On the Applicability of Quantum Machine Learning

In this article, we investigate the applicability of quantum machine learning for classification tasks using two quantum classifiers from the Qiskit Python environment: the variational quantum circuit and the quantum kernel estimator (QKE). We provide a first evaluation on the performance of these c...

Full description

Saved in:
Bibliographic Details
Published inEntropy (Basel, Switzerland) Vol. 25; no. 7; p. 992
Main Authors Raubitzek, Sebastian, Mallinger, Kevin
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 28.06.2023
MDPI
Subjects
Online AccessGet full text
ISSN1099-4300
1099-4300
DOI10.3390/e25070992

Cover

Abstract In this article, we investigate the applicability of quantum machine learning for classification tasks using two quantum classifiers from the Qiskit Python environment: the variational quantum circuit and the quantum kernel estimator (QKE). We provide a first evaluation on the performance of these classifiers when using a hyperparameter search on six widely known and publicly available benchmark datasets and analyze how their performance varies with the number of samples on two artificially generated test classification datasets. As quantum machine learning is based on unitary transformations, this paper explores data structures and application fields that could be particularly suitable for quantum advantages. Hereby, this paper introduces a novel dataset based on concepts from quantum mechanics using the exponential map of a Lie algebra. This dataset will be made publicly available and contributes a novel contribution to the empirical evaluation of quantum supremacy. We further compared the performance of VQC and QKE on six widely applicable datasets to contextualize our results. Our results demonstrate that the VQC and QKE perform better than basic machine learning algorithms, such as advanced linear regression models (Ridge and Lasso). They do not match the accuracy and runtime performance of sophisticated modern boosting classifiers such as XGBoost, LightGBM, or CatBoost. Therefore, we conclude that while quantum machine learning algorithms have the potential to surpass classical machine learning methods in the future, especially when physical quantum infrastructure becomes widely available, they currently lag behind classical approaches. Our investigations also show that classical machine learning approaches have superior performance classifying datasets based on group structures, compared to quantum approaches that particularly use unitary processes. Furthermore, our findings highlight the significant impact of different quantum simulators, feature maps, and quantum circuits on the performance of the employed quantum estimators. This observation emphasizes the need for researchers to provide detailed explanations of their hyperparameter choices for quantum machine learning algorithms, as this aspect is currently overlooked in many studies within the field. To facilitate further research in this area and ensure the transparency of our study, we have made the complete code available in a linked GitHub repository.
AbstractList In this article, we investigate the applicability of quantum machine learning for classification tasks using two quantum classifiers from the Qiskit Python environment: the variational quantum circuit and the quantum kernel estimator (QKE). We provide a first evaluation on the performance of these classifiers when using a hyperparameter search on six widely known and publicly available benchmark datasets and analyze how their performance varies with the number of samples on two artificially generated test classification datasets. As quantum machine learning is based on unitary transformations, this paper explores data structures and application fields that could be particularly suitable for quantum advantages. Hereby, this paper introduces a novel dataset based on concepts from quantum mechanics using the exponential map of a Lie algebra. This dataset will be made publicly available and contributes a novel contribution to the empirical evaluation of quantum supremacy. We further compared the performance of VQC and QKE on six widely applicable datasets to contextualize our results. Our results demonstrate that the VQC and QKE perform better than basic machine learning algorithms, such as advanced linear regression models (Ridge and Lasso). They do not match the accuracy and runtime performance of sophisticated modern boosting classifiers such as XGBoost, LightGBM, or CatBoost. Therefore, we conclude that while quantum machine learning algorithms have the potential to surpass classical machine learning methods in the future, especially when physical quantum infrastructure becomes widely available, they currently lag behind classical approaches. Our investigations also show that classical machine learning approaches have superior performance classifying datasets based on group structures, compared to quantum approaches that particularly use unitary processes. Furthermore, our findings highlight the significant impact of different quantum simulators, feature maps, and quantum circuits on the performance of the employed quantum estimators. This observation emphasizes the need for researchers to provide detailed explanations of their hyperparameter choices for quantum machine learning algorithms, as this aspect is currently overlooked in many studies within the field. To facilitate further research in this area and ensure the transparency of our study, we have made the complete code available in a linked GitHub repository.
In this article, we investigate the applicability of quantum machine learning for classification tasks using two quantum classifiers from the Qiskit Python environment: the variational quantum circuit and the quantum kernel estimator (QKE). We provide a first evaluation on the performance of these classifiers when using a hyperparameter search on six widely known and publicly available benchmark datasets and analyze how their performance varies with the number of samples on two artificially generated test classification datasets. As quantum machine learning is based on unitary transformations, this paper explores data structures and application fields that could be particularly suitable for quantum advantages. Hereby, this paper introduces a novel dataset based on concepts from quantum mechanics using the exponential map of a Lie algebra. This dataset will be made publicly available and contributes a novel contribution to the empirical evaluation of quantum supremacy. We further compared the performance of VQC and QKE on six widely applicable datasets to contextualize our results. Our results demonstrate that the VQC and QKE perform better than basic machine learning algorithms, such as advanced linear regression models (Ridge and Lasso). They do not match the accuracy and runtime performance of sophisticated modern boosting classifiers such as XGBoost, LightGBM, or CatBoost. Therefore, we conclude that while quantum machine learning algorithms have the potential to surpass classical machine learning methods in the future, especially when physical quantum infrastructure becomes widely available, they currently lag behind classical approaches. Our investigations also show that classical machine learning approaches have superior performance classifying datasets based on group structures, compared to quantum approaches that particularly use unitary processes. Furthermore, our findings highlight the significant impact of different quantum simulators, feature maps, and quantum circuits on the performance of the employed quantum estimators. This observation emphasizes the need for researchers to provide detailed explanations of their hyperparameter choices for quantum machine learning algorithms, as this aspect is currently overlooked in many studies within the field. To facilitate further research in this area and ensure the transparency of our study, we have made the complete code available in a linked GitHub repository.In this article, we investigate the applicability of quantum machine learning for classification tasks using two quantum classifiers from the Qiskit Python environment: the variational quantum circuit and the quantum kernel estimator (QKE). We provide a first evaluation on the performance of these classifiers when using a hyperparameter search on six widely known and publicly available benchmark datasets and analyze how their performance varies with the number of samples on two artificially generated test classification datasets. As quantum machine learning is based on unitary transformations, this paper explores data structures and application fields that could be particularly suitable for quantum advantages. Hereby, this paper introduces a novel dataset based on concepts from quantum mechanics using the exponential map of a Lie algebra. This dataset will be made publicly available and contributes a novel contribution to the empirical evaluation of quantum supremacy. We further compared the performance of VQC and QKE on six widely applicable datasets to contextualize our results. Our results demonstrate that the VQC and QKE perform better than basic machine learning algorithms, such as advanced linear regression models (Ridge and Lasso). They do not match the accuracy and runtime performance of sophisticated modern boosting classifiers such as XGBoost, LightGBM, or CatBoost. Therefore, we conclude that while quantum machine learning algorithms have the potential to surpass classical machine learning methods in the future, especially when physical quantum infrastructure becomes widely available, they currently lag behind classical approaches. Our investigations also show that classical machine learning approaches have superior performance classifying datasets based on group structures, compared to quantum approaches that particularly use unitary processes. Furthermore, our findings highlight the significant impact of different quantum simulators, feature maps, and quantum circuits on the performance of the employed quantum estimators. This observation emphasizes the need for researchers to provide detailed explanations of their hyperparameter choices for quantum machine learning algorithms, as this aspect is currently overlooked in many studies within the field. To facilitate further research in this area and ensure the transparency of our study, we have made the complete code available in a linked GitHub repository.
Audience Academic
Author Mallinger, Kevin
Raubitzek, Sebastian
AuthorAffiliation 1 Data Science Research Unit, TU Wien, Favoritenstrasse 9-11/194, 1040 Vienna, Austria
2 SBA Research gGmbH, Floragasse 7/5.OG, 1040 Vienna, Austria
AuthorAffiliation_xml – name: 1 Data Science Research Unit, TU Wien, Favoritenstrasse 9-11/194, 1040 Vienna, Austria
– name: 2 SBA Research gGmbH, Floragasse 7/5.OG, 1040 Vienna, Austria
Author_xml – sequence: 1
  givenname: Sebastian
  orcidid: 0000-0003-2206-9263
  surname: Raubitzek
  fullname: Raubitzek, Sebastian
– sequence: 2
  givenname: Kevin
  orcidid: 0000-0002-3031-505X
  surname: Mallinger
  fullname: Mallinger, Kevin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37509939$$D View this record in MEDLINE/PubMed
BookMark eNp9kluP1CAUgIlZ4170wT9gmviiJrMLlLbwZCYbL5uM2ZjoMzlcOsOEQqWtZv691K6T3Y0RHiDw8R3OgXN0EmKwCL0k-LIsBb6ytMINFoI-QWckjytWYnxyb36KzodhjzEtKamfodOyqfJWKc4Qvg3FuLPFuu-906Ccd-OhiG3xdYIwTl3xBfTOBVtsLKTgwvY5etqCH-yLu_ECff_44dv159Xm9tPN9Xqz0lk9rhhnGtOKUqBKEcqhaQAbrnRtNLctJy1muqp5C1xQUVHDKFdMKE4bzKAR5QW6Wbwmwl72yXWQDjKCk38WYtpKSKPT3kpMiSXGWEV1zbSwQiuuTI6imbGas-x6t7im0MPhF3h_FBIs5xLKYwkz_H6B-0l11mgbxgT-wQ0e7gS3k9v4M6vKZm7Z8ObOkOKPyQ6j7NygrfcQbJwGSTljNSdVU2f09SN0H6cUcmFnqsRVfrFZeLlQW8jputDGHFjnbmzndP4Lrcvr66YSmBFCZu2r-zkcL__33TPwdgF0isOQbPvfglw9YrUbYXRxTt_5f5z4DT4syV4
CitedBy_id crossref_primary_10_1016_j_mtquan_2024_100007
crossref_primary_10_1016_j_jisa_2024_103850
crossref_primary_10_1016_j_physleta_2024_129895
Cites_doi 10.1007/BF00994018
10.1080/00107514.2014.964942
10.1017/CBO9780511976667
10.1109/ICCCMLA56841.2022.9989137
10.21236/ADA164453
10.1080/00401706.1970.10488634
10.1201/9780429499210
10.1023/A:1007608224229
10.3390/e25020287
10.1186/s12885-017-3877-1
10.1017/CBO9780511976186
10.1103/PhysRevLett.113.130503
10.1214/aos/1013203451
10.1038/s42254-021-00348-9
10.1145/2939672.2939785
10.1103/PhysRevLett.122.040504
10.1103/PhysRevA.98.032309
10.1111/j.2517-6161.1996.tb02080.x
10.1038/nature23474
10.1038/s41586-019-0980-2
10.1007/BF02344684
10.1038/s41598-018-20403-3
10.3390/app11146427
10.1007/JHEP02(2021)212
10.1007/s12020-016-0893-x
10.1007/978-0-387-39940-9
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
NPM
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
HCIFZ
KR7
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/e25070992
DatabaseName CrossRef
PubMed
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central Database Suite (ProQuest)
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
SciTech Premium Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ: Directory of Open Access Journal (DOAJ)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

MEDLINE - Academic
PubMed


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ: Directory of Open Access Journal (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Architecture
EISSN 1099-4300
ExternalDocumentID oai_doaj_org_article_021e1ddeb2c64c9e9cb8bd8efc4dec84
10.3390/e25070992
PMC10377777
A759041116
37509939
10_3390_e25070992
Genre Journal Article
GrantInformation_xml – fundername: TU Wien
GroupedDBID 29G
2WC
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACIWK
ACUHS
ADBBV
AEGXH
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
C1A
CCPQU
CH8
CITATION
CS3
DU5
E3Z
ESX
F5P
GROUPED_DOAJ
GX1
HCIFZ
HH5
IAO
IPNFZ
ITC
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
RIG
RNS
RPM
TR2
TUS
XSB
~8M
NPM
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
KR7
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c509t-484c02522a2bb128a77a0d8bc6dc8ef81f04c568fa892952d428b49b82704a793
IEDL.DBID BENPR
ISSN 1099-4300
IngestDate Fri Oct 03 12:52:17 EDT 2025
Sun Oct 26 04:03:16 EDT 2025
Tue Sep 30 17:12:54 EDT 2025
Fri Sep 05 14:05:01 EDT 2025
Fri Jul 25 10:45:08 EDT 2025
Mon Oct 20 17:18:43 EDT 2025
Thu Apr 03 06:58:36 EDT 2025
Thu Oct 16 04:47:31 EDT 2025
Thu Apr 24 23:07:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords variational quantum circuit
Lasso
LightGBM
neural networks
classification
Qiskit
quantum machine learning
XGBoost
quantum computing
quantum kernel estimator
boost classifiers
CatBoost
Ridge
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-484c02522a2bb128a77a0d8bc6dc8ef81f04c568fa892952d428b49b82704a793
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3031-505X
0000-0003-2206-9263
OpenAccessLink https://www.proquest.com/docview/2843052327?pq-origsite=%requestingapplication%&accountid=15518
PMID 37509939
PQID 2843052327
PQPubID 2032401
ParticipantIDs doaj_primary_oai_doaj_org_article_021e1ddeb2c64c9e9cb8bd8efc4dec84
unpaywall_primary_10_3390_e25070992
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10377777
proquest_miscellaneous_2844681576
proquest_journals_2843052327
gale_infotracacademiconefile_A759041116
pubmed_primary_37509939
crossref_primary_10_3390_e25070992
crossref_citationtrail_10_3390_e25070992
PublicationCentury 2000
PublicationDate 20230628
PublicationDateYYYYMMDD 2023-06-28
PublicationDate_xml – month: 6
  year: 2023
  text: 20230628
  day: 28
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Entropy (Basel, Switzerland)
PublicationTitleAlternate Entropy (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Schuld (ref_3) 2015; 56
Matafome (ref_34) 2016; 53
Loh (ref_35) 1997; 7
Jossinet (ref_38) 2000; 38
ref_14
ref_13
ref_33
ref_10
ref_32
Pedregosa (ref_16) 2011; 12
Mitarai (ref_19) 2018; 98
Blance (ref_8) 2021; 2021
ref_18
ref_17
ref_39
ref_15
ref_37
Cortes (ref_29) 1995; 20
Schuld (ref_31) 2019; 122
ref_25
ref_24
ref_23
ref_20
Rebentrost (ref_21) 2014; 113
ref_41
ref_1
Schuld (ref_40) 2018; 8
Biamonte (ref_2) 2017; 549
Cerezo (ref_5) 2021; 3
Tibshirani (ref_12) 1996; 58
ref_28
ref_27
ref_26
Friedman (ref_30) 2001; 29
ref_9
Hoerl (ref_11) 1970; 12
Temme (ref_4) 2019; 567
Lim (ref_36) 2000; 40
ref_7
ref_6
Liu (ref_22) 2019; 100
References_xml – volume: 12
  start-page: 282
  year: 2011
  ident: ref_16
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 20
  start-page: 273
  year: 1995
  ident: ref_29
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– ident: ref_9
– volume: 56
  start-page: 172
  year: 2015
  ident: ref_3
  article-title: An introduction to quantum machine learning
  publication-title: Contemp. Phys.
  doi: 10.1080/00107514.2014.964942
– ident: ref_1
  doi: 10.1017/CBO9780511976667
– ident: ref_32
– ident: ref_24
– ident: ref_26
– ident: ref_7
  doi: 10.1109/ICCCMLA56841.2022.9989137
– ident: ref_15
  doi: 10.21236/ADA164453
– volume: 12
  start-page: 55
  year: 1970
  ident: ref_11
  article-title: Ridge regression: Biased estimation for nonorthogonal problems
  publication-title: Technometrics
  doi: 10.1080/00401706.1970.10488634
– ident: ref_39
  doi: 10.1201/9780429499210
– volume: 100
  start-page: 042328
  year: 2019
  ident: ref_22
  article-title: Quantum machine learning for quantum anomaly detection
  publication-title: Phys. Rev. A
– volume: 40
  start-page: 203
  year: 2000
  ident: ref_36
  article-title: A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms
  publication-title: Mach. Learn.
  doi: 10.1023/A:1007608224229
– ident: ref_37
– ident: ref_14
– ident: ref_18
  doi: 10.3390/e25020287
– ident: ref_33
  doi: 10.1186/s12885-017-3877-1
– ident: ref_23
– ident: ref_41
  doi: 10.1017/CBO9780511976186
– volume: 113
  start-page: 130503
  year: 2014
  ident: ref_21
  article-title: Quantum support vector machine for big data classification
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.130503
– volume: 29
  start-page: 1189
  year: 2001
  ident: ref_30
  article-title: Greedy function approximation: A gradient boosting machine
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1013203451
– volume: 3
  start-page: 625
  year: 2021
  ident: ref_5
  article-title: Variational quantum algorithms
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-021-00348-9
– ident: ref_10
  doi: 10.1145/2939672.2939785
– volume: 122
  start-page: 040504
  year: 2019
  ident: ref_31
  article-title: Quantum Machine Learning in Feature Hilbert Spaces
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.040504
– volume: 98
  start-page: 032309
  year: 2018
  ident: ref_19
  article-title: Quantum circuit learning
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.98.032309
– ident: ref_25
– volume: 58
  start-page: 267
  year: 1996
  ident: ref_12
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Stat. Soc. Ser. B (Methodol.)
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: ref_27
– volume: 549
  start-page: 195
  year: 2017
  ident: ref_2
  article-title: Quantum machine learning
  publication-title: Nature
  doi: 10.1038/nature23474
– volume: 567
  start-page: 209
  year: 2019
  ident: ref_4
  article-title: Supervised learning with quantum-enhanced feature spaces
  publication-title: Nature
  doi: 10.1038/s41586-019-0980-2
– volume: 38
  start-page: 26
  year: 2000
  ident: ref_38
  article-title: Classification of breast tissue by electrical impedance spectroscopy
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/BF02344684
– volume: 8
  start-page: 2772
  year: 2018
  ident: ref_40
  article-title: Quantum ensembles of quantum classifiers
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-20403-3
– ident: ref_13
– ident: ref_6
  doi: 10.3390/app11146427
– volume: 2021
  start-page: 212
  year: 2021
  ident: ref_8
  article-title: Quantum machine learning for particle physics using a variational quantum classifier
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP02(2021)212
– volume: 53
  start-page: 433
  year: 2016
  ident: ref_34
  article-title: Hyperresistinemia and metabolic dysregulation: A risky crosstalk in obese breast cancer
  publication-title: Endocrine
  doi: 10.1007/s12020-016-0893-x
– ident: ref_17
– ident: ref_20
– ident: ref_28
  doi: 10.1007/978-0-387-39940-9
– volume: 7
  start-page: 815
  year: 1997
  ident: ref_35
  article-title: Split selection methods for classification trees
  publication-title: Stat. Sin.
SSID ssj0023216
Score 2.4091032
Snippet In this article, we investigate the applicability of quantum machine learning for classification tasks using two quantum classifiers from the Qiskit Python...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 992
SubjectTerms Algorithms
Analysis
Architecture
Artificial intelligence
Circuits
Classification
Classifiers
Data mining
Data structures
Datasets
Empirical analysis
Experiments
Feature maps
Integrated circuits
Lasso
Libraries
Lie groups
Machine learning
Neural networks
Performance evaluation
Phase transitions
Qiskit
Quantum computing
quantum kernel estimator
quantum machine learning
Quantum mechanics
Quantum physics
Regression models
Ridge
Semiconductor chips
Simulators
variational quantum circuit
SummonAdditionalLinks – databaseName: DOAJ: Directory of Open Access Journal (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB0hLuWCqMpHKKBQKtFLRGJPHPu4IBCqRBFSkbhZtuNApSW7ajdC_HvGSTbaLaBemmPig_3G4zcTj58BvppM2twbm1D0yRMsFUsMVjLxWITNQiG8C-edr36Iy1v8fpffLVz1FWrCOnngDrgT4iCfkQ9a5gQ65ZWz0pbSVw5L72SrBJpKNU-m-lSLs0x0OkKckvoTT0RfUCzEltinFel_vRQvcNHfdZIfmnpqnp_MeLxAQhcbsN5Hj_Go6_VHWPH1J0iv65jCuHjU7UW31a7P8aSKbxqCrXmMr9qCSR_3Wqr3m3B7cf7z7DLpL0JIHPH5LEGJjmITxgyzlgjFFIVJS2mdKB0hIbMqRZcLWRlJ0U7OSsopLCorWZGiIQ_cgtV6UvsdiLmqstQIj8gNlpRumdwrm7uKOY7K5xF8mwOkXa8SHi6rGGvKFgKWesAygi9D02knjfFWo9OA8tAgqFm3L8jGurex_peNIzgONtLB56gzzvRHB2hIQb1Kj4pcpUirtohgb25G3TvjH00MzMPfb1ZEcDh8JjcKeyOm9pOmbYNCZpR9RbDdWX3oMw9RleIqArk0H5YGtfyl_vXQSnWHU5jhieBomDrvg7X7P8D6DGuMHCCUszG5B6uz343fp8BpZg9aH3kBUqUXCA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB_k-qAvVvErtkr8AH1Jk-xXdp_kFEsRWhU8qE_L7mZTi2fuaC9K_eudTfZCryqI95jMQSYzs_ObndlfAJ6bUlrujc0QfdKM1YpkhjUy86wKzUIhvAvnnQ-PxMGMvTvmx3HD7TyOVWIpftov0qFrkzFaFDnheZUrRfJl3bz6HneSSiHRmxQJ5_e2BEcsPoGt2dGH6ee-xRn_O9AJUaztc4_5vsLrZCMJ9Vz9v6_Il1LS1XHJ6127NBc_zHx-KRftb4NeazGMoHzd61Z2z_28QvD4_2regpsRpqbTwa9uwzXf3oHifZsiXkynQ9O7H6u9SBdN-rFD-3Tf0sN-MtOnkbT15C7M9t9-enOQxS8uZA6BwypjkjkEQYQYYi1mLlNVpqildaJ20jeybArmuJCNkQirOKmxeLFMWUmqghkM9XswaRetfwApVU1ZGOEZo4bVWNcZ7pXlriGOMuV5Ai_XJtAu0pGHr2LMNZYlwVp6tFYCT0fR5cDB8Seh18GOo0Cgze4vLM5OdIxCjYDGl7igW-IEc8orZ6WtUTPHau8kS-BF8AIdghsfxpl4RgFVCjRZelpxVTBMDyKB3bWj6Bj15xpTPQ3b7KRK4Ml4G-M1NGFM6xddL8OELLHMS-D-4FfjM9MA3xRVCcgNj9tQavNOe_ql5wQPxz3DL4Fno3P-_WU9_CepHbhBENKFwTgid2GyOuv8I4RgK_s4xtkvYKoppQ
  priority: 102
  providerName: Unpaywall
Title On the Applicability of Quantum Machine Learning
URI https://www.ncbi.nlm.nih.gov/pubmed/37509939
https://www.proquest.com/docview/2843052327
https://www.proquest.com/docview/2844681576
https://pubmed.ncbi.nlm.nih.gov/PMC10377777
https://www.mdpi.com/1099-4300/25/7/992/pdf?version=1687949209
https://doaj.org/article/021e1ddeb2c64c9e9cb8bd8efc4dec84
UnpaywallVersion publishedVersion
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: HH5
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: KQ8
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ: Directory of Open Access Journal (DOAJ)
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: ABDBF
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: GX1
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: M~E
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: RPM
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central Database Suite (ProQuest)
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: BENPR
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: 8FG
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB612wMICfEsgbIKDwkuURPHcewDQinqtkLqUhArLafIdpyCtGSXshHqv2cmL3Z57WEPiQ_2ZB7feOxvAJ7rSJrEaRMg-owDXigWaF7KwPGUioVCOEv3nc-m4nTG386T-Q5M-7swdKyy94mNoy6WlvbID9GNxrSFydLXq28BdY2i6mrfQkN3rRWKVw3F2C7sMWLGGsHe0fH0_MOQgsUsEi2_UIzJ_qFDAJAiRmJbUakh7__TRW_EqN_PT16rq5W--qEXi43gNLkFNztU6WetGtyGHVfdgRvZRpHgLoTvKh_Rnp-1JevmUOyVvyz99zVKt_7qnzXnKp3fUa5e3IPZ5Pjjm9Og65cQWAz764BLbhHCMKaZMRh3dJrqsJDGisJKV8qoDLlNhCy1RFCUsAJTD8OVkSwNuUZDvQ-jalm5B-DHqoxCLRznseYFZmU6ccoktmQ25solHrzs5ZXbjkycelosckwqSLT5IFoPng5DVy2Dxt8GHZHQhwFEet08WF5e5J0N5QhHXITu2DAruFVOWSNNgSuzvHBWcg9e0CfLyTRxMlZ3NwxwSURylWdpokKOzl14cNB_1byz2e_5Lw3z4MnwGq2NSii6csu6GcOFjDBJ82C_VYJhzjGBLxUrD-SWemwtavtN9eVzw-hNlzXp58GzQZP-LayH_5_9I7jOUNPpPBuTBzBaX9buMSKntRnDrpycjDujGDf7D_h_Mo_w2Wx6nn36CSgFHBs
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V7aEICfEmpUB4CS5RE8dx7EOFttBqS7vLQ63UW7Adp1RakqXdqNo_x29jnDhhl9etOcY-2OPxzDeeF8ALGXGVGKkCRJ9xQHNBAkkLHhiaWmchY0bbfOfRmA2P6fuT5GQFfnS5MDasspOJjaDOK23fyLdQjMb2CZOkb6bfA9s1ynpXuxYa0rVWyLebEmMusePAzC_RhLvY3n-H5_2SkL3do7fDwHUZCDQqy1lAOdWo-AmRRCmU1jJNZZhzpVmuuSl4VIRUJ4wXkiOUSEiOgF1RoThJQypTW4wJVcAajalA429tZ3f88XNv8sUkYm09ozgW4ZZBwJEiJiNLWrBpFvCnSljQib_Ha67X5VTOL-VksqAM927CDYdi_UHLdrdgxZS34fpgwSlxB8IPpY_o0h-0LvImCHfuV4X_qcbTrL_5oyaO0_iuxOvpXTi-Esrdg9WyKs0D8GNRRKFkhtJY0hytQJkYoRJdEI10NYkHrzt6ZdoVL7c9NCYZGjGWtFlPWg-e9VOnbcWOv03asUTvJ9gi282P6vw0c3c2Q_hjIhT_imhGtTBCK65y3JmmudGcevDKHllmRQEuRkuX0YBbskW1skGaiJCiMmEebHanmjkZcZH94mgPnvbDeLuty0aWpqqbOZTxCI1CD-63TNCvObZgT8TCA77EHkubWh4pz742FcRtcqj9PHjec9K_ibXx_9U_gfXh0egwO9wfHzyEawS53sbSEb4Jq7Pz2jxC1DZTj93V8OHLVd_GnxKlU1E
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB5VRQJUCXETKBAuwUvUxHES-wGhhbK0lBaQWqlvxnacFmlJlnajav8av46ZXOxyvTWPiR_s8RzfZC6ApzoSJnHaBIg-44DnkgWaFyJwPKNgYZo6S_XOu3vp1gF_f5gcrsCPvhaG0ip7ndgo6ryy9I98A9VoTL8w0VUvurSIT5vjV9PvAU2QokhrP06jZZEdNz9D9-305fYm3vUzxsZv999sBd2EgcCioZwFXHCLRp8xzYxBTa2zTIe5MDbNrXCFiIqQ2yQVhRYIIxKWI1g3XBrBspDrjBoxofq_kFEXd6pSH78bnL2YRWnbySiOZbjhEGpkiMbYkv1rxgT8aQwWrOHvmZqX6nKq52d6Mlkwg-OrcKXDr_6oZbhrsOLK67A2WghH3IDwY-kjrvRHbXC8Sb-d-1Xhf67xHutv_m6Twen8rrnr0U04OBe63YLVsirdHfBjWUShTh3nseY5-n86cdIktmA25tIlHrzo6aVs17acpmdMFLovRFo1kNaDx8PSadur42-LXhPRhwXUXrt5UZ0cqU5aFQIfF6HiN8ym3EonrREmx5NZnjsruAfP6coUKQHcjNVdLQMeidppqVGWyJCjGUk9WO9vVXXa4VT94mUPHg2fUa4pWKNLV9XNGp6KCN1BD263TDDsOSaYJ2PpgVhij6VDLX8pvx43vcOpLJQeD54MnPRvYt39_-4fwkWUQfVhe2_nHlxmyPSURMfEOqzOTmp3H-HazDxo5MKHL-ctiD8BxUlQ6w
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB_k-qAvVvErtkr8AH1Jk-xXdp_kFEsRWhU8qE_L7mZTi2fuaC9K_eudTfZCryqI95jMQSYzs_ObndlfAJ6bUlrujc0QfdKM1YpkhjUy86wKzUIhvAvnnQ-PxMGMvTvmx3HD7TyOVWIpftov0qFrkzFaFDnheZUrRfJl3bz6HneSSiHRmxQJ5_e2BEcsPoGt2dGH6ee-xRn_O9AJUaztc4_5vsLrZCMJ9Vz9v6_Il1LS1XHJ6127NBc_zHx-KRftb4NeazGMoHzd61Z2z_28QvD4_2regpsRpqbTwa9uwzXf3oHifZsiXkynQ9O7H6u9SBdN-rFD-3Tf0sN-MtOnkbT15C7M9t9-enOQxS8uZA6BwypjkjkEQYQYYi1mLlNVpqildaJ20jeybArmuJCNkQirOKmxeLFMWUmqghkM9XswaRetfwApVU1ZGOEZo4bVWNcZ7pXlriGOMuV5Ai_XJtAu0pGHr2LMNZYlwVp6tFYCT0fR5cDB8Seh18GOo0Cgze4vLM5OdIxCjYDGl7igW-IEc8orZ6WtUTPHau8kS-BF8AIdghsfxpl4RgFVCjRZelpxVTBMDyKB3bWj6Bj15xpTPQ3b7KRK4Ml4G-M1NGFM6xddL8OELLHMS-D-4FfjM9MA3xRVCcgNj9tQavNOe_ql5wQPxz3DL4Fno3P-_WU9_CepHbhBENKFwTgid2GyOuv8I4RgK_s4xtkvYKoppQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Applicability+of+Quantum+Machine+Learning&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Raubitzek%2C+Sebastian&rft.au=Mallinger%2C+Kevin&rft.date=2023-06-28&rft.pub=MDPI&rft.eissn=1099-4300&rft.volume=25&rft.issue=7&rft_id=info:doi/10.3390%2Fe25070992&rft.externalDocID=PMC10377777
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon