Diatom modulation of select bacteria through use of two unique secondary metabolites

Unicellular eukaryotic phytoplankton, such as diatoms, rely on microbial communities for survival despite lacking specialized compartments to house microbiomes (e.g., animal gut). Microbial communities have been widely shown to benefit from diatom excretions that accumulate within the microenvironme...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 117; no. 44; pp. 27445 - 27455
Main Authors Shibl, Ahmed A., Isaac, Ashley, Ochsenkühn, Michael A., Cárdenas, Anny, Fei, Cong, Behringer, Gregory, Arnoux, Marc, Drou, Nizar, Santos, Miraflor P., Gunsalus, Kristin C., Voolstra, Christian R., Amin, Shady A.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 03.11.2020
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.2012088117

Cover

Abstract Unicellular eukaryotic phytoplankton, such as diatoms, rely on microbial communities for survival despite lacking specialized compartments to house microbiomes (e.g., animal gut). Microbial communities have been widely shown to benefit from diatom excretions that accumulate within the microenvironment surrounding phytoplankton cells, known as the phycosphere. However, mechanisms that enable diatoms and other unicellular eukaryotes to nurture specific microbiomes by fostering beneficial bacteria and repelling harmful ones are mostly unknown. We hypothesized that diatom exudates may tune microbial communities and employed an integrated multiomics approach using the ubiquitous diatom Asterionellopsis glacialis to reveal how it modulates its naturally associated bacteria. We show that A. glacialis reprograms its transcriptional and metabolic profiles in response to bacteria to secrete a suite of central metabolites and two unusual secondary metabolites, rosmarinic acid and azelaic acid. While central metabolites are utilized by potential bacterial symbionts and opportunists alike, rosmarinic acid promotes attachment of beneficial bacteria to the diatom and simultaneously suppresses the attachment of opportunists. Similarly, azelaic acid enhances growth of beneficial bacteriawhile simultaneously inhibiting growth of opportunistic ones.We further show that the bacterial response to azelaic acid is numerically rare but globally distributed in the world’s oceans and taxonomically restricted to a handful of bacterial genera. Our results demonstrate the innate ability of an important unicellular eukaryotic group to modulate select bacteria in their microbial consortia, similar to higher eukaryotes, using unique secondary metabolites that regulate bacterial growth and behavior inversely across different bacterial populations.
AbstractList Unicellular eukaryotic phytoplankton, such as diatoms, rely on microbial communities for survival despite lacking specialized compartments to house microbiomes (e.g., animal gut). Microbial communities have been widely shown to benefit from diatom excretions that accumulate within the microenvironment surrounding phytoplankton cells, known as the phycosphere. However, mechanisms that enable diatoms and other unicellular eukaryotes to nurture specific microbiomes by fostering beneficial bacteria and repelling harmful ones are mostly unknown. We hypothesized that diatom exudates may tune microbial communities and employed an integrated multiomics approach using the ubiquitous diatom Asterionellopsis glacialis to reveal how it modulates its naturally associated bacteria. We show that A. glacialis reprograms its transcriptional and metabolic profiles in response to bacteria to secrete a suite of central metabolites and two unusual secondary metabolites, rosmarinic acid and azelaic acid. While central metabolites are utilized by potential bacterial symbionts and opportunists alike, rosmarinic acid promotes attachment of beneficial bacteria to the diatom and simultaneously suppresses the attachment of opportunists. Similarly, azelaic acid enhances growth of beneficial bacteriawhile simultaneously inhibiting growth of opportunistic ones.We further show that the bacterial response to azelaic acid is numerically rare but globally distributed in the world’s oceans and taxonomically restricted to a handful of bacterial genera. Our results demonstrate the innate ability of an important unicellular eukaryotic group to modulate select bacteria in their microbial consortia, similar to higher eukaryotes, using unique secondary metabolites that regulate bacterial growth and behavior inversely across different bacterial populations.
Phytoplankton are major primary producers in the marine environment that excrete a wide range of metabolites. These exudates support the growth of surrounding bacteria that in turn provide phytoplankton cells with resources and growth cofactors to proliferate. Unlike multicellular eukaryotes with dedicated structures housing microbiomes, mechanisms enabling unicellular eukaryotic phytoplankton hosts to modulate potential symbionts and opportunists within a natural microbial community are unknown. Exposure of a host phytoplankton cell to its natural microbial community triggers major transcriptional and metabolic reprogramming to release unique secondary metabolites that selectively enable growth and attachment of symbiotic taxa while simultaneously suppressing the colonization of nonsymbiont bacteria. These results suggest strong and highly selective microbiome-modulating strategies shared across the unicellular and multicellular eukaryotic lineages. Unicellular eukaryotic phytoplankton, such as diatoms, rely on microbial communities for survival despite lacking specialized compartments to house microbiomes (e.g., animal gut). Microbial communities have been widely shown to benefit from diatom excretions that accumulate within the microenvironment surrounding phytoplankton cells, known as the phycosphere. However, mechanisms that enable diatoms and other unicellular eukaryotes to nurture specific microbiomes by fostering beneficial bacteria and repelling harmful ones are mostly unknown. We hypothesized that diatom exudates may tune microbial communities and employed an integrated multiomics approach using the ubiquitous diatom Asterionellopsis glacialis to reveal how it modulates its naturally associated bacteria. We show that A. glacialis reprograms its transcriptional and metabolic profiles in response to bacteria to secrete a suite of central metabolites and two unusual secondary metabolites, rosmarinic acid and azelaic acid. While central metabolites are utilized by potential bacterial symbionts and opportunists alike, rosmarinic acid promotes attachment of beneficial bacteria to the diatom and simultaneously suppresses the attachment of opportunists. Similarly, azelaic acid enhances growth of beneficial bacteria while simultaneously inhibiting growth of opportunistic ones. We further show that the bacterial response to azelaic acid is numerically rare but globally distributed in the world’s oceans and taxonomically restricted to a handful of bacterial genera. Our results demonstrate the innate ability of an important unicellular eukaryotic group to modulate select bacteria in their microbial consortia, similar to higher eukaryotes, using unique secondary metabolites that regulate bacterial growth and behavior inversely across different bacterial populations.
Unicellular eukaryotic phytoplankton, such as diatoms, rely on microbial communities for survival despite lacking specialized compartments to house microbiomes (e.g., animal gut). Microbial communities have been widely shown to benefit from diatom excretions that accumulate within the microenvironment surrounding phytoplankton cells, known as the phycosphere. However, mechanisms that enable diatoms and other unicellular eukaryotes to nurture specific microbiomes by fostering beneficial bacteria and repelling harmful ones are mostly unknown. We hypothesized that diatom exudates may tune microbial communities and employed an integrated multiomics approach using the ubiquitous diatom to reveal how it modulates its naturally associated bacteria. We show that reprograms its transcriptional and metabolic profiles in response to bacteria to secrete a suite of central metabolites and two unusual secondary metabolites, rosmarinic acid and azelaic acid. While central metabolites are utilized by potential bacterial symbionts and opportunists alike, rosmarinic acid promotes attachment of beneficial bacteria to the diatom and simultaneously suppresses the attachment of opportunists. Similarly, azelaic acid enhances growth of beneficial bacteria while simultaneously inhibiting growth of opportunistic ones. We further show that the bacterial response to azelaic acid is numerically rare but globally distributed in the world's oceans and taxonomically restricted to a handful of bacterial genera. Our results demonstrate the innate ability of an important unicellular eukaryotic group to modulate select bacteria in their microbial consortia, similar to higher eukaryotes, using unique secondary metabolites that regulate bacterial growth and behavior inversely across different bacterial populations.
Unicellular eukaryotic phytoplankton, such as diatoms, rely on microbial communities for survival despite lacking specialized compartments to house microbiomes (e.g., animal gut). Microbial communities have been widely shown to benefit from diatom excretions that accumulate within the microenvironment surrounding phytoplankton cells, known as the phycosphere. However, mechanisms that enable diatoms and other unicellular eukaryotes to nurture specific microbiomes by fostering beneficial bacteria and repelling harmful ones are mostly unknown. We hypothesized that diatom exudates may tune microbial communities and employed an integrated multiomics approach using the ubiquitous diatom Asterionellopsis glacialis to reveal how it modulates its naturally associated bacteria. We show that A. glacialis reprograms its transcriptional and metabolic profiles in response to bacteria to secrete a suite of central metabolites and two unusual secondary metabolites, rosmarinic acid and azelaic acid. While central metabolites are utilized by potential bacterial symbionts and opportunists alike, rosmarinic acid promotes attachment of beneficial bacteria to the diatom and simultaneously suppresses the attachment of opportunists. Similarly, azelaic acid enhances growth of beneficial bacteria while simultaneously inhibiting growth of opportunistic ones. We further show that the bacterial response to azelaic acid is numerically rare but globally distributed in the world's oceans and taxonomically restricted to a handful of bacterial genera. Our results demonstrate the innate ability of an important unicellular eukaryotic group to modulate select bacteria in their microbial consortia, similar to higher eukaryotes, using unique secondary metabolites that regulate bacterial growth and behavior inversely across different bacterial populations.Unicellular eukaryotic phytoplankton, such as diatoms, rely on microbial communities for survival despite lacking specialized compartments to house microbiomes (e.g., animal gut). Microbial communities have been widely shown to benefit from diatom excretions that accumulate within the microenvironment surrounding phytoplankton cells, known as the phycosphere. However, mechanisms that enable diatoms and other unicellular eukaryotes to nurture specific microbiomes by fostering beneficial bacteria and repelling harmful ones are mostly unknown. We hypothesized that diatom exudates may tune microbial communities and employed an integrated multiomics approach using the ubiquitous diatom Asterionellopsis glacialis to reveal how it modulates its naturally associated bacteria. We show that A. glacialis reprograms its transcriptional and metabolic profiles in response to bacteria to secrete a suite of central metabolites and two unusual secondary metabolites, rosmarinic acid and azelaic acid. While central metabolites are utilized by potential bacterial symbionts and opportunists alike, rosmarinic acid promotes attachment of beneficial bacteria to the diatom and simultaneously suppresses the attachment of opportunists. Similarly, azelaic acid enhances growth of beneficial bacteria while simultaneously inhibiting growth of opportunistic ones. We further show that the bacterial response to azelaic acid is numerically rare but globally distributed in the world's oceans and taxonomically restricted to a handful of bacterial genera. Our results demonstrate the innate ability of an important unicellular eukaryotic group to modulate select bacteria in their microbial consortia, similar to higher eukaryotes, using unique secondary metabolites that regulate bacterial growth and behavior inversely across different bacterial populations.
Unicellular eukaryotic phytoplankton, such as diatoms, rely on microbial communities for survival despite lacking specialized compartments to house microbiomes (e.g., animal gut). Microbial communities have been widely shown to benefit from diatom excretions that accumulate within the microenvironment surrounding phytoplankton cells, known as the phycosphere. However, mechanisms that enable diatoms and other unicellular eukaryotes to nurture specific microbiomes by fostering beneficial bacteria and repelling harmful ones are mostly unknown. We hypothesized that diatom exudates may tune microbial communities and employed an integrated multiomics approach using the ubiquitous diatom Asterionellopsis glacialis to reveal how it modulates its naturally associated bacteria. We show that A. glacialis reprograms its transcriptional and metabolic profiles in response to bacteria to secrete a suite of central metabolites and two unusual secondary metabolites, rosmarinic acid and azelaic acid. While central metabolites are utilized by potential bacterial symbionts and opportunists alike, rosmarinic acid promotes attachment of beneficial bacteria to the diatom and simultaneously suppresses the attachment of opportunists. Similarly, azelaic acid enhances growth of beneficial bacteria while simultaneously inhibiting growth of opportunistic ones. We further show that the bacterial response to azelaic acid is numerically rare but globally distributed in the world's oceans and taxonomically restricted to a handful of bacterial genera. Our results demonstrate the innate ability of an important unicellular eukaryotic group to modulate select bacteria in their microbial consortia, similar to higher eukaryotes, using unique secondary metabolites that regulate bacterial growth and behavior inversely across different bacterial populations.
Author Fei, Cong
Amin, Shady A.
Arnoux, Marc
Behringer, Gregory
Cárdenas, Anny
Santos, Miraflor P.
Drou, Nizar
Shibl, Ahmed A.
Gunsalus, Kristin C.
Isaac, Ashley
Ochsenkühn, Michael A.
Voolstra, Christian R.
Author_xml – sequence: 1
  givenname: Ahmed A.
  surname: Shibl
  fullname: Shibl, Ahmed A.
– sequence: 2
  givenname: Ashley
  surname: Isaac
  fullname: Isaac, Ashley
– sequence: 3
  givenname: Michael A.
  surname: Ochsenkühn
  fullname: Ochsenkühn, Michael A.
– sequence: 4
  givenname: Anny
  surname: Cárdenas
  fullname: Cárdenas, Anny
– sequence: 5
  givenname: Cong
  surname: Fei
  fullname: Fei, Cong
– sequence: 6
  givenname: Gregory
  surname: Behringer
  fullname: Behringer, Gregory
– sequence: 7
  givenname: Marc
  surname: Arnoux
  fullname: Arnoux, Marc
– sequence: 8
  givenname: Nizar
  surname: Drou
  fullname: Drou, Nizar
– sequence: 9
  givenname: Miraflor P.
  surname: Santos
  fullname: Santos, Miraflor P.
– sequence: 10
  givenname: Kristin C.
  surname: Gunsalus
  fullname: Gunsalus, Kristin C.
– sequence: 11
  givenname: Christian R.
  surname: Voolstra
  fullname: Voolstra, Christian R.
– sequence: 12
  givenname: Shady A.
  surname: Amin
  fullname: Amin, Shady A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33067398$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1v1DAQxS1URLeFMydQJC5c0o4_Y1-QUPkoUiUu5Ww5jtP1KrEX2wHx3-OwbaGVOM1hfu_pzbwTdBRicAi9xHCGoaPn-2DyGQFMQEqMuydog0HhVjAFR2gDQLpWMsKO0UnOOwBQXMIzdEwpiI4quUHXH7wpcW7mOCyTKT6GJo5NdpOzpemNLS5505RtisvNtlmyW9flZ2yW4L8vrpI2hsGkX83siunj5IvLz9HT0UzZvbidp-jbp4_XF5ft1dfPXy7eX7WWgyotEzD0QtjeciqJYiOxRvGajYl-ZB0dMWOUYjcqZihw67CTSmKGu2EkAiQ9Re8Ovvuln91gXSjJTHqf_FwT6Wi8frgJfqtv4g_dKa44x9Xg7a1BivWaXPTss3XTZIKLS9aEcSyZwkpV9M0jdBeXFOp5KyWVkLRbDV__m-g-yt3DK8APgE0x5-RGbX358_ca0E8ag16L1Wux-m-xVXf-SHdn_X_Fq4Nil0tM9zgRqgNFBP0NN-GvkA
CitedBy_id crossref_primary_10_1007_s11274_024_04171_z
crossref_primary_10_1038_s43705_022_00181_w
crossref_primary_10_1002_lom3_10513
crossref_primary_10_1128_aem_01619_22
crossref_primary_10_3390_agronomy12030677
crossref_primary_10_1038_s41564_022_01090_3
crossref_primary_10_1038_s43705_023_00311_y
crossref_primary_10_1080_08927014_2023_2300150
crossref_primary_10_1016_j_algal_2025_103904
crossref_primary_10_1038_s43705_022_00091_x
crossref_primary_10_1186_s40168_024_01899_6
crossref_primary_10_3390_jmse10050699
crossref_primary_10_3390_md20120748
crossref_primary_10_1016_j_orggeochem_2024_104880
crossref_primary_10_1016_j_heliyon_2024_e36503
crossref_primary_10_1016_j_envres_2024_119439
crossref_primary_10_1111_1462_2920_16557
crossref_primary_10_1128_mbio_01062_24
crossref_primary_10_1016_j_scitotenv_2024_174845
crossref_primary_10_1111_1758_2229_13010
crossref_primary_10_3390_plants10112386
crossref_primary_10_3390_ijms232314707
crossref_primary_10_1038_s41396_022_01318_4
crossref_primary_10_1371_journal_pone_0276305
crossref_primary_10_1128_aem_00570_24
crossref_primary_10_3389_fmicb_2021_637834
crossref_primary_10_1007_s00248_022_02045_1
crossref_primary_10_1128_mSystems_00835_21
crossref_primary_10_7554_eLife_84400
crossref_primary_10_1128_msphere_00231_22
crossref_primary_10_3389_fmars_2023_1086166
crossref_primary_10_3389_fmicb_2023_1154886
crossref_primary_10_3354_ame01998
crossref_primary_10_3390_biom14030372
crossref_primary_10_1016_j_enzmictec_2023_110291
crossref_primary_10_1093_femsec_fiac104
crossref_primary_10_1016_j_envres_2022_113443
crossref_primary_10_1111_mec_16829
crossref_primary_10_1016_j_marenvres_2023_106262
crossref_primary_10_1038_s41396_021_00988_w
crossref_primary_10_3390_md21030174
crossref_primary_10_1093_icb_icad065
crossref_primary_10_1111_mmi_15293
crossref_primary_10_3390_microorganisms9112378
crossref_primary_10_1038_s41396_023_01532_8
crossref_primary_10_3390_md20050321
crossref_primary_10_7554_eLife_88525_3
crossref_primary_10_1016_j_soilbio_2023_109048
crossref_primary_10_3389_fmicb_2022_846890
crossref_primary_10_1111_1462_2920_16242
crossref_primary_10_1016_j_pmpp_2023_102011
crossref_primary_10_3390_md21020126
crossref_primary_10_1007_s10811_022_02891_z
crossref_primary_10_1073_pnas_2414434122
crossref_primary_10_1038_s42003_025_07608_9
crossref_primary_10_1146_annurev_marine_042021_012353
crossref_primary_10_1111_nph_19051
crossref_primary_10_1080_10643389_2022_2052704
crossref_primary_10_1016_j_algal_2024_103698
crossref_primary_10_1073_pnas_2217200120
crossref_primary_10_1038_s41467_022_28055_8
crossref_primary_10_1093_femsre_fuac020
crossref_primary_10_3389_fmicb_2023_1230349
crossref_primary_10_3390_microorganisms11092149
crossref_primary_10_3390_microorganisms11122967
crossref_primary_10_1038_s43705_021_00055_7
crossref_primary_10_1111_mec_17179
crossref_primary_10_1111_mec_16642
crossref_primary_10_3389_fmars_2021_626207
crossref_primary_10_1111_1462_2920_16585
crossref_primary_10_1039_D4NP00038B
crossref_primary_10_1007_s00248_022_02054_0
crossref_primary_10_1016_j_marpolbul_2024_116700
crossref_primary_10_3354_ame01986
crossref_primary_10_1073_pnas_2105207118
crossref_primary_10_1111_oik_11201
crossref_primary_10_1038_s41579_023_00975_2
crossref_primary_10_1126_sciadv_adq2583
crossref_primary_10_3389_fpls_2023_1126175
crossref_primary_10_1038_s41396_022_01263_2
crossref_primary_10_7554_eLife_88525
crossref_primary_10_3389_fpls_2022_937398
crossref_primary_10_1016_j_jclepro_2022_134361
crossref_primary_10_3389_fmars_2022_876830
crossref_primary_10_1111_jpy_13515
crossref_primary_10_1016_j_ecoenv_2023_115369
crossref_primary_10_3389_fmicb_2021_718297
crossref_primary_10_1128_msphere_00198_24
crossref_primary_10_3389_fmicb_2022_871177
crossref_primary_10_1111_nph_20018
crossref_primary_10_1098_rsfs_2022_0062
crossref_primary_10_3389_fmars_2022_864796
crossref_primary_10_1038_s42003_023_04453_6
crossref_primary_10_1128_mBio_01614_21
crossref_primary_10_1007_s10811_020_02364_1
crossref_primary_10_1016_j_biotechadv_2023_108221
crossref_primary_10_1038_s43705_023_00244_6
crossref_primary_10_1126_science_adi3338
crossref_primary_10_3390_microorganisms12101947
crossref_primary_10_1016_j_isci_2023_108762
crossref_primary_10_1128_aem_01158_22
crossref_primary_10_3390_plants13060829
crossref_primary_10_1038_s41467_023_36049_3
crossref_primary_10_1038_s41396_022_01313_9
crossref_primary_10_1093_femsre_fuad005
crossref_primary_10_1111_raq_12974
crossref_primary_10_1029_2021JG006695
crossref_primary_10_3390_fermentation9110941
crossref_primary_10_1099_ijsem_0_006104
crossref_primary_10_1007_s42995_024_00227_z
crossref_primary_10_3390_biology13010054
crossref_primary_10_1128_mSystems_01249_20
crossref_primary_10_1038_s41396_021_01036_3
Cites_doi 10.1038/nmicrobiol.2017.65
10.1038/nrmicro3326
10.1038/s42003-018-0189-1
10.1038/ismej.2016.166
10.1128/AEM.69.1.199-211.2003
10.1016/j.tplants.2016.01.008
10.1073/pnas.1401887111
10.1038/nrmicro957
10.1111/nph.15765
10.3354/meps010257
10.1073/pnas.1218525110
10.1073/pnas.1413137112
10.1016/j.genrep.2017.08.005
10.1016/B978-0-12-405940-5.00003-0
10.1038/s41579-019-0223-4
10.1128/AEM.02580-06
10.1128/MMBR.00007-12
10.1093/nar/gku169
10.1099/mic.0.000865
10.1099/ijs.0.064972-0
10.3390/md15040118
10.1073/pnas.012399899
10.1016/j.cpb.2020.100162
10.1126/science.1170025
10.1126/science.365.6456.851
10.1128/AEM.70.11.6753-6766.2004
10.1128/AEM.01543-07
10.1038/s41396-017-0034-4
10.1038/s41396-018-0242-6
10.1128/AEM.69.6.3469-3475.2003
10.1146/annurev-genom-083115-022438
10.1073/pnas.1912130117
10.1038/s41598-019-39212-3
10.1126/science.1153213
10.3389/fmicb.2019.01828
10.1080/09670262.2013.875596
10.3109/07388551.2011.596804
10.1016/j.marchem.2014.11.003
10.1128/AEM.01000-18
10.1111/1758-2229.12513
10.1073/pnas.1512307113
10.1038/s41579-019-0182-9
10.1016/j.algal.2018.02.023
10.1038/ismej.2016.198
10.1038/nrmicro1747
10.1073/pnas.1514645113
10.1038/s41561-017-0028-x
10.1128/MMBR.00029-12
10.1073/pnas.1509523113
10.1038/s41396-019-0455-3
10.1038/nchem.1002
10.1016/j.algal.2015.11.012
10.1126/science.250.4983.1002
10.3389/fmicb.2016.00880
10.1016/j.biocontrol.2009.10.004
10.1007/s00248-006-9162-5
10.4319/lo.2001.46.7.1606
10.1038/srep00696
10.3390/molecules24244522
10.1111/j.1550-7408.2004.tb00538.x
10.1038/ismej.2017.117
10.3389/fpls.2019.01741
10.1128/JB.01777-12
10.1111/j.1574-6941.12000.x
10.1007/s11101-013-9282-8
10.1016/j.algal.2012.04.003
10.1038/ismej.2009.150
10.4319/lo.2007.52.2.0798
10.7150/jgen.30559
10.1126/science.1218344
10.1002/9781119312994.apr0614
10.1016/j.copbio.2010.03.013
10.1007/978-3-030-36248-5_17
10.1111/1462-2920.13834
10.1146/annurev-marine-010213-135126
10.1038/nature14488
10.3389/fmicb.2018.00659
10.3389/fmicb.2017.01985
10.1038/ismej.2013.138
10.3389/fmicb.2018.02758
10.1111/j.1758-2229.2011.00289.x
10.1038/ismej.2013.178
10.1111/1462-2920.15228
10.3389/fmicb.2015.00469
10.1073/pnas.1917265117
10.1038/nature04056
10.3390/app9061258
10.1111/j.1462-2920.2011.02602.x
10.1128/AEM.02952-10
10.1038/s41396-018-0252-4
10.1093/femsec/fiz060
10.1038/ismej.2016.112
10.1111/j.1462-2920.2005.00759.x
10.1126/scisignal.aaa8271
10.2307/1540052
10.7554/eLife.11888
ContentType Journal Article
Copyright Copyright © 2020 the Author(s). Published by PNAS.
Copyright National Academy of Sciences Nov 3, 2020
Copyright © 2020 the Author(s). Published by PNAS. 2020
Copyright_xml – notice: Copyright © 2020 the Author(s). Published by PNAS.
– notice: Copyright National Academy of Sciences Nov 3, 2020
– notice: Copyright © 2020 the Author(s). Published by PNAS. 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.2012088117
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE
MEDLINE - Academic
Virology and AIDS Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 27455
ExternalDocumentID PMC7959551
33067398
10_1073_pnas_2012088117
26970926
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: New York University (NYU)
  grantid: AD179
– fundername: DOC | National Oceanic and Atmospheric Administration (NOAA)
  grantid: NA19NOS4780183
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c509t-460db66cbc538294f2ca9533046bf473f144331ef94a305ce1e8981417df26083
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:18:20 EDT 2025
Thu Sep 04 19:33:59 EDT 2025
Mon Jul 28 15:40:48 EDT 2025
Thu Apr 03 07:05:47 EDT 2025
Tue Jul 01 03:40:33 EDT 2025
Thu Apr 24 22:59:31 EDT 2025
Thu May 29 09:12:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 44
Keywords microbiomes
phytoplankton–bacteria interactions
diatoms
secondary metabolism
phycosphere
Language English
License Copyright © 2020 the Author(s). Published by PNAS.
This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c509t-460db66cbc538294f2ca9533046bf473f144331ef94a305ce1e8981417df26083
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Author contributions: A.A.S., A.I., M.A.O., G.B., C.R.V., and S.A.A. designed research; A.A.S., A.I., M.A.O., A.C., C.F., G.B., M.A., N.D., and M.P.S. performed research; A.A.S., A.I., M.A.O., A.C., C.F., N.D., and S.A.A. analyzed data; and A.A.S., A.I., M.A.O., A.C., K.C.G., C.R.V., and S.A.A. wrote the paper.
1Present address: Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543.
Edited by Edward F. DeLong, University of Hawaii at Manoa, Honolulu, HI, and approved September 10, 2020 (received for review June 12, 2020)
ORCID 0000-0003-3780-8102
0000-0003-4555-3795
0000-0001-9769-4624
0000-0002-8147-8406
0000-0003-0878-1756
0000-0001-9859-4190
0000-0001-9387-8071
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7959551
PMID 33067398
PQID 2458968371
PQPubID 42026
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7959551
proquest_miscellaneous_2451849199
proquest_journals_2458968371
pubmed_primary_33067398
crossref_citationtrail_10_1073_pnas_2012088117
crossref_primary_10_1073_pnas_2012088117
jstor_primary_26970926
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-03
PublicationDateYYYYMMDD 2020-11-03
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-03
  day: 03
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2020
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_4_3_2
e_1_3_4_1_2
e_1_3_4_61_2
e_1_3_4_82_2
e_1_3_4_9_2
e_1_3_4_63_2
e_1_3_4_84_2
e_1_3_4_7_2
e_1_3_4_40_2
e_1_3_4_5_2
e_1_3_4_80_2
e_1_3_4_23_2
e_1_3_4_44_2
e_1_3_4_69_2
e_1_3_4_21_2
e_1_3_4_42_2
e_1_3_4_27_2
e_1_3_4_48_2
e_1_3_4_65_2
e_1_3_4_86_2
e_1_3_4_25_2
e_1_3_4_46_2
e_1_3_4_67_2
e_1_3_4_88_2
e_1_3_4_29_2
e_1_3_4_72_2
e_1_3_4_93_2
e_1_3_4_74_2
e_1_3_4_95_2
e_1_3_4_30_2
e_1_3_4_51_2
e_1_3_4_70_2
e_1_3_4_91_2
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_57_2
e_1_3_4_55_2
e_1_3_4_32_2
e_1_3_4_59_2
e_1_3_4_53_2
e_1_3_4_15_2
e_1_3_4_38_2
e_1_3_4_76_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_78_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_2_2
e_1_3_4_60_2
e_1_3_4_83_2
e_1_3_4_62_2
e_1_3_4_85_2
e_1_3_4_8_2
e_1_3_4_41_2
e_1_3_4_6_2
e_1_3_4_81_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_45_2
e_1_3_4_68_2
e_1_3_4_20_2
e_1_3_4_43_2
e_1_3_4_26_2
e_1_3_4_49_2
e_1_3_4_64_2
e_1_3_4_87_2
e_1_3_4_24_2
e_1_3_4_47_2
e_1_3_4_66_2
e_1_3_4_89_2
e_1_3_4_28_2
e_1_3_4_71_2
e_1_3_4_94_2
e_1_3_4_73_2
e_1_3_4_96_2
e_1_3_4_52_2
e_1_3_4_90_2
e_1_3_4_50_2
e_1_3_4_92_2
e_1_3_4_79_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_58_2
e_1_3_4_54_2
e_1_3_4_10_2
e_1_3_4_31_2
e_1_3_4_75_2
e_1_3_4_16_2
e_1_3_4_37_2
e_1_3_4_77_2
e_1_3_4_14_2
e_1_3_4_35_2
e_1_3_4_56_2
e_1_3_4_18_2
e_1_3_4_39_2
References_xml – ident: e_1_3_4_13_2
  doi: 10.1038/nmicrobiol.2017.65
– ident: e_1_3_4_32_2
  doi: 10.1038/nrmicro3326
– ident: e_1_3_4_89_2
  doi: 10.1038/s42003-018-0189-1
– ident: e_1_3_4_45_2
  doi: 10.1038/ismej.2016.166
– ident: e_1_3_4_61_2
  doi: 10.1128/AEM.69.1.199-211.2003
– ident: e_1_3_4_76_2
  doi: 10.1016/j.tplants.2016.01.008
– ident: e_1_3_4_63_2
  doi: 10.1073/pnas.1401887111
– ident: e_1_3_4_2_2
  doi: 10.1038/nrmicro957
– ident: e_1_3_4_8_2
  doi: 10.1111/nph.15765
– ident: e_1_3_4_96_2
  doi: 10.3354/meps010257
– ident: e_1_3_4_92_2
  doi: 10.1073/pnas.1218525110
– ident: e_1_3_4_17_2
  doi: 10.1073/pnas.1413137112
– ident: e_1_3_4_75_2
  doi: 10.1016/j.genrep.2017.08.005
– ident: e_1_3_4_28_2
  doi: 10.1016/B978-0-12-405940-5.00003-0
– ident: e_1_3_4_3_2
  doi: 10.1038/s41579-019-0223-4
– ident: e_1_3_4_43_2
  doi: 10.1128/AEM.02580-06
– ident: e_1_3_4_7_2
  doi: 10.1128/MMBR.00007-12
– ident: e_1_3_4_23_2
  doi: 10.1093/nar/gku169
– ident: e_1_3_4_26_2
  doi: 10.1099/mic.0.000865
– ident: e_1_3_4_57_2
  doi: 10.1099/ijs.0.064972-0
– ident: e_1_3_4_82_2
  doi: 10.3390/md15040118
– ident: e_1_3_4_50_2
  doi: 10.1073/pnas.012399899
– ident: e_1_3_4_80_2
  doi: 10.1016/j.cpb.2020.100162
– ident: e_1_3_4_86_2
  doi: 10.1126/science.1170025
– ident: e_1_3_4_1_2
  doi: 10.1126/science.365.6456.851
– ident: e_1_3_4_40_2
  doi: 10.1128/AEM.70.11.6753-6766.2004
– ident: e_1_3_4_51_2
  doi: 10.1128/AEM.01543-07
– ident: e_1_3_4_65_2
  doi: 10.1038/s41396-017-0034-4
– ident: e_1_3_4_39_2
  doi: 10.1038/s41396-018-0242-6
– ident: e_1_3_4_91_2
  doi: 10.1128/AEM.69.6.3469-3475.2003
– ident: e_1_3_4_4_2
  doi: 10.1146/annurev-genom-083115-022438
– ident: e_1_3_4_81_2
  doi: 10.1073/pnas.1912130117
– ident: e_1_3_4_83_2
  doi: 10.1038/s41598-019-39212-3
– ident: e_1_3_4_14_2
  doi: 10.1126/science.1153213
– ident: e_1_3_4_56_2
  doi: 10.3389/fmicb.2019.01828
– ident: e_1_3_4_30_2
  doi: 10.1080/09670262.2013.875596
– ident: e_1_3_4_84_2
  doi: 10.3109/07388551.2011.596804
– ident: e_1_3_4_11_2
  doi: 10.1016/j.marchem.2014.11.003
– ident: e_1_3_4_36_2
  doi: 10.1128/AEM.01000-18
– ident: e_1_3_4_66_2
  doi: 10.1111/1758-2229.12513
– ident: e_1_3_4_15_2
  doi: 10.1073/pnas.1512307113
– ident: e_1_3_4_16_2
  doi: 10.1038/s41579-019-0182-9
– ident: e_1_3_4_54_2
  doi: 10.1016/j.algal.2018.02.023
– ident: e_1_3_4_41_2
  doi: 10.1038/ismej.2016.198
– ident: e_1_3_4_6_2
  doi: 10.1038/nrmicro1747
– ident: e_1_3_4_27_2
  doi: 10.1073/pnas.1514645113
– ident: e_1_3_4_9_2
  doi: 10.1038/s41561-017-0028-x
– ident: e_1_3_4_31_2
  doi: 10.1128/MMBR.00029-12
– ident: e_1_3_4_20_2
  doi: 10.1073/pnas.1509523113
– ident: e_1_3_4_49_2
  doi: 10.1038/s41396-019-0455-3
– ident: e_1_3_4_33_2
  doi: 10.1038/nchem.1002
– ident: e_1_3_4_71_2
  doi: 10.1016/j.algal.2015.11.012
– ident: e_1_3_4_87_2
  doi: 10.1126/science.250.4983.1002
– ident: e_1_3_4_68_2
  doi: 10.3389/fmicb.2016.00880
– ident: e_1_3_4_69_2
  doi: 10.1016/j.biocontrol.2009.10.004
– ident: e_1_3_4_93_2
  doi: 10.1007/s00248-006-9162-5
– ident: e_1_3_4_64_2
  doi: 10.4319/lo.2001.46.7.1606
– ident: e_1_3_4_60_2
  doi: 10.1038/srep00696
– ident: e_1_3_4_72_2
  doi: 10.3390/molecules24244522
– ident: e_1_3_4_70_2
  doi: 10.1111/j.1550-7408.2004.tb00538.x
– ident: e_1_3_4_48_2
  doi: 10.1038/ismej.2017.117
– ident: e_1_3_4_90_2
  doi: 10.3389/fpls.2019.01741
– ident: e_1_3_4_24_2
  doi: 10.1128/JB.01777-12
– ident: e_1_3_4_74_2
  doi: 10.1111/j.1574-6941.12000.x
– ident: e_1_3_4_25_2
  doi: 10.1007/s11101-013-9282-8
– ident: e_1_3_4_22_2
  doi: 10.1016/j.algal.2012.04.003
– ident: e_1_3_4_42_2
  doi: 10.1038/ismej.2009.150
– ident: e_1_3_4_10_2
  doi: 10.4319/lo.2007.52.2.0798
– ident: e_1_3_4_58_2
  doi: 10.7150/jgen.30559
– ident: e_1_3_4_38_2
  doi: 10.1126/science.1218344
– ident: e_1_3_4_5_2
  doi: 10.1002/9781119312994.apr0614
– ident: e_1_3_4_52_2
  doi: 10.1016/j.copbio.2010.03.013
– ident: e_1_3_4_77_2
  doi: 10.1007/978-3-030-36248-5_17
– ident: e_1_3_4_78_2
  doi: 10.1111/1462-2920.13834
– ident: e_1_3_4_29_2
  doi: 10.1146/annurev-marine-010213-135126
– ident: e_1_3_4_18_2
  doi: 10.1038/nature14488
– ident: e_1_3_4_21_2
  doi: 10.3389/fmicb.2018.00659
– ident: e_1_3_4_53_2
  doi: 10.3389/fmicb.2017.01985
– ident: e_1_3_4_94_2
  doi: 10.1038/ismej.2013.138
– ident: e_1_3_4_95_2
  doi: 10.3389/fmicb.2018.02758
– ident: e_1_3_4_73_2
  doi: 10.1111/j.1758-2229.2011.00289.x
– ident: e_1_3_4_34_2
  doi: 10.1038/ismej.2013.178
– ident: e_1_3_4_59_2
  doi: 10.1111/1462-2920.15228
– ident: e_1_3_4_44_2
  doi: 10.3389/fmicb.2015.00469
– ident: e_1_3_4_88_2
  doi: 10.1073/pnas.1917265117
– ident: e_1_3_4_47_2
  doi: 10.1038/nature04056
– ident: e_1_3_4_79_2
  doi: 10.3390/app9061258
– ident: e_1_3_4_46_2
  doi: 10.1111/j.1462-2920.2011.02602.x
– ident: e_1_3_4_62_2
  doi: 10.1128/AEM.02952-10
– ident: e_1_3_4_67_2
  doi: 10.1038/s41396-018-0252-4
– ident: e_1_3_4_55_2
  doi: 10.1093/femsec/fiz060
– ident: e_1_3_4_19_2
  doi: 10.1038/ismej.2016.112
– ident: e_1_3_4_37_2
  doi: 10.1111/j.1462-2920.2005.00759.x
– ident: e_1_3_4_85_2
  doi: 10.1126/scisignal.aaa8271
– ident: e_1_3_4_12_2
  doi: 10.2307/1540052
– ident: e_1_3_4_35_2
  doi: 10.7554/eLife.11888
SSID ssj0009580
Score 2.6464698
Snippet Unicellular eukaryotic phytoplankton, such as diatoms, rely on microbial communities for survival despite lacking specialized compartments to house microbiomes...
Phytoplankton are major primary producers in the marine environment that excrete a wide range of metabolites. These exudates support the growth of surrounding...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 27445
SubjectTerms Acids
Animals
Aquatic life
Bacillariophyceae
Bacteria
Bacteria - genetics
Bacteria - growth & development
Biological Sciences
Cinnamates - metabolism
Consortia
Depsides - metabolism
Diatoms - genetics
Diatoms - metabolism
Dicarboxylic Acids - metabolism
Eukaryotes
Exudates
Gene Expression Profiling
Genera
Intestinal microflora
Marine microorganisms
Metabolites
Metabolomics
Metagenome
Metagenomics
Microbial activity
Microbiomes
Microbiota - physiology
Microorganisms
Oceans
Oceans and Seas
Phytoplankton
Phytoplankton - genetics
Phytoplankton - metabolism
Probiotics
Rosmarinic Acid
Secondary Metabolism - physiology
Secondary metabolites
Symbionts
Transcription
Water Microbiology
Title Diatom modulation of select bacteria through use of two unique secondary metabolites
URI https://www.jstor.org/stable/26970926
https://www.ncbi.nlm.nih.gov/pubmed/33067398
https://www.proquest.com/docview/2458968371
https://www.proquest.com/docview/2451849199
https://pubmed.ncbi.nlm.nih.gov/PMC7959551
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGeOEFMWAQGMhITBqqUprY9eWxKqAJiWoSnbS3yk4dZRpLEUmExE_j13EcO05aNmnwEqWxYyU5X8_N54LQW8bXOUkMGDlTo2KQ-CLWAJWYkDwTxGiRa5uN_GXBTs_p54vpxd7e70HUUlPrcfbrxryS_6EqXAO62izZf6BsWBQuwDnQF45AYTjeicYf4Lturm03G9-Ey6p-VdvZZqRdGWYVOvE0zmtf_9yMGle1tbLG8NqGzV2bGsBg05GrobZ6FqRb1cUSLDrn4axPRfH8oRrFo7NF39j4a3GpXQhAASJ3NBv3MFSqbaw-q4puX9n6ebOiMuVVczyfHwtRDKP6BzfP2639xCZfuFy0WenZmfddgKFq_bFkyI9TkJHUZVGPjWPBoMHEjLomooFHuwRPD0ZKhyyXU1eQ0stv-O0K__4lHICb2Y7G8HQ2pC8F_totu1WGe0c8hqDFdruek5VdYNUvcA_dTznobZ2nKBR8Fi79yb9hV1aKk_c7T7ClEbmg2JvMnd2o3YEatHyEHnr7Bc8cGA_Qnikfo4MOAfjElzF_9wQtHTpxj068ybFDJ-7QiT06MaDTDgM6sUMnDujEA3Q-ReefPi7np7Hv4RFnoIrWMWWTtWYs0xlI1lTSPM1UG9FMmc4pJzkY9ASYRS6pAtGTmcQIKRKaAA8BU1uQQ7RfbkrzHOGJmmhChOJJIqnmuQZrha1VppVRhuXTCI2777jKfIF722fl2-oWykXoJNzw3dV2uX3qYUuYMC9lkk9kyiJ01FFq5TkD3EenQjJBeBKhN2EY-LbdjFOl2TTtnERQmUgZoWeOsGFxYu14IkWE-BbJwwRbE357pLws2trwXE4lGEEv7v5qL9GD_q95hPbrH415BYp2rV-3iP4Dc9nRmg
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diatom+modulation+of+select+bacteria+through+use+of+two+unique+secondary+metabolites&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Shibl%2C+Ahmed+A.&rft.au=Isaac%2C+Ashley&rft.au=Ochsenku%CC%88hn%2C+Michael+A.&rft.au=C%C3%A1rdenas%2C+Anny&rft.date=2020-11-03&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=117&rft.issue=44&rft.spage=27445&rft.epage=27455&rft_id=info:doi/10.1073%2Fpnas.2012088117&rft.externalDBID=n%2Fa&rft.externalDocID=10_1073_pnas_2012088117
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon