A spatio-temporal reference model of the aging brain

Both normal aging and neurodegenerative disorders such as Alzheimer's disease (AD) cause morphological changes of the brain. It is generally difficult to distinguish these two causes of morphological change by visual inspection of magnetic resonance (MR) images. To facilitate making this distin...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 169; pp. 11 - 22
Main Authors Huizinga, W., Poot, D.H.J., Vernooij, M.W., Roshchupkin, G.V., Bron, E.E., Ikram, M.A., Rueckert, D., Niessen, W.J., Klein, S.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.04.2018
Elsevier Limited
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
1095-9572
DOI10.1016/j.neuroimage.2017.10.040

Cover

Abstract Both normal aging and neurodegenerative disorders such as Alzheimer's disease (AD) cause morphological changes of the brain. It is generally difficult to distinguish these two causes of morphological change by visual inspection of magnetic resonance (MR) images. To facilitate making this distinction and thus aid the diagnosis of neurodegenerative disorders, we propose a method for developing a spatio-temporal model of morphological differences in the brain due to normal aging. The method utilizes groupwise image registration to characterize morphological variation across brain scans of people with different ages. To extract the deformations that are due to normal aging we use partial least squares regression, which yields modes of deformations highly correlated with age, and corresponding scores for each input subject. Subsequently, we determine a distribution of morphologies as a function of age by fitting smooth percentile curves to these scores. This distribution is used as a reference to which a person's morphology score can be compared. We validate our method on two different datasets, using images from both cognitively normal subjects and patients with Alzheimer disease (AD). Results show that the proposed framework extracts the expected atrophy patterns. Moreover, the morphology scores of cognitively normal subjects are on average lower than the scores of AD subjects, indicating that morphology differences between AD subjects and healthy subjects can be partly explained by accelerated aging. With our methods we are able to assess accelerated brain aging on both population and individual level. A spatio-temporal aging brain model derived from 988 T1-weighted MR brain scans from a large population imaging study (age range 45.9–91.7y, mean age 68.3y) is made publicly available at www.agingbrain.nl. •A model to assess morphological differences in the brain due to aging is developed.•The method can assess accelerated brain aging on population and individual level.•The model derived from 988 MR brain is made publicly available at www.agingbrain.nl.
AbstractList Both normal aging and neurodegenerative disorders such as Alzheimer's disease (AD) cause morphological changes of the brain. It is generally difficult to distinguish these two causes of morphological change by visual inspection of magnetic resonance (MR) images. To facilitate making this distinction and thus aid the diagnosis of neurodegenerative disorders, we propose a method for developing a spatio-temporal model of morphological differences in the brain due to normal aging. The method utilizes groupwise image registration to characterize morphological variation across brain scans of people with different ages. To extract the deformations that are due to normal aging we use partial least squares regression, which yields modes of deformations highly correlated with age, and corresponding scores for each input subject. Subsequently, we determine a distribution of morphologies as a function of age by fitting smooth percentile curves to these scores. This distribution is used as a reference to which a person's morphology score can be compared. We validate our method on two different datasets, using images from both cognitively normal subjects and patients with Alzheimer disease (AD). Results show that the proposed framework extracts the expected atrophy patterns. Moreover, the morphology scores of cognitively normal subjects are on average lower than the scores of AD subjects, indicating that morphology differences between AD subjects and healthy subjects can be partly explained by accelerated aging. With our methods we are able to assess accelerated brain aging on both population and individual level. A spatio-temporal aging brain model derived from 988 T1-weighted MR brain scans from a large population imaging study (age range 45.9–91.7y, mean age 68.3y) is made publicly available at www.agingbrain.nl.
Both normal aging and neurodegenerative disorders such as Alzheimer's disease (AD) cause morphological changes of the brain. It is generally difficult to distinguish these two causes of morphological change by visual inspection of magnetic resonance (MR) images. To facilitate making this distinction and thus aid the diagnosis of neurodegenerative disorders, we propose a method for developing a spatio-temporal model of morphological differences in the brain due to normal aging. The method utilizes groupwise image registration to characterize morphological variation across brain scans of people with different ages. To extract the deformations that are due to normal aging we use partial least squares regression, which yields modes of deformations highly correlated with age, and corresponding scores for each input subject. Subsequently, we determine a distribution of morphologies as a function of age by fitting smooth percentile curves to these scores. This distribution is used as a reference to which a person's morphology score can be compared. We validate our method on two different datasets, using images from both cognitively normal subjects and patients with Alzheimer disease (AD). Results show that the proposed framework extracts the expected atrophy patterns. Moreover, the morphology scores of cognitively normal subjects are on average lower than the scores of AD subjects, indicating that morphology differences between AD subjects and healthy subjects can be partly explained by accelerated aging. With our methods we are able to assess accelerated brain aging on both population and individual level. A spatio-temporal aging brain model derived from 988 T1-weighted MR brain scans from a large population imaging study (age range 45.9-91.7y, mean age 68.3y) is made publicly available at www.agingbrain.nl.Both normal aging and neurodegenerative disorders such as Alzheimer's disease (AD) cause morphological changes of the brain. It is generally difficult to distinguish these two causes of morphological change by visual inspection of magnetic resonance (MR) images. To facilitate making this distinction and thus aid the diagnosis of neurodegenerative disorders, we propose a method for developing a spatio-temporal model of morphological differences in the brain due to normal aging. The method utilizes groupwise image registration to characterize morphological variation across brain scans of people with different ages. To extract the deformations that are due to normal aging we use partial least squares regression, which yields modes of deformations highly correlated with age, and corresponding scores for each input subject. Subsequently, we determine a distribution of morphologies as a function of age by fitting smooth percentile curves to these scores. This distribution is used as a reference to which a person's morphology score can be compared. We validate our method on two different datasets, using images from both cognitively normal subjects and patients with Alzheimer disease (AD). Results show that the proposed framework extracts the expected atrophy patterns. Moreover, the morphology scores of cognitively normal subjects are on average lower than the scores of AD subjects, indicating that morphology differences between AD subjects and healthy subjects can be partly explained by accelerated aging. With our methods we are able to assess accelerated brain aging on both population and individual level. A spatio-temporal aging brain model derived from 988 T1-weighted MR brain scans from a large population imaging study (age range 45.9-91.7y, mean age 68.3y) is made publicly available at www.agingbrain.nl.
Both normal aging and neurodegenerative disorders such as Alzheimer's disease (AD) cause morphological changes of the brain. It is generally difficult to distinguish these two causes of morphological change by visual inspection of magnetic resonance (MR) images. To facilitate making this distinction and thus aid the diagnosis of neurodegenerative disorders, we propose a method for developing a spatio-temporal model of morphological differences in the brain due to normal aging. The method utilizes groupwise image registration to characterize morphological variation across brain scans of people with different ages. To extract the deformations that are due to normal aging we use partial least squares regression, which yields modes of deformations highly correlated with age, and corresponding scores for each input subject. Subsequently, we determine a distribution of morphologies as a function of age by fitting smooth percentile curves to these scores. This distribution is used as a reference to which a person's morphology score can be compared. We validate our method on two different datasets, using images from both cognitively normal subjects and patients with Alzheimer disease (AD). Results show that the proposed framework extracts the expected atrophy patterns. Moreover, the morphology scores of cognitively normal subjects are on average lower than the scores of AD subjects, indicating that morphology differences between AD subjects and healthy subjects can be partly explained by accelerated aging. With our methods we are able to assess accelerated brain aging on both population and individual level. A spatio-temporal aging brain model derived from 988 T1-weighted MR brain scans from a large population imaging study (age range 45.9–91.7y, mean age 68.3y) is made publicly available at www.agingbrain.nl. •A model to assess morphological differences in the brain due to aging is developed.•The method can assess accelerated brain aging on population and individual level.•The model derived from 988 MR brain is made publicly available at www.agingbrain.nl.
Author Niessen, W.J.
Rueckert, D.
Bron, E.E.
Huizinga, W.
Klein, S.
Poot, D.H.J.
Ikram, M.A.
Vernooij, M.W.
Roshchupkin, G.V.
Author_xml – sequence: 1
  givenname: W.
  surname: Huizinga
  fullname: Huizinga, W.
  email: w.huizinga@erasmusmc.nl
  organization: Biomedical Imaging Group Rotterdam, Depts. of Radiology & Medical Informatics, Erasmus MC, Rotterdam, The Netherlands
– sequence: 2
  givenname: D.H.J.
  surname: Poot
  fullname: Poot, D.H.J.
  organization: Biomedical Imaging Group Rotterdam, Depts. of Radiology & Medical Informatics, Erasmus MC, Rotterdam, The Netherlands
– sequence: 3
  givenname: M.W.
  surname: Vernooij
  fullname: Vernooij, M.W.
  organization: Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
– sequence: 4
  givenname: G.V.
  surname: Roshchupkin
  fullname: Roshchupkin, G.V.
  organization: Biomedical Imaging Group Rotterdam, Depts. of Radiology & Medical Informatics, Erasmus MC, Rotterdam, The Netherlands
– sequence: 5
  givenname: E.E.
  surname: Bron
  fullname: Bron, E.E.
  organization: Biomedical Imaging Group Rotterdam, Depts. of Radiology & Medical Informatics, Erasmus MC, Rotterdam, The Netherlands
– sequence: 6
  givenname: M.A.
  surname: Ikram
  fullname: Ikram, M.A.
  organization: Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
– sequence: 7
  givenname: D.
  surname: Rueckert
  fullname: Rueckert, D.
  organization: Biomedical Image Analysis Group, Department of Computing, Imperial College London, United Kingdom
– sequence: 8
  givenname: W.J.
  surname: Niessen
  fullname: Niessen, W.J.
  organization: Biomedical Imaging Group Rotterdam, Depts. of Radiology & Medical Informatics, Erasmus MC, Rotterdam, The Netherlands
– sequence: 9
  givenname: S.
  surname: Klein
  fullname: Klein, S.
  organization: Biomedical Imaging Group Rotterdam, Depts. of Radiology & Medical Informatics, Erasmus MC, Rotterdam, The Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29203452$$D View this record in MEDLINE/PubMed
BookMark eNqVkU2PFCEQholZ437oXzCdePHSI0VDT3Mxrhu_kk286JnQUD0y0tBCt2b-vXRm1WRO4wkCbz2peuqaXIQYkJAK6AYotK_2m4BLim7UO9wwCtvyvKGcPiJXQKWopdiyi_UumroDkJfkOuc9pVQC756QSyYZbbhgV4TfVnnSs4v1jOMUk_ZVwgETBoPVGC36Kg7V_A0rvXNhV_VJu_CUPB60z_js4bwhX9-_-3L3sb7__OHT3e19bQSVc82RW97CoIUEIVBYO2iUorO8h6HtBqG3DW8H0bY9FZZyRo3AvrSLFo1FbG6IPHKXMOnDL-29mlIZOh0UULWaUHv1z4RaTaw_xUSpfXmsnVL8sWCe1eiyQe91wLhkBXLbUCaAQYm-OInu45JCmWwl8kYCsLaknj-kln5E-7eTPy5LoDsGTIo5F4v_0-zrk1Lj5nUrYS6-_TmAt0cAlnX8dJhUNm7doXUJzaxsdOdA3pxAjHfBGe2_4-E8xG9BZ85B
CitedBy_id crossref_primary_10_1109_TMI_2022_3161947
crossref_primary_10_1371_journal_pone_0242320
crossref_primary_10_1002_hbm_26165
crossref_primary_10_1007_s10654_020_00640_5
crossref_primary_10_1109_TMI_2019_2945219
crossref_primary_10_1038_s41598_021_95098_0
crossref_primary_10_1109_TVCG_2019_2915567
crossref_primary_10_1002_dad2_12559
crossref_primary_10_1038_s41380_019_0441_1
crossref_primary_10_1002_hbm_26558
crossref_primary_10_1016_j_media_2021_102257
crossref_primary_10_1038_s41380_022_01908_w
crossref_primary_10_1093_brain_awab165
crossref_primary_10_1038_s41380_020_00882_5
crossref_primary_10_1089_fpsam_2024_0046
crossref_primary_10_1016_j_media_2022_102723
crossref_primary_10_1007_s10916_019_1401_7
crossref_primary_10_1016_j_neuroimage_2022_119699
crossref_primary_10_1038_s41598_022_16531_6
crossref_primary_10_1016_j_neuroimage_2023_119898
crossref_primary_10_1109_JPROC_2019_2943836
crossref_primary_10_3389_fdata_2021_577164
crossref_primary_10_1016_j_bspc_2025_107514
crossref_primary_10_1038_s41598_018_31474_7
crossref_primary_10_1038_s41398_020_00986_0
crossref_primary_10_1109_JSTSP_2020_3001525
crossref_primary_10_3389_fneur_2020_584682
crossref_primary_10_1016_j_media_2021_102169
crossref_primary_10_3389_fnins_2022_897226
crossref_primary_10_1098_rstb_2019_0661
crossref_primary_10_3389_fneur_2020_01021
Cites_doi 10.1016/j.media.2014.01.001
10.1016/j.neuroimage.2014.04.018
10.1109/TIP.2009.2030955
10.1007/s11263-010-0367-1
10.1016/j.biopsych.2015.12.023
10.1016/j.neuroimage.2013.05.088
10.1212/WNL.0b013e3182553be6
10.1016/j.neuroimage.2011.09.062
10.1002/cem.1086
10.1016/j.neuroimage.2007.11.034
10.1002/sim.4780111005
10.1002/hbm.10123
10.1016/j.neuroimage.2010.07.034
10.1155/2009/616581
10.1016/S0169-7439(01)00155-1
10.1016/j.media.2010.10.003
10.1016/j.nic.2011.11.007
10.1002/jmri.21049
10.1002/cem.1180020306
10.1016/0169-7439(93)85002-X
10.3389/fninf.2012.00003
10.1016/j.neuroimage.2010.06.013
10.1016/j.media.2013.08.004
10.1016/j.media.2015.12.004
10.1109/TMI.2010.2046908
10.1093/biomet/87.4.954
10.1002/(SICI)1097-0258(20000515)19:9<1141::AID-SIM479>3.0.CO;2-F
10.1016/j.neuroimage.2011.01.050
10.1109/TMI.2009.2035616
10.1098/rstb.2001.0915
10.1007/s10654-015-0105-7
10.1002/hbm.22522
10.1016/j.media.2017.03.008
10.1109/42.796284
10.1016/j.neuroimage.2008.10.048
10.1109/TMI.2016.2623608
ContentType Journal Article
Copyright 2017 The Authors
Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Copyright Elsevier Limited Apr 1, 2018
Copyright_xml – notice: 2017 The Authors
– notice: Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited Apr 1, 2018
CorporateAuthor the Alzheimer's Disease Neuroimaging Initiative
Alzheimer's Disease Neuroimaging Initiative
CorporateAuthor_xml – name: the Alzheimer's Disease Neuroimaging Initiative
– name: Alzheimer's Disease Neuroimaging Initiative
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
ADTOC
UNPAY
DOI 10.1016/j.neuroimage.2017.10.040
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
ProQuest Health & Medical Collection (NC LIVE)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Biological Science Collection
ProQuest Central (New) (NC LIVE)
ProQuest Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Psychology Database
ProQuest Biological Science Database (NC LIVE)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest One Psychology
MEDLINE - Academic

PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 22
ExternalDocumentID 10.1016/j.neuroimage.2017.10.040
29203452
10_1016_j_neuroimage_2017_10_040
S1053811917308674
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACLOT
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
~HD
3V.
6I.
AACTN
AADPK
AAFTH
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
HMQ
LCYCR
RIG
SNS
ZA5
29N
53G
AAFWJ
AAQXK
AAYXX
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADVLN
ADXHL
AFPKN
AGHFR
AGQPQ
AIGII
AKRLJ
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
OK1
R2-
SEW
WUQ
XPP
ZMT
AGCQF
AGRNS
ALIPV
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
PUEGO
ADTOC
AFFHD
UNPAY
ID FETCH-LOGICAL-c509t-4e4d461fa59155e5ddfae958d4b1f68f5a7346f566b05d0420c5eb119edecdee3
IEDL.DBID .~1
ISSN 1053-8119
1095-9572
IngestDate Wed Oct 29 12:20:45 EDT 2025
Sun Sep 28 06:56:03 EDT 2025
Tue Oct 07 06:55:22 EDT 2025
Tue Aug 05 11:47:50 EDT 2025
Thu Apr 24 23:04:41 EDT 2025
Sat Oct 25 06:03:55 EDT 2025
Fri Feb 23 02:48:17 EST 2024
Tue Oct 14 19:31:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Aging
Percentile curves
Partial least squares regression
Brain morphology
Non-rigid groupwise registration
Spatio-temporal atlas
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-4e4d461fa59155e5ddfae958d4b1f68f5a7346f566b05d0420c5eb119edecdee3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1053811917308674
PMID 29203452
PQID 2014391126
PQPubID 2031077
PageCount 12
ParticipantIDs unpaywall_primary_10_1016_j_neuroimage_2017_10_040
proquest_miscellaneous_1973025121
proquest_journals_2014391126
pubmed_primary_29203452
crossref_primary_10_1016_j_neuroimage_2017_10_040
crossref_citationtrail_10_1016_j_neuroimage_2017_10_040
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2017_10_040
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2017_10_040
PublicationCentury 2000
PublicationDate 2018-04-01
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2018
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Ziegler, Dahnke, Winkler, Gaser (bib41) 2013; 82
de Jong (bib22) 1992; 18
Jack, Bernstein, Fox, Thompson, Alexander, Harvey, Borowski, Britson, Whitwell, Ward, Dale, Felmlee, Gunter, Hill, Killiany, Schuff, Fox-Bosetti, Lin, Studholme, DeCarli, Krueger, Ward, Metzger, Scott, Mallozzi, Blezek, Levy, Debbins, Fleisher, Albert, Green, Bartzokis, Glover, Mugler, Weiner (bib21) 2008; 27
Serag, Aljebar, Ball, Counsell, Boardman, Rutherford, Edwards, Hajnal, Rueckert (bib32) 2012; 59
Huizinga, Poot, Guyader, Klaassen, Coolen, van Kranenburg, van Geuns, Uitterdijk, Polfliet, Vandemeulebroucke, Leemans, Niessen, Klein (bib18) 2016; 29
Cole, Green (bib8) 1991; 11
Rueckert, Sonoda, Hayes, Hill, Leach, Hawkes (bib30) 1999; 18
Singh, Fletcher, Preston, King, Marronb, Weinerc, Joshi (bib33) 2014; 18
Tustison, Avants, Cook, Zheng, Egan, Yushkevich, Gee (bib35) 2010; 29
Yee (bib39) 2010; 32
Ziegler, Ridgway, Dahnke, Gaser (bib43) 2014; 97
Sokooti, Saygili, Glocker, Lelieveldt, Staring (bib34) 2016
Yeo, Johnson (bib40) 2000; 87
Dittrich, Raviv, kasprian, Donner, Brugger, Prayer, Langs (bib12) 2014; 18
de Onis, Onyango, Borghi, Siyam, Pinol (bib29) 2006
Schrijvers, Verhaaren, Koudstaal, Hofman, Ikram, Breteler (bib31) 2012; 78
Costafreda, Dinov, Tu, Shi, Liu, Kloszewska, Mecocci, Soininen, Tsolaki, Vellas, Wahlund, Spenger, Toga, Lovestone, Simmons (bib9) 2011; 56
Davis, Fletcher, Bullitt, Joshi (bib11) 2010; 90
Kybic (bib25) 2010; 19
Gousias, Rueckert, Heckemann, Dyet, Edwards, Hammers (bib15) 2008; 40
Metz, Klein, Schaap, van Walsum, Niessen (bib28) 2011; 15
Baloch, Davatzikos (bib3) 2009; 45
Carpenter, Bithell (bib7) 2000; 19
Vernooij, Smits (bib36) 2012; 22
Huizinga, Poot, Roschchupkin, Bron, Ikram, Vernooij, Rueckert, Niessen, Klein (bib19) 2016
Klein, Staring, Murphy, Viergever, Pluim (bib23) 2010; 29
Achterberg, van der Lijn, den Heijer, van der Lugt, Breteler, Niessen, de Bruijne (bib1) 2010
Balci, Golland, Shenton, Wells (bib2) 2007
Wold, Sjöström, Eriksson (bib38) 2001; 58
Hammers, Allom, Koepp, Free, Myers, Lemieux, Mitchell, Brooks, Duncan (bib16) 2003; 19
Wiklund, Nilsson, Eroksson, Sjöström, Wold, Faber (bib37) 2007; 21
Folgoc, Delingette, Criminisi, Ayache (bib14) 2016; 36
Brewer (bib5) 2009; 21
Ikram, van der Lugt, Niessen, Koudstaal, Krestin, Hofman, Bos, Vernooij (bib20) 2015; 30
Ziegler, Dhanke, Gaser (bib42) 2012; 6
Mazziotta, Toga, Evans, Fox, Lancaster, Zilles, Woods, Paus, Simpson, Pike, Holmes, Collins, Thompson, MacDonald, Iacoboni, Schormann, Amunts, Palomero-Gallagher, Geyer, Parsons, Narr, Kabani, Goualher, Boomsma, Cannon, Kawashima, Mazoyer (bib27) 2001; 356
Krishnan, Williams, McIntosh, Abdi (bib24) 2011; 56
Fishbaugh, Durrleman, Prastawa, Gerig (bib13) 2017; 39
Marquand, Rezek, Buitelaar, Beckmann (bib26) 2016; 80
Bron, Steketee, Houston, Oliver, Achterberg, Loog, van Swieten, Hammers, Niessen, Smits, Klein (bib6) 2014; 35
Cuingnet, Gerardin, Tessieras, Auzias, Leh’ericy, Habert, Chupin, Benali, Colliot (bib10) 2011; 56
Bhatia, Hajnal, Puri, Edwards, Rueckert (bib4) 2004
Höskuldsson (bib17) 1988; 2
Costafreda (10.1016/j.neuroimage.2017.10.040_bib9) 2011; 56
Kybic (10.1016/j.neuroimage.2017.10.040_bib25) 2010; 19
Singh (10.1016/j.neuroimage.2017.10.040_bib33) 2014; 18
Cole (10.1016/j.neuroimage.2017.10.040_bib8) 1991; 11
Metz (10.1016/j.neuroimage.2017.10.040_bib28) 2011; 15
Bhatia (10.1016/j.neuroimage.2017.10.040_bib4) 2004
Brewer (10.1016/j.neuroimage.2017.10.040_bib5) 2009; 21
Sokooti (10.1016/j.neuroimage.2017.10.040_bib34) 2016
Baloch (10.1016/j.neuroimage.2017.10.040_bib3) 2009; 45
Mazziotta (10.1016/j.neuroimage.2017.10.040_bib27) 2001; 356
Krishnan (10.1016/j.neuroimage.2017.10.040_bib24) 2011; 56
Bron (10.1016/j.neuroimage.2017.10.040_bib6) 2014; 35
Gousias (10.1016/j.neuroimage.2017.10.040_bib15) 2008; 40
de Jong (10.1016/j.neuroimage.2017.10.040_bib22) 1992; 18
Serag (10.1016/j.neuroimage.2017.10.040_bib32) 2012; 59
Jack (10.1016/j.neuroimage.2017.10.040_bib21) 2008; 27
Vernooij (10.1016/j.neuroimage.2017.10.040_bib36) 2012; 22
Fishbaugh (10.1016/j.neuroimage.2017.10.040_bib13) 2017; 39
Rueckert (10.1016/j.neuroimage.2017.10.040_bib30) 1999; 18
Achterberg (10.1016/j.neuroimage.2017.10.040_bib1) 2010
Hammers (10.1016/j.neuroimage.2017.10.040_bib16) 2003; 19
Höskuldsson (10.1016/j.neuroimage.2017.10.040_bib17) 1988; 2
Cuingnet (10.1016/j.neuroimage.2017.10.040_bib10) 2011; 56
Carpenter (10.1016/j.neuroimage.2017.10.040_bib7) 2000; 19
Wold (10.1016/j.neuroimage.2017.10.040_bib38) 2001; 58
Wiklund (10.1016/j.neuroimage.2017.10.040_bib37) 2007; 21
Marquand (10.1016/j.neuroimage.2017.10.040_bib26) 2016; 80
Folgoc (10.1016/j.neuroimage.2017.10.040_bib14) 2016; 36
Klein (10.1016/j.neuroimage.2017.10.040_bib23) 2010; 29
Ziegler (10.1016/j.neuroimage.2017.10.040_bib41) 2013; 82
Yee (10.1016/j.neuroimage.2017.10.040_bib39) 2010; 32
Ikram (10.1016/j.neuroimage.2017.10.040_bib20) 2015; 30
de Onis (10.1016/j.neuroimage.2017.10.040_bib29) 2006
Dittrich (10.1016/j.neuroimage.2017.10.040_bib12) 2014; 18
Huizinga (10.1016/j.neuroimage.2017.10.040_bib19) 2016
Yeo (10.1016/j.neuroimage.2017.10.040_bib40) 2000; 87
Ziegler (10.1016/j.neuroimage.2017.10.040_bib42) 2012; 6
Balci (10.1016/j.neuroimage.2017.10.040_bib2) 2007
Schrijvers (10.1016/j.neuroimage.2017.10.040_bib31) 2012; 78
Tustison (10.1016/j.neuroimage.2017.10.040_bib35) 2010; 29
Ziegler (10.1016/j.neuroimage.2017.10.040_bib43) 2014; 97
Davis (10.1016/j.neuroimage.2017.10.040_bib11) 2010; 90
Huizinga (10.1016/j.neuroimage.2017.10.040_bib18) 2016; 29
References_xml – volume: 90
  start-page: 255
  year: 2010
  end-page: 266
  ident: bib11
  article-title: Population shape regression from random design data
  publication-title: Int. J. Comput. Vis.
– volume: 36
  start-page: 607
  year: 2016
  end-page: 617
  ident: bib14
  article-title: Quantifying registration uncertainty with sparse Bayesian modelling
  publication-title: IEEE Trans. Med. Imaging
– volume: 15
  start-page: 238
  year: 2011
  end-page: 249
  ident: bib28
  article-title: Nonrigid registration of dynamic medical imaging data using nD+t B-splines and a groupwise optimization approach
  publication-title: Med. Image Anal.
– volume: 19
  start-page: 1141
  year: 2000
  end-page: 1164
  ident: bib7
  article-title: Bootstrap confidence intervals: when, which, what?
  publication-title: Statistics Med.
– volume: 78
  year: 2012
  ident: bib31
  article-title: Is dementia incidence declining?: Trends in dementia incidence since 1990 in the Rotterdam Study
  publication-title: Neurology
– volume: 19
  start-page: 224
  year: 2003
  end-page: 247
  ident: bib16
  article-title: Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe
  publication-title: Hum. Brain Mapp.
– volume: 59
  start-page: 2255
  year: 2012
  end-page: 2265
  ident: bib32
  article-title: Construction of a consistent high-definition spatio-temporal atlas of the developing brain using adaptive kernel regression
  publication-title: NeuroImage
– volume: 29
  start-page: 1310
  year: 2010
  end-page: 1320
  ident: bib35
  article-title: N4ITK: improved N3 bias correction
  publication-title: IEEE Trans. Med. Imaging
– start-page: 908
  year: 2004
  end-page: 911
  ident: bib4
  article-title: Consistent groupwise non-rigid registration for atlas construction
  publication-title: Proc. IEEE Int Symp on Biomed Imaging: Nano to Macro
– start-page: 107
  year: 2016
  end-page: 115
  ident: bib34
  article-title: Accuracy estimation for medical image registration using regression forests
  publication-title: MICCAI 2016: Medical Image Computing and Computer-assisted Intervention
– volume: 29
  start-page: 65
  year: 2016
  end-page: 78
  ident: bib18
  article-title: PCA-based groupwise image registration for quantitative MRI
  publication-title: Med. Image Anal.
– volume: 39
  start-page: 1
  year: 2017
  end-page: 17
  ident: bib13
  article-title: Geodesic shape regression with multiple geometries and sparse parameters
  publication-title: Med. Image Anal.
– volume: 19
  start-page: 64
  year: 2010
  end-page: 73
  ident: bib25
  article-title: Bootstrap resampling for image registration uncertainty estimation without ground truth
  publication-title: IEEE Trans. Image Process.
– volume: 82
  start-page: 284
  year: 2013
  end-page: 294
  ident: bib41
  article-title: Partial least squares correlation of multivariate cognitive abilities and local brain structure in children and adolescents
  publication-title: NeuroImage
– volume: 18
  start-page: 616
  year: 2014
  end-page: 633
  ident: bib33
  article-title: Quantifying anatomical shape variations in neurological disorders
  publication-title: Med. Image Anal.
– year: 2006
  ident: bib29
  article-title: WHO Child Growth Standards: Length/height-for-age, Weight-for-age, Weight-for-length, Weight-for height and Body Mass Index-for-age: Methods and Development. Technical Report
– volume: 18
  start-page: 251
  year: 1992
  end-page: 263
  ident: bib22
  article-title: SIMPLS: an alternative approach to partial least squares regression
  publication-title: Chemom. Intelligent Laboratory Syst.
– volume: 11
  start-page: 1305
  year: 1991
  end-page: 1319
  ident: bib8
  article-title: Smoothing reference centile curves: the LMS method and penalized likelihood
  publication-title: Stat. Med.
– volume: 35
  start-page: 4916
  year: 2014
  end-page: 4931
  ident: bib6
  article-title: Diagnostic classification of arterial spin labeling and structural MRI in presenile early stage dementia
  publication-title: Hum. Brain Mapp.
– volume: 18
  start-page: 712
  year: 1999
  end-page: 721
  ident: bib30
  article-title: Nonrigid registration using free-form deformations: application to breast MR images
  publication-title: IEEE Trans. Med. Imaging
– volume: 56
  year: 2011
  ident: bib10
  article-title: Automatic classification of patients with Alzheimers disease from structural MRI: a comparison of ten methods using the ADNI database
  publication-title: NeuroImage
– volume: 97
  start-page: 333
  year: 2014
  end-page: 348
  ident: bib43
  article-title: Individualized Gaussian process-based prediction and detection of local and global gray matter abnormalities in elderly subjects
  publication-title: NeuroImage
– start-page: 23
  year: 2007
  end-page: 30
  ident: bib2
  article-title: Free-form B-spline deformation model for groupwise registration
  publication-title: Proceedings of Medical Image Computing and Compututer-assisted Intervention
– volume: 6
  start-page: 1
  year: 2012
  end-page: 16
  ident: bib42
  article-title: Models of the aging brain structure and individual decline
  publication-title: Front. Neuroinformatics
– volume: 56
  start-page: 212
  year: 2011
  end-page: 219
  ident: bib9
  article-title: Automated hippocampal shape analysis predicts the onset of dementia in mild cognitive impairment
  publication-title: Neuroimage
– volume: 21
  start-page: 427
  year: 2007
  end-page: 439
  ident: bib37
  article-title: A randomization test for PLS component selection
  publication-title: J. Chemom.
– volume: 32
  start-page: 1
  year: 2010
  end-page: 34
  ident: bib39
  article-title: The VGAM package for categorical data analysis
  publication-title: J. Stat. Softw.
– volume: 87
  start-page: 954
  year: 2000
  end-page: 959
  ident: bib40
  article-title: A new family of power transformations to improve normality or symmetry
  publication-title: Biometrika
– volume: 2
  start-page: 211
  year: 1988
  end-page: 228
  ident: bib17
  article-title: PLS regression methods
  publication-title: J. Chemom.
– volume: 22
  start-page: 33
  year: 2012
  end-page: 55
  ident: bib36
  article-title: Structural neuroimaging in aging and Alzheimer's disease
  publication-title: Neuroimaging Clin. N. Am.
– volume: 40
  start-page: 672
  year: 2008
  end-page: 684
  ident: bib15
  article-title: Automatic segmentation of brain MRIs of 2-year-olds into 83 regions of interest
  publication-title: Neuroimage
– volume: 21
  start-page: 21
  year: 2009
  end-page: 28
  ident: bib5
  article-title: Fully-automated volumetric MRI with normative ranges: translation to clinical practice
  publication-title: Behav. Neurol.
– year: 2016
  ident: bib19
  article-title: Modeling the brain morphology distribution in the general aging population
  publication-title: Proc. SPIE 9788, Medical Imaging 2016: Biomedical Applications in Molecular, Structural, and Functional Imaging
– volume: 56
  start-page: 455
  year: 2011
  end-page: 475
  ident: bib24
  article-title: Partial least squares (PLS) methods for neuroimaging: a tutorial and review
  publication-title: NeuroImage
– volume: 18
  start-page: 9
  year: 2014
  end-page: 21
  ident: bib12
  article-title: A spatio-temporal latent atlas for semi-supervised learning of fetal brain segmentations and morphological age estimation
  publication-title: Med. Image Anal.
– volume: 27
  start-page: 685
  year: 2008
  end-page: 691
  ident: bib21
  article-title: The Alzheimerś disease neuroimaging initiative (ADNI): MRI methods
  publication-title: J. Magnetic Reson. Imaging
– volume: 80
  start-page: 552
  year: 2016
  end-page: 561
  ident: bib26
  article-title: Understanding heterogeneity in clinical cohort using normative models: beyond case-control studies
  publication-title: Biol. Psychiatry
– volume: 30
  start-page: 1299
  year: 2015
  end-page: 1315
  ident: bib20
  article-title: The Rotterdam Scan Study: design update 2016 and main findings
  publication-title: Eur. J. Epidemiol.
– volume: 45
  start-page: S73
  year: 2009
  end-page: S85
  ident: bib3
  article-title: Morphological appearance manifolds in computational anatomy: groupwise registration and morphological analysis
  publication-title: NeuroImage
– volume: 29
  start-page: 196
  year: 2010
  end-page: 205
  ident: bib23
  article-title: elastix: a toolbox for intensity based medical image registration
  publication-title: IEEE Trans. Med. Imaging
– volume: 58
  start-page: 109
  year: 2001
  end-page: 130
  ident: bib38
  article-title: PLS-regression: a basic tool of chemometrics
  publication-title: Chemom. Intelligent Laboratory Syst.
– volume: 356
  start-page: 1293
  year: 2001
  end-page: 1322
  ident: bib27
  article-title: A probabilistic atlas and reference system for the human brain: international consortium for brain mapping (ICBM)
  publication-title: Philosofical Trans. R. Soc. Lond.
– start-page: 23
  year: 2010
  end-page: 30
  ident: bib1
  article-title: Prediction of dementia by hippocampal shape analysis
  publication-title: MICCAI 2010: Medical Image Computing and Computer-assisted Intervention, Machine Learning in Medical Imaging
– volume: 18
  start-page: 616
  year: 2014
  ident: 10.1016/j.neuroimage.2017.10.040_bib33
  article-title: Quantifying anatomical shape variations in neurological disorders
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2014.01.001
– volume: 97
  start-page: 333
  year: 2014
  ident: 10.1016/j.neuroimage.2017.10.040_bib43
  article-title: Individualized Gaussian process-based prediction and detection of local and global gray matter abnormalities in elderly subjects
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.04.018
– volume: 19
  start-page: 64
  year: 2010
  ident: 10.1016/j.neuroimage.2017.10.040_bib25
  article-title: Bootstrap resampling for image registration uncertainty estimation without ground truth
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2009.2030955
– volume: 90
  start-page: 255
  year: 2010
  ident: 10.1016/j.neuroimage.2017.10.040_bib11
  article-title: Population shape regression from random design data
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-010-0367-1
– start-page: 908
  year: 2004
  ident: 10.1016/j.neuroimage.2017.10.040_bib4
  article-title: Consistent groupwise non-rigid registration for atlas construction
– volume: 80
  start-page: 552
  year: 2016
  ident: 10.1016/j.neuroimage.2017.10.040_bib26
  article-title: Understanding heterogeneity in clinical cohort using normative models: beyond case-control studies
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2015.12.023
– start-page: 23
  year: 2007
  ident: 10.1016/j.neuroimage.2017.10.040_bib2
  article-title: Free-form B-spline deformation model for groupwise registration
– volume: 82
  start-page: 284
  year: 2013
  ident: 10.1016/j.neuroimage.2017.10.040_bib41
  article-title: Partial least squares correlation of multivariate cognitive abilities and local brain structure in children and adolescents
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.05.088
– volume: 78
  year: 2012
  ident: 10.1016/j.neuroimage.2017.10.040_bib31
  article-title: Is dementia incidence declining?: Trends in dementia incidence since 1990 in the Rotterdam Study
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3182553be6
– volume: 59
  start-page: 2255
  year: 2012
  ident: 10.1016/j.neuroimage.2017.10.040_bib32
  article-title: Construction of a consistent high-definition spatio-temporal atlas of the developing brain using adaptive kernel regression
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.09.062
– volume: 21
  start-page: 427
  year: 2007
  ident: 10.1016/j.neuroimage.2017.10.040_bib37
  article-title: A randomization test for PLS component selection
  publication-title: J. Chemom.
  doi: 10.1002/cem.1086
– volume: 40
  start-page: 672
  year: 2008
  ident: 10.1016/j.neuroimage.2017.10.040_bib15
  article-title: Automatic segmentation of brain MRIs of 2-year-olds into 83 regions of interest
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.11.034
– volume: 11
  start-page: 1305
  year: 1991
  ident: 10.1016/j.neuroimage.2017.10.040_bib8
  article-title: Smoothing reference centile curves: the LMS method and penalized likelihood
  publication-title: Stat. Med.
  doi: 10.1002/sim.4780111005
– volume: 19
  start-page: 224
  year: 2003
  ident: 10.1016/j.neuroimage.2017.10.040_bib16
  article-title: Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.10123
– volume: 56
  start-page: 455
  year: 2011
  ident: 10.1016/j.neuroimage.2017.10.040_bib24
  article-title: Partial least squares (PLS) methods for neuroimaging: a tutorial and review
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.07.034
– start-page: 23
  year: 2010
  ident: 10.1016/j.neuroimage.2017.10.040_bib1
  article-title: Prediction of dementia by hippocampal shape analysis
– volume: 21
  start-page: 21
  year: 2009
  ident: 10.1016/j.neuroimage.2017.10.040_bib5
  article-title: Fully-automated volumetric MRI with normative ranges: translation to clinical practice
  publication-title: Behav. Neurol.
  doi: 10.1155/2009/616581
– volume: 58
  start-page: 109
  year: 2001
  ident: 10.1016/j.neuroimage.2017.10.040_bib38
  article-title: PLS-regression: a basic tool of chemometrics
  publication-title: Chemom. Intelligent Laboratory Syst.
  doi: 10.1016/S0169-7439(01)00155-1
– volume: 15
  start-page: 238
  year: 2011
  ident: 10.1016/j.neuroimage.2017.10.040_bib28
  article-title: Nonrigid registration of dynamic medical imaging data using nD+t B-splines and a groupwise optimization approach
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2010.10.003
– volume: 22
  start-page: 33
  year: 2012
  ident: 10.1016/j.neuroimage.2017.10.040_bib36
  article-title: Structural neuroimaging in aging and Alzheimer's disease
  publication-title: Neuroimaging Clin. N. Am.
  doi: 10.1016/j.nic.2011.11.007
– volume: 27
  start-page: 685
  year: 2008
  ident: 10.1016/j.neuroimage.2017.10.040_bib21
  article-title: The Alzheimerś disease neuroimaging initiative (ADNI): MRI methods
  publication-title: J. Magnetic Reson. Imaging
  doi: 10.1002/jmri.21049
– volume: 2
  start-page: 211
  year: 1988
  ident: 10.1016/j.neuroimage.2017.10.040_bib17
  article-title: PLS regression methods
  publication-title: J. Chemom.
  doi: 10.1002/cem.1180020306
– volume: 18
  start-page: 251
  year: 1992
  ident: 10.1016/j.neuroimage.2017.10.040_bib22
  article-title: SIMPLS: an alternative approach to partial least squares regression
  publication-title: Chemom. Intelligent Laboratory Syst.
  doi: 10.1016/0169-7439(93)85002-X
– volume: 6
  start-page: 1
  year: 2012
  ident: 10.1016/j.neuroimage.2017.10.040_bib42
  article-title: Models of the aging brain structure and individual decline
  publication-title: Front. Neuroinformatics
  doi: 10.3389/fninf.2012.00003
– volume: 56
  year: 2011
  ident: 10.1016/j.neuroimage.2017.10.040_bib10
  article-title: Automatic classification of patients with Alzheimers disease from structural MRI: a comparison of ten methods using the ADNI database
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.06.013
– volume: 32
  start-page: 1
  year: 2010
  ident: 10.1016/j.neuroimage.2017.10.040_bib39
  article-title: The VGAM package for categorical data analysis
  publication-title: J. Stat. Softw.
– volume: 18
  start-page: 9
  year: 2014
  ident: 10.1016/j.neuroimage.2017.10.040_bib12
  article-title: A spatio-temporal latent atlas for semi-supervised learning of fetal brain segmentations and morphological age estimation
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2013.08.004
– volume: 29
  start-page: 65
  year: 2016
  ident: 10.1016/j.neuroimage.2017.10.040_bib18
  article-title: PCA-based groupwise image registration for quantitative MRI
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2015.12.004
– volume: 29
  start-page: 1310
  year: 2010
  ident: 10.1016/j.neuroimage.2017.10.040_bib35
  article-title: N4ITK: improved N3 bias correction
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2010.2046908
– volume: 87
  start-page: 954
  year: 2000
  ident: 10.1016/j.neuroimage.2017.10.040_bib40
  article-title: A new family of power transformations to improve normality or symmetry
  publication-title: Biometrika
  doi: 10.1093/biomet/87.4.954
– volume: 19
  start-page: 1141
  year: 2000
  ident: 10.1016/j.neuroimage.2017.10.040_bib7
  article-title: Bootstrap confidence intervals: when, which, what?
  publication-title: Statistics Med.
  doi: 10.1002/(SICI)1097-0258(20000515)19:9<1141::AID-SIM479>3.0.CO;2-F
– volume: 56
  start-page: 212
  year: 2011
  ident: 10.1016/j.neuroimage.2017.10.040_bib9
  article-title: Automated hippocampal shape analysis predicts the onset of dementia in mild cognitive impairment
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.01.050
– volume: 29
  start-page: 196
  year: 2010
  ident: 10.1016/j.neuroimage.2017.10.040_bib23
  article-title: elastix: a toolbox for intensity based medical image registration
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2009.2035616
– volume: 356
  start-page: 1293
  year: 2001
  ident: 10.1016/j.neuroimage.2017.10.040_bib27
  article-title: A probabilistic atlas and reference system for the human brain: international consortium for brain mapping (ICBM)
  publication-title: Philosofical Trans. R. Soc. Lond.
  doi: 10.1098/rstb.2001.0915
– year: 2006
  ident: 10.1016/j.neuroimage.2017.10.040_bib29
– volume: 30
  start-page: 1299
  year: 2015
  ident: 10.1016/j.neuroimage.2017.10.040_bib20
  article-title: The Rotterdam Scan Study: design update 2016 and main findings
  publication-title: Eur. J. Epidemiol.
  doi: 10.1007/s10654-015-0105-7
– volume: 35
  start-page: 4916
  year: 2014
  ident: 10.1016/j.neuroimage.2017.10.040_bib6
  article-title: Diagnostic classification of arterial spin labeling and structural MRI in presenile early stage dementia
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22522
– volume: 39
  start-page: 1
  year: 2017
  ident: 10.1016/j.neuroimage.2017.10.040_bib13
  article-title: Geodesic shape regression with multiple geometries and sparse parameters
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.03.008
– start-page: 107
  year: 2016
  ident: 10.1016/j.neuroimage.2017.10.040_bib34
  article-title: Accuracy estimation for medical image registration using regression forests
– year: 2016
  ident: 10.1016/j.neuroimage.2017.10.040_bib19
  article-title: Modeling the brain morphology distribution in the general aging population
– volume: 18
  start-page: 712
  year: 1999
  ident: 10.1016/j.neuroimage.2017.10.040_bib30
  article-title: Nonrigid registration using free-form deformations: application to breast MR images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.796284
– volume: 45
  start-page: S73
  year: 2009
  ident: 10.1016/j.neuroimage.2017.10.040_bib3
  article-title: Morphological appearance manifolds in computational anatomy: groupwise registration and morphological analysis
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.10.048
– volume: 36
  start-page: 607
  year: 2016
  ident: 10.1016/j.neuroimage.2017.10.040_bib14
  article-title: Quantifying registration uncertainty with sparse Bayesian modelling
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2623608
SSID ssj0009148
Score 2.51178
Snippet Both normal aging and neurodegenerative disorders such as Alzheimer's disease (AD) cause morphological changes of the brain. It is generally difficult to...
SourceID unpaywall
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 11
SubjectTerms Age
Aging
Alzheimer's disease
Atrophy
Brain
Brain morphology
Cognitive ability
Deformation
Magnetic resonance imaging
Medical imaging
Methods
Morphology
Neurodegenerative diseases
Neuroimaging
Non-rigid groupwise registration
Partial least squares regression
Percentile curves
Population
Population studies
Registration
Spatio-temporal atlas
SummonAdditionalLinks – databaseName: ProQuest Central (New) (NC LIVE)
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fi9QwEB7OPdDzQfzt6ikRfI1smkmbIiKn3HEIt4h4cG8hzQ9Q1u56u4v435tp066gyD6WMNBOZyZfm5nvA3ilQ6yjxsi9nHmOpRNchyDopFDqwqFyDQ0KX8zL80v8eKWuDmA-zMJQW-VQE7tC7ZeO_pGnj3RBQ6KiKN-tfnBSjaLT1UFCw2ZpBf-2oxi7AYcFMWNN4PD96fzT5x0Nr8B-OE5JroWoc29P3_HVMUh-_Z7ymFq-qtfU9UU_Rf69Yf0NSG_DrW27sr9-2sXij03q7C7cyeiSnfThcA8OQnsfbl7k8_MHgCds3bVQ80xJtWCjzgjrRHHYMrKECVknXsQaEpB4CJdnp18-nPOsm8Bd2v43HAN6LEW0isjfg_I-2lAr7bERsdRR2UpiGROQa2bKp6ydOZVKtqiDD86HIB_BpF224QmwKiaPRXQlVg4T1LHShpmrpbNYS41iCtXgHOMyqThpWyzM0D32zezcasittJLcOgUxWq56Yo09bOrB_2YYHE2lzqTqv4ftm9E2g4seNOxpfTy8bpOTfG12ITmFl-NySk86c7FtWG7XRtSphBKGTK563IfJ-LgkFCZRFVMoxrjZ2xdP_39Hz-AoXei-x-gYJpvrbXie4NOmeZFz4jeJ2hi6
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB4tXQnYA8-FLSzISHBMW9d2HuKAKmC1QtoVCCotp8jxQwS6abVtQPDrmUmc8DxUiFsSZw6eGc98iT_PADxOnc98Kn1kxcRGMjY8Sp3jtFMo0qmRyhR0UPjkND6ey1dn6mwH3nRnYYhWGWJ_G9ObaB2ejIM2x_p8vCrL8VsEB5hx6JNDIDRP5LPPpX4iXpQf6uIS7MYK4fkAduenr2fvm11PJSJ6vbmmHoUq6dg9LeerqSFZnuNKJtJXMiLeF_0W-XvK-hOS7sGVulrpr1_0YvFTmjq6DhfdBFt2yqdRvSlG5ttvtR__qwZuwLUAatmslboJO666BZdPwrb9bZAztm6Y21GohLVgfXsT1vTiYUvPEIqypmcSK6hvxT7Mj16-e34chXYNkUHUsYmkk1bG3GtFNeedstZrl6nUyoL7OPVKJ0LGHvFjMVEWg8XEKMwUPHPWGeucuAODalm5A2CJz7j00sQyMRIRlhbaTUwmjJaZSCUfQtJZJDehljm11FjkHWntY_7DljnZkkbQlkPgveSqreexhUzWGT3vzqtihM0x6Wwh-7SX_cWqW0ofdj6Wh9iypnE6Ls2n8RAe9cMYFWirR1duWa9znqE_EHRFVd1tfbOfLvUnE1JNhzDtnXVrXdz7F6H7cBXv0pbwdAiDzUXtHiCW2xQPw-r8DhW1R7I
  priority: 102
  providerName: Unpaywall
Title A spatio-temporal reference model of the aging brain
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811917308674
https://dx.doi.org/10.1016/j.neuroimage.2017.10.040
https://www.ncbi.nlm.nih.gov/pubmed/29203452
https://www.proquest.com/docview/2014391126
https://www.proquest.com/docview/1973025121
https://www.sciencedirect.com/science/article/am/pii/S1053811917308674?via%3Dihub
UnpaywallVersion publishedVersion
Volume 169
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20191231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: ACRLP
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20191231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AIKHN
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AKRWK
  dateStart: 19920801
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20250905
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: 7X7
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1095-9572
  dateEnd: 20250905
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: BENPR
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZWi8TjgHhTWFZG4pptXY_jRJxKtavy2KpaqFROkeOHVFTSirZCXPjtzCROFgSHSlxiJc5I8RfPeBJ_M8PYq8yHPGQQEicHLoHUiiTzXtBOocyGFpQtKVD4cppO5vBuoRZHbNzGwhCtMtr-xqbX1jpe6Uc0-5vlsv8RPQNcbuh7Q6JfriknKICmKgZnP69pHrmAJhxOyYTujmyehuNV54xcfkXNJZKXPiOeF_0G-fcS9bcLeofd2lcb8-O7Wa1-W5Yu7rG70Z_ko-aR77MjXz1gNy_jjvlDBiO-rUnTSUxCteJdZRFel8Hh68DRC-R1uSJeUsmIR2x-cf5pPElipYTE4oK_S8CDg1QEoyjdu1fOBeNzlTkoRUizoIyWkAZ03cqBcqinA6vQSIvcO2-d9_IxO67WlX_KuA6IWACbgraIpjbS-IHNpTWQywxEj-kWnMLGNOJUzWJVtHyxL8U1rAXBSj0Ia4-JTnLTpNI4QCZv8S_aUFE0bgXa-wNkX3eyf0ypA6VP2tddRLXeUj9FKoth2mMvu25USNplMZVf77eFyHE-kteIUD1ppkk3XCoNJkENe2zYzZuDsXj2X-N5zm7jWdaQjk7Y8e7b3r9Af2pXntYKg0e90Kfsxmh89WFG7dv3kym2b86nsyts59PZ6PMvQf4lAg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NTWLjAfGbwgAjwWNQHZ_TRGhCAzZ1bK0Q2qS9Gcc_JKaSFtpq2j_H38Y5cVIkEOrLnq2Lki_n82f77j6AV7nzhc_RJ1b0bYKZ4UnuHA83hSJPDUpThkLh0TgbnuGnc3m-Ab_aWpiQVtnGxDpQ26kJZ-S0SeehSJSn2bvZjySoRoXb1VZCQ0dpBbtXtxiLhR3H7uqStnDzvaOP9L9fp-nhwemHYRJVBhJDi-UiQYcWM-61DK3SnbTWa1fI3GLJfZZ7qQcCM0-0p-xLSz7eN5ICHC-cdcY6J-i5N2ALBRa0-dt6fzD-_GXV9pdjU4wnRZKTTcwlajLM6o6V375T3AgpZoM3IcssHML8e4H8mwDfgu1lNdNXl3oy-WNRPLwDtyObZfuN-92FDVfdg5ujeF9_H3CfzeuU7SS2wJqwTteE1SI8bOoZcVBWiyWxMghWPICza0HwIWxW08o9BjbwhJhHk-HAIFErLbTrm0IYjYXIkfdg0IKjTGxiHrQ0JqrNVrtQK1hVgDWMEKw94J3lrGnksYZN0eKv2kJVCq2KVps1bN92tpHMNCRlTevd9nerGFTmajUFevCyG6ZwEO54dOWmy7niBYXswFkJqkeNm3SfG4TJBMq0B2nnN2tj8eT_b_QCtoenoxN1cjQ-fgo7NJA3-U27sLn4uXTPiLotyudxfjD4et1T8jcuAlcS
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1daxNBFL3UCrV9ED9rtOoI-riS2ZnZnUVEijW01hYfLORtnJ0PsKSb2CSU_jV_nffuVwRF8tLXLDckZ-_cObtz7j0Ar3WIRdQyJl4MfSIzxxMdAqeTQqFTJ5UrqVH45DQ7PJOfx2q8Ab-6XhiSVXY1sS7UfuroHTk-pHNqEqWGl9jKIr4ejD7MfibkIEUnrZ2dRpMix-H6Ch_f5u-PDvBev0nT0advHw-T1mEgcbhRLhIZpJcZj1bRmPSgvI82FEp7WfKY6ahsLmQWkfKUQ-Uxv4dOYXHjRfDB-RAEfu8tuJ0LUZCcMB_nq4G_XDZteEokGiNaFVGjLatnVf64wIpB4rL8LenL6PXLv7fGv6nvDtxZVjN7fWUnkz-2w9E9uNvyWLbfJN592AjVA9g6aU_qH4LcZ_NarJ20w68mrHc0YbX9DptGhuyT1TZJrCSrikdwdiP4PYbNalqFJ8DyiIhF6TKZO4mkygobhq4QzspCaMkHkHfgGNeOLycXjYnpdGrnZgWrIVjpCsI6AN5HzpoRHmvEFB3-pmtRxaJqcJ9ZI_ZdH9vSmIaerBm9191u05aTuVkl_wBe9ZexENDpjq3CdDk3vMBiTWwVodpt0qT_u2RJJqRKB5D2ebM2Fk___4tewhYuRPPl6PT4GWzj57oRNu3B5uJyGZ4jZ1uUL-rFweD7Ta_G38vZVKw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB4tXQnYA8-FLSzISHBMW9d2HuKAKmC1QtoVCCotp8jxQwS6abVtQPDrmUmc8DxUiFsSZw6eGc98iT_PADxOnc98Kn1kxcRGMjY8Sp3jtFMo0qmRyhR0UPjkND6ey1dn6mwH3nRnYYhWGWJ_G9ObaB2ejIM2x_p8vCrL8VsEB5hx6JNDIDRP5LPPpX4iXpQf6uIS7MYK4fkAduenr2fvm11PJSJ6vbmmHoUq6dg9LeerqSFZnuNKJtJXMiLeF_0W-XvK-hOS7sGVulrpr1_0YvFTmjq6DhfdBFt2yqdRvSlG5ttvtR__qwZuwLUAatmslboJO666BZdPwrb9bZAztm6Y21GohLVgfXsT1vTiYUvPEIqypmcSK6hvxT7Mj16-e34chXYNkUHUsYmkk1bG3GtFNeedstZrl6nUyoL7OPVKJ0LGHvFjMVEWg8XEKMwUPHPWGeucuAODalm5A2CJz7j00sQyMRIRlhbaTUwmjJaZSCUfQtJZJDehljm11FjkHWntY_7DljnZkkbQlkPgveSqreexhUzWGT3vzqtihM0x6Wwh-7SX_cWqW0ofdj6Wh9iypnE6Ls2n8RAe9cMYFWirR1duWa9znqE_EHRFVd1tfbOfLvUnE1JNhzDtnXVrXdz7F6H7cBXv0pbwdAiDzUXtHiCW2xQPw-r8DhW1R7I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+spatio-temporal+reference+model+of+the+aging+brain&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Huizinga%2C+W.&rft.au=Poot%2C+D.H.J.&rft.au=Vernooij%2C+M.W.&rft.au=Roshchupkin%2C+G.V.&rft.date=2018-04-01&rft.issn=1053-8119&rft.volume=169&rft.spage=11&rft.epage=22&rft_id=info:doi/10.1016%2Fj.neuroimage.2017.10.040&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neuroimage_2017_10_040
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon