Multiplicative fitness, rapid haplotype discovery, and fitness decay explain evolution of human MHC

The major histocompatibility complex (MHC) is a central component of the vertebrate immune system and hence evolves in the regime of a host–pathogen evolutionary race. The MHC is associated with quantitative traits which directly affect fitness and are subject to selection pressure. The evolution of...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 116; no. 28; pp. 14098 - 14104
Main Authors Lobkovsky, Alexander E., Levi, Lee, Wolf, Yuri I., Maiers, Martin, Gragert, Loren, Alter, Idan, Louzoun, Yoram, Koonin, Eugene V.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 09.07.2019
SeriesPNAS Plus
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.1714436116

Cover

Abstract The major histocompatibility complex (MHC) is a central component of the vertebrate immune system and hence evolves in the regime of a host–pathogen evolutionary race. The MHC is associated with quantitative traits which directly affect fitness and are subject to selection pressure. The evolution of haplotypes at the MHC HLA (HLA) locus is generally thought to be governed by selection for increased diversity that is manifested in overdominance and/or negative frequency-dependent selection (FDS). However, recently, a model combining purifying selection on haplotypes and balancing selection on alleles has been proposed. We compare the predictions of several population dynamics models of haplotype frequency evolution to the distributions derived from 6.59-million-donor HLA typings from the National Marrow Donor Program registry. We show that models that combine a multiplicative fitness function, extremely high haplotype discovery rates, and exponential fitness decay over time produce the best fit to the data for most of the analyzed populations. In contrast, overdominance is not supported, and population substructure does not explain the observed haplotype frequencies. Furthermore, there is no evidence of negative FDS. Thus, multiplicative fitness, rapid haplotype discovery, and rapid fitness decay appear to be the major factors shaping the HLA haplotype frequency distribution in the human population.
AbstractList The major histocompatibility complex (MHC) is a central component of the vertebrate immune system and hence evolves in the regime of a host-pathogen evolutionary race. The MHC is associated with quantitative traits which directly affect fitness and are subject to selection pressure. The evolution of haplotypes at the MHC HLA (HLA) locus is generally thought to be governed by selection for increased diversity that is manifested in overdominance and/or negative frequency-dependent selection (FDS). However, recently, a model combining purifying selection on haplotypes and balancing selection on alleles has been proposed. We compare the predictions of several population dynamics models of haplotype frequency evolution to the distributions derived from 6.59-million-donor HLA typings from the National Marrow Donor Program registry. We show that models that combine a multiplicative fitness function, extremely high haplotype discovery rates, and exponential fitness decay over time produce the best fit to the data for most of the analyzed populations. In contrast, overdominance is not supported, and population substructure does not explain the observed haplotype frequencies. Furthermore, there is no evidence of negative FDS. Thus, multiplicative fitness, rapid haplotype discovery, and rapid fitness decay appear to be the major factors shaping the HLA haplotype frequency distribution in the human population.
The major histocompatibility complex (MHC), in particular, the human leukocyte antigen (HLA) loci encode key components of the immune system and include some of the most diverse genes in the human genome. Evolution of the HLA loci is generally thought to be driven by selection for increased diversity, i.e., against common haplotypes (negative frequency-dependent selection). Here, we compare the haplotype frequency and homozygosity distributions from the extensive National Marrow Donor Program registry to the predictions of different models of evolution and show that the data are best compatible with multiplicative fitness and rapid fitness decay of haplotypes in some populations. Selection against common haplotypes is not supported. The data cannot be explained by mating preferences or population substructure either. The major histocompatibility complex (MHC) is a central component of the vertebrate immune system and hence evolves in the regime of a host–pathogen evolutionary race. The MHC is associated with quantitative traits which directly affect fitness and are subject to selection pressure. The evolution of haplotypes at the MHC HLA (HLA) locus is generally thought to be governed by selection for increased diversity that is manifested in overdominance and/or negative frequency-dependent selection (FDS). However, recently, a model combining purifying selection on haplotypes and balancing selection on alleles has been proposed. We compare the predictions of several population dynamics models of haplotype frequency evolution to the distributions derived from 6.59-million-donor HLA typings from the National Marrow Donor Program registry. We show that models that combine a multiplicative fitness function, extremely high haplotype discovery rates, and exponential fitness decay over time produce the best fit to the data for most of the analyzed populations. In contrast, overdominance is not supported, and population substructure does not explain the observed haplotype frequencies. Furthermore, there is no evidence of negative FDS. Thus, multiplicative fitness, rapid haplotype discovery, and rapid fitness decay appear to be the major factors shaping the HLA haplotype frequency distribution in the human population.
The major histocompatibility complex (MHC) is a central component of the vertebrate immune system and hence evolves in the regime of a host-pathogen evolutionary race. The MHC is associated with quantitative traits which directly affect fitness and are subject to selection pressure. The evolution of haplotypes at the MHC HLA (HLA) locus is generally thought to be governed by selection for increased diversity that is manifested in overdominance and/or negative frequency-dependent selection (FDS). However, recently, a model combining purifying selection on haplotypes and balancing selection on alleles has been proposed. We compare the predictions of several population dynamics models of haplotype frequency evolution to the distributions derived from 6.59-million-donor HLA typings from the National Marrow Donor Program registry. We show that models that combine a multiplicative fitness function, extremely high haplotype discovery rates, and exponential fitness decay over time produce the best fit to the data for most of the analyzed populations. In contrast, overdominance is not supported, and population substructure does not explain the observed haplotype frequencies. Furthermore, there is no evidence of negative FDS. Thus, multiplicative fitness, rapid haplotype discovery, and rapid fitness decay appear to be the major factors shaping the HLA haplotype frequency distribution in the human population.The major histocompatibility complex (MHC) is a central component of the vertebrate immune system and hence evolves in the regime of a host-pathogen evolutionary race. The MHC is associated with quantitative traits which directly affect fitness and are subject to selection pressure. The evolution of haplotypes at the MHC HLA (HLA) locus is generally thought to be governed by selection for increased diversity that is manifested in overdominance and/or negative frequency-dependent selection (FDS). However, recently, a model combining purifying selection on haplotypes and balancing selection on alleles has been proposed. We compare the predictions of several population dynamics models of haplotype frequency evolution to the distributions derived from 6.59-million-donor HLA typings from the National Marrow Donor Program registry. We show that models that combine a multiplicative fitness function, extremely high haplotype discovery rates, and exponential fitness decay over time produce the best fit to the data for most of the analyzed populations. In contrast, overdominance is not supported, and population substructure does not explain the observed haplotype frequencies. Furthermore, there is no evidence of negative FDS. Thus, multiplicative fitness, rapid haplotype discovery, and rapid fitness decay appear to be the major factors shaping the HLA haplotype frequency distribution in the human population.
Author Wolf, Yuri I.
Maiers, Martin
Koonin, Eugene V.
Levi, Lee
Gragert, Loren
Alter, Idan
Lobkovsky, Alexander E.
Louzoun, Yoram
Author_xml – sequence: 1
  givenname: Alexander E.
  surname: Lobkovsky
  fullname: Lobkovsky, Alexander E.
– sequence: 2
  givenname: Lee
  surname: Levi
  fullname: Levi, Lee
– sequence: 3
  givenname: Yuri I.
  surname: Wolf
  fullname: Wolf, Yuri I.
– sequence: 4
  givenname: Martin
  surname: Maiers
  fullname: Maiers, Martin
– sequence: 5
  givenname: Loren
  surname: Gragert
  fullname: Gragert, Loren
– sequence: 6
  givenname: Idan
  surname: Alter
  fullname: Alter, Idan
– sequence: 7
  givenname: Yoram
  surname: Louzoun
  fullname: Louzoun, Yoram
– sequence: 8
  givenname: Eugene V.
  surname: Koonin
  fullname: Koonin, Eugene V.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31227609$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1vEzEQxS1URNPCmRPIEpceuq2_1mtfkFAEFKkVFzhbXttLHDn2Ynsj8t-zaZoClTjNYX7v6c28M3ASU3QAvMboCqOOXo9RlyvcYcYox5g_AwuMJG44k-gELBAiXSMYYafgrJQ1Qki2Ar0ApxQT0nEkF8DcTaH6MXijq986OPgaXSmXMOvRW7jSY0h1NzpofTFp6_LuEupojxy0zugddL_GoH2EbpvCVH2KMA1wNW10hHc3y5fg-aBDca8e5jn4_unjt-VNc_v185flh9vGtEjWhvWyoz1rjXEMU2wRl45r2qOBEEqQZW3fthxT12EhrLYCI0aJEIYNaBispefg_cF3nPqNs8bFmnVQY_YbnXcqaa_-3US_Uj_SVnFORCfIbHDxYJDTz8mVqjbz1S4EHV2aiiKEtZxxfI--e4Ku05TjfN5MccEFQZLP1Nu_Ez1GOf5_BtoDYHIqJbtBGV_1_oNzQB8URmrfs9r3rP70POuun-iO1v9XvDko1qWm_IgTvs8hCf0Nc3W1Ng
CitedBy_id crossref_primary_10_1073_pnas_1911794116
crossref_primary_10_1103_PhysRevLett_124_158301
crossref_primary_10_3389_fimmu_2020_602014
crossref_primary_10_3389_fgene_2020_594318
crossref_primary_10_1007_s10875_021_01071_x
crossref_primary_10_1007_s00251_021_01222_9
crossref_primary_10_1111_mec_16932
crossref_primary_10_3389_fimmu_2023_1236080
crossref_primary_10_1103_PhysRevE_106_024409
crossref_primary_10_1111_jeb_13779
crossref_primary_10_1016_j_tig_2020_01_008
crossref_primary_10_1073_pnas_2017176118
crossref_primary_10_1073_pnas_1916124116
crossref_primary_10_1007_s00251_019_01144_7
crossref_primary_10_1016_j_jgg_2022_03_006
Cites_doi 10.1111/evo.13142
10.1093/genetics/154.3.1367
10.1038/355402b0
10.1093/bfgp/elp010
10.1084/jem.20041214
10.1093/genetics/130.4.925
10.1016/j.gde.2014.08.001
10.1093/molbev/msw127
10.1093/genetics/132.3.861
10.1038/352619a0
10.1038/335167a0
10.1371/journal.pone.0014643
10.2741/A298
10.1615/CritRevImmunol.v17.i2.40
10.1146/annurev.genet.32.1.415
10.1093/hmg/dds424
10.1258/ebm.2010.010112
10.1016/j.humimm.2013.06.025
10.1111/imm.12624
10.1371/journal.pone.0097282
10.1038/ng1885
10.1371/journal.pcbi.1004204
10.1371/journal.pgen.1000184
10.1038/sj.hdy.6800724
10.1111/j.1600-065X.1995.tb00675.x
10.1002/ece3.567
10.1007/s00251-016-0918-x
10.1371/journal.pcbi.1005693
10.1111/mec.12934
10.1093/genetics/124.4.967
10.1007/s00251-004-0717-7
10.1038/srep32550
10.1534/genetics.111.134163
10.1046/j.1469-1809.2001.6510001.x
10.1111/mec.13920
ContentType Journal Article
Copyright Copyright National Academy of Sciences Jul 9, 2019
2019
Copyright_xml – notice: Copyright National Academy of Sciences Jul 9, 2019
– notice: 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1714436116
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef
Virology and AIDS Abstracts


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 14104
ExternalDocumentID PMC6628782
31227609
10_1073_pnas_1714436116
26760992
Genre Journal Article
GrantInformation_xml – fundername: US Department of Health and Human Services
  grantid: Intramurel funds
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
CGR
CUY
CVF
DOOOF
ECM
EIF
NPM
RHF
VQA
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c509t-4b973b45cce4131d069e6a3b0f22320d45b55613e7188dad81043288c4f0ffdd3
ISSN 0027-8424
1091-6490
IngestDate Tue Sep 30 16:39:34 EDT 2025
Fri Sep 05 11:38:04 EDT 2025
Mon Jun 30 08:21:46 EDT 2025
Wed Feb 19 02:31:20 EST 2025
Thu Apr 24 23:08:56 EDT 2025
Wed Oct 01 04:16:27 EDT 2025
Thu May 29 13:24:32 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 28
Keywords multiplicative fitness
fitness decay
haplotype evolution
haplotype discovery
frequency-dependent selection
Language English
License Published under the PNAS license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c509t-4b973b45cce4131d069e6a3b0f22320d45b55613e7188dad81043288c4f0ffdd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Author contributions: A.E.L., Y.I.W., Y.L., and E.V.K. designed research; A.E.L., L.L., and I.A. performed research; M.M. contributed new reagents/analytic tools; A.E.L., L.L., Y.I.W., L.G., I.A., and Y.L. analyzed data; and A.E.L., Y.L., and E.V.K. wrote the paper.
Contributed by Eugene V. Koonin, April 15, 2019 (sent for review August 16, 2017; reviewed by Bridget Penman and Yoko Satta)
Reviewers: B.P., Life Sciences, University of Warwick; and Y.S., SOKENDAI, The Graduate University for Advanced Studies.
ORCID 0000-0003-3943-8299
0000-0003-1714-6148
OpenAccessLink https://www.pnas.org/content/pnas/116/28/14098.full.pdf
PMID 31227609
PQID 2268682096
PQPubID 42026
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6628782
proquest_miscellaneous_2245646182
proquest_journals_2268682096
pubmed_primary_31227609
crossref_citationtrail_10_1073_pnas_1714436116
crossref_primary_10_1073_pnas_1714436116
jstor_primary_26760992
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-07-09
PublicationDateYYYYMMDD 2019-07-09
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-09
  day: 09
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationSeriesTitle PNAS Plus
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2019
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References Vandiedonck C. (e_1_3_3_9_2) 2009; 8
Winternitz J. C. (e_1_3_3_19_2) 2013; 280
Winternitz J. (e_1_3_3_18_2) 2017; 26
Takahata N. (e_1_3_3_25_2) 1990; 124
Shiina T. (e_1_3_3_8_2) 2017; 150
Hughes A. L. (e_1_3_3_1_2) 1998; 3
Lenz T. L. (e_1_3_3_31_2) 2016; 33
van Oosterhout C. (e_1_3_3_39_2) 2009; 276
Jan Ejsmond M. (e_1_3_3_20_2) 2014; 281
Gragert L. (e_1_3_3_35_2) 2013; 74
Hiby S. E. (e_1_3_3_38_2) 2004; 200
Roberts T. (e_1_3_3_21_2) 2010; 235
Slade R. W. (e_1_3_3_26_2) 1992; 132
Chaix R. (e_1_3_3_16_2) 2008; 4
Kelley J. (e_1_3_3_7_2) 2005; 56
Jain K. (e_1_3_3_34_2) 2011; 189
Hughes A. L. (e_1_3_3_12_2) 1992; 355
Klein J. (e_1_3_3_6_2) 1986
Apanius V. (e_1_3_3_28_2) 1997; 17
Key F. M. (e_1_3_3_30_2) 2014; 29
Kromer J. (e_1_3_3_22_2) 2016; 6
Piertney S. B. (e_1_3_3_3_2) 2006; 96
Minias P. (e_1_3_3_24_2) 2017; 71
Slater N. (e_1_3_3_36_2) 2015; 11
Potts W. K. (e_1_3_3_15_2) 1991; 352
Meyer D. (e_1_3_3_29_2) 2001; 65
Winternitz J. C. (e_1_3_3_23_2) 2013; 3
Potts W. K. (e_1_3_3_27_2) 1995; 143
Buhler S. (e_1_3_3_5_2) 2011; 6
Buhler S. (e_1_3_3_32_2) 2016; 68
Slatkin M. (e_1_3_3_14_2) 2000; 154
Bronson P. G. (e_1_3_3_40_2) 2013; 22
Hughes A. L. (e_1_3_3_2_2) 1998; 32
Spurgin L. G. (e_1_3_3_4_2) 2010; 277
Altera I. (e_1_3_3_33_2) 2017; 13
Hughes A. L. (e_1_3_3_11_2) 1988; 335
Gourraud P. A. (e_1_3_3_10_2) 2014; 9
de Bakker P. I. (e_1_3_3_37_2) 2006; 38
Takahata N. (e_1_3_3_13_2) 1992; 130
Kamiya T. (e_1_3_3_17_2) 2014; 23
31662470 - Proc Natl Acad Sci U S A. 2019 Nov 19;116(47):23388-23389
31662471 - Proc Natl Acad Sci U S A. 2019 Nov 19;116(47):23386-23387
References_xml – volume: 280
  start-page: 20131605
  year: 2013
  ident: e_1_3_3_19_2
  article-title: Sexual selection explains more functional variation in the mammalian major histocompatibility complex than parasitism
  publication-title: Proc. Biol. Sci.
– volume: 71
  start-page: 432
  year: 2017
  ident: e_1_3_3_24_2
  article-title: Coloniality and migration are related to selection on MHC genes in birds
  publication-title: Evolution
  doi: 10.1111/evo.13142
– volume: 154
  start-page: 1367
  year: 2000
  ident: e_1_3_3_14_2
  article-title: Balancing selection at closely linked, overdominant loci in a finite population
  publication-title: Genetics
  doi: 10.1093/genetics/154.3.1367
– volume: 355
  start-page: 402
  year: 1992
  ident: e_1_3_3_12_2
  article-title: Maintenance of MHC polymorphism
  publication-title: Nature
  doi: 10.1038/355402b0
– volume: 8
  start-page: 379
  year: 2009
  ident: e_1_3_3_9_2
  article-title: The human Major Histocompatibility Complex as a paradigm in genomics research
  publication-title: Brief. Funct. Genomics Proteomics
  doi: 10.1093/bfgp/elp010
– volume: 200
  start-page: 957
  year: 2004
  ident: e_1_3_3_38_2
  article-title: Combinations of maternal KIR and fetal HLA-C genes influence the risk of preeclampsia and reproductive success
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20041214
– volume: 130
  start-page: 925
  year: 1992
  ident: e_1_3_3_13_2
  article-title: Polymorphism and balancing selection at major histocompatibility complex loci
  publication-title: Genetics
  doi: 10.1093/genetics/130.4.925
– volume: 29
  start-page: 45
  year: 2014
  ident: e_1_3_3_30_2
  article-title: Advantageous diversity maintained by balancing selection in humans
  publication-title: Curr. Opin. Genet. Dev.
  doi: 10.1016/j.gde.2014.08.001
– volume: 33
  start-page: 2555
  year: 2016
  ident: e_1_3_3_31_2
  article-title: Excess of deleterious mutations around HLA genes reveals evolutionary cost of balancing selection
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msw127
– volume: 132
  start-page: 861
  year: 1992
  ident: e_1_3_3_26_2
  article-title: Overdominant vs. frequency-dependent selection at MHC loci
  publication-title: Genetics
  doi: 10.1093/genetics/132.3.861
– volume: 352
  start-page: 619
  year: 1991
  ident: e_1_3_3_15_2
  article-title: Mating patterns in seminatural populations of mice influenced by MHC genotype
  publication-title: Nature
  doi: 10.1038/352619a0
– volume-title: Natural History of the Major Histocompatability Complex
  year: 1986
  ident: e_1_3_3_6_2
– volume: 335
  start-page: 167
  year: 1988
  ident: e_1_3_3_11_2
  article-title: Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection
  publication-title: Nature
  doi: 10.1038/335167a0
– volume: 6
  start-page: e14643
  year: 2011
  ident: e_1_3_3_5_2
  article-title: HLA DNA sequence variation among human populations: Molecular signatures of demographic and selective events
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0014643
– volume: 3
  start-page: d509
  year: 1998
  ident: e_1_3_3_1_2
  article-title: Natural selection and the evolutionary history of major histocompatibility complex loci
  publication-title: Front. Biosci.
  doi: 10.2741/A298
– volume: 17
  start-page: 179
  year: 1997
  ident: e_1_3_3_28_2
  article-title: The nature of selection on the major histocompatibility complex
  publication-title: Crit. Rev. Immunol.
  doi: 10.1615/CritRevImmunol.v17.i2.40
– volume: 32
  start-page: 415
  year: 1998
  ident: e_1_3_3_2_2
  article-title: Natural selection at major histocompatibility complex loci of vertebrates
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev.genet.32.1.415
– volume: 22
  start-page: 252
  year: 2013
  ident: e_1_3_3_40_2
  article-title: A sequence-based approach demonstrates that balancing selection in classical human leukocyte antigen (HLA) loci is asymmetric
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/dds424
– volume: 235
  start-page: 1277
  year: 2010
  ident: e_1_3_3_21_2
  article-title: In the nose of the beholder: Are olfactory influences on human mate choice driven by variation in immune system genes or sex hormone levels?
  publication-title: Exp. Biol. Med.
  doi: 10.1258/ebm.2010.010112
– volume: 74
  start-page: 1313
  year: 2013
  ident: e_1_3_3_35_2
  article-title: Six-locus high resolution HLA haplotype frequencies derived from mixed-resolution DNA typing for the entire US donor registry
  publication-title: Hum. Immunol.
  doi: 10.1016/j.humimm.2013.06.025
– volume: 150
  start-page: 127
  year: 2017
  ident: e_1_3_3_8_2
  article-title: Comparative genomics of the human, macaque and mouse major histocompatibility complex
  publication-title: Immunology
  doi: 10.1111/imm.12624
– volume: 276
  start-page: 657
  year: 2009
  ident: e_1_3_3_39_2
  article-title: A new theory of MHC evolution: Beyond selection on the immune genes
  publication-title: Proc. Biol. Sci.
– volume: 277
  start-page: 979
  year: 2010
  ident: e_1_3_3_4_2
  article-title: How pathogens drive genetic diversity: MHC, mechanisms and misunderstandings
  publication-title: Proc. Biol. Sci.
– volume: 9
  start-page: e97282
  year: 2014
  ident: e_1_3_3_10_2
  article-title: HLA diversity in the 1000 genomes dataset
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0097282
– volume: 38
  start-page: 1166
  year: 2006
  ident: e_1_3_3_37_2
  article-title: A high-resolution HLA and SNP haplotype map for disease association studies in the extended human MHC
  publication-title: Nat. Genet.
  doi: 10.1038/ng1885
– volume: 11
  start-page: e1004204
  year: 2015
  ident: e_1_3_3_36_2
  article-title: Power laws for heavy-tailed distributions: Modeling allele and haplotype diversity for the national marrow donor program
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1004204
– volume: 4
  start-page: e1000184
  year: 2008
  ident: e_1_3_3_16_2
  article-title: Is mate choice in humans MHC-dependent?
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1000184
– volume: 96
  start-page: 7
  year: 2006
  ident: e_1_3_3_3_2
  article-title: The evolutionary ecology of the major histocompatibility complex
  publication-title: Heredity
  doi: 10.1038/sj.hdy.6800724
– volume: 143
  start-page: 181
  year: 1995
  ident: e_1_3_3_27_2
  article-title: Pathogen-based models favoring MHC genetic diversity
  publication-title: Immunol. Rev.
  doi: 10.1111/j.1600-065X.1995.tb00675.x
– volume: 3
  start-page: 1552
  year: 2013
  ident: e_1_3_3_23_2
  article-title: Duplication and population dynamics shape historic patterns of selection and genetic variation at the major histocompatibility complex in rodents
  publication-title: Ecol. Evol.
  doi: 10.1002/ece3.567
– volume: 68
  start-page: 401
  year: 2016
  ident: e_1_3_3_32_2
  article-title: HLA class I molecular variation and peptide-binding properties suggest a model of joint divergent asymmetric selection
  publication-title: Immunogenetics
  doi: 10.1007/s00251-016-0918-x
– volume: 13
  start-page: e1005693
  year: 2017
  ident: e_1_3_3_33_2
  article-title: HLA class I haplotype diversity is consistent with selection for frequent existing haplotypes
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1005693
– volume: 23
  start-page: 5151
  year: 2014
  ident: e_1_3_3_17_2
  article-title: A quantitative review of MHC-based mating preference: The role of diversity and dissimilarity
  publication-title: Mol. Ecol.
  doi: 10.1111/mec.12934
– volume: 124
  start-page: 967
  year: 1990
  ident: e_1_3_3_25_2
  article-title: Allelic genealogy under overdominant and frequency-dependent selection and polymorphism of major histocompatibility complex loci
  publication-title: Genetics
  doi: 10.1093/genetics/124.4.967
– volume: 56
  start-page: 683
  year: 2005
  ident: e_1_3_3_7_2
  article-title: Comparative genomics of major histocompatibility complexes
  publication-title: Immunogenetics
  doi: 10.1007/s00251-004-0717-7
– volume: 281
  start-page: 20141662
  year: 2014
  ident: e_1_3_3_20_2
  article-title: Sexual selection and the evolutionary dynamics of the major histocompatibility complex
  publication-title: Proc. Biol. Sci.
– volume: 6
  start-page: 32550
  year: 2016
  ident: e_1_3_3_22_2
  article-title: Influence of HLA on human partnership and sexual satisfaction
  publication-title: Sci. Rep.
  doi: 10.1038/srep32550
– volume: 189
  start-page: 1029
  year: 2011
  ident: e_1_3_3_34_2
  article-title: Multiple adaptive substitutions during evolution in novel environments
  publication-title: Genetics
  doi: 10.1534/genetics.111.134163
– volume: 65
  start-page: 1
  year: 2001
  ident: e_1_3_3_29_2
  article-title: How selection shapes variation of the human major histocompatibility complex: A review
  publication-title: Ann. Hum. Genet.
  doi: 10.1046/j.1469-1809.2001.6510001.x
– volume: 26
  start-page: 668
  year: 2017
  ident: e_1_3_3_18_2
  article-title: Patterns of MHC-dependent mate selection in humans and nonhuman primates: A meta-analysis
  publication-title: Mol. Ecol.
  doi: 10.1111/mec.13920
– reference: 31662471 - Proc Natl Acad Sci U S A. 2019 Nov 19;116(47):23386-23387
– reference: 31662470 - Proc Natl Acad Sci U S A. 2019 Nov 19;116(47):23388-23389
SSID ssj0009580
Score 2.4008675
Snippet The major histocompatibility complex (MHC) is a central component of the vertebrate immune system and hence evolves in the regime of a host–pathogen...
The major histocompatibility complex (MHC) is a central component of the vertebrate immune system and hence evolves in the regime of a host-pathogen...
The major histocompatibility complex (MHC), in particular, the human leukocyte antigen (HLA) loci encode key components of the immune system and include some...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 14098
SubjectTerms Alleles
Biological Sciences
Decay
Evolution
Evolution, Molecular
Female
Fitness
Frequency dependence
Frequency distribution
Genetic Variation - genetics
Genetics, Population
Haplotypes
Haplotypes - genetics
Haplotypes - immunology
Histocompatibility antigen HLA
HLA Antigens - genetics
HLA Antigens - immunology
Human populations
Humans
Immune system
Major histocompatibility complex
Major Histocompatibility Complex - genetics
Major Histocompatibility Complex - immunology
Male
Phenotype
Physical Fitness
PNAS Plus
Polymorphism, Genetic
Population genetics
Reproductive fitness
Selection, Genetic
Substructures
Tissue Donors
Vertebrates
Title Multiplicative fitness, rapid haplotype discovery, and fitness decay explain evolution of human MHC
URI https://www.jstor.org/stable/26760992
https://www.ncbi.nlm.nih.gov/pubmed/31227609
https://www.proquest.com/docview/2268682096
https://www.proquest.com/docview/2245646182
https://pubmed.ncbi.nlm.nih.gov/PMC6628782
Volume 116
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 20250401
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: HH5
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: KQ8
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: KQ8
  dateStart: 19150115
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: DIK
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 20250401
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: RPM
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6VcuGCKFAIFLRIHIpcB8ferNfHqioERKIeWimcon3YakRkR3lJ5b_x35h9eO1EqVS4WJE93tiez7Oz45lvEPqoUsESAe83IVESEtXjoUhjESohRRHzlBJpEmRHdHBDvo_744ODP62spfVKdOXvvXUl_6NV2Ad61VWy_6BZPyjsgN-gX9iChmH7IB0PbTagCbtp9u7pShsu_dQWfD5VwS2fzyoTZNXFtzpZ867O1nSygcolv9M8_zOuyUM27nqND2ni-8PBRduBvfIT3rJOLxjV8cTzpjrFmYxlEAZXo6bX8Y9K_Ko2Ll7ra2uCy26TF7Sx5dp5882omhniyJ_rxTT45iWHvG7ibZkQ2uELUzEVRlnbJMcwTRJbSN3NrRUGJyakxPYR9Wba1mQ6PLqKcmt1NWkXa03hOneV7J0fwKDppsYlX3Z153eS0HrYLSbunRnS5y2aL_ZpMtEDTJoBHqHHcUqpbqDxddxrcT4zWwHl7rBmlkqTzztXsOUU2bzYfSue3cTdlid0_Qw9dUsYfG7xeIQO8vI5Oqo1jk8dk_mnF0huAxQ70J1hA0_s4Yk9PM8wIKKWwwac2IETe3DiqsAGnBjA-RLdfLm8vhiErqtHKME5XYVEZGkiSF_KHByonopollOeiKgATzWOFOkL3bI1ycFrYoor1tOskYxJUkRFoVRyjA7LqsxfIxxHok8kEyxKc5IVNFPa18okS3gGfn7cQd36sU6ko7zXnVdmk3sU2UGn_oS5ZXu5X_TY6MnLxTSlsNyCPz2pFTdxtmI5gUUOo-BsZ3DeB38YLLn-PMfLvFprGU3tRGHB30GvrJ794EkvjvXwHZRuIcALaJb47SPl9NawxQMuGSwD3jz81t6iJ82beoIOV4t1_g5c75V4bwD-FwMX2LQ
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiplicative+fitness%2C+rapid+haplotype+discovery%2C+and+fitness+decay+explain+evolution+of+human+MHC&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Lobkovsky%2C+Alexander+E.&rft.au=Levi%2C+Lee&rft.au=Wolf%2C+Yuri+I.&rft.au=Maiers%2C+Martin&rft.date=2019-07-09&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=116&rft.issue=28&rft.spage=14098&rft.epage=14104&rft_id=info:doi/10.1073%2Fpnas.1714436116&rft.externalDBID=n%2Fa&rft.externalDocID=10_1073_pnas_1714436116
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon