On the Applicability of Quantum Machine Learning
In this article, we investigate the applicability of quantum machine learning for classification tasks using two quantum classifiers from the Qiskit Python environment: the variational quantum circuit and the quantum kernel estimator (QKE). We provide a first evaluation on the performance of these c...
Saved in:
| Published in | Entropy (Basel, Switzerland) Vol. 25; no. 7; p. 992 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
MDPI AG
28.06.2023
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1099-4300 1099-4300 |
| DOI | 10.3390/e25070992 |
Cover
| Abstract | In this article, we investigate the applicability of quantum machine learning for classification tasks using two quantum classifiers from the Qiskit Python environment: the variational quantum circuit and the quantum kernel estimator (QKE). We provide a first evaluation on the performance of these classifiers when using a hyperparameter search on six widely known and publicly available benchmark datasets and analyze how their performance varies with the number of samples on two artificially generated test classification datasets. As quantum machine learning is based on unitary transformations, this paper explores data structures and application fields that could be particularly suitable for quantum advantages. Hereby, this paper introduces a novel dataset based on concepts from quantum mechanics using the exponential map of a Lie algebra. This dataset will be made publicly available and contributes a novel contribution to the empirical evaluation of quantum supremacy. We further compared the performance of VQC and QKE on six widely applicable datasets to contextualize our results. Our results demonstrate that the VQC and QKE perform better than basic machine learning algorithms, such as advanced linear regression models (Ridge and Lasso). They do not match the accuracy and runtime performance of sophisticated modern boosting classifiers such as XGBoost, LightGBM, or CatBoost. Therefore, we conclude that while quantum machine learning algorithms have the potential to surpass classical machine learning methods in the future, especially when physical quantum infrastructure becomes widely available, they currently lag behind classical approaches. Our investigations also show that classical machine learning approaches have superior performance classifying datasets based on group structures, compared to quantum approaches that particularly use unitary processes. Furthermore, our findings highlight the significant impact of different quantum simulators, feature maps, and quantum circuits on the performance of the employed quantum estimators. This observation emphasizes the need for researchers to provide detailed explanations of their hyperparameter choices for quantum machine learning algorithms, as this aspect is currently overlooked in many studies within the field. To facilitate further research in this area and ensure the transparency of our study, we have made the complete code available in a linked GitHub repository. |
|---|---|
| AbstractList | In this article, we investigate the applicability of quantum machine learning for classification tasks using two quantum classifiers from the Qiskit Python environment: the variational quantum circuit and the quantum kernel estimator (QKE). We provide a first evaluation on the performance of these classifiers when using a hyperparameter search on six widely known and publicly available benchmark datasets and analyze how their performance varies with the number of samples on two artificially generated test classification datasets. As quantum machine learning is based on unitary transformations, this paper explores data structures and application fields that could be particularly suitable for quantum advantages. Hereby, this paper introduces a novel dataset based on concepts from quantum mechanics using the exponential map of a Lie algebra. This dataset will be made publicly available and contributes a novel contribution to the empirical evaluation of quantum supremacy. We further compared the performance of VQC and QKE on six widely applicable datasets to contextualize our results. Our results demonstrate that the VQC and QKE perform better than basic machine learning algorithms, such as advanced linear regression models (Ridge and Lasso). They do not match the accuracy and runtime performance of sophisticated modern boosting classifiers such as XGBoost, LightGBM, or CatBoost. Therefore, we conclude that while quantum machine learning algorithms have the potential to surpass classical machine learning methods in the future, especially when physical quantum infrastructure becomes widely available, they currently lag behind classical approaches. Our investigations also show that classical machine learning approaches have superior performance classifying datasets based on group structures, compared to quantum approaches that particularly use unitary processes. Furthermore, our findings highlight the significant impact of different quantum simulators, feature maps, and quantum circuits on the performance of the employed quantum estimators. This observation emphasizes the need for researchers to provide detailed explanations of their hyperparameter choices for quantum machine learning algorithms, as this aspect is currently overlooked in many studies within the field. To facilitate further research in this area and ensure the transparency of our study, we have made the complete code available in a linked GitHub repository. In this article, we investigate the applicability of quantum machine learning for classification tasks using two quantum classifiers from the Qiskit Python environment: the variational quantum circuit and the quantum kernel estimator (QKE). We provide a first evaluation on the performance of these classifiers when using a hyperparameter search on six widely known and publicly available benchmark datasets and analyze how their performance varies with the number of samples on two artificially generated test classification datasets. As quantum machine learning is based on unitary transformations, this paper explores data structures and application fields that could be particularly suitable for quantum advantages. Hereby, this paper introduces a novel dataset based on concepts from quantum mechanics using the exponential map of a Lie algebra. This dataset will be made publicly available and contributes a novel contribution to the empirical evaluation of quantum supremacy. We further compared the performance of VQC and QKE on six widely applicable datasets to contextualize our results. Our results demonstrate that the VQC and QKE perform better than basic machine learning algorithms, such as advanced linear regression models (Ridge and Lasso). They do not match the accuracy and runtime performance of sophisticated modern boosting classifiers such as XGBoost, LightGBM, or CatBoost. Therefore, we conclude that while quantum machine learning algorithms have the potential to surpass classical machine learning methods in the future, especially when physical quantum infrastructure becomes widely available, they currently lag behind classical approaches. Our investigations also show that classical machine learning approaches have superior performance classifying datasets based on group structures, compared to quantum approaches that particularly use unitary processes. Furthermore, our findings highlight the significant impact of different quantum simulators, feature maps, and quantum circuits on the performance of the employed quantum estimators. This observation emphasizes the need for researchers to provide detailed explanations of their hyperparameter choices for quantum machine learning algorithms, as this aspect is currently overlooked in many studies within the field. To facilitate further research in this area and ensure the transparency of our study, we have made the complete code available in a linked GitHub repository.In this article, we investigate the applicability of quantum machine learning for classification tasks using two quantum classifiers from the Qiskit Python environment: the variational quantum circuit and the quantum kernel estimator (QKE). We provide a first evaluation on the performance of these classifiers when using a hyperparameter search on six widely known and publicly available benchmark datasets and analyze how their performance varies with the number of samples on two artificially generated test classification datasets. As quantum machine learning is based on unitary transformations, this paper explores data structures and application fields that could be particularly suitable for quantum advantages. Hereby, this paper introduces a novel dataset based on concepts from quantum mechanics using the exponential map of a Lie algebra. This dataset will be made publicly available and contributes a novel contribution to the empirical evaluation of quantum supremacy. We further compared the performance of VQC and QKE on six widely applicable datasets to contextualize our results. Our results demonstrate that the VQC and QKE perform better than basic machine learning algorithms, such as advanced linear regression models (Ridge and Lasso). They do not match the accuracy and runtime performance of sophisticated modern boosting classifiers such as XGBoost, LightGBM, or CatBoost. Therefore, we conclude that while quantum machine learning algorithms have the potential to surpass classical machine learning methods in the future, especially when physical quantum infrastructure becomes widely available, they currently lag behind classical approaches. Our investigations also show that classical machine learning approaches have superior performance classifying datasets based on group structures, compared to quantum approaches that particularly use unitary processes. Furthermore, our findings highlight the significant impact of different quantum simulators, feature maps, and quantum circuits on the performance of the employed quantum estimators. This observation emphasizes the need for researchers to provide detailed explanations of their hyperparameter choices for quantum machine learning algorithms, as this aspect is currently overlooked in many studies within the field. To facilitate further research in this area and ensure the transparency of our study, we have made the complete code available in a linked GitHub repository. |
| Audience | Academic |
| Author | Mallinger, Kevin Raubitzek, Sebastian |
| AuthorAffiliation | 1 Data Science Research Unit, TU Wien, Favoritenstrasse 9-11/194, 1040 Vienna, Austria 2 SBA Research gGmbH, Floragasse 7/5.OG, 1040 Vienna, Austria |
| AuthorAffiliation_xml | – name: 1 Data Science Research Unit, TU Wien, Favoritenstrasse 9-11/194, 1040 Vienna, Austria – name: 2 SBA Research gGmbH, Floragasse 7/5.OG, 1040 Vienna, Austria |
| Author_xml | – sequence: 1 givenname: Sebastian orcidid: 0000-0003-2206-9263 surname: Raubitzek fullname: Raubitzek, Sebastian – sequence: 2 givenname: Kevin orcidid: 0000-0002-3031-505X surname: Mallinger fullname: Mallinger, Kevin |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37509939$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kluP1CAUgIlZ4170wT9gmviiJrMLlLbwZCYbL5uM2ZjoMzlcOsOEQqWtZv691K6T3Y0RHiDw8R3OgXN0EmKwCL0k-LIsBb6ytMINFoI-QWckjytWYnxyb36KzodhjzEtKamfodOyqfJWKc4Qvg3FuLPFuu-906Ccd-OhiG3xdYIwTl3xBfTOBVtsLKTgwvY5etqCH-yLu_ECff_44dv159Xm9tPN9Xqz0lk9rhhnGtOKUqBKEcqhaQAbrnRtNLctJy1muqp5C1xQUVHDKFdMKE4bzKAR5QW6Wbwmwl72yXWQDjKCk38WYtpKSKPT3kpMiSXGWEV1zbSwQiuuTI6imbGas-x6t7im0MPhF3h_FBIs5xLKYwkz_H6B-0l11mgbxgT-wQ0e7gS3k9v4M6vKZm7Z8ObOkOKPyQ6j7NygrfcQbJwGSTljNSdVU2f09SN0H6cUcmFnqsRVfrFZeLlQW8jputDGHFjnbmzndP4Lrcvr66YSmBFCZu2r-zkcL__33TPwdgF0isOQbPvfglw9YrUbYXRxTt_5f5z4DT4syV4 |
| CitedBy_id | crossref_primary_10_1016_j_mtquan_2024_100007 crossref_primary_10_1016_j_jisa_2024_103850 crossref_primary_10_1016_j_physleta_2024_129895 |
| Cites_doi | 10.1007/BF00994018 10.1080/00107514.2014.964942 10.1017/CBO9780511976667 10.1109/ICCCMLA56841.2022.9989137 10.21236/ADA164453 10.1080/00401706.1970.10488634 10.1201/9780429499210 10.1023/A:1007608224229 10.3390/e25020287 10.1186/s12885-017-3877-1 10.1017/CBO9780511976186 10.1103/PhysRevLett.113.130503 10.1214/aos/1013203451 10.1038/s42254-021-00348-9 10.1145/2939672.2939785 10.1103/PhysRevLett.122.040504 10.1103/PhysRevA.98.032309 10.1111/j.2517-6161.1996.tb02080.x 10.1038/nature23474 10.1038/s41586-019-0980-2 10.1007/BF02344684 10.1038/s41598-018-20403-3 10.3390/app11146427 10.1007/JHEP02(2021)212 10.1007/s12020-016-0893-x 10.1007/978-0-387-39940-9 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
| DBID | AAYXX CITATION NPM 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO FR3 HCIFZ KR7 L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3390/e25070992 |
| DatabaseName | CrossRef PubMed Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Database Suite (ProQuest) ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database SciTech Premium Collection Civil Engineering Abstracts ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ: Directory of Open Access Journal (DOAJ) |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic PubMed CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ: Directory of Open Access Journal (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Architecture |
| EISSN | 1099-4300 |
| ExternalDocumentID | oai_doaj_org_article_021e1ddeb2c64c9e9cb8bd8efc4dec84 10.3390/e25070992 PMC10377777 A759041116 37509939 10_3390_e25070992 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: TU Wien |
| GroupedDBID | 29G 2WC 5GY 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ACIWK ACUHS ADBBV AEGXH AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ C1A CCPQU CH8 CITATION CS3 DU5 E3Z ESX F5P GROUPED_DOAJ GX1 HCIFZ HH5 IAO IPNFZ ITC J9A KQ8 L6V M7S MODMG M~E OK1 OVT PGMZT PHGZM PHGZT PIMPY PQGLB PROAC PTHSS RIG RNS RPM TR2 TUS XSB ~8M NPM 7TB 8FD ABUWG AZQEC DWQXO FR3 KR7 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c509t-484c02522a2bb128a77a0d8bc6dc8ef81f04c568fa892952d428b49b82704a793 |
| IEDL.DBID | BENPR |
| ISSN | 1099-4300 |
| IngestDate | Fri Oct 03 12:52:17 EDT 2025 Sun Oct 26 04:03:16 EDT 2025 Tue Sep 30 17:12:54 EDT 2025 Fri Sep 05 14:05:01 EDT 2025 Fri Jul 25 10:45:08 EDT 2025 Mon Oct 20 17:18:43 EDT 2025 Thu Apr 03 06:58:36 EDT 2025 Thu Oct 16 04:47:31 EDT 2025 Thu Apr 24 23:07:56 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | variational quantum circuit Lasso LightGBM neural networks classification Qiskit quantum machine learning XGBoost quantum computing quantum kernel estimator boost classifiers CatBoost Ridge |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c509t-484c02522a2bb128a77a0d8bc6dc8ef81f04c568fa892952d428b49b82704a793 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-3031-505X 0000-0003-2206-9263 |
| OpenAccessLink | https://www.proquest.com/docview/2843052327?pq-origsite=%requestingapplication%&accountid=15518 |
| PMID | 37509939 |
| PQID | 2843052327 |
| PQPubID | 2032401 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_021e1ddeb2c64c9e9cb8bd8efc4dec84 unpaywall_primary_10_3390_e25070992 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10377777 proquest_miscellaneous_2844681576 proquest_journals_2843052327 gale_infotracacademiconefile_A759041116 pubmed_primary_37509939 crossref_primary_10_3390_e25070992 crossref_citationtrail_10_3390_e25070992 |
| PublicationCentury | 2000 |
| PublicationDate | 20230628 |
| PublicationDateYYYYMMDD | 2023-06-28 |
| PublicationDate_xml | – month: 6 year: 2023 text: 20230628 day: 28 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Entropy (Basel, Switzerland) |
| PublicationTitleAlternate | Entropy (Basel) |
| PublicationYear | 2023 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Schuld (ref_3) 2015; 56 Matafome (ref_34) 2016; 53 Loh (ref_35) 1997; 7 Jossinet (ref_38) 2000; 38 ref_14 ref_13 ref_33 ref_10 ref_32 Pedregosa (ref_16) 2011; 12 Mitarai (ref_19) 2018; 98 Blance (ref_8) 2021; 2021 ref_18 ref_17 ref_39 ref_15 ref_37 Cortes (ref_29) 1995; 20 Schuld (ref_31) 2019; 122 ref_25 ref_24 ref_23 ref_20 Rebentrost (ref_21) 2014; 113 ref_41 ref_1 Schuld (ref_40) 2018; 8 Biamonte (ref_2) 2017; 549 Cerezo (ref_5) 2021; 3 Tibshirani (ref_12) 1996; 58 ref_28 ref_27 ref_26 Friedman (ref_30) 2001; 29 ref_9 Hoerl (ref_11) 1970; 12 Temme (ref_4) 2019; 567 Lim (ref_36) 2000; 40 ref_7 ref_6 Liu (ref_22) 2019; 100 |
| References_xml | – volume: 12 start-page: 282 year: 2011 ident: ref_16 article-title: Scikit-learn: Machine learning in Python publication-title: J. Mach. Learn. Res. – volume: 20 start-page: 273 year: 1995 ident: ref_29 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1007/BF00994018 – ident: ref_9 – volume: 56 start-page: 172 year: 2015 ident: ref_3 article-title: An introduction to quantum machine learning publication-title: Contemp. Phys. doi: 10.1080/00107514.2014.964942 – ident: ref_1 doi: 10.1017/CBO9780511976667 – ident: ref_32 – ident: ref_24 – ident: ref_26 – ident: ref_7 doi: 10.1109/ICCCMLA56841.2022.9989137 – ident: ref_15 doi: 10.21236/ADA164453 – volume: 12 start-page: 55 year: 1970 ident: ref_11 article-title: Ridge regression: Biased estimation for nonorthogonal problems publication-title: Technometrics doi: 10.1080/00401706.1970.10488634 – ident: ref_39 doi: 10.1201/9780429499210 – volume: 100 start-page: 042328 year: 2019 ident: ref_22 article-title: Quantum machine learning for quantum anomaly detection publication-title: Phys. Rev. A – volume: 40 start-page: 203 year: 2000 ident: ref_36 article-title: A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms publication-title: Mach. Learn. doi: 10.1023/A:1007608224229 – ident: ref_37 – ident: ref_14 – ident: ref_18 doi: 10.3390/e25020287 – ident: ref_33 doi: 10.1186/s12885-017-3877-1 – ident: ref_23 – ident: ref_41 doi: 10.1017/CBO9780511976186 – volume: 113 start-page: 130503 year: 2014 ident: ref_21 article-title: Quantum support vector machine for big data classification publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.130503 – volume: 29 start-page: 1189 year: 2001 ident: ref_30 article-title: Greedy function approximation: A gradient boosting machine publication-title: Ann. Stat. doi: 10.1214/aos/1013203451 – volume: 3 start-page: 625 year: 2021 ident: ref_5 article-title: Variational quantum algorithms publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-021-00348-9 – ident: ref_10 doi: 10.1145/2939672.2939785 – volume: 122 start-page: 040504 year: 2019 ident: ref_31 article-title: Quantum Machine Learning in Feature Hilbert Spaces publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.040504 – volume: 98 start-page: 032309 year: 2018 ident: ref_19 article-title: Quantum circuit learning publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.98.032309 – ident: ref_25 – volume: 58 start-page: 267 year: 1996 ident: ref_12 article-title: Regression shrinkage and selection via the lasso publication-title: J. R. Stat. Soc. Ser. B (Methodol.) doi: 10.1111/j.2517-6161.1996.tb02080.x – ident: ref_27 – volume: 549 start-page: 195 year: 2017 ident: ref_2 article-title: Quantum machine learning publication-title: Nature doi: 10.1038/nature23474 – volume: 567 start-page: 209 year: 2019 ident: ref_4 article-title: Supervised learning with quantum-enhanced feature spaces publication-title: Nature doi: 10.1038/s41586-019-0980-2 – volume: 38 start-page: 26 year: 2000 ident: ref_38 article-title: Classification of breast tissue by electrical impedance spectroscopy publication-title: Med. Biol. Eng. Comput. doi: 10.1007/BF02344684 – volume: 8 start-page: 2772 year: 2018 ident: ref_40 article-title: Quantum ensembles of quantum classifiers publication-title: Sci. Rep. doi: 10.1038/s41598-018-20403-3 – ident: ref_13 – ident: ref_6 doi: 10.3390/app11146427 – volume: 2021 start-page: 212 year: 2021 ident: ref_8 article-title: Quantum machine learning for particle physics using a variational quantum classifier publication-title: J. High Energy Phys. doi: 10.1007/JHEP02(2021)212 – volume: 53 start-page: 433 year: 2016 ident: ref_34 article-title: Hyperresistinemia and metabolic dysregulation: A risky crosstalk in obese breast cancer publication-title: Endocrine doi: 10.1007/s12020-016-0893-x – ident: ref_17 – ident: ref_20 – ident: ref_28 doi: 10.1007/978-0-387-39940-9 – volume: 7 start-page: 815 year: 1997 ident: ref_35 article-title: Split selection methods for classification trees publication-title: Stat. Sin. |
| SSID | ssj0023216 |
| Score | 2.4091032 |
| Snippet | In this article, we investigate the applicability of quantum machine learning for classification tasks using two quantum classifiers from the Qiskit Python... |
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 992 |
| SubjectTerms | Algorithms Analysis Architecture Artificial intelligence Circuits Classification Classifiers Data mining Data structures Datasets Empirical analysis Experiments Feature maps Integrated circuits Lasso Libraries Lie groups Machine learning Neural networks Performance evaluation Phase transitions Qiskit Quantum computing quantum kernel estimator quantum machine learning Quantum mechanics Quantum physics Regression models Ridge Semiconductor chips Simulators variational quantum circuit |
| SummonAdditionalLinks | – databaseName: DOAJ: Directory of Open Access Journal (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB0hLuWCqMpHKKBQKtFLRGJPHPu4IBCqRBFSkbhZtuNApSW7ajdC_HvGSTbaLaBemmPig_3G4zcTj58BvppM2twbm1D0yRMsFUsMVjLxWITNQiG8C-edr36Iy1v8fpffLVz1FWrCOnngDrgT4iCfkQ9a5gQ65ZWz0pbSVw5L72SrBJpKNU-m-lSLs0x0OkKckvoTT0RfUCzEltinFel_vRQvcNHfdZIfmnpqnp_MeLxAQhcbsN5Hj_Go6_VHWPH1J0iv65jCuHjU7UW31a7P8aSKbxqCrXmMr9qCSR_3Wqr3m3B7cf7z7DLpL0JIHPH5LEGJjmITxgyzlgjFFIVJS2mdKB0hIbMqRZcLWRlJ0U7OSsopLCorWZGiIQ_cgtV6UvsdiLmqstQIj8gNlpRumdwrm7uKOY7K5xF8mwOkXa8SHi6rGGvKFgKWesAygi9D02knjfFWo9OA8tAgqFm3L8jGurex_peNIzgONtLB56gzzvRHB2hIQb1Kj4pcpUirtohgb25G3TvjH00MzMPfb1ZEcDh8JjcKeyOm9pOmbYNCZpR9RbDdWX3oMw9RleIqArk0H5YGtfyl_vXQSnWHU5jhieBomDrvg7X7P8D6DGuMHCCUszG5B6uz343fp8BpZg9aH3kBUqUXCA priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB_k-qAvVvErtkr8AH1Jk-xXdp_kFEsRWhU8qE_L7mZTi2fuaC9K_eudTfZCryqI95jMQSYzs_ObndlfAJ6bUlrujc0QfdKM1YpkhjUy86wKzUIhvAvnnQ-PxMGMvTvmx3HD7TyOVWIpftov0qFrkzFaFDnheZUrRfJl3bz6HneSSiHRmxQJ5_e2BEcsPoGt2dGH6ee-xRn_O9AJUaztc4_5vsLrZCMJ9Vz9v6_Il1LS1XHJ6127NBc_zHx-KRftb4NeazGMoHzd61Z2z_28QvD4_2regpsRpqbTwa9uwzXf3oHifZsiXkynQ9O7H6u9SBdN-rFD-3Tf0sN-MtOnkbT15C7M9t9-enOQxS8uZA6BwypjkjkEQYQYYi1mLlNVpqildaJ20jeybArmuJCNkQirOKmxeLFMWUmqghkM9XswaRetfwApVU1ZGOEZo4bVWNcZ7pXlriGOMuV5Ai_XJtAu0pGHr2LMNZYlwVp6tFYCT0fR5cDB8Seh18GOo0Cgze4vLM5OdIxCjYDGl7igW-IEc8orZ6WtUTPHau8kS-BF8AIdghsfxpl4RgFVCjRZelpxVTBMDyKB3bWj6Bj15xpTPQ3b7KRK4Ml4G-M1NGFM6xddL8OELLHMS-D-4FfjM9MA3xRVCcgNj9tQavNOe_ql5wQPxz3DL4Fno3P-_WU9_CepHbhBENKFwTgid2GyOuv8I4RgK_s4xtkvYKoppQ priority: 102 providerName: Unpaywall |
| Title | On the Applicability of Quantum Machine Learning |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/37509939 https://www.proquest.com/docview/2843052327 https://www.proquest.com/docview/2844681576 https://pubmed.ncbi.nlm.nih.gov/PMC10377777 https://www.mdpi.com/1099-4300/25/7/992/pdf?version=1687949209 https://doaj.org/article/021e1ddeb2c64c9e9cb8bd8efc4dec84 |
| UnpaywallVersion | publishedVersion |
| Volume | 25 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: HH5 dateStart: 19990101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: KQ8 dateStart: 19990101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ: Directory of Open Access Journal (DOAJ) customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: GX1 dateStart: 19990101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: M~E dateStart: 19990101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: RPM dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central Database Suite (ProQuest) customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: BENPR dateStart: 19990301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: 8FG dateStart: 19990301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB612wMICfEsgbIKDwkuURPHcewDQinqtkLqUhArLafIdpyCtGSXshHqv2cmL3Z57WEPiQ_2ZB7feOxvAJ7rSJrEaRMg-owDXigWaF7KwPGUioVCOEv3nc-m4nTG386T-Q5M-7swdKyy94mNoy6WlvbID9GNxrSFydLXq28BdY2i6mrfQkN3rRWKVw3F2C7sMWLGGsHe0fH0_MOQgsUsEi2_UIzJ_qFDAJAiRmJbUakh7__TRW_EqN_PT16rq5W--qEXi43gNLkFNztU6WetGtyGHVfdgRvZRpHgLoTvKh_Rnp-1JevmUOyVvyz99zVKt_7qnzXnKp3fUa5e3IPZ5Pjjm9Og65cQWAz764BLbhHCMKaZMRh3dJrqsJDGisJKV8qoDLlNhCy1RFCUsAJTD8OVkSwNuUZDvQ-jalm5B-DHqoxCLRznseYFZmU6ccoktmQ25solHrzs5ZXbjkycelosckwqSLT5IFoPng5DVy2Dxt8GHZHQhwFEet08WF5e5J0N5QhHXITu2DAruFVOWSNNgSuzvHBWcg9e0CfLyTRxMlZ3NwxwSURylWdpokKOzl14cNB_1byz2e_5Lw3z4MnwGq2NSii6csu6GcOFjDBJ82C_VYJhzjGBLxUrD-SWemwtavtN9eVzw-hNlzXp58GzQZP-LayH_5_9I7jOUNPpPBuTBzBaX9buMSKntRnDrpycjDujGDf7D_h_Mo_w2Wx6nn36CSgFHBs |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V7aEICfEmpUB4CS5RE8dx7EOFttBqS7vLQ63UW7Adp1RakqXdqNo_x29jnDhhl9etOcY-2OPxzDeeF8ALGXGVGKkCRJ9xQHNBAkkLHhiaWmchY0bbfOfRmA2P6fuT5GQFfnS5MDasspOJjaDOK23fyLdQjMb2CZOkb6bfA9s1ynpXuxYa0rVWyLebEmMusePAzC_RhLvY3n-H5_2SkL3do7fDwHUZCDQqy1lAOdWo-AmRRCmU1jJNZZhzpVmuuSl4VIRUJ4wXkiOUSEiOgF1RoThJQypTW4wJVcAajalA429tZ3f88XNv8sUkYm09ozgW4ZZBwJEiJiNLWrBpFvCnSljQib_Ha67X5VTOL-VksqAM927CDYdi_UHLdrdgxZS34fpgwSlxB8IPpY_o0h-0LvImCHfuV4X_qcbTrL_5oyaO0_iuxOvpXTi-Esrdg9WyKs0D8GNRRKFkhtJY0hytQJkYoRJdEI10NYkHrzt6ZdoVL7c9NCYZGjGWtFlPWg-e9VOnbcWOv03asUTvJ9gi282P6vw0c3c2Q_hjIhT_imhGtTBCK65y3JmmudGcevDKHllmRQEuRkuX0YBbskW1skGaiJCiMmEebHanmjkZcZH94mgPnvbDeLuty0aWpqqbOZTxCI1CD-63TNCvObZgT8TCA77EHkubWh4pz742FcRtcqj9PHjec9K_ibXx_9U_gfXh0egwO9wfHzyEawS53sbSEb4Jq7Pz2jxC1DZTj93V8OHLVd_GnxKlU1E |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB5VRQJUCXETKBAuwUvUxHES-wGhhbK0lBaQWqlvxnacFmlJlnajav8av46ZXOxyvTWPiR_s8RzfZC6ApzoSJnHaBIg-44DnkgWaFyJwPKNgYZo6S_XOu3vp1gF_f5gcrsCPvhaG0ip7ndgo6ryy9I98A9VoTL8w0VUvurSIT5vjV9PvAU2QokhrP06jZZEdNz9D9-305fYm3vUzxsZv999sBd2EgcCioZwFXHCLRp8xzYxBTa2zTIe5MDbNrXCFiIqQ2yQVhRYIIxKWI1g3XBrBspDrjBoxofq_kFEXd6pSH78bnL2YRWnbySiOZbjhEGpkiMbYkv1rxgT8aQwWrOHvmZqX6nKq52d6Mlkwg-OrcKXDr_6oZbhrsOLK67A2WghH3IDwY-kjrvRHbXC8Sb-d-1Xhf67xHutv_m6Twen8rrnr0U04OBe63YLVsirdHfBjWUShTh3nseY5-n86cdIktmA25tIlHrzo6aVs17acpmdMFLovRFo1kNaDx8PSadur42-LXhPRhwXUXrt5UZ0cqU5aFQIfF6HiN8ym3EonrREmx5NZnjsruAfP6coUKQHcjNVdLQMeidppqVGWyJCjGUk9WO9vVXXa4VT94mUPHg2fUa4pWKNLV9XNGp6KCN1BD263TDDsOSaYJ2PpgVhij6VDLX8pvx43vcOpLJQeD54MnPRvYt39_-4fwkWUQfVhe2_nHlxmyPSURMfEOqzOTmp3H-HazDxo5MKHL-ctiD8BxUlQ6w |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB_k-qAvVvErtkr8AH1Jk-xXdp_kFEsRWhU8qE_L7mZTi2fuaC9K_eudTfZCryqI95jMQSYzs_ObndlfAJ6bUlrujc0QfdKM1YpkhjUy86wKzUIhvAvnnQ-PxMGMvTvmx3HD7TyOVWIpftov0qFrkzFaFDnheZUrRfJl3bz6HneSSiHRmxQJ5_e2BEcsPoGt2dGH6ee-xRn_O9AJUaztc4_5vsLrZCMJ9Vz9v6_Il1LS1XHJ6127NBc_zHx-KRftb4NeazGMoHzd61Z2z_28QvD4_2regpsRpqbTwa9uwzXf3oHifZsiXkynQ9O7H6u9SBdN-rFD-3Tf0sN-MtOnkbT15C7M9t9-enOQxS8uZA6BwypjkjkEQYQYYi1mLlNVpqildaJ20jeybArmuJCNkQirOKmxeLFMWUmqghkM9XswaRetfwApVU1ZGOEZo4bVWNcZ7pXlriGOMuV5Ai_XJtAu0pGHr2LMNZYlwVp6tFYCT0fR5cDB8Seh18GOo0Cgze4vLM5OdIxCjYDGl7igW-IEc8orZ6WtUTPHau8kS-BF8AIdghsfxpl4RgFVCjRZelpxVTBMDyKB3bWj6Bj15xpTPQ3b7KRK4Ml4G-M1NGFM6xddL8OELLHMS-D-4FfjM9MA3xRVCcgNj9tQavNOe_ql5wQPxz3DL4Fno3P-_WU9_CepHbhBENKFwTgid2GyOuv8I4RgK_s4xtkvYKoppQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Applicability+of+Quantum+Machine+Learning&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Raubitzek%2C+Sebastian&rft.au=Mallinger%2C+Kevin&rft.date=2023-06-28&rft.pub=MDPI&rft.eissn=1099-4300&rft.volume=25&rft.issue=7&rft_id=info:doi/10.3390%2Fe25070992&rft.externalDocID=PMC10377777 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon |