Research on Time Series-Based Pipeline Ground Penetrating Radar Calibration Angle Prediction Algorithm
The pipeline ground-penetrating radar stands as an indispensable detection device for ensuring underground space security. A wheeled pipeline robot is deployed to traverse the interior of urban underground drainage pipelines along their central axis. It is subject to influences such as resistance, s...
        Saved in:
      
    
          | Published in | Sensors (Basel, Switzerland) Vol. 24; no. 2; p. 379 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Switzerland
          MDPI AG
    
        01.01.2024
     MDPI  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1424-8220 1424-8220  | 
| DOI | 10.3390/s24020379 | 
Cover
| Abstract | The pipeline ground-penetrating radar stands as an indispensable detection device for ensuring underground space security. A wheeled pipeline robot is deployed to traverse the interior of urban underground drainage pipelines along their central axis. It is subject to influences such as resistance, speed, and human factors, leading to deviations in its posture. A guiding wheel is employed to rectify its roll angle and ensure the precise spatial positioning of defects both inside and outside the pipeline, as detected by the radar antenna. By analyzing its deflection factors and correction trajectories, the intelligent correction control of the pipeline ground-penetrating radar falls into the realm of nonlinear multi-constraint optimization. Consequently, a time-series-based correction angle prediction algorithm is proposed. The application of the long short-term memory (LSTM) deep learning model facilitates the prediction of correction angles and torque for the guiding wheel. This study compares the performance of LSTM with an autoregressive integrated moving average model under identical dataset conditions. The subsequent findings reveal a reduction of 4.11° and 8.25 N·m in mean absolute error, and a decrease of 10.66% and 7.27% in mean squared error for the predicted correction angles and torques, respectively. These outcomes are achieved utilizing the three-channel drainage pipeline ground-penetrating radar device with top antenna operating at 1.2 GHz and left/right antennas at 750 MHz. The LSTM prediction model intelligently corrects its posture. Experimental results demonstrate an average correction speed of 5 s and an average angular error of ±1°. It is verified that the model can correct its attitude in real-time with small errors, thereby enhancing the accuracy of ground-penetrating radar antennas in locating pipeline defects. | 
    
|---|---|
| AbstractList | The pipeline ground-penetrating radar stands as an indispensable detection device for ensuring underground space security. A wheeled pipeline robot is deployed to traverse the interior of urban underground drainage pipelines along their central axis. It is subject to influences such as resistance, speed, and human factors, leading to deviations in its posture. A guiding wheel is employed to rectify its roll angle and ensure the precise spatial positioning of defects both inside and outside the pipeline, as detected by the radar antenna. By analyzing its deflection factors and correction trajectories, the intelligent correction control of the pipeline ground-penetrating radar falls into the realm of nonlinear multi-constraint optimization. Consequently, a time-series-based correction angle prediction algorithm is proposed. The application of the long short-term memory (LSTM) deep learning model facilitates the prediction of correction angles and torque for the guiding wheel. This study compares the performance of LSTM with an autoregressive integrated moving average model under identical dataset conditions. The subsequent findings reveal a reduction of 4.11° and 8.25 N·m in mean absolute error, and a decrease of 10.66% and 7.27% in mean squared error for the predicted correction angles and torques, respectively. These outcomes are achieved utilizing the three-channel drainage pipeline ground-penetrating radar device with top antenna operating at 1.2 GHz and left/right antennas at 750 MHz. The LSTM prediction model intelligently corrects its posture. Experimental results demonstrate an average correction speed of 5 s and an average angular error of ±1°. It is verified that the model can correct its attitude in real-time with small errors, thereby enhancing the accuracy of ground-penetrating radar antennas in locating pipeline defects. The pipeline ground-penetrating radar stands as an indispensable detection device for ensuring underground space security. A wheeled pipeline robot is deployed to traverse the interior of urban underground drainage pipelines along their central axis. It is subject to influences such as resistance, speed, and human factors, leading to deviations in its posture. A guiding wheel is employed to rectify its roll angle and ensure the precise spatial positioning of defects both inside and outside the pipeline, as detected by the radar antenna. By analyzing its deflection factors and correction trajectories, the intelligent correction control of the pipeline ground-penetrating radar falls into the realm of nonlinear multi-constraint optimization. Consequently, a time-series-based correction angle prediction algorithm is proposed. The application of the long short-term memory (LSTM) deep learning model facilitates the prediction of correction angles and torque for the guiding wheel. This study compares the performance of LSTM with an autoregressive integrated moving average model under identical dataset conditions. The subsequent findings reveal a reduction of 4.11° and 8.25 N·m in mean absolute error, and a decrease of 10.66% and 7.27% in mean squared error for the predicted correction angles and torques, respectively. These outcomes are achieved utilizing the three-channel drainage pipeline ground-penetrating radar device with top antenna operating at 1.2 GHz and left/right antennas at 750 MHz. The LSTM prediction model intelligently corrects its posture. Experimental results demonstrate an average correction speed of 5 s and an average angular error of ±1°. It is verified that the model can correct its attitude in real-time with small errors, thereby enhancing the accuracy of ground-penetrating radar antennas in locating pipeline defects.The pipeline ground-penetrating radar stands as an indispensable detection device for ensuring underground space security. A wheeled pipeline robot is deployed to traverse the interior of urban underground drainage pipelines along their central axis. It is subject to influences such as resistance, speed, and human factors, leading to deviations in its posture. A guiding wheel is employed to rectify its roll angle and ensure the precise spatial positioning of defects both inside and outside the pipeline, as detected by the radar antenna. By analyzing its deflection factors and correction trajectories, the intelligent correction control of the pipeline ground-penetrating radar falls into the realm of nonlinear multi-constraint optimization. Consequently, a time-series-based correction angle prediction algorithm is proposed. The application of the long short-term memory (LSTM) deep learning model facilitates the prediction of correction angles and torque for the guiding wheel. This study compares the performance of LSTM with an autoregressive integrated moving average model under identical dataset conditions. The subsequent findings reveal a reduction of 4.11° and 8.25 N·m in mean absolute error, and a decrease of 10.66% and 7.27% in mean squared error for the predicted correction angles and torques, respectively. These outcomes are achieved utilizing the three-channel drainage pipeline ground-penetrating radar device with top antenna operating at 1.2 GHz and left/right antennas at 750 MHz. The LSTM prediction model intelligently corrects its posture. Experimental results demonstrate an average correction speed of 5 s and an average angular error of ±1°. It is verified that the model can correct its attitude in real-time with small errors, thereby enhancing the accuracy of ground-penetrating radar antennas in locating pipeline defects.  | 
    
| Audience | Academic | 
    
| Author | Yan, Rui Li, Fanruo Xu, Maoxuan Yang, Feng Fang, Yuanjin  | 
    
| AuthorAffiliation | 2 Beijing Drainage Group Co., Ltd., Beijing 100044, China 1 School of Mechanical Electronic and Information Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China  | 
    
| AuthorAffiliation_xml | – name: 2 Beijing Drainage Group Co., Ltd., Beijing 100044, China – name: 1 School of Mechanical Electronic and Information Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China  | 
    
| Author_xml | – sequence: 1 givenname: Maoxuan orcidid: 0000-0002-1954-2374 surname: Xu fullname: Xu, Maoxuan – sequence: 2 givenname: Feng surname: Yang fullname: Yang, Feng – sequence: 3 givenname: Yuanjin surname: Fang fullname: Fang, Yuanjin – sequence: 4 givenname: Fanruo orcidid: 0000-0001-7383-5592 surname: Li fullname: Li, Fanruo – sequence: 5 givenname: Rui surname: Yan fullname: Yan, Rui  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38257472$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNp1UtFuFCEUnZga264--ANmEl_UZFsGmAGezNpobdLEptbnCQOXWTYMrDCj6d_LduqmbTQ8AIdzD-ceOC4OfPBQFK8rdEKIQKcJU4QRYeJZcVRRTJccY3TwYH1YHKe0QQgTQviL4pBwXDPK8FFhriGBjGpdBl_e2AHK7xAtpOUnmUCXV3YLznooz2OYfN6DhzHK0fq-vJZaxvJMOtvtkFy_8r2D8iqCtmoGXB-iHdfDy-K5kS7Bq_t5Ufz48vnm7Ovy8tv5xdnqcqlqJMYlrbEEwokmhlHUYCU6bUDUBneopqhqOsqNqSuDcQeywYZi1hmqFaei0oKSRXEx6-ogN-022kHG2zZI294BIfatjKNVDtqGNh1qqNZGMGoYFlVNJNJVttAhXndZ68OsNfmtvP0tndsLVqjdBd_ug8_kjzN5O3UDaAU-x-QeOXh84u267cOvLMUrUVOSFd7dK8Twc4I0toNNCpyTHsKU2myQ8YZTxDL17RPqJkzR52B3LM4EY9nVojiZWb3M7VpvQr5Y5aFhsCr_IGMzvmIcCdxwvit487CHvfm_vyUTTmeCiiGlCKZVdrx7-qxs3T9jef-k4v8R_gHjXdyb | 
    
| CitedBy_id | crossref_primary_10_1016_j_measurement_2024_115847 crossref_primary_10_3390_rs17020194  | 
    
| Cites_doi | 10.1007/978-3-642-24797-2 10.3390/s23094525 10.1109/ICCAS.2013.6704210 10.1109/TEVC.2013.2281535 10.1007/978-3-031-28469-4_3 10.1007/s12206-019-0440-9 10.3390/app9153057 10.1109/IROS.2017.8202134 10.3390/app13053251 10.1016/j.jclepro.2022.131460 10.11159/cdsr21.113 10.1109/CCDC49329.2020.9164775 10.1007/s10845-021-01867-z 10.1016/0963-8695(93)90158-Q 10.23919/ELINFOCOM.2019.8706424 10.3390/app9122514 10.1007/978-981-13-0341-8_29  | 
    
| ContentType | Journal Article | 
    
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 by the authors. 2024  | 
    
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 by the authors. 2024  | 
    
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM ADTOC UNPAY DOA  | 
    
| DOI | 10.3390/s24020379 | 
    
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall Directory of Open Access Journals (DOAJ)  | 
    
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic PubMed  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1424-8220 | 
    
| ExternalDocumentID | oai_doaj_org_article_646b064ddf974f729153a0d152ab085b 10.3390/s24020379 PMC10819543 A780926880 38257472 10_3390_s24020379  | 
    
| Genre | Journal Article | 
    
| GrantInformation_xml | – fundername: the National Key Research and Development Program of China grantid: 2021YFC3090304 – fundername: the National Key Research and Development Program of China grantid: 2021YFC3090303 – fundername: National Key Research and Development Program of China grantid: 2021YFC3090303; 2021YFC3090304  | 
    
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ALIPV ARAPS HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI 7X8 PUEGO 5PM ADRAZ ADTOC IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c509t-452ae383d3f74062c9bdfe95f2b054016b48ff51f22bea62f427bf4dc8491d943 | 
    
| IEDL.DBID | M48 | 
    
| ISSN | 1424-8220 | 
    
| IngestDate | Fri Oct 03 12:50:49 EDT 2025 Sun Oct 26 03:51:24 EDT 2025 Tue Sep 30 17:10:14 EDT 2025 Thu Oct 02 07:36:50 EDT 2025 Tue Oct 07 07:23:42 EDT 2025 Mon Oct 20 17:07:12 EDT 2025 Wed Feb 19 02:06:28 EST 2025 Thu Apr 24 23:11:06 EDT 2025 Thu Oct 16 04:36:26 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Keywords | underground space security long short-term memory neural networks intelligent deflection correction pipeline penetrating radar robot deflection angle prediction  | 
    
| Language | English | 
    
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c509t-452ae383d3f74062c9bdfe95f2b054016b48ff51f22bea62f427bf4dc8491d943 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0001-7383-5592 0000-0002-1954-2374  | 
    
| OpenAccessLink | https://doaj.org/article/646b064ddf974f729153a0d152ab085b | 
    
| PMID | 38257472 | 
    
| PQID | 2918797720 | 
    
| PQPubID | 2032333 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_646b064ddf974f729153a0d152ab085b unpaywall_primary_10_3390_s24020379 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10819543 proquest_miscellaneous_2917868407 proquest_journals_2918797720 gale_infotracacademiconefile_A780926880 pubmed_primary_38257472 crossref_citationtrail_10_3390_s24020379 crossref_primary_10_3390_s24020379  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-01-01 | 
    
| PublicationDateYYYYMMDD | 2024-01-01 | 
    
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Switzerland | 
    
| PublicationPlace_xml | – name: Switzerland – name: Basel  | 
    
| PublicationTitle | Sensors (Basel, Switzerland) | 
    
| PublicationTitleAlternate | Sensors (Basel) | 
    
| PublicationYear | 2024 | 
    
| Publisher | MDPI AG MDPI  | 
    
| Publisher_xml | – name: MDPI AG – name: MDPI  | 
    
| References | ref_14 Yeh (ref_9) 2020; 1 ref_13 Salihu (ref_1) 2022; 351 Zhou (ref_11) 2022; 33 ref_12 ref_22 ref_10 Barnes (ref_18) 1993; 26 ref_21 ref_20 ref_3 ref_2 Zhang (ref_8) 2021; 42 ref_17 Deb (ref_19) 2014; 18 ref_15 Bhatia (ref_16) 2019; Volume 759 Tu (ref_4) 2019; 33 ref_5 ref_7 ref_6  | 
    
| References_xml | – ident: ref_21 doi: 10.1007/978-3-642-24797-2 – volume: 1 start-page: 011002 year: 2020 ident: ref_9 article-title: Analysis and Control of an In-Pipe Wheeled Robot with Spiral Moving Capability publication-title: J. Auton. Veh. Syst. – ident: ref_2 doi: 10.3390/s23094525 – ident: ref_6 doi: 10.1109/ICCAS.2013.6704210 – ident: ref_3 – volume: 18 start-page: 577 year: 2014 ident: ref_19 article-title: An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems with Box Constraints publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2013.2281535 – ident: ref_17 doi: 10.1007/978-3-031-28469-4_3 – volume: 33 start-page: 2417 year: 2019 ident: ref_4 article-title: Obstacle Crossing and Traction Performance of Active and Passive Screw Pipeline Robots publication-title: J. Mech. Sci. Technol. doi: 10.1007/s12206-019-0440-9 – ident: ref_10 doi: 10.3390/app9153057 – ident: ref_12 doi: 10.1109/IROS.2017.8202134 – ident: ref_15 doi: 10.3390/app13053251 – volume: 351 start-page: 131460 year: 2022 ident: ref_1 article-title: Towards a Comprehensive Review of the Deterioration Factors and Modeling for Sewer Pipelines: A Hybrid of Bibliometric, Scientometric, and Meta-Analysis Approach publication-title: J. Clean Prod. doi: 10.1016/j.jclepro.2022.131460 – ident: ref_14 doi: 10.11159/cdsr21.113 – ident: ref_13 doi: 10.1109/CCDC49329.2020.9164775 – volume: 33 start-page: 387 year: 2022 ident: ref_11 article-title: A Review of Motion Planning Algorithms for Intelligent Robots publication-title: J. Intell. Manuf. doi: 10.1007/s10845-021-01867-z – volume: 26 start-page: 3 year: 1993 ident: ref_18 article-title: Effects of Bending Stresses on Magnetic Flux Leakage Patterns publication-title: NDT E Int. doi: 10.1016/0963-8695(93)90158-Q – ident: ref_22 – ident: ref_5 doi: 10.23919/ELINFOCOM.2019.8706424 – ident: ref_7 doi: 10.3390/app9122514 – volume: Volume 759 start-page: 317 year: 2019 ident: ref_16 article-title: Robot Path Planning by LSTM Network Under Changing Environment publication-title: Advances in Computer Communication and Computational Sciences doi: 10.1007/978-981-13-0341-8_29 – ident: ref_20 – volume: 42 start-page: 194 year: 2021 ident: ref_8 article-title: Trajectory Correction of Intelligent Tunneling Robot Based on Fuzzy PID publication-title: Coal Mine Mach.  | 
    
| SSID | ssj0023338 | 
    
| Score | 2.4337 | 
    
| Snippet | The pipeline ground-penetrating radar stands as an indispensable detection device for ensuring underground space security. A wheeled pipeline robot is deployed... | 
    
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source  | 
    
| StartPage | 379 | 
    
| SubjectTerms | Accuracy Algorithms Antennas (Electronics) Communication deflection angle prediction Drainage Ground penetrating radar intelligent deflection correction long short-term memory neural networks Neural networks pipeline penetrating radar robot Pipes Radar Robots Security management underground space security Velocity Wheels  | 
    
| SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL8AB8SZQkHlIcIkaO07sHLeIquKAKkSl3iw7trcrpd7VPoT498zE2SjLQ1w4xrYiezzj-cYefybkHTg9Llvr8kZ6nwvXhtw6GXLRKgcI2Ls69Fm-X-rzS_H5qrqaPPWFOWGJHjgJ7qQWtQW36VwA5BsACoKJmsKB2zEW4ILF1bdQzT6YGkKtEiKvxCNUQlB_ssEzhKLEfK2J9-lJ-n9fiie-6Nc8ydu7uDI_vpuumzihs_vk3oAe6Sz1-gG55eNDcnfCKfiIhH0uHV1Gihc8KG6A-U1-Cv7K0YvFCm-ge4qbThG-Ya3rmXPjnH41zqwp3taySS_oLM47Ty_WeJqTCrr5cr3YXt88Jpdnn759PM-HxxTyFjDBNhcgMA_hqCuDBCfO28a64JsqcIuojdVWqBAqFji33tQ8CC4xia9VomGuEeUTchSX0T8jlDeC2bKwFqIrURlmVcu8YcgEWHgmqox82AtZtwPTOD540WmIOHA-9DgfGXkzNl0leo0_NTrFmRobICN2XwB6ogc90f_Sk4y8x3nWaLfQmdYM1w9gSMiApWdSFQ2vYTnLyPFeFfRg0BsN_1MSsDKH6tdjNZginq-Y6Je7vo1USJ4jM_I0ac7Y5xIicYjceEbUgU4dDOqwJi6ue7pvhqitEmVG3o7q93dhPf8fwnpB7nAAb2mr6Zgcbdc7_xLA19a-6u3sJx6VK9w priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JbtRAEC2FyQE4INZgCKhZJLhYsdvt7YDQDEoUcRiNIiLlZvU6iWR6hlmE-HuqvDHDdrTdh3Z3La-6q14BvEWnx3OtTFjm1obCaBcqk7tQ6MIgArYmc02W7zQ7vxSfr9KrA5j2tTCUVtnbxMZQm4WmM_ITXlJfbMSC0cflt5C6RtHtat9CQ3atFcyHhmLsFhxyYsYaweHkdDq7GEKwBCOyll8owWD_ZE13C1FCeVw7Xqkh7__TRO_4qN_zJ29v_VL--C7resc5nd2Hex2qZONWDB7AgfUP4e4O1-AjcH2OHVt4RoUfjA7G7DqcoB8zbHazpMp0y-gwyuMz2sCGUdfP2YU0csWoiku18sLGfl5bNlvRLU_7op7jYm2uvz6Gy7PTL5_Ow67JQqgRK2xCkXJpMUw1icvRuXNdKuNsmTquCM3FmRKFc2nsOFdWZtwJnlNyny5EGZtSJE9g5BfePgXGSxGrJFIKoy6RylgVOrYyJobAyMYiDeB9v8iV7hjIqRFGXWEkQvtRDfsRwOth6LKl3fjboAnt1DCAmLKbF4vVvOoUr8pEphB2GeMwcnIYSqCJl5FB2CIVwk0VwDva54r0GSejZVeWgL9EzFjVOC-ikmdo5gI47kWh6hR9Xf0SywBeDZ9RReneRXq72DZj8oJIdfIAjlrJGeacYISOER0PoNiTqb2f2v_ib64bGvCY0FwqkgDeDOL378V69v_ZP4c7HOFae7h0DKPNamtfINzaqJedDv0EW5UqoQ priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB5B9wAceD8CCzIPCS7ZJo4TJyfURaxWHFYVotJyiuzY7laUpOoDBL-emcSN2gUkxDHxNIrr8cw345kvAK_Q6XFZaRMW0tpQmMqF2kgXiio3iICtyVxb5XuWnU7Eh_P03CfcVr6sEkPxWWukqQsrRA8WDbkY8mEii-HCuLfffCYplpGQROFWXIWDLEUsPoCDydl49LltKfK_7eiEEozthys6SogSKtvacUItV__vFnnHJV0ul7y2qRfqx3c1n-_4opNbUG5n0ZWgfDnarPVR9fMSweP_T_M23PQwlY06vboDV2x9F27skBfeA7ct2mNNzaiThFGmza7CY3SMho1nC2p1t4yyWzVeo1FtKXrrKfuojFoyagvTnQKyUT2dWzZe0rFRd2M-bZaz9cXX-zA5ef_p3Wnov9oQVgg-1qFIubIY95rESUQLvCq0cbZIHdcED-NMi9y5NHaca6sy7gSXVC1Y5aKITSGSBzCom9o-AsYLEesk0hrDOJGqWOdVbFVMlIORjUUawJvtMpaVpzSnL2vMSwxtaMXLfsUDeNGLLjoejz8JHZMu9AJEvd3eaJbT0u_kMhOZRhxnjMNQzGFsgj5DRQZxkNKIX3UAr0mTSjIQ-DKV8n0OOCWi2ipHMo8KnqHdDOBwq2yltxyrEp-XSwTlHIef98O45-kgR9W22bQyMieWHhnAw043-3dOMOTHEJEHkO9p7d6k9kfq2UXLKx4TPExFEsDLXsH__mc9_iepJ3CdIwzsklaHMFgvN_Ypwri1fub36i_mHkFk priority: 102 providerName: Unpaywall  | 
    
| Title | Research on Time Series-Based Pipeline Ground Penetrating Radar Calibration Angle Prediction Algorithm | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/38257472 https://www.proquest.com/docview/2918797720 https://www.proquest.com/docview/2917868407 https://pubmed.ncbi.nlm.nih.gov/PMC10819543 https://www.mdpi.com/1424-8220/24/2/379/pdf?version=1704707759 https://doaj.org/article/646b064ddf974f729153a0d152ab085b  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 24 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: HH5 dateStart: 20010101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ADMLS dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1424-8220 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M48 dateStart: 20030101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB7t4wAcEG8CS2UeAi6BxHHi5IBQF21ZIVFVKyqVU2THdnelkHb7EOy_ZyZJoxYWiUuk2Fbk2GPPN_bMNwCvUOlxWWjjZ9JaX5jC-dpI54siNYiArUlc7eU7TE7H4ssknuzBxq25HcDltaYd5ZMaL8p3vy6vPuKC_0AWJ5rs75d0QxBEMns9v_QpnxTdu7bJNfbhEGszSurwVXT3CzyK6hzXFOblo4oMGs6h3a_taKqa0P_vbXtLb_3pU3ljXc3V1U9VllsKa3AHbrdIk_Ub0bgLe7a6B7e2-Afvg9v43bFZxSgYhNFhmV36x6jbDBtdzCla3TI6oKrwHffFmmW3mrIzZdSCUWSXbmSI9atpadloQTc_TUE5xWFanf94AOPBybdPp36beMEvED-sfBFzZdF0NZGTqPB5kWnjbBY7rgnhhYkWqXNx6DjXViXcCS7J4a9IRRaaTEQP4aCaVfYxMJ6JUEeB1miJiViFOi1Cq0JiDQxsKGIP3m4GOS9aVnJKjlHmaJ3QfOTdfHjwoms6b6g4rmt0TDPVNSD27Lpgtpjm7WLME5FohGLGOLSmHJoXuO2rwCCUURohqPbgDc1zTlKHnSlUG6qAv0RsWXlfpkHGE9z6PDjaiEK-kd0cv5dKxNUcq5931bhs6S5GVXa2rtvIlIh2pAePGsnp-hyh1Y5WHvcg3ZGpnZ_arakuzmtq8JAQXiwiD1524vfvwXryH917Cjc54rjm1OkIDlaLtX2GOGyle7AvJxKf6eBzDw6PT4ajs159ptGrFxuWjYej_vffCf426Q | 
    
| linkProvider | Scholars Portal | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6V8lB4QNwECphL9CVq4jjXA0JboNrSUlWolfYt2LG9rRSSZQ9V_VP8RmZydZfrrY-bWCvHM575PnsOgNfo9HicK-2msTGu0Ll1lY6tK_JEIwI2OrJ1lO9hNDwRn0fhaA1-drkwFFbZ2cTaUOsqpzPybZ5SX2zEgt77yQ-XukbR7WrXQqNRi31zcY6UbfZu7yPK9w3nu5-OPwzdtquAm6NznLsi5NIgL9OBjdGb8TxV2po0tFwRfPEjJRJrQ99yroyMuBU8pmi2PBGpr1MR4P9eg-siQFuC-yceXRK8APleU70oCFJve0Y3F15AUWJLPq9uDfCnA1jygL9HZ24syom8OJdFseT6dm_DrRazskGjZHdgzZR34eZSJcN7YLsIPlaVjNJKGB27mZm7g15Ss6OzCeW9G0ZHXSX-Rgtb1-stx-yr1HLKKEdMNdrIBuW4MOxoSndIzYNijKKYn36_DydXstgPYL2sSvMIGE-FrwJPKeR0IpS-SnLfSJ_qD3rGF6EDW90iZ3lb35zabBQZ8hySR9bLw4GX_dBJU9Tjb4N2SFL9AKrDXT-opuOs3dZZJCKFoE5ri7zMIlFBByI9jaBIKgSzyoG3JOeMrAVOJpdt0gN-EtXdygZx4qU8QiPqwGanCllrRmbZpdI78KJ_jQaAbnVkaapFPSZOqGRP7MDDRnP6OQfI_5EvcgeSFZ1a-ajVN-XZaV1k3CesGIrAgVe9-v17sR7_f_bPYWN4_OUgO9g73H8CNzgCw-YYaxPW59OFeYrAbq6e1buJwber3r6_AK1OYMY | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VInE8IG4CBcyl8hJt4jhx8oDQlrJqKapWiEr7FuzY3lZassseqvrX-HXM5OqW662Pia3I8dz2zDcAr9HocVlo42fSWl-YwvnaSOeLIjXoAVuTuCrL9zDZOxKfRvFoA362tTCUVtnqxEpRm2lBZ-Q9nlFfbPQFg55r0iKGu4P3sx8-dZCim9a2nUbNIgf27BTDt8W7_V2k9RvOBx-_ftjzmw4DfoGGcumLmCuLMZqJnETLxotMG2ez2HFNrkyYaJE6F4eOc21Vwp3gkjLbilRkoclEhN-9AldlFGWUTihH58FehLFfjWSEg0FvQbcYQUQZY2v2r2oT8KcxWLOGv2dqXl-VM3V2qiaTNTM4uA23Gv-V9WuGuwMbtrwLN9dQDe-Ba7P52LRkVGLC6AjOLvwdtJiGDU9mVANvGR17lfiM2rbC7i3H7Isyas6oXkzXnMn65Xhi2XBO90n1i8kYSbE8_n4fji5lsx_AZjkt7SNgPBOhjgKtMb4TsQp1WoRWhYRFGNhQxB68bTc5Lxqsc2q5Mckx5iF65B09PHjZTZ3VAB9_m7RDlOomECZ39WI6H-eNiOeJSDQ6eMY4jNEcBi1oTFRg0EFSGh1b7cE20TknzYGLKVRTAIG_RBhceV-mQcYTVKgebLWskDcqZZGfC4AHL7phVAZ0w6NKO11Vc2RK8D3Sg4c153RrjlLUzkJyD9ILPHXhpy6OlCfHFeB4SH5jLCIPXnXs9-_Nevz_1T-Hayi4-ef9w4MncIOjj1ifaG3B5nK-sk_Rx1vqZ5UwMfh22dL7C1XNZQk | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB5B9wAceD8CCzIPCS7ZJo4TJyfURaxWHFYVotJyiuzY7laUpOoDBL-emcSN2gUkxDHxNIrr8cw345kvAK_Q6XFZaRMW0tpQmMqF2kgXiio3iICtyVxb5XuWnU7Eh_P03CfcVr6sEkPxWWukqQsrRA8WDbkY8mEii-HCuLfffCYplpGQROFWXIWDLEUsPoCDydl49LltKfK_7eiEEozthys6SogSKtvacUItV__vFnnHJV0ul7y2qRfqx3c1n-_4opNbUG5n0ZWgfDnarPVR9fMSweP_T_M23PQwlY06vboDV2x9F27skBfeA7ct2mNNzaiThFGmza7CY3SMho1nC2p1t4yyWzVeo1FtKXrrKfuojFoyagvTnQKyUT2dWzZe0rFRd2M-bZaz9cXX-zA5ef_p3Wnov9oQVgg-1qFIubIY95rESUQLvCq0cbZIHdcED-NMi9y5NHaca6sy7gSXVC1Y5aKITSGSBzCom9o-AsYLEesk0hrDOJGqWOdVbFVMlIORjUUawJvtMpaVpzSnL2vMSwxtaMXLfsUDeNGLLjoejz8JHZMu9AJEvd3eaJbT0u_kMhOZRhxnjMNQzGFsgj5DRQZxkNKIX3UAr0mTSjIQ-DKV8n0OOCWi2ipHMo8KnqHdDOBwq2yltxyrEp-XSwTlHIef98O45-kgR9W22bQyMieWHhnAw043-3dOMOTHEJEHkO9p7d6k9kfq2UXLKx4TPExFEsDLXsH__mc9_iepJ3CdIwzsklaHMFgvN_Ypwri1fub36i_mHkFk | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+Time+Series-Based+Pipeline+Ground+Penetrating+Radar+Calibration+Angle+Prediction+Algorithm&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Xu%2C+Maoxuan&rft.au=Yang%2C+Feng&rft.au=Fang%2C+Yuanjin&rft.au=Li%2C+Fanruo&rft.date=2024-01-01&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=24&rft.issue=2&rft_id=info:doi/10.3390%2Fs24020379&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |