page: 439 ident: bib37 article-title: A randomization test for PLS component selection publication-title: J. Chemom. – volume: 32 start-page: 1 year: 2010 end-page: 34 ident: bib39 article-title: The VGAM package for categorical data analysis publication-title: J. Stat. Softw. – volume: 87 start-page: 954 year: 2000 end-page: 959 ident: bib40 article-title: A new family of power transformations to improve normality or symmetry publication-title: Biometrika – volume: 2 start-page: 211 year: 1988 end-page: 228 ident: bib17 article-title: PLS regression methods publication-title: J. Chemom. – volume: 22 start-page: 33 year: 2012 end-page: 55 ident: bib36 article-title: Structural neuroimaging in aging and Alzheimer's disease publication-title: Neuroimaging Clin. N. Am. – volume: 40 start-page: 672 year: 2008 end-page: 684 ident: bib15 article-title: Automatic segmentation of brain MRIs of 2-year-olds into 83 regions of interest publication-title: Neuroimage – volume: 21 start-page: 21 year: 2009 end-page: 28 ident: bib5 article-title: Fully-automated volumetric MRI with normative ranges: translation to clinical practice publication-title: Behav. Neurol. – year: 2016 ident: bib19 article-title: Modeling the brain morphology distribution in the general aging population publication-title: Proc. SPIE 9788, Medical Imaging 2016: Biomedical Applications in Molecular, Structural, and Functional Imaging – volume: 56 start-page: 455 year: 2011 end-page: 475 ident: bib24 article-title: Partial least squares (PLS) methods for neuroimaging: a tutorial and review publication-title: NeuroImage – volume: 18 start-page: 9 year: 2014 end-page: 21 ident: bib12 article-title: A spatio-temporal latent atlas for semi-supervised learning of fetal brain segmentations and morphological age estimation publication-title: Med. Image Anal. – volume: 27 start-page: 685 year: 2008 end-page: 691 ident: bib21 article-title: The Alzheimerś disease neuroimaging initiative (ADNI): MRI methods publication-title: J. Magnetic Reson. Imaging – volume: 80 start-page: 552 year: 2016 end-page: 561 ident: bib26 article-title: Understanding heterogeneity in clinical cohort using normative models: beyond case-control studies publication-title: Biol. Psychiatry – volume: 30 start-page: 1299 year: 2015 end-page: 1315 ident: bib20 article-title: The Rotterdam Scan Study: design update 2016 and main findings publication-title: Eur. J. Epidemiol. – volume: 45 start-page: S73 year: 2009 end-page: S85 ident: bib3 article-title: Morphological appearance manifolds in computational anatomy: groupwise registration and morphological analysis publication-title: NeuroImage – volume: 29 start-page: 196 year: 2010 end-page: 205 ident: bib23 article-title: elastix: a toolbox for intensity based medical image registration publication-title: IEEE Trans. Med. Imaging – volume: 58 start-page: 109 year: 2001 end-page: 130 ident: bib38 article-title: PLS-regression: a basic tool of chemometrics publication-title: Chemom. Intelligent Laboratory Syst. – volume: 356 start-page: 1293 year: 2001 end-page: 1322 ident: bib27 article-title: A probabilistic atlas and reference system for the human brain: international consortium for brain mapping (ICBM) publication-title: Philosofical Trans. R. Soc. Lond. – start-page: 23 year: 2010 end-page: 30 ident: bib1 article-title: Prediction of dementia by hippocampal shape analysis publication-title: MICCAI 2010: Medical Image Computing and Computer-assisted Intervention, Machine Learning in Medical Imaging – volume: 18 start-page: 616 year: 2014 ident: 10.1016/j.neuroimage.2017.10.040_bib33 article-title: Quantifying anatomical shape variations in neurological disorders publication-title: Med. Image Anal. doi: 10.1016/j.media.2014.01.001 – volume: 97 start-page: 333 year: 2014 ident: 10.1016/j.neuroimage.2017.10.040_bib43 article-title: Individualized Gaussian process-based prediction and detection of local and global gray matter abnormalities in elderly subjects publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.04.018 – volume: 19 start-page: 64 year: 2010 ident: 10.1016/j.neuroimage.2017.10.040_bib25 article-title: Bootstrap resampling for image registration uncertainty estimation without ground truth publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2009.2030955 – volume: 90 start-page: 255 year: 2010 ident: 10.1016/j.neuroimage.2017.10.040_bib11 article-title: Population shape regression from random design data publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-010-0367-1 – start-page: 908 year: 2004 ident: 10.1016/j.neuroimage.2017.10.040_bib4 article-title: Consistent groupwise non-rigid registration for atlas construction – volume: 80 start-page: 552 year: 2016 ident: 10.1016/j.neuroimage.2017.10.040_bib26 article-title: Understanding heterogeneity in clinical cohort using normative models: beyond case-control studies publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2015.12.023 – start-page: 23 year: 2007 ident: 10.1016/j.neuroimage.2017.10.040_bib2 article-title: Free-form B-spline deformation model for groupwise registration – volume: 82 start-page: 284 year: 2013 ident: 10.1016/j.neuroimage.2017.10.040_bib41 article-title: Partial least squares correlation of multivariate cognitive abilities and local brain structure in children and adolescents publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.05.088 – volume: 78 year: 2012 ident: 10.1016/j.neuroimage.2017.10.040_bib31 article-title: Is dementia incidence declining?: Trends in dementia incidence since 1990 in the Rotterdam Study publication-title: Neurology doi: 10.1212/WNL.0b013e3182553be6 – volume: 59 start-page: 2255 year: 2012 ident: 10.1016/j.neuroimage.2017.10.040_bib32 article-title: Construction of a consistent high-definition spatio-temporal atlas of the developing brain using adaptive kernel regression publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.09.062 – volume: 21 start-page: 427 year: 2007 ident: 10.1016/j.neuroimage.2017.10.040_bib37 article-title: A randomization test for PLS component selection publication-title: J. Chemom. doi: 10.1002/cem.1086 – volume: 40 start-page: 672 year: 2008 ident: 10.1016/j.neuroimage.2017.10.040_bib15 article-title: Automatic segmentation of brain MRIs of 2-year-olds into 83 regions of interest publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.11.034 – volume: 11 start-page: 1305 year: 1991 ident: 10.1016/j.neuroimage.2017.10.040_bib8 article-title: Smoothing reference centile curves: the LMS method and penalized likelihood publication-title: Stat. Med. doi: 10.1002/sim.4780111005 – volume: 19 start-page: 224 year: 2003 ident: 10.1016/j.neuroimage.2017.10.040_bib16 article-title: Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.10123 – volume: 56 start-page: 455 year: 2011 ident: 10.1016/j.neuroimage.2017.10.040_bib24 article-title: Partial least squares (PLS) methods for neuroimaging: a tutorial and review publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.07.034 – start-page: 23 year: 2010 ident: 10.1016/j.neuroimage.2017.10.040_bib1 article-title: Prediction of dementia by hippocampal shape analysis – volume: 21 start-page: 21 year: 2009 ident: 10.1016/j.neuroimage.2017.10.040_bib5 article-title: Fully-automated volumetric MRI with normative ranges: translation to clinical practice publication-title: Behav. Neurol. doi: 10.1155/2009/616581 – volume: 58 start-page: 109 year: 2001 ident: 10.1016/j.neuroimage.2017.10.040_bib38 article-title: PLS-regression: a basic tool of chemometrics publication-title: Chemom. Intelligent Laboratory Syst. doi: 10.1016/S0169-7439(01)00155-1 – volume: 15 start-page: 238 year: 2011 ident: 10.1016/j.neuroimage.2017.10.040_bib28 article-title: Nonrigid registration of dynamic medical imaging data using nD+t B-splines and a groupwise optimization approach publication-title: Med. Image Anal. doi: 10.1016/j.media.2010.10.003 – volume: 22 start-page: 33 year: 2012 ident: 10.1016/j.neuroimage.2017.10.040_bib36 article-title: Structural neuroimaging in aging and Alzheimer's disease publication-title: Neuroimaging Clin. N. Am. doi: 10.1016/j.nic.2011.11.007 – volume: 27 start-page: 685 year: 2008 ident: 10.1016/j.neuroimage.2017.10.040_bib21 article-title: The Alzheimerś disease neuroimaging initiative (ADNI): MRI methods publication-title: J. Magnetic Reson. Imaging doi: 10.1002/jmri.21049 – volume: 2 start-page: 211 year: 1988 ident: 10.1016/j.neuroimage.2017.10.040_bib17 article-title: PLS regression methods publication-title: J. Chemom. doi: 10.1002/cem.1180020306 – volume: 18 start-page: 251 year: 1992 ident: 10.1016/j.neuroimage.2017.10.040_bib22 article-title: SIMPLS: an alternative approach to partial least squares regression publication-title: Chemom. Intelligent Laboratory Syst. doi: 10.1016/0169-7439(93)85002-X – volume: 6 start-page: 1 year: 2012 ident: 10.1016/j.neuroimage.2017.10.040_bib42 article-title: Models of the aging brain structure and individual decline publication-title: Front. Neuroinformatics doi: 10.3389/fninf.2012.00003 – volume: 56 year: 2011 ident: 10.1016/j.neuroimage.2017.10.040_bib10 article-title: Automatic classification of patients with Alzheimers disease from structural MRI: a comparison of ten methods using the ADNI database publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.06.013 – volume: 32 start-page: 1 year: 2010 ident: 10.1016/j.neuroimage.2017.10.040_bib39 article-title: The VGAM package for categorical data analysis publication-title: J. Stat. Softw. – volume: 18 start-page: 9 year: 2014 ident: 10.1016/j.neuroimage.2017.10.040_bib12 article-title: A spatio-temporal latent atlas for semi-supervised learning of fetal brain segmentations and morphological age estimation publication-title: Med. Image Anal. doi: 10.1016/j.media.2013.08.004 – volume: 29 start-page: 65 year: 2016 ident: 10.1016/j.neuroimage.2017.10.040_bib18 article-title: PCA-based groupwise image registration for quantitative MRI publication-title: Med. Image Anal. doi: 10.1016/j.media.2015.12.004 – volume: 29 start-page: 1310 year: 2010 ident: 10.1016/j.neuroimage.2017.10.040_bib35 article-title: N4ITK: improved N3 bias correction publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2010.2046908 – volume: 87 start-page: 954 year: 2000 ident: 10.1016/j.neuroimage.2017.10.040_bib40 article-title: A new family of power transformations to improve normality or symmetry publication-title: Biometrika doi: 10.1093/biomet/87.4.954 – volume: 19 start-page: 1141 year: 2000 ident: 10.1016/j.neuroimage.2017.10.040_bib7 article-title: Bootstrap confidence intervals: when, which, what? publication-title: Statistics Med. doi: 10.1002/(SICI)1097-0258(20000515)19:9<1141::AID-SIM479>3.0.CO;2-F – volume: 56 start-page: 212 year: 2011 ident: 10.1016/j.neuroimage.2017.10.040_bib9 article-title: Automated hippocampal shape analysis predicts the onset of dementia in mild cognitive impairment publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.01.050 – volume: 29 start-page: 196 year: 2010 ident: 10.1016/j.neuroimage.2017.10.040_bib23 article-title: elastix: a toolbox for intensity based medical image registration publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2009.2035616 – volume: 356 start-page: 1293 year: 2001 ident: 10.1016/j.neuroimage.2017.10.040_bib27 article-title: A probabilistic atlas and reference system for the human brain: international consortium for brain mapping (ICBM) publication-title: Philosofical Trans. R. Soc. Lond. doi: 10.1098/rstb.2001.0915 – year: 2006 ident: 10.1016/j.neuroimage.2017.10.040_bib29 – volume: 30 start-page: 1299 year: 2015 ident: 10.1016/j.neuroimage.2017.10.040_bib20 article-title: The Rotterdam Scan Study: design update 2016 and main findings publication-title: Eur. J. Epidemiol. doi: 10.1007/s10654-015-0105-7 – volume: 35 start-page: 4916 year: 2014 ident: 10.1016/j.neuroimage.2017.10.040_bib6 article-title: Diagnostic classification of arterial spin labeling and structural MRI in presenile early stage dementia publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22522 – volume: 39 start-page: 1 year: 2017 ident: 10.1016/j.neuroimage.2017.10.040_bib13 article-title: Geodesic shape regression with multiple geometries and sparse parameters publication-title: Med. Image Anal. doi: 10.1016/j.media.2017.03.008 – start-page: 107 year: 2016 ident: 10.1016/j.neuroimage.2017.10.040_bib34 article-title: Accuracy estimation for medical image registration using regression forests – year: 2016 ident: 10.1016/j.neuroimage.2017.10.040_bib19 article-title: Modeling the brain morphology distribution in the general aging population – volume: 18 start-page: 712 year: 1999 ident: 10.1016/j.neuroimage.2017.10.040_bib30 article-title: Nonrigid registration using free-form deformations: application to breast MR images publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.796284 – volume: 45 start-page: S73 year: 2009 ident: 10.1016/j.neuroimage.2017.10.040_bib3 article-title: Morphological appearance manifolds in computational anatomy: groupwise registration and morphological analysis publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.10.048 – volume: 36 start-page: 607 year: 2016 ident: 10.1016/j.neuroimage.2017.10.040_bib14 article-title: Quantifying registration uncertainty with sparse Bayesian modelling publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2623608 |
| SSID | ssj0009148 |
| Score | 2.51178 |
| Snippet | Both normal aging and neurodegenerative disorders such as Alzheimer's disease (AD) cause morphological changes of the brain. It is generally difficult to... |
| SourceID | unpaywall proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 11 |
| SubjectTerms | Age Aging Alzheimer's disease Atrophy Brain Brain morphology Cognitive ability Deformation Magnetic resonance imaging Medical imaging Methods Morphology Neurodegenerative diseases Neuroimaging Non-rigid groupwise registration Partial least squares regression Percentile curves Population Population studies Registration Spatio-temporal atlas |
| SummonAdditionalLinks | – databaseName: ProQuest Central (New) (NC LIVE) dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fi9QwEB7OPdDzQfzt6ikRfI1smkmbIiKn3HEIt4h4cG8hzQ9Q1u56u4v435tp066gyD6WMNBOZyZfm5nvA3ilQ6yjxsi9nHmOpRNchyDopFDqwqFyDQ0KX8zL80v8eKWuDmA-zMJQW-VQE7tC7ZeO_pGnj3RBQ6KiKN-tfnBSjaLT1UFCw2ZpBf-2oxi7AYcFMWNN4PD96fzT5x0Nr8B-OE5JroWoc29P3_HVMUh-_Z7ymFq-qtfU9UU_Rf69Yf0NSG_DrW27sr9-2sXij03q7C7cyeiSnfThcA8OQnsfbl7k8_MHgCds3bVQ80xJtWCjzgjrRHHYMrKECVknXsQaEpB4CJdnp18-nPOsm8Bd2v43HAN6LEW0isjfg_I-2lAr7bERsdRR2UpiGROQa2bKp6ydOZVKtqiDD86HIB_BpF224QmwKiaPRXQlVg4T1LHShpmrpbNYS41iCtXgHOMyqThpWyzM0D32zezcasittJLcOgUxWq56Yo09bOrB_2YYHE2lzqTqv4ftm9E2g4seNOxpfTy8bpOTfG12ITmFl-NySk86c7FtWG7XRtSphBKGTK563IfJ-LgkFCZRFVMoxrjZ2xdP_39Hz-AoXei-x-gYJpvrbXie4NOmeZFz4jeJ2hi6 priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB4tXQnYA8-FLSzISHBMW9d2HuKAKmC1QtoVCCotp8jxQwS6abVtQPDrmUmc8DxUiFsSZw6eGc98iT_PADxOnc98Kn1kxcRGMjY8Sp3jtFMo0qmRyhR0UPjkND6ey1dn6mwH3nRnYYhWGWJ_G9ObaB2ejIM2x_p8vCrL8VsEB5hx6JNDIDRP5LPPpX4iXpQf6uIS7MYK4fkAduenr2fvm11PJSJ6vbmmHoUq6dg9LeerqSFZnuNKJtJXMiLeF_0W-XvK-hOS7sGVulrpr1_0YvFTmjq6DhfdBFt2yqdRvSlG5ttvtR__qwZuwLUAatmslboJO666BZdPwrb9bZAztm6Y21GohLVgfXsT1vTiYUvPEIqypmcSK6hvxT7Mj16-e34chXYNkUHUsYmkk1bG3GtFNeedstZrl6nUyoL7OPVKJ0LGHvFjMVEWg8XEKMwUPHPWGeucuAODalm5A2CJz7j00sQyMRIRlhbaTUwmjJaZSCUfQtJZJDehljm11FjkHWntY_7DljnZkkbQlkPgveSqreexhUzWGT3vzqtihM0x6Wwh-7SX_cWqW0ofdj6Wh9iypnE6Ls2n8RAe9cMYFWirR1duWa9znqE_EHRFVd1tfbOfLvUnE1JNhzDtnXVrXdz7F6H7cBXv0pbwdAiDzUXtHiCW2xQPw-r8DhW1R7I priority: 102 providerName: Unpaywall |
| Title | A spatio-temporal reference model of the aging brain |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811917308674 https://dx.doi.org/10.1016/j.neuroimage.2017.10.040 https://www.ncbi.nlm.nih.gov/pubmed/29203452 https://www.proquest.com/docview/2014391126 https://www.proquest.com/docview/1973025121 https://www.sciencedirect.com/science/article/am/pii/S1053811917308674?via%3Dihub |
| UnpaywallVersion | publishedVersion |
| Volume | 169 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1095-9572 dateEnd: 20191231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: ACRLP dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1095-9572 dateEnd: 20191231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AIKHN dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AKRWK dateStart: 19920801 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1095-9572 dateEnd: 20250905 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: 7X7 dateStart: 20020801 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1095-9572 dateEnd: 20250905 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: BENPR dateStart: 19980501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZWi8TjgHhTWFZG4pptXY_jRJxKtavy2KpaqFROkeOHVFTSirZCXPjtzCROFgSHSlxiJc5I8RfPeBJ_M8PYq8yHPGQQEicHLoHUiiTzXtBOocyGFpQtKVD4cppO5vBuoRZHbNzGwhCtMtr-xqbX1jpe6Uc0-5vlsv8RPQNcbuh7Q6JfriknKICmKgZnP69pHrmAJhxOyYTujmyehuNV54xcfkXNJZKXPiOeF_0G-fcS9bcLeofd2lcb8-O7Wa1-W5Yu7rG70Z_ko-aR77MjXz1gNy_jjvlDBiO-rUnTSUxCteJdZRFel8Hh68DRC-R1uSJeUsmIR2x-cf5pPElipYTE4oK_S8CDg1QEoyjdu1fOBeNzlTkoRUizoIyWkAZ03cqBcqinA6vQSIvcO2-d9_IxO67WlX_KuA6IWACbgraIpjbS-IHNpTWQywxEj-kWnMLGNOJUzWJVtHyxL8U1rAXBSj0Ia4-JTnLTpNI4QCZv8S_aUFE0bgXa-wNkX3eyf0ypA6VP2tddRLXeUj9FKoth2mMvu25USNplMZVf77eFyHE-kteIUD1ppkk3XCoNJkENe2zYzZuDsXj2X-N5zm7jWdaQjk7Y8e7b3r9Af2pXntYKg0e90Kfsxmh89WFG7dv3kym2b86nsyts59PZ6PMvQf4lAg |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NTWLjAfGbwgAjwWNQHZ_TRGhCAzZ1bK0Q2qS9Gcc_JKaSFtpq2j_H38Y5cVIkEOrLnq2Lki_n82f77j6AV7nzhc_RJ1b0bYKZ4UnuHA83hSJPDUpThkLh0TgbnuGnc3m-Ab_aWpiQVtnGxDpQ26kJZ-S0SeehSJSn2bvZjySoRoXb1VZCQ0dpBbtXtxiLhR3H7uqStnDzvaOP9L9fp-nhwemHYRJVBhJDi-UiQYcWM-61DK3SnbTWa1fI3GLJfZZ7qQcCM0-0p-xLSz7eN5ICHC-cdcY6J-i5N2ALBRa0-dt6fzD-_GXV9pdjU4wnRZKTTcwlajLM6o6V375T3AgpZoM3IcssHML8e4H8mwDfgu1lNdNXl3oy-WNRPLwDtyObZfuN-92FDVfdg5ujeF9_H3CfzeuU7SS2wJqwTteE1SI8bOoZcVBWiyWxMghWPICza0HwIWxW08o9BjbwhJhHk-HAIFErLbTrm0IYjYXIkfdg0IKjTGxiHrQ0JqrNVrtQK1hVgDWMEKw94J3lrGnksYZN0eKv2kJVCq2KVps1bN92tpHMNCRlTevd9nerGFTmajUFevCyG6ZwEO54dOWmy7niBYXswFkJqkeNm3SfG4TJBMq0B2nnN2tj8eT_b_QCtoenoxN1cjQ-fgo7NJA3-U27sLn4uXTPiLotyudxfjD4et1T8jcuAlcS |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1daxNBFL3UCrV9ED9rtOoI-riS2ZnZnUVEijW01hYfLORtnJ0PsKSb2CSU_jV_nffuVwRF8tLXLDckZ-_cObtz7j0Ar3WIRdQyJl4MfSIzxxMdAqeTQqFTJ5UrqVH45DQ7PJOfx2q8Ab-6XhiSVXY1sS7UfuroHTk-pHNqEqWGl9jKIr4ejD7MfibkIEUnrZ2dRpMix-H6Ch_f5u-PDvBev0nT0advHw-T1mEgcbhRLhIZpJcZj1bRmPSgvI82FEp7WfKY6ahsLmQWkfKUQ-Uxv4dOYXHjRfDB-RAEfu8tuJ0LUZCcMB_nq4G_XDZteEokGiNaFVGjLatnVf64wIpB4rL8LenL6PXLv7fGv6nvDtxZVjN7fWUnkz-2w9E9uNvyWLbfJN592AjVA9g6aU_qH4LcZ_NarJ20w68mrHc0YbX9DptGhuyT1TZJrCSrikdwdiP4PYbNalqFJ8DyiIhF6TKZO4mkygobhq4QzspCaMkHkHfgGNeOLycXjYnpdGrnZgWrIVjpCsI6AN5HzpoRHmvEFB3-pmtRxaJqcJ9ZI_ZdH9vSmIaerBm9191u05aTuVkl_wBe9ZexENDpjq3CdDk3vMBiTWwVodpt0qT_u2RJJqRKB5D2ebM2Fk___4tewhYuRPPl6PT4GWzj57oRNu3B5uJyGZ4jZ1uUL-rFweD7Ta_G38vZVKw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB4tXQnYA8-FLSzISHBMW9d2HuKAKmC1QtoVCCotp8jxQwS6abVtQPDrmUmc8DxUiFsSZw6eGc98iT_PADxOnc98Kn1kxcRGMjY8Sp3jtFMo0qmRyhR0UPjkND6ey1dn6mwH3nRnYYhWGWJ_G9ObaB2ejIM2x_p8vCrL8VsEB5hx6JNDIDRP5LPPpX4iXpQf6uIS7MYK4fkAduenr2fvm11PJSJ6vbmmHoUq6dg9LeerqSFZnuNKJtJXMiLeF_0W-XvK-hOS7sGVulrpr1_0YvFTmjq6DhfdBFt2yqdRvSlG5ttvtR__qwZuwLUAatmslboJO666BZdPwrb9bZAztm6Y21GohLVgfXsT1vTiYUvPEIqypmcSK6hvxT7Mj16-e34chXYNkUHUsYmkk1bG3GtFNeedstZrl6nUyoL7OPVKJ0LGHvFjMVEWg8XEKMwUPHPWGeucuAODalm5A2CJz7j00sQyMRIRlhbaTUwmjJaZSCUfQtJZJDehljm11FjkHWntY_7DljnZkkbQlkPgveSqreexhUzWGT3vzqtihM0x6Wwh-7SX_cWqW0ofdj6Wh9iypnE6Ls2n8RAe9cMYFWirR1duWa9znqE_EHRFVd1tfbOfLvUnE1JNhzDtnXVrXdz7F6H7cBXv0pbwdAiDzUXtHiCW2xQPw-r8DhW1R7I |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+spatio-temporal+reference+model+of+the+aging+brain&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Huizinga%2C+W.&rft.au=Poot%2C+D.H.J.&rft.au=Vernooij%2C+M.W.&rft.au=Roshchupkin%2C+G.V.&rft.date=2018-04-01&rft.issn=1053-8119&rft.volume=169&rft.spage=11&rft.epage=22&rft_id=info:doi/10.1016%2Fj.neuroimage.2017.10.040&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neuroimage_2017_10_040 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |