Multiplicative fitness, rapid haplotype discovery, and fitness decay explain evolution of human MHC
The major histocompatibility complex (MHC) is a central component of the vertebrate immune system and hence evolves in the regime of a host–pathogen evolutionary race. The MHC is associated with quantitative traits which directly affect fitness and are subject to selection pressure. The evolution of...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 116; no. 28; pp. 14098 - 14104 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
09.07.2019
|
Series | PNAS Plus |
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.1714436116 |
Cover
Abstract | The major histocompatibility complex (MHC) is a central component of the vertebrate immune system and hence evolves in the regime of a host–pathogen evolutionary race. The MHC is associated with quantitative traits which directly affect fitness and are subject to selection pressure. The evolution of haplotypes at the MHC HLA (HLA) locus is generally thought to be governed by selection for increased diversity that is manifested in overdominance and/or negative frequency-dependent selection (FDS). However, recently, a model combining purifying selection on haplotypes and balancing selection on alleles has been proposed. We compare the predictions of several population dynamics models of haplotype frequency evolution to the distributions derived from 6.59-million-donor HLA typings from the National Marrow Donor Program registry. We show that models that combine a multiplicative fitness function, extremely high haplotype discovery rates, and exponential fitness decay over time produce the best fit to the data for most of the analyzed populations. In contrast, overdominance is not supported, and population substructure does not explain the observed haplotype frequencies. Furthermore, there is no evidence of negative FDS. Thus, multiplicative fitness, rapid haplotype discovery, and rapid fitness decay appear to be the major factors shaping the HLA haplotype frequency distribution in the human population. |
---|---|
AbstractList | The major histocompatibility complex (MHC) is a central component of the vertebrate immune system and hence evolves in the regime of a host-pathogen evolutionary race. The MHC is associated with quantitative traits which directly affect fitness and are subject to selection pressure. The evolution of haplotypes at the MHC HLA (HLA) locus is generally thought to be governed by selection for increased diversity that is manifested in overdominance and/or negative frequency-dependent selection (FDS). However, recently, a model combining purifying selection on haplotypes and balancing selection on alleles has been proposed. We compare the predictions of several population dynamics models of haplotype frequency evolution to the distributions derived from 6.59-million-donor HLA typings from the National Marrow Donor Program registry. We show that models that combine a multiplicative fitness function, extremely high haplotype discovery rates, and exponential fitness decay over time produce the best fit to the data for most of the analyzed populations. In contrast, overdominance is not supported, and population substructure does not explain the observed haplotype frequencies. Furthermore, there is no evidence of negative FDS. Thus, multiplicative fitness, rapid haplotype discovery, and rapid fitness decay appear to be the major factors shaping the HLA haplotype frequency distribution in the human population. The major histocompatibility complex (MHC), in particular, the human leukocyte antigen (HLA) loci encode key components of the immune system and include some of the most diverse genes in the human genome. Evolution of the HLA loci is generally thought to be driven by selection for increased diversity, i.e., against common haplotypes (negative frequency-dependent selection). Here, we compare the haplotype frequency and homozygosity distributions from the extensive National Marrow Donor Program registry to the predictions of different models of evolution and show that the data are best compatible with multiplicative fitness and rapid fitness decay of haplotypes in some populations. Selection against common haplotypes is not supported. The data cannot be explained by mating preferences or population substructure either. The major histocompatibility complex (MHC) is a central component of the vertebrate immune system and hence evolves in the regime of a host–pathogen evolutionary race. The MHC is associated with quantitative traits which directly affect fitness and are subject to selection pressure. The evolution of haplotypes at the MHC HLA (HLA) locus is generally thought to be governed by selection for increased diversity that is manifested in overdominance and/or negative frequency-dependent selection (FDS). However, recently, a model combining purifying selection on haplotypes and balancing selection on alleles has been proposed. We compare the predictions of several population dynamics models of haplotype frequency evolution to the distributions derived from 6.59-million-donor HLA typings from the National Marrow Donor Program registry. We show that models that combine a multiplicative fitness function, extremely high haplotype discovery rates, and exponential fitness decay over time produce the best fit to the data for most of the analyzed populations. In contrast, overdominance is not supported, and population substructure does not explain the observed haplotype frequencies. Furthermore, there is no evidence of negative FDS. Thus, multiplicative fitness, rapid haplotype discovery, and rapid fitness decay appear to be the major factors shaping the HLA haplotype frequency distribution in the human population. The major histocompatibility complex (MHC) is a central component of the vertebrate immune system and hence evolves in the regime of a host-pathogen evolutionary race. The MHC is associated with quantitative traits which directly affect fitness and are subject to selection pressure. The evolution of haplotypes at the MHC HLA (HLA) locus is generally thought to be governed by selection for increased diversity that is manifested in overdominance and/or negative frequency-dependent selection (FDS). However, recently, a model combining purifying selection on haplotypes and balancing selection on alleles has been proposed. We compare the predictions of several population dynamics models of haplotype frequency evolution to the distributions derived from 6.59-million-donor HLA typings from the National Marrow Donor Program registry. We show that models that combine a multiplicative fitness function, extremely high haplotype discovery rates, and exponential fitness decay over time produce the best fit to the data for most of the analyzed populations. In contrast, overdominance is not supported, and population substructure does not explain the observed haplotype frequencies. Furthermore, there is no evidence of negative FDS. Thus, multiplicative fitness, rapid haplotype discovery, and rapid fitness decay appear to be the major factors shaping the HLA haplotype frequency distribution in the human population.The major histocompatibility complex (MHC) is a central component of the vertebrate immune system and hence evolves in the regime of a host-pathogen evolutionary race. The MHC is associated with quantitative traits which directly affect fitness and are subject to selection pressure. The evolution of haplotypes at the MHC HLA (HLA) locus is generally thought to be governed by selection for increased diversity that is manifested in overdominance and/or negative frequency-dependent selection (FDS). However, recently, a model combining purifying selection on haplotypes and balancing selection on alleles has been proposed. We compare the predictions of several population dynamics models of haplotype frequency evolution to the distributions derived from 6.59-million-donor HLA typings from the National Marrow Donor Program registry. We show that models that combine a multiplicative fitness function, extremely high haplotype discovery rates, and exponential fitness decay over time produce the best fit to the data for most of the analyzed populations. In contrast, overdominance is not supported, and population substructure does not explain the observed haplotype frequencies. Furthermore, there is no evidence of negative FDS. Thus, multiplicative fitness, rapid haplotype discovery, and rapid fitness decay appear to be the major factors shaping the HLA haplotype frequency distribution in the human population. |
Author | Wolf, Yuri I. Maiers, Martin Koonin, Eugene V. Levi, Lee Gragert, Loren Alter, Idan Lobkovsky, Alexander E. Louzoun, Yoram |
Author_xml | – sequence: 1 givenname: Alexander E. surname: Lobkovsky fullname: Lobkovsky, Alexander E. – sequence: 2 givenname: Lee surname: Levi fullname: Levi, Lee – sequence: 3 givenname: Yuri I. surname: Wolf fullname: Wolf, Yuri I. – sequence: 4 givenname: Martin surname: Maiers fullname: Maiers, Martin – sequence: 5 givenname: Loren surname: Gragert fullname: Gragert, Loren – sequence: 6 givenname: Idan surname: Alter fullname: Alter, Idan – sequence: 7 givenname: Yoram surname: Louzoun fullname: Louzoun, Yoram – sequence: 8 givenname: Eugene V. surname: Koonin fullname: Koonin, Eugene V. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31227609$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1vEzEQxS1URNPCmRPIEpceuq2_1mtfkFAEFKkVFzhbXttLHDn2Ynsj8t-zaZoClTjNYX7v6c28M3ASU3QAvMboCqOOXo9RlyvcYcYox5g_AwuMJG44k-gELBAiXSMYYafgrJQ1Qki2Ar0ApxQT0nEkF8DcTaH6MXijq986OPgaXSmXMOvRW7jSY0h1NzpofTFp6_LuEupojxy0zugddL_GoH2EbpvCVH2KMA1wNW10hHc3y5fg-aBDca8e5jn4_unjt-VNc_v185flh9vGtEjWhvWyoz1rjXEMU2wRl45r2qOBEEqQZW3fthxT12EhrLYCI0aJEIYNaBispefg_cF3nPqNs8bFmnVQY_YbnXcqaa_-3US_Uj_SVnFORCfIbHDxYJDTz8mVqjbz1S4EHV2aiiKEtZxxfI--e4Ku05TjfN5MccEFQZLP1Nu_Ez1GOf5_BtoDYHIqJbtBGV_1_oNzQB8URmrfs9r3rP70POuun-iO1v9XvDko1qWm_IgTvs8hCf0Nc3W1Ng |
CitedBy_id | crossref_primary_10_1073_pnas_1911794116 crossref_primary_10_1103_PhysRevLett_124_158301 crossref_primary_10_3389_fimmu_2020_602014 crossref_primary_10_3389_fgene_2020_594318 crossref_primary_10_1007_s10875_021_01071_x crossref_primary_10_1007_s00251_021_01222_9 crossref_primary_10_1111_mec_16932 crossref_primary_10_3389_fimmu_2023_1236080 crossref_primary_10_1103_PhysRevE_106_024409 crossref_primary_10_1111_jeb_13779 crossref_primary_10_1016_j_tig_2020_01_008 crossref_primary_10_1073_pnas_2017176118 crossref_primary_10_1073_pnas_1916124116 crossref_primary_10_1007_s00251_019_01144_7 crossref_primary_10_1016_j_jgg_2022_03_006 |
Cites_doi | 10.1111/evo.13142 10.1093/genetics/154.3.1367 10.1038/355402b0 10.1093/bfgp/elp010 10.1084/jem.20041214 10.1093/genetics/130.4.925 10.1016/j.gde.2014.08.001 10.1093/molbev/msw127 10.1093/genetics/132.3.861 10.1038/352619a0 10.1038/335167a0 10.1371/journal.pone.0014643 10.2741/A298 10.1615/CritRevImmunol.v17.i2.40 10.1146/annurev.genet.32.1.415 10.1093/hmg/dds424 10.1258/ebm.2010.010112 10.1016/j.humimm.2013.06.025 10.1111/imm.12624 10.1371/journal.pone.0097282 10.1038/ng1885 10.1371/journal.pcbi.1004204 10.1371/journal.pgen.1000184 10.1038/sj.hdy.6800724 10.1111/j.1600-065X.1995.tb00675.x 10.1002/ece3.567 10.1007/s00251-016-0918-x 10.1371/journal.pcbi.1005693 10.1111/mec.12934 10.1093/genetics/124.4.967 10.1007/s00251-004-0717-7 10.1038/srep32550 10.1534/genetics.111.134163 10.1046/j.1469-1809.2001.6510001.x 10.1111/mec.13920 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Jul 9, 2019 2019 |
Copyright_xml | – notice: Copyright National Academy of Sciences Jul 9, 2019 – notice: 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.1714436116 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef Virology and AIDS Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 14104 |
ExternalDocumentID | PMC6628782 31227609 10_1073_pnas_1714436116 26760992 |
Genre | Journal Article |
GrantInformation_xml | – fundername: US Department of Health and Human Services grantid: Intramurel funds |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION CGR CUY CVF DOOOF ECM EIF NPM RHF VQA YIF YIN 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c509t-4b973b45cce4131d069e6a3b0f22320d45b55613e7188dad81043288c4f0ffdd3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Tue Sep 30 16:39:34 EDT 2025 Fri Sep 05 11:38:04 EDT 2025 Mon Jun 30 08:21:46 EDT 2025 Wed Feb 19 02:31:20 EST 2025 Thu Apr 24 23:08:56 EDT 2025 Wed Oct 01 04:16:27 EDT 2025 Thu May 29 13:24:32 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 28 |
Keywords | multiplicative fitness fitness decay haplotype evolution haplotype discovery frequency-dependent selection |
Language | English |
License | Published under the PNAS license. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c509t-4b973b45cce4131d069e6a3b0f22320d45b55613e7188dad81043288c4f0ffdd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Author contributions: A.E.L., Y.I.W., Y.L., and E.V.K. designed research; A.E.L., L.L., and I.A. performed research; M.M. contributed new reagents/analytic tools; A.E.L., L.L., Y.I.W., L.G., I.A., and Y.L. analyzed data; and A.E.L., Y.L., and E.V.K. wrote the paper. Contributed by Eugene V. Koonin, April 15, 2019 (sent for review August 16, 2017; reviewed by Bridget Penman and Yoko Satta) Reviewers: B.P., Life Sciences, University of Warwick; and Y.S., SOKENDAI, The Graduate University for Advanced Studies. |
ORCID | 0000-0003-3943-8299 0000-0003-1714-6148 |
OpenAccessLink | https://www.pnas.org/content/pnas/116/28/14098.full.pdf |
PMID | 31227609 |
PQID | 2268682096 |
PQPubID | 42026 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6628782 proquest_miscellaneous_2245646182 proquest_journals_2268682096 pubmed_primary_31227609 crossref_citationtrail_10_1073_pnas_1714436116 crossref_primary_10_1073_pnas_1714436116 jstor_primary_26760992 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-07-09 |
PublicationDateYYYYMMDD | 2019-07-09 |
PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-09 day: 09 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationSeriesTitle | PNAS Plus |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2019 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | Vandiedonck C. (e_1_3_3_9_2) 2009; 8 Winternitz J. C. (e_1_3_3_19_2) 2013; 280 Winternitz J. (e_1_3_3_18_2) 2017; 26 Takahata N. (e_1_3_3_25_2) 1990; 124 Shiina T. (e_1_3_3_8_2) 2017; 150 Hughes A. L. (e_1_3_3_1_2) 1998; 3 Lenz T. L. (e_1_3_3_31_2) 2016; 33 van Oosterhout C. (e_1_3_3_39_2) 2009; 276 Jan Ejsmond M. (e_1_3_3_20_2) 2014; 281 Gragert L. (e_1_3_3_35_2) 2013; 74 Hiby S. E. (e_1_3_3_38_2) 2004; 200 Roberts T. (e_1_3_3_21_2) 2010; 235 Slade R. W. (e_1_3_3_26_2) 1992; 132 Chaix R. (e_1_3_3_16_2) 2008; 4 Kelley J. (e_1_3_3_7_2) 2005; 56 Jain K. (e_1_3_3_34_2) 2011; 189 Hughes A. L. (e_1_3_3_12_2) 1992; 355 Klein J. (e_1_3_3_6_2) 1986 Apanius V. (e_1_3_3_28_2) 1997; 17 Key F. M. (e_1_3_3_30_2) 2014; 29 Kromer J. (e_1_3_3_22_2) 2016; 6 Piertney S. B. (e_1_3_3_3_2) 2006; 96 Minias P. (e_1_3_3_24_2) 2017; 71 Slater N. (e_1_3_3_36_2) 2015; 11 Potts W. K. (e_1_3_3_15_2) 1991; 352 Meyer D. (e_1_3_3_29_2) 2001; 65 Winternitz J. C. (e_1_3_3_23_2) 2013; 3 Potts W. K. (e_1_3_3_27_2) 1995; 143 Buhler S. (e_1_3_3_5_2) 2011; 6 Buhler S. (e_1_3_3_32_2) 2016; 68 Slatkin M. (e_1_3_3_14_2) 2000; 154 Bronson P. G. (e_1_3_3_40_2) 2013; 22 Hughes A. L. (e_1_3_3_2_2) 1998; 32 Spurgin L. G. (e_1_3_3_4_2) 2010; 277 Altera I. (e_1_3_3_33_2) 2017; 13 Hughes A. L. (e_1_3_3_11_2) 1988; 335 Gourraud P. A. (e_1_3_3_10_2) 2014; 9 de Bakker P. I. (e_1_3_3_37_2) 2006; 38 Takahata N. (e_1_3_3_13_2) 1992; 130 Kamiya T. (e_1_3_3_17_2) 2014; 23 31662470 - Proc Natl Acad Sci U S A. 2019 Nov 19;116(47):23388-23389 31662471 - Proc Natl Acad Sci U S A. 2019 Nov 19;116(47):23386-23387 |
References_xml | – volume: 280 start-page: 20131605 year: 2013 ident: e_1_3_3_19_2 article-title: Sexual selection explains more functional variation in the mammalian major histocompatibility complex than parasitism publication-title: Proc. Biol. Sci. – volume: 71 start-page: 432 year: 2017 ident: e_1_3_3_24_2 article-title: Coloniality and migration are related to selection on MHC genes in birds publication-title: Evolution doi: 10.1111/evo.13142 – volume: 154 start-page: 1367 year: 2000 ident: e_1_3_3_14_2 article-title: Balancing selection at closely linked, overdominant loci in a finite population publication-title: Genetics doi: 10.1093/genetics/154.3.1367 – volume: 355 start-page: 402 year: 1992 ident: e_1_3_3_12_2 article-title: Maintenance of MHC polymorphism publication-title: Nature doi: 10.1038/355402b0 – volume: 8 start-page: 379 year: 2009 ident: e_1_3_3_9_2 article-title: The human Major Histocompatibility Complex as a paradigm in genomics research publication-title: Brief. Funct. Genomics Proteomics doi: 10.1093/bfgp/elp010 – volume: 200 start-page: 957 year: 2004 ident: e_1_3_3_38_2 article-title: Combinations of maternal KIR and fetal HLA-C genes influence the risk of preeclampsia and reproductive success publication-title: J. Exp. Med. doi: 10.1084/jem.20041214 – volume: 130 start-page: 925 year: 1992 ident: e_1_3_3_13_2 article-title: Polymorphism and balancing selection at major histocompatibility complex loci publication-title: Genetics doi: 10.1093/genetics/130.4.925 – volume: 29 start-page: 45 year: 2014 ident: e_1_3_3_30_2 article-title: Advantageous diversity maintained by balancing selection in humans publication-title: Curr. Opin. Genet. Dev. doi: 10.1016/j.gde.2014.08.001 – volume: 33 start-page: 2555 year: 2016 ident: e_1_3_3_31_2 article-title: Excess of deleterious mutations around HLA genes reveals evolutionary cost of balancing selection publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msw127 – volume: 132 start-page: 861 year: 1992 ident: e_1_3_3_26_2 article-title: Overdominant vs. frequency-dependent selection at MHC loci publication-title: Genetics doi: 10.1093/genetics/132.3.861 – volume: 352 start-page: 619 year: 1991 ident: e_1_3_3_15_2 article-title: Mating patterns in seminatural populations of mice influenced by MHC genotype publication-title: Nature doi: 10.1038/352619a0 – volume-title: Natural History of the Major Histocompatability Complex year: 1986 ident: e_1_3_3_6_2 – volume: 335 start-page: 167 year: 1988 ident: e_1_3_3_11_2 article-title: Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection publication-title: Nature doi: 10.1038/335167a0 – volume: 6 start-page: e14643 year: 2011 ident: e_1_3_3_5_2 article-title: HLA DNA sequence variation among human populations: Molecular signatures of demographic and selective events publication-title: PLoS One doi: 10.1371/journal.pone.0014643 – volume: 3 start-page: d509 year: 1998 ident: e_1_3_3_1_2 article-title: Natural selection and the evolutionary history of major histocompatibility complex loci publication-title: Front. Biosci. doi: 10.2741/A298 – volume: 17 start-page: 179 year: 1997 ident: e_1_3_3_28_2 article-title: The nature of selection on the major histocompatibility complex publication-title: Crit. Rev. Immunol. doi: 10.1615/CritRevImmunol.v17.i2.40 – volume: 32 start-page: 415 year: 1998 ident: e_1_3_3_2_2 article-title: Natural selection at major histocompatibility complex loci of vertebrates publication-title: Annu. Rev. Genet. doi: 10.1146/annurev.genet.32.1.415 – volume: 22 start-page: 252 year: 2013 ident: e_1_3_3_40_2 article-title: A sequence-based approach demonstrates that balancing selection in classical human leukocyte antigen (HLA) loci is asymmetric publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/dds424 – volume: 235 start-page: 1277 year: 2010 ident: e_1_3_3_21_2 article-title: In the nose of the beholder: Are olfactory influences on human mate choice driven by variation in immune system genes or sex hormone levels? publication-title: Exp. Biol. Med. doi: 10.1258/ebm.2010.010112 – volume: 74 start-page: 1313 year: 2013 ident: e_1_3_3_35_2 article-title: Six-locus high resolution HLA haplotype frequencies derived from mixed-resolution DNA typing for the entire US donor registry publication-title: Hum. Immunol. doi: 10.1016/j.humimm.2013.06.025 – volume: 150 start-page: 127 year: 2017 ident: e_1_3_3_8_2 article-title: Comparative genomics of the human, macaque and mouse major histocompatibility complex publication-title: Immunology doi: 10.1111/imm.12624 – volume: 276 start-page: 657 year: 2009 ident: e_1_3_3_39_2 article-title: A new theory of MHC evolution: Beyond selection on the immune genes publication-title: Proc. Biol. Sci. – volume: 277 start-page: 979 year: 2010 ident: e_1_3_3_4_2 article-title: How pathogens drive genetic diversity: MHC, mechanisms and misunderstandings publication-title: Proc. Biol. Sci. – volume: 9 start-page: e97282 year: 2014 ident: e_1_3_3_10_2 article-title: HLA diversity in the 1000 genomes dataset publication-title: PLoS One doi: 10.1371/journal.pone.0097282 – volume: 38 start-page: 1166 year: 2006 ident: e_1_3_3_37_2 article-title: A high-resolution HLA and SNP haplotype map for disease association studies in the extended human MHC publication-title: Nat. Genet. doi: 10.1038/ng1885 – volume: 11 start-page: e1004204 year: 2015 ident: e_1_3_3_36_2 article-title: Power laws for heavy-tailed distributions: Modeling allele and haplotype diversity for the national marrow donor program publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1004204 – volume: 4 start-page: e1000184 year: 2008 ident: e_1_3_3_16_2 article-title: Is mate choice in humans MHC-dependent? publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000184 – volume: 96 start-page: 7 year: 2006 ident: e_1_3_3_3_2 article-title: The evolutionary ecology of the major histocompatibility complex publication-title: Heredity doi: 10.1038/sj.hdy.6800724 – volume: 143 start-page: 181 year: 1995 ident: e_1_3_3_27_2 article-title: Pathogen-based models favoring MHC genetic diversity publication-title: Immunol. Rev. doi: 10.1111/j.1600-065X.1995.tb00675.x – volume: 3 start-page: 1552 year: 2013 ident: e_1_3_3_23_2 article-title: Duplication and population dynamics shape historic patterns of selection and genetic variation at the major histocompatibility complex in rodents publication-title: Ecol. Evol. doi: 10.1002/ece3.567 – volume: 68 start-page: 401 year: 2016 ident: e_1_3_3_32_2 article-title: HLA class I molecular variation and peptide-binding properties suggest a model of joint divergent asymmetric selection publication-title: Immunogenetics doi: 10.1007/s00251-016-0918-x – volume: 13 start-page: e1005693 year: 2017 ident: e_1_3_3_33_2 article-title: HLA class I haplotype diversity is consistent with selection for frequent existing haplotypes publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1005693 – volume: 23 start-page: 5151 year: 2014 ident: e_1_3_3_17_2 article-title: A quantitative review of MHC-based mating preference: The role of diversity and dissimilarity publication-title: Mol. Ecol. doi: 10.1111/mec.12934 – volume: 124 start-page: 967 year: 1990 ident: e_1_3_3_25_2 article-title: Allelic genealogy under overdominant and frequency-dependent selection and polymorphism of major histocompatibility complex loci publication-title: Genetics doi: 10.1093/genetics/124.4.967 – volume: 56 start-page: 683 year: 2005 ident: e_1_3_3_7_2 article-title: Comparative genomics of major histocompatibility complexes publication-title: Immunogenetics doi: 10.1007/s00251-004-0717-7 – volume: 281 start-page: 20141662 year: 2014 ident: e_1_3_3_20_2 article-title: Sexual selection and the evolutionary dynamics of the major histocompatibility complex publication-title: Proc. Biol. Sci. – volume: 6 start-page: 32550 year: 2016 ident: e_1_3_3_22_2 article-title: Influence of HLA on human partnership and sexual satisfaction publication-title: Sci. Rep. doi: 10.1038/srep32550 – volume: 189 start-page: 1029 year: 2011 ident: e_1_3_3_34_2 article-title: Multiple adaptive substitutions during evolution in novel environments publication-title: Genetics doi: 10.1534/genetics.111.134163 – volume: 65 start-page: 1 year: 2001 ident: e_1_3_3_29_2 article-title: How selection shapes variation of the human major histocompatibility complex: A review publication-title: Ann. Hum. Genet. doi: 10.1046/j.1469-1809.2001.6510001.x – volume: 26 start-page: 668 year: 2017 ident: e_1_3_3_18_2 article-title: Patterns of MHC-dependent mate selection in humans and nonhuman primates: A meta-analysis publication-title: Mol. Ecol. doi: 10.1111/mec.13920 – reference: 31662471 - Proc Natl Acad Sci U S A. 2019 Nov 19;116(47):23386-23387 – reference: 31662470 - Proc Natl Acad Sci U S A. 2019 Nov 19;116(47):23388-23389 |
SSID | ssj0009580 |
Score | 2.4008675 |
Snippet | The major histocompatibility complex (MHC) is a central component of the vertebrate immune system and hence evolves in the regime of a host–pathogen... The major histocompatibility complex (MHC) is a central component of the vertebrate immune system and hence evolves in the regime of a host-pathogen... The major histocompatibility complex (MHC), in particular, the human leukocyte antigen (HLA) loci encode key components of the immune system and include some... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 14098 |
SubjectTerms | Alleles Biological Sciences Decay Evolution Evolution, Molecular Female Fitness Frequency dependence Frequency distribution Genetic Variation - genetics Genetics, Population Haplotypes Haplotypes - genetics Haplotypes - immunology Histocompatibility antigen HLA HLA Antigens - genetics HLA Antigens - immunology Human populations Humans Immune system Major histocompatibility complex Major Histocompatibility Complex - genetics Major Histocompatibility Complex - immunology Male Phenotype Physical Fitness PNAS Plus Polymorphism, Genetic Population genetics Reproductive fitness Selection, Genetic Substructures Tissue Donors Vertebrates |
Title | Multiplicative fitness, rapid haplotype discovery, and fitness decay explain evolution of human MHC |
URI | https://www.jstor.org/stable/26760992 https://www.ncbi.nlm.nih.gov/pubmed/31227609 https://www.proquest.com/docview/2268682096 https://www.proquest.com/docview/2245646182 https://pubmed.ncbi.nlm.nih.gov/PMC6628782 |
Volume | 116 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1091-6490 dateEnd: 20250401 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: HH5 dateStart: 19150101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1091-6490 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: KQ8 dateStart: 19150101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1091-6490 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: KQ8 dateStart: 19150115 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1091-6490 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: DIK dateStart: 19150101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1091-6490 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1091-6490 dateEnd: 20250401 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: RPM dateStart: 19150101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6VcuGCKFAIFLRIHIpcB8ferNfHqioERKIeWimcon3YakRkR3lJ5b_x35h9eO1EqVS4WJE93tiez7Oz45lvEPqoUsESAe83IVESEtXjoUhjESohRRHzlBJpEmRHdHBDvo_744ODP62spfVKdOXvvXUl_6NV2Ad61VWy_6BZPyjsgN-gX9iChmH7IB0PbTagCbtp9u7pShsu_dQWfD5VwS2fzyoTZNXFtzpZ867O1nSygcolv9M8_zOuyUM27nqND2ni-8PBRduBvfIT3rJOLxjV8cTzpjrFmYxlEAZXo6bX8Y9K_Ko2Ll7ra2uCy26TF7Sx5dp5882omhniyJ_rxTT45iWHvG7ibZkQ2uELUzEVRlnbJMcwTRJbSN3NrRUGJyakxPYR9Wba1mQ6PLqKcmt1NWkXa03hOneV7J0fwKDppsYlX3Z153eS0HrYLSbunRnS5y2aL_ZpMtEDTJoBHqHHcUqpbqDxddxrcT4zWwHl7rBmlkqTzztXsOUU2bzYfSue3cTdlid0_Qw9dUsYfG7xeIQO8vI5Oqo1jk8dk_mnF0huAxQ70J1hA0_s4Yk9PM8wIKKWwwac2IETe3DiqsAGnBjA-RLdfLm8vhiErqtHKME5XYVEZGkiSF_KHByonopollOeiKgATzWOFOkL3bI1ycFrYoor1tOskYxJUkRFoVRyjA7LqsxfIxxHok8kEyxKc5IVNFPa18okS3gGfn7cQd36sU6ko7zXnVdmk3sU2UGn_oS5ZXu5X_TY6MnLxTSlsNyCPz2pFTdxtmI5gUUOo-BsZ3DeB38YLLn-PMfLvFprGU3tRGHB30GvrJ794EkvjvXwHZRuIcALaJb47SPl9NawxQMuGSwD3jz81t6iJ82beoIOV4t1_g5c75V4bwD-FwMX2LQ |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiplicative+fitness%2C+rapid+haplotype+discovery%2C+and+fitness+decay+explain+evolution+of+human+MHC&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Lobkovsky%2C+Alexander+E.&rft.au=Levi%2C+Lee&rft.au=Wolf%2C+Yuri+I.&rft.au=Maiers%2C+Martin&rft.date=2019-07-09&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=116&rft.issue=28&rft.spage=14098&rft.epage=14104&rft_id=info:doi/10.1073%2Fpnas.1714436116&rft.externalDBID=n%2Fa&rft.externalDocID=10_1073_pnas_1714436116 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |