FBH1 Helicase Disrupts RAD51 Filaments in Vitro and Modulates Homologous Recombination in Mammalian Cells

Efficient repair of DNA double strand breaks and interstrand cross-links requires the homologous recombination (HR) pathway, a potentially error-free process that utilizes a homologous sequence as a repair template. A key player in HR is RAD51, the eukaryotic ortholog of bacterial RecA protein. RAD5...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 288; no. 47; pp. 34168 - 34180
Main Authors Simandlova, Jitka, Zagelbaum, Jennifer, Payne, Miranda J., Chu, Wai Kit, Shevelev, Igor, Hanada, Katsuhiro, Chatterjee, Sujoy, Reid, Dylan A., Liu, Ying, Janscak, Pavel, Rothenberg, Eli, Hickson, Ian D.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 22.11.2013
American Society for Biochemistry and Molecular Biology
Subjects
Online AccessGet full text
ISSN0021-9258
1083-351X
1083-351X
DOI10.1074/jbc.M113.484493

Cover

Abstract Efficient repair of DNA double strand breaks and interstrand cross-links requires the homologous recombination (HR) pathway, a potentially error-free process that utilizes a homologous sequence as a repair template. A key player in HR is RAD51, the eukaryotic ortholog of bacterial RecA protein. RAD51 can polymerize on DNA to form a nucleoprotein filament that facilitates both the search for the homologous DNA sequences and the subsequent DNA strand invasion required to initiate HR. Because of its pivotal role in HR, RAD51 is subject to numerous positive and negative regulatory influences. Using a combination of molecular genetic, biochemical, and single-molecule biophysical techniques, we provide mechanistic insight into the mode of action of the FBH1 helicase as a regulator of RAD51-dependent HR in mammalian cells. We show that FBH1 binds directly to RAD51 and is able to disrupt RAD51 filaments on DNA through its ssDNA translocase function. Consistent with this, a mutant mouse embryonic stem cell line with a deletion in the FBH1 helicase domain fails to limit RAD51 chromatin association and shows hyper-recombination. Our data are consistent with FBH1 restraining RAD51 DNA binding under unperturbed growth conditions to prevent unwanted or unscheduled DNA recombination. Background: Homologous recombination is regulated both positively and negatively in eukaryotic cells to suppress genomic instability. Results: FBH1 can disrupt RAD51 filaments in vitro and suppresses formation of spontaneous RAD51 foci in mammalian cells. In cells defective for FBH1, hyper-recombination is observed. Conclusion: FBH1 is a negative regulator of homologous recombination. Significance: RAD51 activity must be carefully controlled to preserve genomic integrity.
AbstractList Efficient repair of DNA double strand breaks and interstrand cross-links requires the homologous recombination (HR) pathway, a potentially error-free process that utilizes a homologous sequence as a repair template. A key player in HR is RAD51, the eukaryotic ortholog of bacterial RecA protein. RAD51 can polymerize on DNA to form a nucleoprotein filament that facilitates both the search for the homologous DNA sequences and the subsequent DNA strand invasion required to initiate HR. Because of its pivotal role in HR, RAD51 is subject to numerous positive and negative regulatory influences. Using a combination of molecular genetic, biochemical, and single-molecule biophysical techniques, we provide mechanistic insight into the mode of action of the FBH1 helicase as a regulator of RAD51-dependent HR in mammalian cells. We show that FBH1 binds directly to RAD51 and is able to disrupt RAD51 filaments on DNA through its ssDNA translocase function. Consistent with this, a mutant mouse embryonic stem cell line with a deletion in the FBH1 helicase domain fails to limit RAD51 chromatin association and shows hyper-recombination. Our data are consistent with FBH1 restraining RAD51 DNA binding under unperturbed growth conditions to prevent unwanted or unscheduled DNA recombination.
Background: Homologous recombination is regulated both positively and negatively in eukaryotic cells to suppress genomic instability. Results: FBH1 can disrupt RAD51 filaments in vitro and suppresses formation of spontaneous RAD51 foci in mammalian cells. In cells defective for FBH1, hyper-recombination is observed. Conclusion: FBH1 is a negative regulator of homologous recombination. Significance: RAD51 activity must be carefully controlled to preserve genomic integrity. Efficient repair of DNA double strand breaks and interstrand cross-links requires the homologous recombination (HR) pathway, a potentially error-free process that utilizes a homologous sequence as a repair template. A key player in HR is RAD51, the eukaryotic ortholog of bacterial RecA protein. RAD51 can polymerize on DNA to form a nucleoprotein filament that facilitates both the search for the homologous DNA sequences and the subsequent DNA strand invasion required to initiate HR. Because of its pivotal role in HR, RAD51 is subject to numerous positive and negative regulatory influences. Using a combination of molecular genetic, biochemical, and single-molecule biophysical techniques, we provide mechanistic insight into the mode of action of the FBH1 helicase as a regulator of RAD51-dependent HR in mammalian cells. We show that FBH1 binds directly to RAD51 and is able to disrupt RAD51 filaments on DNA through its ssDNA translocase function. Consistent with this, a mutant mouse embryonic stem cell line with a deletion in the FBH1 helicase domain fails to limit RAD51 chromatin association and shows hyper-recombination. Our data are consistent with FBH1 restraining RAD51 DNA binding under unperturbed growth conditions to prevent unwanted or unscheduled DNA recombination.
Efficient repair of DNA double strand breaks and interstrand cross-links requires the homologous recombination (HR) pathway, a potentially error-free process that utilizes a homologous sequence as a repair template. A key player in HR is RAD51, the eukaryotic ortholog of bacterial RecA protein. RAD51 can polymerize on DNA to form a nucleoprotein filament that facilitates both the search for the homologous DNA sequences and the subsequent DNA strand invasion required to initiate HR. Because of its pivotal role in HR, RAD51 is subject to numerous positive and negative regulatory influences. Using a combination of molecular genetic, biochemical, and single-molecule biophysical techniques, we provide mechanistic insight into the mode of action of the FBH1 helicase as a regulator of RAD51-dependent HR in mammalian cells. We show that FBH1 binds directly to RAD51 and is able to disrupt RAD51 filaments on DNA through its ssDNA translocase function. Consistent with this, a mutant mouse embryonic stem cell line with a deletion in the FBH1 helicase domain fails to limit RAD51 chromatin association and shows hyper-recombination. Our data are consistent with FBH1 restraining RAD51 DNA binding under unperturbed growth conditions to prevent unwanted or unscheduled DNA recombination.Efficient repair of DNA double strand breaks and interstrand cross-links requires the homologous recombination (HR) pathway, a potentially error-free process that utilizes a homologous sequence as a repair template. A key player in HR is RAD51, the eukaryotic ortholog of bacterial RecA protein. RAD51 can polymerize on DNA to form a nucleoprotein filament that facilitates both the search for the homologous DNA sequences and the subsequent DNA strand invasion required to initiate HR. Because of its pivotal role in HR, RAD51 is subject to numerous positive and negative regulatory influences. Using a combination of molecular genetic, biochemical, and single-molecule biophysical techniques, we provide mechanistic insight into the mode of action of the FBH1 helicase as a regulator of RAD51-dependent HR in mammalian cells. We show that FBH1 binds directly to RAD51 and is able to disrupt RAD51 filaments on DNA through its ssDNA translocase function. Consistent with this, a mutant mouse embryonic stem cell line with a deletion in the FBH1 helicase domain fails to limit RAD51 chromatin association and shows hyper-recombination. Our data are consistent with FBH1 restraining RAD51 DNA binding under unperturbed growth conditions to prevent unwanted or unscheduled DNA recombination.
Efficient repair of DNA double strand breaks and interstrand cross-links requires the homologous recombination (HR) pathway, a potentially error-free process that utilizes a homologous sequence as a repair template. A key player in HR is RAD51, the eukaryotic ortholog of bacterial RecA protein. RAD51 can polymerize on DNA to form a nucleoprotein filament that facilitates both the search for the homologous DNA sequences and the subsequent DNA strand invasion required to initiate HR. Because of its pivotal role in HR, RAD51 is subject to numerous positive and negative regulatory influences. Using a combination of molecular genetic, biochemical, and single-molecule biophysical techniques, we provide mechanistic insight into the mode of action of the FBH1 helicase as a regulator of RAD51-dependent HR in mammalian cells. We show that FBH1 binds directly to RAD51 and is able to disrupt RAD51 filaments on DNA through its ssDNA translocase function. Consistent with this, a mutant mouse embryonic stem cell line with a deletion in the FBH1 helicase domain fails to limit RAD51 chromatin association and shows hyper-recombination. Our data are consistent with FBH1 restraining RAD51 DNA binding under unperturbed growth conditions to prevent unwanted or unscheduled DNA recombination. Background: Homologous recombination is regulated both positively and negatively in eukaryotic cells to suppress genomic instability. Results: FBH1 can disrupt RAD51 filaments in vitro and suppresses formation of spontaneous RAD51 foci in mammalian cells. In cells defective for FBH1, hyper-recombination is observed. Conclusion: FBH1 is a negative regulator of homologous recombination. Significance: RAD51 activity must be carefully controlled to preserve genomic integrity.
Author Liu, Ying
Hanada, Katsuhiro
Chatterjee, Sujoy
Rothenberg, Eli
Simandlova, Jitka
Zagelbaum, Jennifer
Reid, Dylan A.
Chu, Wai Kit
Hickson, Ian D.
Payne, Miranda J.
Shevelev, Igor
Janscak, Pavel
Author_xml – sequence: 1
  givenname: Jitka
  surname: Simandlova
  fullname: Simandlova, Jitka
  organization: Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 14300 Prague, Czech Republic
– sequence: 2
  givenname: Jennifer
  surname: Zagelbaum
  fullname: Zagelbaum, Jennifer
  organization: Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York
– sequence: 3
  givenname: Miranda J.
  surname: Payne
  fullname: Payne, Miranda J.
  organization: Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, Oxford OX3 9DS, United Kingdom
– sequence: 4
  givenname: Wai Kit
  surname: Chu
  fullname: Chu, Wai Kit
  organization: Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, Oxford OX3 9DS, United Kingdom
– sequence: 5
  givenname: Igor
  surname: Shevelev
  fullname: Shevelev, Igor
  organization: Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 14300 Prague, Czech Republic
– sequence: 6
  givenname: Katsuhiro
  surname: Hanada
  fullname: Hanada, Katsuhiro
  organization: Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, Oxford OX3 9DS, United Kingdom
– sequence: 7
  givenname: Sujoy
  surname: Chatterjee
  fullname: Chatterjee, Sujoy
  organization: Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York
– sequence: 8
  givenname: Dylan A.
  surname: Reid
  fullname: Reid, Dylan A.
  organization: Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York
– sequence: 9
  givenname: Ying
  surname: Liu
  fullname: Liu, Ying
  organization: Nordea Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen N, Denmark
– sequence: 10
  givenname: Pavel
  surname: Janscak
  fullname: Janscak, Pavel
  email: pjanscak@imcr.uzh.ch
  organization: Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 14300 Prague, Czech Republic
– sequence: 11
  givenname: Eli
  surname: Rothenberg
  fullname: Rothenberg, Eli
  email: eli.rothenberg@nyumc.org
  organization: Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York
– sequence: 12
  givenname: Ian D.
  surname: Hickson
  fullname: Hickson, Ian D.
  email: iandh@sund.ku.dk
  organization: Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, Oxford OX3 9DS, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24108124$$D View this record in MEDLINE/PubMed
BookMark eNp9UcFu1DAQtVAR3RbO3FCOXLK1YzuxL0hly7JIXSGhCnGzHGe2TOXYi51U4u_xsqUCJPDFGs17b2beOyMnIQYg5CWjS0Y7cXHXu-WWMb4USgjNn5AFo4rXXLIvJ2RBacNq3Uh1Ss5yvqPlCc2ekdNGFBhrxILg-u2GVRvw6GyG6gpzmvdTrj5dXklWrdHbEUKpMVSfcUqxsmGotnGYvZ0gV5s4Rh9v41wY4OLYY7ATxnDAb-04Wo82VCvwPj8nT3fWZ3jx8J-Tm_W7m9Wmvv74_sPq8rp2kuqp5rqFRmroW6l5KUTbKGqlEq5nHAbRdJZp4ehOKddYbi10XGkltVBqGHp-Tt4cZfdzP8LgyvbJerNPONr03USL5s9OwK_mNt4brnjHpCoCrx8EUvw2Q57MiNmVC2yAcqdhomWq1U13gL76fdbjkF_2FsDFEeBSzDnB7hHCqDkEaEqA5hCgOQZYGPIvhsPpp6VlWfT_4ekjD4q19wjJZIcQHAyYwE1miPhP7g8zRbKx
CitedBy_id crossref_primary_10_1093_nar_gkt1263
crossref_primary_10_1038_s41467_023_38617_z
crossref_primary_10_1016_j_celrep_2023_112907
crossref_primary_10_1016_j_semcdb_2020_10_001
crossref_primary_10_1093_nar_gkw024
crossref_primary_10_1172_JCI127521
crossref_primary_10_1088_2050_6120_abf239
crossref_primary_10_3390_ijms242316903
crossref_primary_10_3390_biomedicines11051450
crossref_primary_10_3390_genes12091319
crossref_primary_10_1016_j_gde_2021_09_001
crossref_primary_10_1016_j_celrep_2017_11_047
crossref_primary_10_3390_genes9120603
crossref_primary_10_1186_s40164_022_00319_5
crossref_primary_10_1016_j_celrep_2015_02_028
crossref_primary_10_1667_RR14495_1
crossref_primary_10_1016_j_jbc_2024_107894
crossref_primary_10_3390_genes11050498
crossref_primary_10_1038_s41467_019_09190_1
crossref_primary_10_1016_j_pharmthera_2020_107492
crossref_primary_10_1038_s44318_024_00038_z
crossref_primary_10_1016_j_dnarep_2024_103731
crossref_primary_10_1038_bjc_2014_594
crossref_primary_10_1038_s41467_023_42576_w
crossref_primary_10_3390_cancers13122930
crossref_primary_10_1016_j_semcdb_2020_07_004
crossref_primary_10_1016_j_jbc_2023_104929
crossref_primary_10_1007_s00412_019_00709_5
crossref_primary_10_1080_15384047_2015_1071738
crossref_primary_10_1007_s00412_016_0573_x
crossref_primary_10_1093_nar_gkz186
crossref_primary_10_1038_ng_3412
crossref_primary_10_1074_jbc_M113_542456
crossref_primary_10_1038_s41467_023_43918_4
crossref_primary_10_1093_nar_gkae263
crossref_primary_10_1038_s41556_019_0425_z
crossref_primary_10_1016_j_dnarep_2021_103229
crossref_primary_10_7554_eLife_47277
crossref_primary_10_1126_sciadv_abc3598
crossref_primary_10_1371_journal_pgen_1004542
crossref_primary_10_1016_j_micinf_2014_08_001
crossref_primary_10_1073_pnas_1810457115
crossref_primary_10_1016_j_molcel_2020_12_036
crossref_primary_10_1016_j_tcb_2015_07_009
crossref_primary_10_1038_ncomms6931
crossref_primary_10_3390_genes9120629
crossref_primary_10_1083_jcb_201703144
crossref_primary_10_3390_genes7080052
crossref_primary_10_1038_s41467_018_03159_2
crossref_primary_10_1371_journal_pgen_1006208
crossref_primary_10_15252_embj_201593265
crossref_primary_10_1093_nar_gkac131
crossref_primary_10_1093_nar_gku1219
crossref_primary_10_1016_j_drup_2019_100673
crossref_primary_10_1016_j_gde_2021_06_006
crossref_primary_10_1126_science_adr7920
crossref_primary_10_1016_j_dnarep_2023_103613
crossref_primary_10_7554_eLife_41697
crossref_primary_10_1016_j_semcancer_2015_09_013
crossref_primary_10_1093_nar_gky111
crossref_primary_10_1016_j_celrep_2024_114594
crossref_primary_10_1093_nar_gkad596
crossref_primary_10_15252_embj_201593132
crossref_primary_10_1038_s41467_024_50080_y
Cites_doi 10.1016/S0021-9258(19)78100-9
10.1038/nature04049
10.1007/978-1-60327-355-8_3
10.1016/j.molcel.2009.12.026
10.1038/ncomms2395
10.1016/j.molcel.2011.11.010
10.1038/nature03443
10.1126/science.8456314
10.1146/annurev-genet-051710-150955
10.1038/emboj.2008.298
10.1101/gad.1609007
10.1128/MCB.25.18.8084-8096.2005
10.1002/j.1460-2075.1994.tb06914.x
10.1038/sj.emboj.7600301
10.1038/nature01577
10.1101/gad.935501
10.1146/annurev.genet.40.110405.090636
10.1038/nature02646
10.1074/jbc.M201612200
10.1128/MCB.00471-09
10.1038/nature03445
10.1056/NEJMoa0900212
10.1038/nature01585
10.1093/nar/gkh534
10.1038/ncomms3281
10.1016/j.molcel.2009.05.026
10.1016/j.dnarep.2005.11.005
10.1074/jbc.M109.029371
10.1083/jcb.200812138
10.1038/82548
10.1016/j.dnarep.2003.04.001
10.1016/j.dnarep.2010.03.011
10.1038/nsmb.1904
10.1128/MCB.25.18.8074-8083.2005
10.1074/jbc.M208004200
10.1101/gad.1609107
10.1128/MCB.02043-06
10.1038/nature01083
ContentType Journal Article
Copyright 2013 © 2013 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.
2013 by The American Society for Biochemistry and Molecular Biology, Inc. 2013
Copyright_xml – notice: 2013 © 2013 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.
– notice: 2013 by The American Society for Biochemistry and Molecular Biology, Inc. 2013
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1074/jbc.M113.484493
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
DocumentTitleAlternate Regulation of RAD51 by FBH1
EISSN 1083-351X
EndPage 34180
ExternalDocumentID PMC3837158
24108124
10_1074_jbc_M113_484493
S0021925819543988
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Cancer Research UK
GroupedDBID ---
-DZ
-ET
-~X
0SF
18M
29J
2WC
34G
39C
4.4
53G
5BI
5GY
5RE
5VS
6I.
79B
85S
AAEDW
AAFTH
AAFWJ
AARDX
AAXUO
ABDNZ
ABOCM
ABPPZ
ABRJW
ACGFO
ACNCT
ADBBV
ADIYS
ADNWM
AENEX
AEXQZ
AFOSN
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BAWUL
BTFSW
CJ0
CS3
DIK
DU5
E.L
E3Z
EBS
EJD
F5P
FDB
FRP
GROUPED_DOAJ
GX1
HH5
HYE
IH2
KQ8
L7B
N9A
OK1
P0W
P2P
R.V
RHF
RHI
RNS
ROL
RPM
SJN
TBC
TN5
TR2
UHB
UKR
UPT
VQA
W8F
WH7
WOQ
XSW
YQT
YSK
YWH
YZZ
ZA5
~02
~KM
.55
.7T
.GJ
0R~
186
3O-
41~
6TJ
AALRI
AAYJJ
AAYOK
AAYWO
AAYXX
ABFSI
ACSFO
ACVFH
ACYGS
ADCNI
ADVLN
ADXHL
AEUPX
AFFNX
AFPUW
AI.
AIGII
AITUG
AKBMS
AKRWK
AKYEP
C1A
CITATION
FA8
H13
J5H
MVM
NHB
OHT
P-O
QZG
UQL
VH1
WHG
X7M
XJT
Y6R
YYP
ZE2
ZGI
ZY4
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c509t-396e259eb659339646280a584cb13ed427a194c0f88c2a3aae7389859488ddb3
ISSN 0021-9258
1083-351X
IngestDate Thu Aug 21 13:48:23 EDT 2025
Thu Sep 04 22:49:09 EDT 2025
Thu Apr 03 07:10:28 EDT 2025
Thu Apr 24 23:08:16 EDT 2025
Tue Jul 01 00:47:53 EDT 2025
Fri Feb 23 02:46:49 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 47
Keywords DNA Replication
DNA Damage
DNA Recombination
DNA Repair
DNA Helicase
Language English
License This is an open access article under the CC BY license.
http://creativecommons.org/licenses/by/4.0
https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c509t-396e259eb659339646280a584cb13ed427a194c0f88c2a3aae7389859488ddb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
Deceased May 3 2012.
OpenAccessLink https://dx.doi.org/10.1074/jbc.M113.484493
PMID 24108124
PQID 1461869278
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3837158
proquest_miscellaneous_1461869278
pubmed_primary_24108124
crossref_primary_10_1074_jbc_M113_484493
crossref_citationtrail_10_1074_jbc_M113_484493
elsevier_sciencedirect_doi_10_1074_jbc_M113_484493
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-11-22
PublicationDateYYYYMMDD 2013-11-22
PublicationDate_xml – month: 11
  year: 2013
  text: 2013-11-22
  day: 22
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 9650 Rockville Pike, Bethesda, MD 20814, U.S.A
PublicationTitle The Journal of biological chemistry
PublicationTitleAlternate J Biol Chem
PublicationYear 2013
Publisher Elsevier Inc
American Society for Biochemistry and Molecular Biology
Publisher_xml – name: Elsevier Inc
– name: American Society for Biochemistry and Molecular Biology
References Benson, Stasiak, West (bib3) 1994; 13
Luo, Santoro, McDaniel, Nishijima, Mills, Youssoufian, Vogel, Schultz, Bradley (bib2) 2000; 26
Qiu, Antony, Doganay, Ran Koh, Lohman, Myong (bib34) 2013; 4
Veaute, Jeusset, Soustelle, Kowalczykowski, Le Cam, Fabre (bib9) 2003; 423
Farmer, McCabe, Lord, Tutt, Johnson, Richardson, Santarosa, Dillon, Hickson, Knights, Martin, Jackson, Smith, Ashworth (bib29) 2005; 434
Wu, Hickson (bib7) 2006; 40
Antony, Tomko, Xiao, Krejci, Lohman, Ellenberger (bib8) 2009; 35
Kohzaki, Hatanaka, Sonoda, Yamazoe, Kikuchi, Vu Trung, Szüts, Sale, Shinagawa, Watanabe, Takeda (bib17) 2007; 27
Chi, Van Komen, Sehorn, Sigurdsson, Sung (bib31) 2006; 5
Osman, Dixon, Barr, Whitby (bib15) 2005; 25
Liu, Doty, Gibson, Heyer (bib4) 2010; 17
Tan, Kanaar, Wyman (bib5) 2003; 2
Ha, Rasnik, Cheng, Babcock, Gauss, Lohman, Chu (bib26) 2002; 419
Krejci, Van Komen, Li, Villemain, Reddy, Klein, Ellenberger, Sung (bib10) 2003; 423
Bugreev, Yu, Egelman, Mazin (bib38) 2007; 21
Ward, Muzzini, Petalcorin, Martinez-Perez, Martin, Plevani, Cassata, Marini, Boulton (bib39) 2010; 37
Kim, Kim, Lee, Kim, Kang, Bae, Pan, Seo (bib12) 2002; 277
Fugger, Chu, Haahr, Kousholt, Beck, Payne, Hanada, Hickson, Sørensen (bib27) 2013; 4
Hu, Raynard, Sehorn, Lu, Bussen, Zheng, Stark, Barnes, Chi, Janscak, Jasin, Vogel, Sung, Luo (bib33) 2007; 21
Ogawa, Yu, Shinohara, Egelman (bib32) 1993; 259
Lorenz, Osman, Folkyte, Sofueva, Whitby (bib16) 2009; 29
Yodh, Stevens, Kanagaraj, Janscak, Ha (bib35) 2009; 28
Sigurdsson, Van Komen, Bussen, Schild, Albala, Sung (bib6) 2001; 15
Pierce, Jasin (bib21) 2005; 291
Rothenberg, Ha (bib25) 2010; 587
Morishita, Furukawa, Sakaguchi, Toda, Carr, Iwasaki, Shinagawa (bib14) 2005; 25
Bryant, Schultz, Thomas, Parker, Flower, Lopez, Kyle, Meuth, Curtin, Helleday (bib30) 2005; 434
Moldovan, Dejsuphong, Petalcorin, Hofmann, Takeda, Boulton, D'Andrea (bib11) 2012; 45
Bugreev, Mazina, Mazin (bib37) 2009; 284
Myong, Rasnik, Joo, Lohman, Ha (bib36) 2005; 437
Garcia, Liu, Jiricny, West, Janscak (bib24) 2004; 23
Kim, Kim, Kim, Ryu, Bae, Seo (bib13) 2004; 32
Fugger, Mistrik, Danielsen, Dinant, Falck, Bartek, Lukas, Mailand (bib19) 2009; 186
Heyer, Ehmsen, Liu (bib1) 2010; 44
Yusa, Horie, Kondoh, Kouno, Maeda, Kinoshita, Takeda (bib20) 2004; 429
Sigurdsson, Van Komen, Petukhova, Sung (bib22) 2002; 277
Laulier, Cheng, Huang, Stark (bib18) 2010; 9
Henricksen, Umbricht, Wold (bib23) 1994; 269
Fong, Boss, Yap, Tutt, Wu, Mergui-Roelvink, Mortimer, Swaisland, Lau, O'Connor, Ashworth, Carmichael, Kaye, Schellens, de Bono (bib28) 2009; 361
Yodh (10.1074/jbc.M113.484493_bib35) 2009; 28
Krejci (10.1074/jbc.M113.484493_bib10) 2003; 423
Pierce (10.1074/jbc.M113.484493_bib21) 2005; 291
Morishita (10.1074/jbc.M113.484493_bib14) 2005; 25
Bugreev (10.1074/jbc.M113.484493_bib38) 2007; 21
Ward (10.1074/jbc.M113.484493_bib39) 2010; 37
Kim (10.1074/jbc.M113.484493_bib12) 2002; 277
Osman (10.1074/jbc.M113.484493_bib15) 2005; 25
Garcia (10.1074/jbc.M113.484493_bib24) 2004; 23
Bugreev (10.1074/jbc.M113.484493_bib37) 2009; 284
Fugger (10.1074/jbc.M113.484493_bib19) 2009; 186
Hu (10.1074/jbc.M113.484493_bib33) 2007; 21
Benson (10.1074/jbc.M113.484493_bib3) 1994; 13
Sigurdsson (10.1074/jbc.M113.484493_bib6) 2001; 15
Fugger (10.1074/jbc.M113.484493_bib27) 2013; 4
Veaute (10.1074/jbc.M113.484493_bib9) 2003; 423
Kohzaki (10.1074/jbc.M113.484493_bib17) 2007; 27
Heyer (10.1074/jbc.M113.484493_bib1) 2010; 44
Ogawa (10.1074/jbc.M113.484493_bib32) 1993; 259
Sigurdsson (10.1074/jbc.M113.484493_bib22) 2002; 277
Fong (10.1074/jbc.M113.484493_bib28) 2009; 361
Qiu (10.1074/jbc.M113.484493_bib34) 2013; 4
Luo (10.1074/jbc.M113.484493_bib2) 2000; 26
Lorenz (10.1074/jbc.M113.484493_bib16) 2009; 29
Antony (10.1074/jbc.M113.484493_bib8) 2009; 35
Henricksen (10.1074/jbc.M113.484493_bib23) 1994; 269
Yusa (10.1074/jbc.M113.484493_bib20) 2004; 429
Myong (10.1074/jbc.M113.484493_bib36) 2005; 437
Farmer (10.1074/jbc.M113.484493_bib29) 2005; 434
Kim (10.1074/jbc.M113.484493_bib13) 2004; 32
Chi (10.1074/jbc.M113.484493_bib31) 2006; 5
Bryant (10.1074/jbc.M113.484493_bib30) 2005; 434
Rothenberg (10.1074/jbc.M113.484493_bib25) 2010; 587
Ha (10.1074/jbc.M113.484493_bib26) 2002; 419
Liu (10.1074/jbc.M113.484493_bib4) 2010; 17
Wu (10.1074/jbc.M113.484493_bib7) 2006; 40
Tan (10.1074/jbc.M113.484493_bib5) 2003; 2
Moldovan (10.1074/jbc.M113.484493_bib11) 2012; 45
Laulier (10.1074/jbc.M113.484493_bib18) 2010; 9
References_xml – volume: 13
  start-page: 5764
  year: 1994
  end-page: 5771
  ident: bib3
  article-title: Purification and characterization of the human Rad51 protein, an analogue of
  publication-title: EMBO J
– volume: 437
  start-page: 1321
  year: 2005
  end-page: 1325
  ident: bib36
  article-title: Repetitive shuttling of a motor protein on DNA
  publication-title: Nature
– volume: 32
  start-page: 2287
  year: 2004
  end-page: 2297
  ident: bib13
  article-title: SCFhFBH1 can act as helicase and E3 ubiquitin ligase
  publication-title: Nucleic Acids Res
– volume: 40
  start-page: 279
  year: 2006
  end-page: 306
  ident: bib7
  article-title: DNA helicases required for homologous recombination and repair of damaged replication forks
  publication-title: Annu. Rev. Genet
– volume: 45
  start-page: 75
  year: 2012
  end-page: 86
  ident: bib11
  article-title: Inhibition of homologous recombination by the PCNA-interacting protein PARI
  publication-title: Mol. Cell
– volume: 4
  start-page: 1423
  year: 2013
  ident: bib27
  article-title: FBH1 co-operates with MUS81 in inducing DNA double-strand breaks and cell death following replication stress
  publication-title: Nat. Commun
– volume: 25
  start-page: 8074
  year: 2005
  end-page: 8083
  ident: bib14
  article-title: Role of the
  publication-title: Mol. Cell Biol
– volume: 284
  start-page: 26349
  year: 2009
  end-page: 26359
  ident: bib37
  article-title: Bloom syndrome helicase stimulates RAD51 DNA strand exchange activity through a novel mechanism
  publication-title: J. Biol. Chem
– volume: 35
  start-page: 105
  year: 2009
  end-page: 115
  ident: bib8
  article-title: Srs2 disassembles Rad51 filaments by a protein-protein interaction triggering ATP turnover and dissociation of Rad51 from DNA
  publication-title: Mol. Cell
– volume: 186
  start-page: 655
  year: 2009
  end-page: 663
  ident: bib19
  article-title: Human Fbh1 helicase contributes to genome maintenance via pro- and anti-recombinase activities
  publication-title: J. Cell Biol
– volume: 259
  start-page: 1896
  year: 1993
  end-page: 1899
  ident: bib32
  article-title: Similarity of the yeast RAD51 filament to the bacterial RecA filament
  publication-title: Science
– volume: 26
  start-page: 424
  year: 2000
  end-page: 429
  ident: bib2
  article-title: Cancer predisposition caused by elevated mitotic recombination in Bloom mice
  publication-title: Nat. Genet
– volume: 429
  start-page: 896
  year: 2004
  end-page: 899
  ident: bib20
  article-title: Genome-wide phenotype analysis in ES cells by regulated disruption of Bloom's syndrome gene
  publication-title: Nature
– volume: 291
  start-page: 373
  year: 2005
  end-page: 384
  ident: bib21
  article-title: Measuring recombination proficiency in mouse embryonic stem cells
  publication-title: Methods Mol. Biol
– volume: 28
  start-page: 405
  year: 2009
  end-page: 416
  ident: bib35
  article-title: BLM helicase measures DNA unwound before switching strands and hRPA promotes unwinding reinitiation
  publication-title: EMBO J
– volume: 269
  start-page: 11121
  year: 1994
  end-page: 11132
  ident: bib23
  article-title: Recombinant replication protein A. Expression, complex formation, and functional characterization
  publication-title: J. Biol. Chem
– volume: 25
  start-page: 8084
  year: 2005
  end-page: 8096
  ident: bib15
  article-title: The F-Box DNA helicase Fbh1 prevents Rhp51-dependent recombination without mediator proteins
  publication-title: Mol. Cell Biol
– volume: 27
  start-page: 2812
  year: 2007
  end-page: 2820
  ident: bib17
  article-title: Cooperative roles of vertebrate Fbh1 and Blm DNA helicases in avoidance of crossovers during recombination initiated by replication fork collapse
  publication-title: Mol. Cell Biol
– volume: 5
  start-page: 381
  year: 2006
  end-page: 391
  ident: bib31
  article-title: Roles of ATP binding and ATP hydrolysis in human Rad51 recombinase function
  publication-title: DNA Repair
– volume: 361
  start-page: 123
  year: 2009
  end-page: 134
  ident: bib28
  article-title: Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers
  publication-title: N. Engl. J. Med
– volume: 423
  start-page: 305
  year: 2003
  end-page: 309
  ident: bib10
  article-title: DNA helicase Srs2 disrupts the Rad51 presynaptic filament
  publication-title: Nature
– volume: 29
  start-page: 4742
  year: 2009
  end-page: 4756
  ident: bib16
  article-title: Fbh1 limits Rad51-dependent recombination at blocked replication forks
  publication-title: Mol. Cell Biol
– volume: 37
  start-page: 259
  year: 2010
  end-page: 272
  ident: bib39
  article-title: Overlapping mechanisms promote postsynaptic RAD-51 filament disassembly during meiotic double-strand break repair
  publication-title: Mol. Cell
– volume: 434
  start-page: 917
  year: 2005
  end-page: 921
  ident: bib29
  article-title: Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy
  publication-title: Nature
– volume: 419
  start-page: 638
  year: 2002
  end-page: 641
  ident: bib26
  article-title: Initiation and re-initiation of DNA unwinding by the
  publication-title: Nature
– volume: 23
  start-page: 2882
  year: 2004
  end-page: 2891
  ident: bib24
  article-title: Human RECQ5beta, a protein with DNA helicase and strand-annealing activities in a single polypeptide
  publication-title: EMBO J
– volume: 9
  start-page: 708
  year: 2010
  end-page: 717
  ident: bib18
  article-title: Mammalian Fbh1 is important to restore normal mitotic progression following decatenation stress
  publication-title: DNA Repair
– volume: 21
  start-page: 3085
  year: 2007
  end-page: 3094
  ident: bib38
  article-title: Novel pro- and anti-recombination activities of the Bloom's syndrome helicase
  publication-title: Genes Dev
– volume: 277
  start-page: 42790
  year: 2002
  end-page: 42794
  ident: bib22
  article-title: Homologous DNA pairing by human recombination factors Rad51 and Rad54
  publication-title: J. Biol. Chem
– volume: 17
  start-page: 1260
  year: 2010
  end-page: 1262
  ident: bib4
  article-title: Human BRCA2 protein promotes RAD51 filament formation on RPA-covered single-stranded DNA
  publication-title: Nat. Struct. Mol. Biol
– volume: 15
  start-page: 3308
  year: 2001
  end-page: 3318
  ident: bib6
  article-title: Mediator function of the human Rad51B-Rad51C complex in Rad51/RPA-catalyzed DNA strand exchange
  publication-title: Genes Dev
– volume: 423
  start-page: 309
  year: 2003
  end-page: 312
  ident: bib9
  article-title: The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments
  publication-title: Nature
– volume: 21
  start-page: 3073
  year: 2007
  end-page: 3084
  ident: bib33
  article-title: RECQL5/Recql5 helicase regulates homologous recombination and suppresses tumor formation via disruption of Rad51 presynaptic filaments
  publication-title: Genes Dev
– volume: 2
  start-page: 787
  year: 2003
  end-page: 794
  ident: bib5
  article-title: Rad54, a Jack of all trades in homologous recombination
  publication-title: DNA Repair
– volume: 434
  start-page: 913
  year: 2005
  end-page: 917
  ident: bib30
  article-title: Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase
  publication-title: Nature
– volume: 44
  start-page: 113
  year: 2010
  end-page: 139
  ident: bib1
  article-title: Regulation of homologous recombination in eukaryotes
  publication-title: Annu. Rev. Genet
– volume: 587
  start-page: 29
  year: 2010
  end-page: 43
  ident: bib25
  article-title: Single-molecule FRET analysis of helicase functions
  publication-title: Methods Mol. Biol
– volume: 277
  start-page: 24530
  year: 2002
  end-page: 24537
  ident: bib12
  article-title: The novel human DNA helicase hFBH1 is an F-box protein
  publication-title: J. Biol. Chem
– volume: 4
  start-page: 2281
  year: 2013
  ident: bib34
  article-title: Srs2 prevents Rad51 filament formation by repetitive motion on DNA
  publication-title: Nat. Commun
– volume: 269
  start-page: 11121
  year: 1994
  ident: 10.1074/jbc.M113.484493_bib23
  article-title: Recombinant replication protein A. Expression, complex formation, and functional characterization
  publication-title: J. Biol. Chem
  doi: 10.1016/S0021-9258(19)78100-9
– volume: 437
  start-page: 1321
  year: 2005
  ident: 10.1074/jbc.M113.484493_bib36
  article-title: Repetitive shuttling of a motor protein on DNA
  publication-title: Nature
  doi: 10.1038/nature04049
– volume: 587
  start-page: 29
  year: 2010
  ident: 10.1074/jbc.M113.484493_bib25
  article-title: Single-molecule FRET analysis of helicase functions
  publication-title: Methods Mol. Biol
  doi: 10.1007/978-1-60327-355-8_3
– volume: 37
  start-page: 259
  year: 2010
  ident: 10.1074/jbc.M113.484493_bib39
  article-title: Overlapping mechanisms promote postsynaptic RAD-51 filament disassembly during meiotic double-strand break repair
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2009.12.026
– volume: 291
  start-page: 373
  year: 2005
  ident: 10.1074/jbc.M113.484493_bib21
  article-title: Measuring recombination proficiency in mouse embryonic stem cells
  publication-title: Methods Mol. Biol
– volume: 4
  start-page: 1423
  year: 2013
  ident: 10.1074/jbc.M113.484493_bib27
  article-title: FBH1 co-operates with MUS81 in inducing DNA double-strand breaks and cell death following replication stress
  publication-title: Nat. Commun
  doi: 10.1038/ncomms2395
– volume: 45
  start-page: 75
  year: 2012
  ident: 10.1074/jbc.M113.484493_bib11
  article-title: Inhibition of homologous recombination by the PCNA-interacting protein PARI
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2011.11.010
– volume: 434
  start-page: 913
  year: 2005
  ident: 10.1074/jbc.M113.484493_bib30
  article-title: Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase
  publication-title: Nature
  doi: 10.1038/nature03443
– volume: 259
  start-page: 1896
  year: 1993
  ident: 10.1074/jbc.M113.484493_bib32
  article-title: Similarity of the yeast RAD51 filament to the bacterial RecA filament
  publication-title: Science
  doi: 10.1126/science.8456314
– volume: 44
  start-page: 113
  year: 2010
  ident: 10.1074/jbc.M113.484493_bib1
  article-title: Regulation of homologous recombination in eukaryotes
  publication-title: Annu. Rev. Genet
  doi: 10.1146/annurev-genet-051710-150955
– volume: 28
  start-page: 405
  year: 2009
  ident: 10.1074/jbc.M113.484493_bib35
  article-title: BLM helicase measures DNA unwound before switching strands and hRPA promotes unwinding reinitiation
  publication-title: EMBO J
  doi: 10.1038/emboj.2008.298
– volume: 21
  start-page: 3085
  year: 2007
  ident: 10.1074/jbc.M113.484493_bib38
  article-title: Novel pro- and anti-recombination activities of the Bloom's syndrome helicase
  publication-title: Genes Dev
  doi: 10.1101/gad.1609007
– volume: 25
  start-page: 8084
  year: 2005
  ident: 10.1074/jbc.M113.484493_bib15
  article-title: The F-Box DNA helicase Fbh1 prevents Rhp51-dependent recombination without mediator proteins
  publication-title: Mol. Cell Biol
  doi: 10.1128/MCB.25.18.8084-8096.2005
– volume: 13
  start-page: 5764
  year: 1994
  ident: 10.1074/jbc.M113.484493_bib3
  article-title: Purification and characterization of the human Rad51 protein, an analogue of E. coli RecA
  publication-title: EMBO J
  doi: 10.1002/j.1460-2075.1994.tb06914.x
– volume: 23
  start-page: 2882
  year: 2004
  ident: 10.1074/jbc.M113.484493_bib24
  article-title: Human RECQ5beta, a protein with DNA helicase and strand-annealing activities in a single polypeptide
  publication-title: EMBO J
  doi: 10.1038/sj.emboj.7600301
– volume: 423
  start-page: 305
  year: 2003
  ident: 10.1074/jbc.M113.484493_bib10
  article-title: DNA helicase Srs2 disrupts the Rad51 presynaptic filament
  publication-title: Nature
  doi: 10.1038/nature01577
– volume: 15
  start-page: 3308
  year: 2001
  ident: 10.1074/jbc.M113.484493_bib6
  article-title: Mediator function of the human Rad51B-Rad51C complex in Rad51/RPA-catalyzed DNA strand exchange
  publication-title: Genes Dev
  doi: 10.1101/gad.935501
– volume: 40
  start-page: 279
  year: 2006
  ident: 10.1074/jbc.M113.484493_bib7
  article-title: DNA helicases required for homologous recombination and repair of damaged replication forks
  publication-title: Annu. Rev. Genet
  doi: 10.1146/annurev.genet.40.110405.090636
– volume: 429
  start-page: 896
  year: 2004
  ident: 10.1074/jbc.M113.484493_bib20
  article-title: Genome-wide phenotype analysis in ES cells by regulated disruption of Bloom's syndrome gene
  publication-title: Nature
  doi: 10.1038/nature02646
– volume: 277
  start-page: 24530
  year: 2002
  ident: 10.1074/jbc.M113.484493_bib12
  article-title: The novel human DNA helicase hFBH1 is an F-box protein
  publication-title: J. Biol. Chem
  doi: 10.1074/jbc.M201612200
– volume: 29
  start-page: 4742
  year: 2009
  ident: 10.1074/jbc.M113.484493_bib16
  article-title: Fbh1 limits Rad51-dependent recombination at blocked replication forks
  publication-title: Mol. Cell Biol
  doi: 10.1128/MCB.00471-09
– volume: 434
  start-page: 917
  year: 2005
  ident: 10.1074/jbc.M113.484493_bib29
  article-title: Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy
  publication-title: Nature
  doi: 10.1038/nature03445
– volume: 361
  start-page: 123
  year: 2009
  ident: 10.1074/jbc.M113.484493_bib28
  article-title: Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers
  publication-title: N. Engl. J. Med
  doi: 10.1056/NEJMoa0900212
– volume: 423
  start-page: 309
  year: 2003
  ident: 10.1074/jbc.M113.484493_bib9
  article-title: The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments
  publication-title: Nature
  doi: 10.1038/nature01585
– volume: 32
  start-page: 2287
  year: 2004
  ident: 10.1074/jbc.M113.484493_bib13
  article-title: SCFhFBH1 can act as helicase and E3 ubiquitin ligase
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkh534
– volume: 4
  start-page: 2281
  year: 2013
  ident: 10.1074/jbc.M113.484493_bib34
  article-title: Srs2 prevents Rad51 filament formation by repetitive motion on DNA
  publication-title: Nat. Commun
  doi: 10.1038/ncomms3281
– volume: 35
  start-page: 105
  year: 2009
  ident: 10.1074/jbc.M113.484493_bib8
  article-title: Srs2 disassembles Rad51 filaments by a protein-protein interaction triggering ATP turnover and dissociation of Rad51 from DNA
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2009.05.026
– volume: 5
  start-page: 381
  year: 2006
  ident: 10.1074/jbc.M113.484493_bib31
  article-title: Roles of ATP binding and ATP hydrolysis in human Rad51 recombinase function
  publication-title: DNA Repair
  doi: 10.1016/j.dnarep.2005.11.005
– volume: 284
  start-page: 26349
  year: 2009
  ident: 10.1074/jbc.M113.484493_bib37
  article-title: Bloom syndrome helicase stimulates RAD51 DNA strand exchange activity through a novel mechanism
  publication-title: J. Biol. Chem
  doi: 10.1074/jbc.M109.029371
– volume: 186
  start-page: 655
  year: 2009
  ident: 10.1074/jbc.M113.484493_bib19
  article-title: Human Fbh1 helicase contributes to genome maintenance via pro- and anti-recombinase activities
  publication-title: J. Cell Biol
  doi: 10.1083/jcb.200812138
– volume: 26
  start-page: 424
  year: 2000
  ident: 10.1074/jbc.M113.484493_bib2
  article-title: Cancer predisposition caused by elevated mitotic recombination in Bloom mice
  publication-title: Nat. Genet
  doi: 10.1038/82548
– volume: 2
  start-page: 787
  year: 2003
  ident: 10.1074/jbc.M113.484493_bib5
  article-title: Rad54, a Jack of all trades in homologous recombination
  publication-title: DNA Repair
  doi: 10.1016/j.dnarep.2003.04.001
– volume: 9
  start-page: 708
  year: 2010
  ident: 10.1074/jbc.M113.484493_bib18
  article-title: Mammalian Fbh1 is important to restore normal mitotic progression following decatenation stress
  publication-title: DNA Repair
  doi: 10.1016/j.dnarep.2010.03.011
– volume: 17
  start-page: 1260
  year: 2010
  ident: 10.1074/jbc.M113.484493_bib4
  article-title: Human BRCA2 protein promotes RAD51 filament formation on RPA-covered single-stranded DNA
  publication-title: Nat. Struct. Mol. Biol
  doi: 10.1038/nsmb.1904
– volume: 25
  start-page: 8074
  year: 2005
  ident: 10.1074/jbc.M113.484493_bib14
  article-title: Role of the Schizosaccharomyces pombe F-Box DNA helicase in processing recombination intermediates
  publication-title: Mol. Cell Biol
  doi: 10.1128/MCB.25.18.8074-8083.2005
– volume: 277
  start-page: 42790
  year: 2002
  ident: 10.1074/jbc.M113.484493_bib22
  article-title: Homologous DNA pairing by human recombination factors Rad51 and Rad54
  publication-title: J. Biol. Chem
  doi: 10.1074/jbc.M208004200
– volume: 21
  start-page: 3073
  year: 2007
  ident: 10.1074/jbc.M113.484493_bib33
  article-title: RECQL5/Recql5 helicase regulates homologous recombination and suppresses tumor formation via disruption of Rad51 presynaptic filaments
  publication-title: Genes Dev
  doi: 10.1101/gad.1609107
– volume: 27
  start-page: 2812
  year: 2007
  ident: 10.1074/jbc.M113.484493_bib17
  article-title: Cooperative roles of vertebrate Fbh1 and Blm DNA helicases in avoidance of crossovers during recombination initiated by replication fork collapse
  publication-title: Mol. Cell Biol
  doi: 10.1128/MCB.02043-06
– volume: 419
  start-page: 638
  year: 2002
  ident: 10.1074/jbc.M113.484493_bib26
  article-title: Initiation and re-initiation of DNA unwinding by the Escherichia coli Rep helicase
  publication-title: Nature
  doi: 10.1038/nature01083
SSID ssj0000491
Score 2.4072073
Snippet Efficient repair of DNA double strand breaks and interstrand cross-links requires the homologous recombination (HR) pathway, a potentially error-free process...
Background: Homologous recombination is regulated both positively and negatively in eukaryotic cells to suppress genomic instability. Results: FBH1 can disrupt...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 34168
SubjectTerms Animals
Cells, Cultured
Chromatin - enzymology
Chromatin - genetics
DNA - genetics
DNA - metabolism
DNA and Chromosomes
DNA Damage
DNA Helicase
DNA Helicases - genetics
DNA Helicases - metabolism
DNA Recombination
DNA Repair
DNA Replication
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Embryonic Stem Cells - cytology
Embryonic Stem Cells - metabolism
F-Box Proteins - genetics
F-Box Proteins - metabolism
Homologous Recombination - physiology
Humans
Mice
Multienzyme Complexes - genetics
Multienzyme Complexes - metabolism
Protein Binding
Rad51 Recombinase - genetics
Rad51 Recombinase - metabolism
Title FBH1 Helicase Disrupts RAD51 Filaments in Vitro and Modulates Homologous Recombination in Mammalian Cells
URI https://dx.doi.org/10.1074/jbc.M113.484493
https://www.ncbi.nlm.nih.gov/pubmed/24108124
https://www.proquest.com/docview/1461869278
https://pubmed.ncbi.nlm.nih.gov/PMC3837158
Volume 288
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1083-351X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000491
  issn: 0021-9258
  databaseCode: HH5
  dateStart: 19050101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1083-351X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000491
  issn: 0021-9258
  databaseCode: KQ8
  dateStart: 19051001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1083-351X
  dateEnd: 20240930
  omitProxy: true
  ssIdentifier: ssj0000491
  issn: 0021-9258
  databaseCode: DIK
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1083-351X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000491
  issn: 0021-9258
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1083-351X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000491
  issn: 0021-9258
  databaseCode: AKRWK
  dateStart: 19051001
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAQN
  databaseName: PubMed Central (Free e-resource, activated by CARLI)
  customDbUrl:
  eissn: 1083-351X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000491
  issn: 0021-9258
  databaseCode: RPM
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9NAFB7q-qAvorvq1hsjiAgltblNksdutZRdKipVii9hMplgsElKmwrrb_ZHeM5Mbt21oPtSmjRp0vm-njln8p1zCHk1YgKiBukaibBswwkSZnDLcQ3H9rxE2D6PA8xGnn9gsy_O-dJd9nq_O6qlXRkNxa-_5pXcBFXYB7hilux_INt8KeyA94AvvALC8PpPGE_PZiZOHDDQW4mFNDe7dbkdfB6_c83BNAWwVf5amg--puWm0KKKIsaOXRIFMhlaPtTAYhCaQYzMa-njnGeZXgGZyNVq23Vh22Qy5cbqKk66zkjdPK5ZtkkzLOJQ_NSC3LT80UwC38COrSKuuyzXEpv2edalXmidpxtc6RicD1sZwk7JAnk6uEjL7pqFaWPyntVGuM3DqK4y9SwtmtusxqPqD1y15eyaRiUssXTR96HUphucScxLWHZtu-X7HRLr2p6VqYbpm_mdeR-2dU-pa5MKeFk4qURiODdNe-j4jqO7OnYots4Ux8AfGqHL1M6ujebx43yCqwGm698ity2PMey3cfGprW0PsZru71j9troQlee8vXJtrGBdXeiQO3U9XLqq-u24UYv75F5FHDrWZH5AejI_JidjYF6RXdLXVCmSFQ7H5M6kRuqEpMh1WnOd1lyniuu04TpNc6q4TgFb2nCdtlyne1zH4xuuU8X1h2Qxfb-YzIyqTYghwNstDTtgEoJ4GTE3sGEDs61HHBxrEZm2jB3L42bgiFHi-8LiNufSAy_dxzpFfhxH9iNylBe5PCVUSNNKAhaPZBRAmCAiL_EZ48LjzIxNFvfJsB7sUFQl9LGTyypUUg7PCQGoEIEKNVB98qY5Ya2rxxw-1KrRCyvnVzu1IdDw8Ekva5xDwAOf9fFcwlhiRI_N5izP75PHGvfmDmru9Im3x4jmACw5v_9Jnn5XpecrBj-58ZlPyd3WIDwjR-VmJ5-DW19GL9S_4Q-mXPpc
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FBH1+Helicase+Disrupts+RAD51+Filaments+in+Vitro+and+Modulates+Homologous+Recombination+in+Mammalian+Cells&rft.jtitle=The+Journal+of+biological+chemistry&rft.au=Simandlova%2C+Jitka&rft.au=Zagelbaum%2C+Jennifer&rft.au=Payne%2C+Miranda+J.&rft.au=Chu%2C+Wai+Kit&rft.date=2013-11-22&rft.pub=American+Society+for+Biochemistry+and+Molecular+Biology&rft.issn=0021-9258&rft.eissn=1083-351X&rft.volume=288&rft.issue=47&rft.spage=34168&rft.epage=34180&rft_id=info:doi/10.1074%2Fjbc.M113.484493&rft_id=info%3Apmid%2F24108124&rft.externalDocID=PMC3837158
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9258&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9258&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9258&client=summon