Diatom modulation of select bacteria through use of two unique secondary metabolites
Unicellular eukaryotic phytoplankton, such as diatoms, rely on microbial communities for survival despite lacking specialized compartments to house microbiomes (e.g., animal gut). Microbial communities have been widely shown to benefit from diatom excretions that accumulate within the microenvironme...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 117; no. 44; pp. 27445 - 27455 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
03.11.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.2012088117 |
Cover
Abstract | Unicellular eukaryotic phytoplankton, such as diatoms, rely on microbial communities for survival despite lacking specialized compartments to house microbiomes (e.g., animal gut). Microbial communities have been widely shown to benefit from diatom excretions that accumulate within the microenvironment surrounding phytoplankton cells, known as the phycosphere. However, mechanisms that enable diatoms and other unicellular eukaryotes to nurture specific microbiomes by fostering beneficial bacteria and repelling harmful ones are mostly unknown. We hypothesized that diatom exudates may tune microbial communities and employed an integrated multiomics approach using the ubiquitous diatom Asterionellopsis glacialis to reveal how it modulates its naturally associated bacteria. We show that A. glacialis reprograms its transcriptional and metabolic profiles in response to bacteria to secrete a suite of central metabolites and two unusual secondary metabolites, rosmarinic acid and azelaic acid. While central metabolites are utilized by potential bacterial symbionts and opportunists alike, rosmarinic acid promotes attachment of beneficial bacteria to the diatom and simultaneously suppresses the attachment of opportunists. Similarly, azelaic acid enhances growth of beneficial bacteriawhile simultaneously inhibiting growth of opportunistic ones.We further show that the bacterial response to azelaic acid is numerically rare but globally distributed in the world’s oceans and taxonomically restricted to a handful of bacterial genera. Our results demonstrate the innate ability of an important unicellular eukaryotic group to modulate select bacteria in their microbial consortia, similar to higher eukaryotes, using unique secondary metabolites that regulate bacterial growth and behavior inversely across different bacterial populations. |
---|---|
AbstractList | Unicellular eukaryotic phytoplankton, such as diatoms, rely on microbial communities for survival despite lacking specialized compartments to house microbiomes (e.g., animal gut). Microbial communities have been widely shown to benefit from diatom excretions that accumulate within the microenvironment surrounding phytoplankton cells, known as the phycosphere. However, mechanisms that enable diatoms and other unicellular eukaryotes to nurture specific microbiomes by fostering beneficial bacteria and repelling harmful ones are mostly unknown. We hypothesized that diatom exudates may tune microbial communities and employed an integrated multiomics approach using the ubiquitous diatom Asterionellopsis glacialis to reveal how it modulates its naturally associated bacteria. We show that A. glacialis reprograms its transcriptional and metabolic profiles in response to bacteria to secrete a suite of central metabolites and two unusual secondary metabolites, rosmarinic acid and azelaic acid. While central metabolites are utilized by potential bacterial symbionts and opportunists alike, rosmarinic acid promotes attachment of beneficial bacteria to the diatom and simultaneously suppresses the attachment of opportunists. Similarly, azelaic acid enhances growth of beneficial bacteriawhile simultaneously inhibiting growth of opportunistic ones.We further show that the bacterial response to azelaic acid is numerically rare but globally distributed in the world’s oceans and taxonomically restricted to a handful of bacterial genera. Our results demonstrate the innate ability of an important unicellular eukaryotic group to modulate select bacteria in their microbial consortia, similar to higher eukaryotes, using unique secondary metabolites that regulate bacterial growth and behavior inversely across different bacterial populations. Phytoplankton are major primary producers in the marine environment that excrete a wide range of metabolites. These exudates support the growth of surrounding bacteria that in turn provide phytoplankton cells with resources and growth cofactors to proliferate. Unlike multicellular eukaryotes with dedicated structures housing microbiomes, mechanisms enabling unicellular eukaryotic phytoplankton hosts to modulate potential symbionts and opportunists within a natural microbial community are unknown. Exposure of a host phytoplankton cell to its natural microbial community triggers major transcriptional and metabolic reprogramming to release unique secondary metabolites that selectively enable growth and attachment of symbiotic taxa while simultaneously suppressing the colonization of nonsymbiont bacteria. These results suggest strong and highly selective microbiome-modulating strategies shared across the unicellular and multicellular eukaryotic lineages. Unicellular eukaryotic phytoplankton, such as diatoms, rely on microbial communities for survival despite lacking specialized compartments to house microbiomes (e.g., animal gut). Microbial communities have been widely shown to benefit from diatom excretions that accumulate within the microenvironment surrounding phytoplankton cells, known as the phycosphere. However, mechanisms that enable diatoms and other unicellular eukaryotes to nurture specific microbiomes by fostering beneficial bacteria and repelling harmful ones are mostly unknown. We hypothesized that diatom exudates may tune microbial communities and employed an integrated multiomics approach using the ubiquitous diatom Asterionellopsis glacialis to reveal how it modulates its naturally associated bacteria. We show that A. glacialis reprograms its transcriptional and metabolic profiles in response to bacteria to secrete a suite of central metabolites and two unusual secondary metabolites, rosmarinic acid and azelaic acid. While central metabolites are utilized by potential bacterial symbionts and opportunists alike, rosmarinic acid promotes attachment of beneficial bacteria to the diatom and simultaneously suppresses the attachment of opportunists. Similarly, azelaic acid enhances growth of beneficial bacteria while simultaneously inhibiting growth of opportunistic ones. We further show that the bacterial response to azelaic acid is numerically rare but globally distributed in the world’s oceans and taxonomically restricted to a handful of bacterial genera. Our results demonstrate the innate ability of an important unicellular eukaryotic group to modulate select bacteria in their microbial consortia, similar to higher eukaryotes, using unique secondary metabolites that regulate bacterial growth and behavior inversely across different bacterial populations. Unicellular eukaryotic phytoplankton, such as diatoms, rely on microbial communities for survival despite lacking specialized compartments to house microbiomes (e.g., animal gut). Microbial communities have been widely shown to benefit from diatom excretions that accumulate within the microenvironment surrounding phytoplankton cells, known as the phycosphere. However, mechanisms that enable diatoms and other unicellular eukaryotes to nurture specific microbiomes by fostering beneficial bacteria and repelling harmful ones are mostly unknown. We hypothesized that diatom exudates may tune microbial communities and employed an integrated multiomics approach using the ubiquitous diatom to reveal how it modulates its naturally associated bacteria. We show that reprograms its transcriptional and metabolic profiles in response to bacteria to secrete a suite of central metabolites and two unusual secondary metabolites, rosmarinic acid and azelaic acid. While central metabolites are utilized by potential bacterial symbionts and opportunists alike, rosmarinic acid promotes attachment of beneficial bacteria to the diatom and simultaneously suppresses the attachment of opportunists. Similarly, azelaic acid enhances growth of beneficial bacteria while simultaneously inhibiting growth of opportunistic ones. We further show that the bacterial response to azelaic acid is numerically rare but globally distributed in the world's oceans and taxonomically restricted to a handful of bacterial genera. Our results demonstrate the innate ability of an important unicellular eukaryotic group to modulate select bacteria in their microbial consortia, similar to higher eukaryotes, using unique secondary metabolites that regulate bacterial growth and behavior inversely across different bacterial populations. Unicellular eukaryotic phytoplankton, such as diatoms, rely on microbial communities for survival despite lacking specialized compartments to house microbiomes (e.g., animal gut). Microbial communities have been widely shown to benefit from diatom excretions that accumulate within the microenvironment surrounding phytoplankton cells, known as the phycosphere. However, mechanisms that enable diatoms and other unicellular eukaryotes to nurture specific microbiomes by fostering beneficial bacteria and repelling harmful ones are mostly unknown. We hypothesized that diatom exudates may tune microbial communities and employed an integrated multiomics approach using the ubiquitous diatom Asterionellopsis glacialis to reveal how it modulates its naturally associated bacteria. We show that A. glacialis reprograms its transcriptional and metabolic profiles in response to bacteria to secrete a suite of central metabolites and two unusual secondary metabolites, rosmarinic acid and azelaic acid. While central metabolites are utilized by potential bacterial symbionts and opportunists alike, rosmarinic acid promotes attachment of beneficial bacteria to the diatom and simultaneously suppresses the attachment of opportunists. Similarly, azelaic acid enhances growth of beneficial bacteria while simultaneously inhibiting growth of opportunistic ones. We further show that the bacterial response to azelaic acid is numerically rare but globally distributed in the world's oceans and taxonomically restricted to a handful of bacterial genera. Our results demonstrate the innate ability of an important unicellular eukaryotic group to modulate select bacteria in their microbial consortia, similar to higher eukaryotes, using unique secondary metabolites that regulate bacterial growth and behavior inversely across different bacterial populations.Unicellular eukaryotic phytoplankton, such as diatoms, rely on microbial communities for survival despite lacking specialized compartments to house microbiomes (e.g., animal gut). Microbial communities have been widely shown to benefit from diatom excretions that accumulate within the microenvironment surrounding phytoplankton cells, known as the phycosphere. However, mechanisms that enable diatoms and other unicellular eukaryotes to nurture specific microbiomes by fostering beneficial bacteria and repelling harmful ones are mostly unknown. We hypothesized that diatom exudates may tune microbial communities and employed an integrated multiomics approach using the ubiquitous diatom Asterionellopsis glacialis to reveal how it modulates its naturally associated bacteria. We show that A. glacialis reprograms its transcriptional and metabolic profiles in response to bacteria to secrete a suite of central metabolites and two unusual secondary metabolites, rosmarinic acid and azelaic acid. While central metabolites are utilized by potential bacterial symbionts and opportunists alike, rosmarinic acid promotes attachment of beneficial bacteria to the diatom and simultaneously suppresses the attachment of opportunists. Similarly, azelaic acid enhances growth of beneficial bacteria while simultaneously inhibiting growth of opportunistic ones. We further show that the bacterial response to azelaic acid is numerically rare but globally distributed in the world's oceans and taxonomically restricted to a handful of bacterial genera. Our results demonstrate the innate ability of an important unicellular eukaryotic group to modulate select bacteria in their microbial consortia, similar to higher eukaryotes, using unique secondary metabolites that regulate bacterial growth and behavior inversely across different bacterial populations. Unicellular eukaryotic phytoplankton, such as diatoms, rely on microbial communities for survival despite lacking specialized compartments to house microbiomes (e.g., animal gut). Microbial communities have been widely shown to benefit from diatom excretions that accumulate within the microenvironment surrounding phytoplankton cells, known as the phycosphere. However, mechanisms that enable diatoms and other unicellular eukaryotes to nurture specific microbiomes by fostering beneficial bacteria and repelling harmful ones are mostly unknown. We hypothesized that diatom exudates may tune microbial communities and employed an integrated multiomics approach using the ubiquitous diatom Asterionellopsis glacialis to reveal how it modulates its naturally associated bacteria. We show that A. glacialis reprograms its transcriptional and metabolic profiles in response to bacteria to secrete a suite of central metabolites and two unusual secondary metabolites, rosmarinic acid and azelaic acid. While central metabolites are utilized by potential bacterial symbionts and opportunists alike, rosmarinic acid promotes attachment of beneficial bacteria to the diatom and simultaneously suppresses the attachment of opportunists. Similarly, azelaic acid enhances growth of beneficial bacteria while simultaneously inhibiting growth of opportunistic ones. We further show that the bacterial response to azelaic acid is numerically rare but globally distributed in the world's oceans and taxonomically restricted to a handful of bacterial genera. Our results demonstrate the innate ability of an important unicellular eukaryotic group to modulate select bacteria in their microbial consortia, similar to higher eukaryotes, using unique secondary metabolites that regulate bacterial growth and behavior inversely across different bacterial populations. |
Author | Fei, Cong Amin, Shady A. Arnoux, Marc Behringer, Gregory Cárdenas, Anny Santos, Miraflor P. Drou, Nizar Shibl, Ahmed A. Gunsalus, Kristin C. Isaac, Ashley Ochsenkühn, Michael A. Voolstra, Christian R. |
Author_xml | – sequence: 1 givenname: Ahmed A. surname: Shibl fullname: Shibl, Ahmed A. – sequence: 2 givenname: Ashley surname: Isaac fullname: Isaac, Ashley – sequence: 3 givenname: Michael A. surname: Ochsenkühn fullname: Ochsenkühn, Michael A. – sequence: 4 givenname: Anny surname: Cárdenas fullname: Cárdenas, Anny – sequence: 5 givenname: Cong surname: Fei fullname: Fei, Cong – sequence: 6 givenname: Gregory surname: Behringer fullname: Behringer, Gregory – sequence: 7 givenname: Marc surname: Arnoux fullname: Arnoux, Marc – sequence: 8 givenname: Nizar surname: Drou fullname: Drou, Nizar – sequence: 9 givenname: Miraflor P. surname: Santos fullname: Santos, Miraflor P. – sequence: 10 givenname: Kristin C. surname: Gunsalus fullname: Gunsalus, Kristin C. – sequence: 11 givenname: Christian R. surname: Voolstra fullname: Voolstra, Christian R. – sequence: 12 givenname: Shady A. surname: Amin fullname: Amin, Shady A. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33067398$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1v1DAQxS1URLeFMydQJC5c0o4_Y1-QUPkoUiUu5Ww5jtP1KrEX2wHx3-OwbaGVOM1hfu_pzbwTdBRicAi9xHCGoaPn-2DyGQFMQEqMuydog0HhVjAFR2gDQLpWMsKO0UnOOwBQXMIzdEwpiI4quUHXH7wpcW7mOCyTKT6GJo5NdpOzpemNLS5505RtisvNtlmyW9flZ2yW4L8vrpI2hsGkX83siunj5IvLz9HT0UzZvbidp-jbp4_XF5ft1dfPXy7eX7WWgyotEzD0QtjeciqJYiOxRvGajYl-ZB0dMWOUYjcqZihw67CTSmKGu2EkAiQ9Re8Ovvuln91gXSjJTHqf_FwT6Wi8frgJfqtv4g_dKa44x9Xg7a1BivWaXPTss3XTZIKLS9aEcSyZwkpV9M0jdBeXFOp5KyWVkLRbDV__m-g-yt3DK8APgE0x5-RGbX358_ca0E8ag16L1Wux-m-xVXf-SHdn_X_Fq4Nil0tM9zgRqgNFBP0NN-GvkA |
CitedBy_id | crossref_primary_10_1007_s11274_024_04171_z crossref_primary_10_1038_s43705_022_00181_w crossref_primary_10_1002_lom3_10513 crossref_primary_10_1128_aem_01619_22 crossref_primary_10_3390_agronomy12030677 crossref_primary_10_1038_s41564_022_01090_3 crossref_primary_10_1038_s43705_023_00311_y crossref_primary_10_1080_08927014_2023_2300150 crossref_primary_10_1016_j_algal_2025_103904 crossref_primary_10_1038_s43705_022_00091_x crossref_primary_10_1186_s40168_024_01899_6 crossref_primary_10_3390_jmse10050699 crossref_primary_10_3390_md20120748 crossref_primary_10_1016_j_orggeochem_2024_104880 crossref_primary_10_1016_j_heliyon_2024_e36503 crossref_primary_10_1016_j_envres_2024_119439 crossref_primary_10_1111_1462_2920_16557 crossref_primary_10_1128_mbio_01062_24 crossref_primary_10_1016_j_scitotenv_2024_174845 crossref_primary_10_1111_1758_2229_13010 crossref_primary_10_3390_plants10112386 crossref_primary_10_3390_ijms232314707 crossref_primary_10_1038_s41396_022_01318_4 crossref_primary_10_1371_journal_pone_0276305 crossref_primary_10_1128_aem_00570_24 crossref_primary_10_3389_fmicb_2021_637834 crossref_primary_10_1007_s00248_022_02045_1 crossref_primary_10_1128_mSystems_00835_21 crossref_primary_10_7554_eLife_84400 crossref_primary_10_1128_msphere_00231_22 crossref_primary_10_3389_fmars_2023_1086166 crossref_primary_10_3389_fmicb_2023_1154886 crossref_primary_10_3354_ame01998 crossref_primary_10_3390_biom14030372 crossref_primary_10_1016_j_enzmictec_2023_110291 crossref_primary_10_1093_femsec_fiac104 crossref_primary_10_1016_j_envres_2022_113443 crossref_primary_10_1111_mec_16829 crossref_primary_10_1016_j_marenvres_2023_106262 crossref_primary_10_1038_s41396_021_00988_w crossref_primary_10_3390_md21030174 crossref_primary_10_1093_icb_icad065 crossref_primary_10_1111_mmi_15293 crossref_primary_10_3390_microorganisms9112378 crossref_primary_10_1038_s41396_023_01532_8 crossref_primary_10_3390_md20050321 crossref_primary_10_7554_eLife_88525_3 crossref_primary_10_1016_j_soilbio_2023_109048 crossref_primary_10_3389_fmicb_2022_846890 crossref_primary_10_1111_1462_2920_16242 crossref_primary_10_1016_j_pmpp_2023_102011 crossref_primary_10_3390_md21020126 crossref_primary_10_1007_s10811_022_02891_z crossref_primary_10_1073_pnas_2414434122 crossref_primary_10_1038_s42003_025_07608_9 crossref_primary_10_1146_annurev_marine_042021_012353 crossref_primary_10_1111_nph_19051 crossref_primary_10_1080_10643389_2022_2052704 crossref_primary_10_1016_j_algal_2024_103698 crossref_primary_10_1073_pnas_2217200120 crossref_primary_10_1038_s41467_022_28055_8 crossref_primary_10_1093_femsre_fuac020 crossref_primary_10_3389_fmicb_2023_1230349 crossref_primary_10_3390_microorganisms11092149 crossref_primary_10_3390_microorganisms11122967 crossref_primary_10_1038_s43705_021_00055_7 crossref_primary_10_1111_mec_17179 crossref_primary_10_1111_mec_16642 crossref_primary_10_3389_fmars_2021_626207 crossref_primary_10_1111_1462_2920_16585 crossref_primary_10_1039_D4NP00038B crossref_primary_10_1007_s00248_022_02054_0 crossref_primary_10_1016_j_marpolbul_2024_116700 crossref_primary_10_3354_ame01986 crossref_primary_10_1073_pnas_2105207118 crossref_primary_10_1111_oik_11201 crossref_primary_10_1038_s41579_023_00975_2 crossref_primary_10_1126_sciadv_adq2583 crossref_primary_10_3389_fpls_2023_1126175 crossref_primary_10_1038_s41396_022_01263_2 crossref_primary_10_7554_eLife_88525 crossref_primary_10_3389_fpls_2022_937398 crossref_primary_10_1016_j_jclepro_2022_134361 crossref_primary_10_3389_fmars_2022_876830 crossref_primary_10_1111_jpy_13515 crossref_primary_10_1016_j_ecoenv_2023_115369 crossref_primary_10_3389_fmicb_2021_718297 crossref_primary_10_1128_msphere_00198_24 crossref_primary_10_3389_fmicb_2022_871177 crossref_primary_10_1111_nph_20018 crossref_primary_10_1098_rsfs_2022_0062 crossref_primary_10_3389_fmars_2022_864796 crossref_primary_10_1038_s42003_023_04453_6 crossref_primary_10_1128_mBio_01614_21 crossref_primary_10_1007_s10811_020_02364_1 crossref_primary_10_1016_j_biotechadv_2023_108221 crossref_primary_10_1038_s43705_023_00244_6 crossref_primary_10_1126_science_adi3338 crossref_primary_10_3390_microorganisms12101947 crossref_primary_10_1016_j_isci_2023_108762 crossref_primary_10_1128_aem_01158_22 crossref_primary_10_3390_plants13060829 crossref_primary_10_1038_s41467_023_36049_3 crossref_primary_10_1038_s41396_022_01313_9 crossref_primary_10_1093_femsre_fuad005 crossref_primary_10_1111_raq_12974 crossref_primary_10_1029_2021JG006695 crossref_primary_10_3390_fermentation9110941 crossref_primary_10_1099_ijsem_0_006104 crossref_primary_10_1007_s42995_024_00227_z crossref_primary_10_3390_biology13010054 crossref_primary_10_1128_mSystems_01249_20 crossref_primary_10_1038_s41396_021_01036_3 |
Cites_doi | 10.1038/nmicrobiol.2017.65 10.1038/nrmicro3326 10.1038/s42003-018-0189-1 10.1038/ismej.2016.166 10.1128/AEM.69.1.199-211.2003 10.1016/j.tplants.2016.01.008 10.1073/pnas.1401887111 10.1038/nrmicro957 10.1111/nph.15765 10.3354/meps010257 10.1073/pnas.1218525110 10.1073/pnas.1413137112 10.1016/j.genrep.2017.08.005 10.1016/B978-0-12-405940-5.00003-0 10.1038/s41579-019-0223-4 10.1128/AEM.02580-06 10.1128/MMBR.00007-12 10.1093/nar/gku169 10.1099/mic.0.000865 10.1099/ijs.0.064972-0 10.3390/md15040118 10.1073/pnas.012399899 10.1016/j.cpb.2020.100162 10.1126/science.1170025 10.1126/science.365.6456.851 10.1128/AEM.70.11.6753-6766.2004 10.1128/AEM.01543-07 10.1038/s41396-017-0034-4 10.1038/s41396-018-0242-6 10.1128/AEM.69.6.3469-3475.2003 10.1146/annurev-genom-083115-022438 10.1073/pnas.1912130117 10.1038/s41598-019-39212-3 10.1126/science.1153213 10.3389/fmicb.2019.01828 10.1080/09670262.2013.875596 10.3109/07388551.2011.596804 10.1016/j.marchem.2014.11.003 10.1128/AEM.01000-18 10.1111/1758-2229.12513 10.1073/pnas.1512307113 10.1038/s41579-019-0182-9 10.1016/j.algal.2018.02.023 10.1038/ismej.2016.198 10.1038/nrmicro1747 10.1073/pnas.1514645113 10.1038/s41561-017-0028-x 10.1128/MMBR.00029-12 10.1073/pnas.1509523113 10.1038/s41396-019-0455-3 10.1038/nchem.1002 10.1016/j.algal.2015.11.012 10.1126/science.250.4983.1002 10.3389/fmicb.2016.00880 10.1016/j.biocontrol.2009.10.004 10.1007/s00248-006-9162-5 10.4319/lo.2001.46.7.1606 10.1038/srep00696 10.3390/molecules24244522 10.1111/j.1550-7408.2004.tb00538.x 10.1038/ismej.2017.117 10.3389/fpls.2019.01741 10.1128/JB.01777-12 10.1111/j.1574-6941.12000.x 10.1007/s11101-013-9282-8 10.1016/j.algal.2012.04.003 10.1038/ismej.2009.150 10.4319/lo.2007.52.2.0798 10.7150/jgen.30559 10.1126/science.1218344 10.1002/9781119312994.apr0614 10.1016/j.copbio.2010.03.013 10.1007/978-3-030-36248-5_17 10.1111/1462-2920.13834 10.1146/annurev-marine-010213-135126 10.1038/nature14488 10.3389/fmicb.2018.00659 10.3389/fmicb.2017.01985 10.1038/ismej.2013.138 10.3389/fmicb.2018.02758 10.1111/j.1758-2229.2011.00289.x 10.1038/ismej.2013.178 10.1111/1462-2920.15228 10.3389/fmicb.2015.00469 10.1073/pnas.1917265117 10.1038/nature04056 10.3390/app9061258 10.1111/j.1462-2920.2011.02602.x 10.1128/AEM.02952-10 10.1038/s41396-018-0252-4 10.1093/femsec/fiz060 10.1038/ismej.2016.112 10.1111/j.1462-2920.2005.00759.x 10.1126/scisignal.aaa8271 10.2307/1540052 10.7554/eLife.11888 |
ContentType | Journal Article |
Copyright | Copyright © 2020 the Author(s). Published by PNAS. Copyright National Academy of Sciences Nov 3, 2020 Copyright © 2020 the Author(s). Published by PNAS. 2020 |
Copyright_xml | – notice: Copyright © 2020 the Author(s). Published by PNAS. – notice: Copyright National Academy of Sciences Nov 3, 2020 – notice: Copyright © 2020 the Author(s). Published by PNAS. 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.2012088117 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 27455 |
ExternalDocumentID | PMC7959551 33067398 10_1073_pnas_2012088117 26970926 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: New York University (NYU) grantid: AD179 – fundername: DOC | National Oceanic and Atmospheric Administration (NOAA) grantid: NA19NOS4780183 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c509t-460db66cbc538294f2ca9533046bf473f144331ef94a305ce1e8981417df26083 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:18:20 EDT 2025 Thu Sep 04 19:33:59 EDT 2025 Mon Jul 28 15:40:48 EDT 2025 Thu Apr 03 07:05:47 EDT 2025 Tue Jul 01 03:40:33 EDT 2025 Thu Apr 24 22:59:31 EDT 2025 Thu May 29 09:12:15 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 44 |
Keywords | microbiomes phytoplankton–bacteria interactions diatoms secondary metabolism phycosphere |
Language | English |
License | Copyright © 2020 the Author(s). Published by PNAS. This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c509t-460db66cbc538294f2ca9533046bf473f144331ef94a305ce1e8981417df26083 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Author contributions: A.A.S., A.I., M.A.O., G.B., C.R.V., and S.A.A. designed research; A.A.S., A.I., M.A.O., A.C., C.F., G.B., M.A., N.D., and M.P.S. performed research; A.A.S., A.I., M.A.O., A.C., C.F., N.D., and S.A.A. analyzed data; and A.A.S., A.I., M.A.O., A.C., K.C.G., C.R.V., and S.A.A. wrote the paper. 1Present address: Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543. Edited by Edward F. DeLong, University of Hawaii at Manoa, Honolulu, HI, and approved September 10, 2020 (received for review June 12, 2020) |
ORCID | 0000-0003-3780-8102 0000-0003-4555-3795 0000-0001-9769-4624 0000-0002-8147-8406 0000-0003-0878-1756 0000-0001-9859-4190 0000-0001-9387-8071 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7959551 |
PMID | 33067398 |
PQID | 2458968371 |
PQPubID | 42026 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7959551 proquest_miscellaneous_2451849199 proquest_journals_2458968371 pubmed_primary_33067398 crossref_citationtrail_10_1073_pnas_2012088117 crossref_primary_10_1073_pnas_2012088117 jstor_primary_26970926 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-03 |
PublicationDateYYYYMMDD | 2020-11-03 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2020 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_4_3_2 e_1_3_4_1_2 e_1_3_4_61_2 e_1_3_4_82_2 e_1_3_4_9_2 e_1_3_4_63_2 e_1_3_4_84_2 e_1_3_4_7_2 e_1_3_4_40_2 e_1_3_4_5_2 e_1_3_4_80_2 e_1_3_4_23_2 e_1_3_4_44_2 e_1_3_4_69_2 e_1_3_4_21_2 e_1_3_4_42_2 e_1_3_4_27_2 e_1_3_4_48_2 e_1_3_4_65_2 e_1_3_4_86_2 e_1_3_4_25_2 e_1_3_4_46_2 e_1_3_4_67_2 e_1_3_4_88_2 e_1_3_4_29_2 e_1_3_4_72_2 e_1_3_4_93_2 e_1_3_4_74_2 e_1_3_4_95_2 e_1_3_4_30_2 e_1_3_4_51_2 e_1_3_4_70_2 e_1_3_4_91_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_57_2 e_1_3_4_55_2 e_1_3_4_32_2 e_1_3_4_59_2 e_1_3_4_53_2 e_1_3_4_15_2 e_1_3_4_38_2 e_1_3_4_76_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_78_2 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_2_2 e_1_3_4_60_2 e_1_3_4_83_2 e_1_3_4_62_2 e_1_3_4_85_2 e_1_3_4_8_2 e_1_3_4_41_2 e_1_3_4_6_2 e_1_3_4_81_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_45_2 e_1_3_4_68_2 e_1_3_4_20_2 e_1_3_4_43_2 e_1_3_4_26_2 e_1_3_4_49_2 e_1_3_4_64_2 e_1_3_4_87_2 e_1_3_4_24_2 e_1_3_4_47_2 e_1_3_4_66_2 e_1_3_4_89_2 e_1_3_4_28_2 e_1_3_4_71_2 e_1_3_4_94_2 e_1_3_4_73_2 e_1_3_4_96_2 e_1_3_4_52_2 e_1_3_4_90_2 e_1_3_4_50_2 e_1_3_4_92_2 e_1_3_4_79_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_58_2 e_1_3_4_54_2 e_1_3_4_10_2 e_1_3_4_31_2 e_1_3_4_75_2 e_1_3_4_16_2 e_1_3_4_37_2 e_1_3_4_77_2 e_1_3_4_14_2 e_1_3_4_35_2 e_1_3_4_56_2 e_1_3_4_18_2 e_1_3_4_39_2 |
References_xml | – ident: e_1_3_4_13_2 doi: 10.1038/nmicrobiol.2017.65 – ident: e_1_3_4_32_2 doi: 10.1038/nrmicro3326 – ident: e_1_3_4_89_2 doi: 10.1038/s42003-018-0189-1 – ident: e_1_3_4_45_2 doi: 10.1038/ismej.2016.166 – ident: e_1_3_4_61_2 doi: 10.1128/AEM.69.1.199-211.2003 – ident: e_1_3_4_76_2 doi: 10.1016/j.tplants.2016.01.008 – ident: e_1_3_4_63_2 doi: 10.1073/pnas.1401887111 – ident: e_1_3_4_2_2 doi: 10.1038/nrmicro957 – ident: e_1_3_4_8_2 doi: 10.1111/nph.15765 – ident: e_1_3_4_96_2 doi: 10.3354/meps010257 – ident: e_1_3_4_92_2 doi: 10.1073/pnas.1218525110 – ident: e_1_3_4_17_2 doi: 10.1073/pnas.1413137112 – ident: e_1_3_4_75_2 doi: 10.1016/j.genrep.2017.08.005 – ident: e_1_3_4_28_2 doi: 10.1016/B978-0-12-405940-5.00003-0 – ident: e_1_3_4_3_2 doi: 10.1038/s41579-019-0223-4 – ident: e_1_3_4_43_2 doi: 10.1128/AEM.02580-06 – ident: e_1_3_4_7_2 doi: 10.1128/MMBR.00007-12 – ident: e_1_3_4_23_2 doi: 10.1093/nar/gku169 – ident: e_1_3_4_26_2 doi: 10.1099/mic.0.000865 – ident: e_1_3_4_57_2 doi: 10.1099/ijs.0.064972-0 – ident: e_1_3_4_82_2 doi: 10.3390/md15040118 – ident: e_1_3_4_50_2 doi: 10.1073/pnas.012399899 – ident: e_1_3_4_80_2 doi: 10.1016/j.cpb.2020.100162 – ident: e_1_3_4_86_2 doi: 10.1126/science.1170025 – ident: e_1_3_4_1_2 doi: 10.1126/science.365.6456.851 – ident: e_1_3_4_40_2 doi: 10.1128/AEM.70.11.6753-6766.2004 – ident: e_1_3_4_51_2 doi: 10.1128/AEM.01543-07 – ident: e_1_3_4_65_2 doi: 10.1038/s41396-017-0034-4 – ident: e_1_3_4_39_2 doi: 10.1038/s41396-018-0242-6 – ident: e_1_3_4_91_2 doi: 10.1128/AEM.69.6.3469-3475.2003 – ident: e_1_3_4_4_2 doi: 10.1146/annurev-genom-083115-022438 – ident: e_1_3_4_81_2 doi: 10.1073/pnas.1912130117 – ident: e_1_3_4_83_2 doi: 10.1038/s41598-019-39212-3 – ident: e_1_3_4_14_2 doi: 10.1126/science.1153213 – ident: e_1_3_4_56_2 doi: 10.3389/fmicb.2019.01828 – ident: e_1_3_4_30_2 doi: 10.1080/09670262.2013.875596 – ident: e_1_3_4_84_2 doi: 10.3109/07388551.2011.596804 – ident: e_1_3_4_11_2 doi: 10.1016/j.marchem.2014.11.003 – ident: e_1_3_4_36_2 doi: 10.1128/AEM.01000-18 – ident: e_1_3_4_66_2 doi: 10.1111/1758-2229.12513 – ident: e_1_3_4_15_2 doi: 10.1073/pnas.1512307113 – ident: e_1_3_4_16_2 doi: 10.1038/s41579-019-0182-9 – ident: e_1_3_4_54_2 doi: 10.1016/j.algal.2018.02.023 – ident: e_1_3_4_41_2 doi: 10.1038/ismej.2016.198 – ident: e_1_3_4_6_2 doi: 10.1038/nrmicro1747 – ident: e_1_3_4_27_2 doi: 10.1073/pnas.1514645113 – ident: e_1_3_4_9_2 doi: 10.1038/s41561-017-0028-x – ident: e_1_3_4_31_2 doi: 10.1128/MMBR.00029-12 – ident: e_1_3_4_20_2 doi: 10.1073/pnas.1509523113 – ident: e_1_3_4_49_2 doi: 10.1038/s41396-019-0455-3 – ident: e_1_3_4_33_2 doi: 10.1038/nchem.1002 – ident: e_1_3_4_71_2 doi: 10.1016/j.algal.2015.11.012 – ident: e_1_3_4_87_2 doi: 10.1126/science.250.4983.1002 – ident: e_1_3_4_68_2 doi: 10.3389/fmicb.2016.00880 – ident: e_1_3_4_69_2 doi: 10.1016/j.biocontrol.2009.10.004 – ident: e_1_3_4_93_2 doi: 10.1007/s00248-006-9162-5 – ident: e_1_3_4_64_2 doi: 10.4319/lo.2001.46.7.1606 – ident: e_1_3_4_60_2 doi: 10.1038/srep00696 – ident: e_1_3_4_72_2 doi: 10.3390/molecules24244522 – ident: e_1_3_4_70_2 doi: 10.1111/j.1550-7408.2004.tb00538.x – ident: e_1_3_4_48_2 doi: 10.1038/ismej.2017.117 – ident: e_1_3_4_90_2 doi: 10.3389/fpls.2019.01741 – ident: e_1_3_4_24_2 doi: 10.1128/JB.01777-12 – ident: e_1_3_4_74_2 doi: 10.1111/j.1574-6941.12000.x – ident: e_1_3_4_25_2 doi: 10.1007/s11101-013-9282-8 – ident: e_1_3_4_22_2 doi: 10.1016/j.algal.2012.04.003 – ident: e_1_3_4_42_2 doi: 10.1038/ismej.2009.150 – ident: e_1_3_4_10_2 doi: 10.4319/lo.2007.52.2.0798 – ident: e_1_3_4_58_2 doi: 10.7150/jgen.30559 – ident: e_1_3_4_38_2 doi: 10.1126/science.1218344 – ident: e_1_3_4_5_2 doi: 10.1002/9781119312994.apr0614 – ident: e_1_3_4_52_2 doi: 10.1016/j.copbio.2010.03.013 – ident: e_1_3_4_77_2 doi: 10.1007/978-3-030-36248-5_17 – ident: e_1_3_4_78_2 doi: 10.1111/1462-2920.13834 – ident: e_1_3_4_29_2 doi: 10.1146/annurev-marine-010213-135126 – ident: e_1_3_4_18_2 doi: 10.1038/nature14488 – ident: e_1_3_4_21_2 doi: 10.3389/fmicb.2018.00659 – ident: e_1_3_4_53_2 doi: 10.3389/fmicb.2017.01985 – ident: e_1_3_4_94_2 doi: 10.1038/ismej.2013.138 – ident: e_1_3_4_95_2 doi: 10.3389/fmicb.2018.02758 – ident: e_1_3_4_73_2 doi: 10.1111/j.1758-2229.2011.00289.x – ident: e_1_3_4_34_2 doi: 10.1038/ismej.2013.178 – ident: e_1_3_4_59_2 doi: 10.1111/1462-2920.15228 – ident: e_1_3_4_44_2 doi: 10.3389/fmicb.2015.00469 – ident: e_1_3_4_88_2 doi: 10.1073/pnas.1917265117 – ident: e_1_3_4_47_2 doi: 10.1038/nature04056 – ident: e_1_3_4_79_2 doi: 10.3390/app9061258 – ident: e_1_3_4_46_2 doi: 10.1111/j.1462-2920.2011.02602.x – ident: e_1_3_4_62_2 doi: 10.1128/AEM.02952-10 – ident: e_1_3_4_67_2 doi: 10.1038/s41396-018-0252-4 – ident: e_1_3_4_55_2 doi: 10.1093/femsec/fiz060 – ident: e_1_3_4_19_2 doi: 10.1038/ismej.2016.112 – ident: e_1_3_4_37_2 doi: 10.1111/j.1462-2920.2005.00759.x – ident: e_1_3_4_85_2 doi: 10.1126/scisignal.aaa8271 – ident: e_1_3_4_12_2 doi: 10.2307/1540052 – ident: e_1_3_4_35_2 doi: 10.7554/eLife.11888 |
SSID | ssj0009580 |
Score | 2.6464698 |
Snippet | Unicellular eukaryotic phytoplankton, such as diatoms, rely on microbial communities for survival despite lacking specialized compartments to house microbiomes... Phytoplankton are major primary producers in the marine environment that excrete a wide range of metabolites. These exudates support the growth of surrounding... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 27445 |
SubjectTerms | Acids Animals Aquatic life Bacillariophyceae Bacteria Bacteria - genetics Bacteria - growth & development Biological Sciences Cinnamates - metabolism Consortia Depsides - metabolism Diatoms - genetics Diatoms - metabolism Dicarboxylic Acids - metabolism Eukaryotes Exudates Gene Expression Profiling Genera Intestinal microflora Marine microorganisms Metabolites Metabolomics Metagenome Metagenomics Microbial activity Microbiomes Microbiota - physiology Microorganisms Oceans Oceans and Seas Phytoplankton Phytoplankton - genetics Phytoplankton - metabolism Probiotics Rosmarinic Acid Secondary Metabolism - physiology Secondary metabolites Symbionts Transcription Water Microbiology |
Title | Diatom modulation of select bacteria through use of two unique secondary metabolites |
URI | https://www.jstor.org/stable/26970926 https://www.ncbi.nlm.nih.gov/pubmed/33067398 https://www.proquest.com/docview/2458968371 https://www.proquest.com/docview/2451849199 https://pubmed.ncbi.nlm.nih.gov/PMC7959551 |
Volume | 117 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGeOEFMWAQGMhITBqqUprY9eWxKqAJiWoSnbS3yk4dZRpLEUmExE_j13EcO05aNmnwEqWxYyU5X8_N54LQW8bXOUkMGDlTo2KQ-CLWAJWYkDwTxGiRa5uN_GXBTs_p54vpxd7e70HUUlPrcfbrxryS_6EqXAO62izZf6BsWBQuwDnQF45AYTjeicYf4Lturm03G9-Ey6p-VdvZZqRdGWYVOvE0zmtf_9yMGle1tbLG8NqGzV2bGsBg05GrobZ6FqRb1cUSLDrn4axPRfH8oRrFo7NF39j4a3GpXQhAASJ3NBv3MFSqbaw-q4puX9n6ebOiMuVVczyfHwtRDKP6BzfP2639xCZfuFy0WenZmfddgKFq_bFkyI9TkJHUZVGPjWPBoMHEjLomooFHuwRPD0ZKhyyXU1eQ0stv-O0K__4lHICb2Y7G8HQ2pC8F_totu1WGe0c8hqDFdruek5VdYNUvcA_dTznobZ2nKBR8Fi79yb9hV1aKk_c7T7ClEbmg2JvMnd2o3YEatHyEHnr7Bc8cGA_Qnikfo4MOAfjElzF_9wQtHTpxj068ybFDJ-7QiT06MaDTDgM6sUMnDujEA3Q-ReefPi7np7Hv4RFnoIrWMWWTtWYs0xlI1lTSPM1UG9FMmc4pJzkY9ASYRS6pAtGTmcQIKRKaAA8BU1uQQ7RfbkrzHOGJmmhChOJJIqnmuQZrha1VppVRhuXTCI2777jKfIF722fl2-oWykXoJNzw3dV2uX3qYUuYMC9lkk9kyiJ01FFq5TkD3EenQjJBeBKhN2EY-LbdjFOl2TTtnERQmUgZoWeOsGFxYu14IkWE-BbJwwRbE357pLws2trwXE4lGEEv7v5qL9GD_q95hPbrH415BYp2rV-3iP4Dc9nRmg |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diatom+modulation+of+select+bacteria+through+use+of+two+unique+secondary+metabolites&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Shibl%2C+Ahmed+A.&rft.au=Isaac%2C+Ashley&rft.au=Ochsenku%CC%88hn%2C+Michael+A.&rft.au=C%C3%A1rdenas%2C+Anny&rft.date=2020-11-03&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=117&rft.issue=44&rft.spage=27445&rft.epage=27455&rft_id=info:doi/10.1073%2Fpnas.2012088117&rft.externalDBID=n%2Fa&rft.externalDocID=10_1073_pnas_2012088117 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |