FBH1 Helicase Disrupts RAD51 Filaments in Vitro and Modulates Homologous Recombination in Mammalian Cells
Efficient repair of DNA double strand breaks and interstrand cross-links requires the homologous recombination (HR) pathway, a potentially error-free process that utilizes a homologous sequence as a repair template. A key player in HR is RAD51, the eukaryotic ortholog of bacterial RecA protein. RAD5...
Saved in:
Published in | The Journal of biological chemistry Vol. 288; no. 47; pp. 34168 - 34180 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
22.11.2013
American Society for Biochemistry and Molecular Biology |
Subjects | |
Online Access | Get full text |
ISSN | 0021-9258 1083-351X 1083-351X |
DOI | 10.1074/jbc.M113.484493 |
Cover
Abstract | Efficient repair of DNA double strand breaks and interstrand cross-links requires the homologous recombination (HR) pathway, a potentially error-free process that utilizes a homologous sequence as a repair template. A key player in HR is RAD51, the eukaryotic ortholog of bacterial RecA protein. RAD51 can polymerize on DNA to form a nucleoprotein filament that facilitates both the search for the homologous DNA sequences and the subsequent DNA strand invasion required to initiate HR. Because of its pivotal role in HR, RAD51 is subject to numerous positive and negative regulatory influences. Using a combination of molecular genetic, biochemical, and single-molecule biophysical techniques, we provide mechanistic insight into the mode of action of the FBH1 helicase as a regulator of RAD51-dependent HR in mammalian cells. We show that FBH1 binds directly to RAD51 and is able to disrupt RAD51 filaments on DNA through its ssDNA translocase function. Consistent with this, a mutant mouse embryonic stem cell line with a deletion in the FBH1 helicase domain fails to limit RAD51 chromatin association and shows hyper-recombination. Our data are consistent with FBH1 restraining RAD51 DNA binding under unperturbed growth conditions to prevent unwanted or unscheduled DNA recombination.
Background: Homologous recombination is regulated both positively and negatively in eukaryotic cells to suppress genomic instability.
Results: FBH1 can disrupt RAD51 filaments in vitro and suppresses formation of spontaneous RAD51 foci in mammalian cells. In cells defective for FBH1, hyper-recombination is observed.
Conclusion: FBH1 is a negative regulator of homologous recombination.
Significance: RAD51 activity must be carefully controlled to preserve genomic integrity. |
---|---|
AbstractList | Efficient repair of DNA double strand breaks and interstrand cross-links requires the homologous recombination (HR) pathway, a potentially error-free process that utilizes a homologous sequence as a repair template. A key player in HR is RAD51, the eukaryotic ortholog of bacterial RecA protein. RAD51 can polymerize on DNA to form a nucleoprotein filament that facilitates both the search for the homologous DNA sequences and the subsequent DNA strand invasion required to initiate HR. Because of its pivotal role in HR, RAD51 is subject to numerous positive and negative regulatory influences. Using a combination of molecular genetic, biochemical, and single-molecule biophysical techniques, we provide mechanistic insight into the mode of action of the FBH1 helicase as a regulator of RAD51-dependent HR in mammalian cells. We show that FBH1 binds directly to RAD51 and is able to disrupt RAD51 filaments on DNA through its ssDNA translocase function. Consistent with this, a mutant mouse embryonic stem cell line with a deletion in the FBH1 helicase domain fails to limit RAD51 chromatin association and shows hyper-recombination. Our data are consistent with FBH1 restraining RAD51 DNA binding under unperturbed growth conditions to prevent unwanted or unscheduled DNA recombination. Background: Homologous recombination is regulated both positively and negatively in eukaryotic cells to suppress genomic instability. Results: FBH1 can disrupt RAD51 filaments in vitro and suppresses formation of spontaneous RAD51 foci in mammalian cells. In cells defective for FBH1, hyper-recombination is observed. Conclusion: FBH1 is a negative regulator of homologous recombination. Significance: RAD51 activity must be carefully controlled to preserve genomic integrity. Efficient repair of DNA double strand breaks and interstrand cross-links requires the homologous recombination (HR) pathway, a potentially error-free process that utilizes a homologous sequence as a repair template. A key player in HR is RAD51, the eukaryotic ortholog of bacterial RecA protein. RAD51 can polymerize on DNA to form a nucleoprotein filament that facilitates both the search for the homologous DNA sequences and the subsequent DNA strand invasion required to initiate HR. Because of its pivotal role in HR, RAD51 is subject to numerous positive and negative regulatory influences. Using a combination of molecular genetic, biochemical, and single-molecule biophysical techniques, we provide mechanistic insight into the mode of action of the FBH1 helicase as a regulator of RAD51-dependent HR in mammalian cells. We show that FBH1 binds directly to RAD51 and is able to disrupt RAD51 filaments on DNA through its ssDNA translocase function. Consistent with this, a mutant mouse embryonic stem cell line with a deletion in the FBH1 helicase domain fails to limit RAD51 chromatin association and shows hyper-recombination. Our data are consistent with FBH1 restraining RAD51 DNA binding under unperturbed growth conditions to prevent unwanted or unscheduled DNA recombination. Efficient repair of DNA double strand breaks and interstrand cross-links requires the homologous recombination (HR) pathway, a potentially error-free process that utilizes a homologous sequence as a repair template. A key player in HR is RAD51, the eukaryotic ortholog of bacterial RecA protein. RAD51 can polymerize on DNA to form a nucleoprotein filament that facilitates both the search for the homologous DNA sequences and the subsequent DNA strand invasion required to initiate HR. Because of its pivotal role in HR, RAD51 is subject to numerous positive and negative regulatory influences. Using a combination of molecular genetic, biochemical, and single-molecule biophysical techniques, we provide mechanistic insight into the mode of action of the FBH1 helicase as a regulator of RAD51-dependent HR in mammalian cells. We show that FBH1 binds directly to RAD51 and is able to disrupt RAD51 filaments on DNA through its ssDNA translocase function. Consistent with this, a mutant mouse embryonic stem cell line with a deletion in the FBH1 helicase domain fails to limit RAD51 chromatin association and shows hyper-recombination. Our data are consistent with FBH1 restraining RAD51 DNA binding under unperturbed growth conditions to prevent unwanted or unscheduled DNA recombination.Efficient repair of DNA double strand breaks and interstrand cross-links requires the homologous recombination (HR) pathway, a potentially error-free process that utilizes a homologous sequence as a repair template. A key player in HR is RAD51, the eukaryotic ortholog of bacterial RecA protein. RAD51 can polymerize on DNA to form a nucleoprotein filament that facilitates both the search for the homologous DNA sequences and the subsequent DNA strand invasion required to initiate HR. Because of its pivotal role in HR, RAD51 is subject to numerous positive and negative regulatory influences. Using a combination of molecular genetic, biochemical, and single-molecule biophysical techniques, we provide mechanistic insight into the mode of action of the FBH1 helicase as a regulator of RAD51-dependent HR in mammalian cells. We show that FBH1 binds directly to RAD51 and is able to disrupt RAD51 filaments on DNA through its ssDNA translocase function. Consistent with this, a mutant mouse embryonic stem cell line with a deletion in the FBH1 helicase domain fails to limit RAD51 chromatin association and shows hyper-recombination. Our data are consistent with FBH1 restraining RAD51 DNA binding under unperturbed growth conditions to prevent unwanted or unscheduled DNA recombination. Efficient repair of DNA double strand breaks and interstrand cross-links requires the homologous recombination (HR) pathway, a potentially error-free process that utilizes a homologous sequence as a repair template. A key player in HR is RAD51, the eukaryotic ortholog of bacterial RecA protein. RAD51 can polymerize on DNA to form a nucleoprotein filament that facilitates both the search for the homologous DNA sequences and the subsequent DNA strand invasion required to initiate HR. Because of its pivotal role in HR, RAD51 is subject to numerous positive and negative regulatory influences. Using a combination of molecular genetic, biochemical, and single-molecule biophysical techniques, we provide mechanistic insight into the mode of action of the FBH1 helicase as a regulator of RAD51-dependent HR in mammalian cells. We show that FBH1 binds directly to RAD51 and is able to disrupt RAD51 filaments on DNA through its ssDNA translocase function. Consistent with this, a mutant mouse embryonic stem cell line with a deletion in the FBH1 helicase domain fails to limit RAD51 chromatin association and shows hyper-recombination. Our data are consistent with FBH1 restraining RAD51 DNA binding under unperturbed growth conditions to prevent unwanted or unscheduled DNA recombination. Background: Homologous recombination is regulated both positively and negatively in eukaryotic cells to suppress genomic instability. Results: FBH1 can disrupt RAD51 filaments in vitro and suppresses formation of spontaneous RAD51 foci in mammalian cells. In cells defective for FBH1, hyper-recombination is observed. Conclusion: FBH1 is a negative regulator of homologous recombination. Significance: RAD51 activity must be carefully controlled to preserve genomic integrity. |
Author | Liu, Ying Hanada, Katsuhiro Chatterjee, Sujoy Rothenberg, Eli Simandlova, Jitka Zagelbaum, Jennifer Reid, Dylan A. Chu, Wai Kit Hickson, Ian D. Payne, Miranda J. Shevelev, Igor Janscak, Pavel |
Author_xml | – sequence: 1 givenname: Jitka surname: Simandlova fullname: Simandlova, Jitka organization: Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 14300 Prague, Czech Republic – sequence: 2 givenname: Jennifer surname: Zagelbaum fullname: Zagelbaum, Jennifer organization: Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York – sequence: 3 givenname: Miranda J. surname: Payne fullname: Payne, Miranda J. organization: Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, Oxford OX3 9DS, United Kingdom – sequence: 4 givenname: Wai Kit surname: Chu fullname: Chu, Wai Kit organization: Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, Oxford OX3 9DS, United Kingdom – sequence: 5 givenname: Igor surname: Shevelev fullname: Shevelev, Igor organization: Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 14300 Prague, Czech Republic – sequence: 6 givenname: Katsuhiro surname: Hanada fullname: Hanada, Katsuhiro organization: Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, Oxford OX3 9DS, United Kingdom – sequence: 7 givenname: Sujoy surname: Chatterjee fullname: Chatterjee, Sujoy organization: Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York – sequence: 8 givenname: Dylan A. surname: Reid fullname: Reid, Dylan A. organization: Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York – sequence: 9 givenname: Ying surname: Liu fullname: Liu, Ying organization: Nordea Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen N, Denmark – sequence: 10 givenname: Pavel surname: Janscak fullname: Janscak, Pavel email: pjanscak@imcr.uzh.ch organization: Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 14300 Prague, Czech Republic – sequence: 11 givenname: Eli surname: Rothenberg fullname: Rothenberg, Eli email: eli.rothenberg@nyumc.org organization: Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York – sequence: 12 givenname: Ian D. surname: Hickson fullname: Hickson, Ian D. email: iandh@sund.ku.dk organization: Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, Oxford OX3 9DS, United Kingdom |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24108124$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UcFu1DAQtVAR3RbO3FCOXLK1YzuxL0hly7JIXSGhCnGzHGe2TOXYi51U4u_xsqUCJPDFGs17b2beOyMnIQYg5CWjS0Y7cXHXu-WWMb4USgjNn5AFo4rXXLIvJ2RBacNq3Uh1Ss5yvqPlCc2ekdNGFBhrxILg-u2GVRvw6GyG6gpzmvdTrj5dXklWrdHbEUKpMVSfcUqxsmGotnGYvZ0gV5s4Rh9v41wY4OLYY7ATxnDAb-04Wo82VCvwPj8nT3fWZ3jx8J-Tm_W7m9Wmvv74_sPq8rp2kuqp5rqFRmroW6l5KUTbKGqlEq5nHAbRdJZp4ehOKddYbi10XGkltVBqGHp-Tt4cZfdzP8LgyvbJerNPONr03USL5s9OwK_mNt4brnjHpCoCrx8EUvw2Q57MiNmVC2yAcqdhomWq1U13gL76fdbjkF_2FsDFEeBSzDnB7hHCqDkEaEqA5hCgOQZYGPIvhsPpp6VlWfT_4ekjD4q19wjJZIcQHAyYwE1miPhP7g8zRbKx |
CitedBy_id | crossref_primary_10_1093_nar_gkt1263 crossref_primary_10_1038_s41467_023_38617_z crossref_primary_10_1016_j_celrep_2023_112907 crossref_primary_10_1016_j_semcdb_2020_10_001 crossref_primary_10_1093_nar_gkw024 crossref_primary_10_1172_JCI127521 crossref_primary_10_1088_2050_6120_abf239 crossref_primary_10_3390_ijms242316903 crossref_primary_10_3390_biomedicines11051450 crossref_primary_10_3390_genes12091319 crossref_primary_10_1016_j_gde_2021_09_001 crossref_primary_10_1016_j_celrep_2017_11_047 crossref_primary_10_3390_genes9120603 crossref_primary_10_1186_s40164_022_00319_5 crossref_primary_10_1016_j_celrep_2015_02_028 crossref_primary_10_1667_RR14495_1 crossref_primary_10_1016_j_jbc_2024_107894 crossref_primary_10_3390_genes11050498 crossref_primary_10_1038_s41467_019_09190_1 crossref_primary_10_1016_j_pharmthera_2020_107492 crossref_primary_10_1038_s44318_024_00038_z crossref_primary_10_1016_j_dnarep_2024_103731 crossref_primary_10_1038_bjc_2014_594 crossref_primary_10_1038_s41467_023_42576_w crossref_primary_10_3390_cancers13122930 crossref_primary_10_1016_j_semcdb_2020_07_004 crossref_primary_10_1016_j_jbc_2023_104929 crossref_primary_10_1007_s00412_019_00709_5 crossref_primary_10_1080_15384047_2015_1071738 crossref_primary_10_1007_s00412_016_0573_x crossref_primary_10_1093_nar_gkz186 crossref_primary_10_1038_ng_3412 crossref_primary_10_1074_jbc_M113_542456 crossref_primary_10_1038_s41467_023_43918_4 crossref_primary_10_1093_nar_gkae263 crossref_primary_10_1038_s41556_019_0425_z crossref_primary_10_1016_j_dnarep_2021_103229 crossref_primary_10_7554_eLife_47277 crossref_primary_10_1126_sciadv_abc3598 crossref_primary_10_1371_journal_pgen_1004542 crossref_primary_10_1016_j_micinf_2014_08_001 crossref_primary_10_1073_pnas_1810457115 crossref_primary_10_1016_j_molcel_2020_12_036 crossref_primary_10_1016_j_tcb_2015_07_009 crossref_primary_10_1038_ncomms6931 crossref_primary_10_3390_genes9120629 crossref_primary_10_1083_jcb_201703144 crossref_primary_10_3390_genes7080052 crossref_primary_10_1038_s41467_018_03159_2 crossref_primary_10_1371_journal_pgen_1006208 crossref_primary_10_15252_embj_201593265 crossref_primary_10_1093_nar_gkac131 crossref_primary_10_1093_nar_gku1219 crossref_primary_10_1016_j_drup_2019_100673 crossref_primary_10_1016_j_gde_2021_06_006 crossref_primary_10_1126_science_adr7920 crossref_primary_10_1016_j_dnarep_2023_103613 crossref_primary_10_7554_eLife_41697 crossref_primary_10_1016_j_semcancer_2015_09_013 crossref_primary_10_1093_nar_gky111 crossref_primary_10_1016_j_celrep_2024_114594 crossref_primary_10_1093_nar_gkad596 crossref_primary_10_15252_embj_201593132 crossref_primary_10_1038_s41467_024_50080_y |
Cites_doi | 10.1016/S0021-9258(19)78100-9 10.1038/nature04049 10.1007/978-1-60327-355-8_3 10.1016/j.molcel.2009.12.026 10.1038/ncomms2395 10.1016/j.molcel.2011.11.010 10.1038/nature03443 10.1126/science.8456314 10.1146/annurev-genet-051710-150955 10.1038/emboj.2008.298 10.1101/gad.1609007 10.1128/MCB.25.18.8084-8096.2005 10.1002/j.1460-2075.1994.tb06914.x 10.1038/sj.emboj.7600301 10.1038/nature01577 10.1101/gad.935501 10.1146/annurev.genet.40.110405.090636 10.1038/nature02646 10.1074/jbc.M201612200 10.1128/MCB.00471-09 10.1038/nature03445 10.1056/NEJMoa0900212 10.1038/nature01585 10.1093/nar/gkh534 10.1038/ncomms3281 10.1016/j.molcel.2009.05.026 10.1016/j.dnarep.2005.11.005 10.1074/jbc.M109.029371 10.1083/jcb.200812138 10.1038/82548 10.1016/j.dnarep.2003.04.001 10.1016/j.dnarep.2010.03.011 10.1038/nsmb.1904 10.1128/MCB.25.18.8074-8083.2005 10.1074/jbc.M208004200 10.1101/gad.1609107 10.1128/MCB.02043-06 10.1038/nature01083 |
ContentType | Journal Article |
Copyright | 2013 © 2013 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology. 2013 by The American Society for Biochemistry and Molecular Biology, Inc. 2013 |
Copyright_xml | – notice: 2013 © 2013 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology. – notice: 2013 by The American Society for Biochemistry and Molecular Biology, Inc. 2013 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1074/jbc.M113.484493 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
DocumentTitleAlternate | Regulation of RAD51 by FBH1 |
EISSN | 1083-351X |
EndPage | 34180 |
ExternalDocumentID | PMC3837158 24108124 10_1074_jbc_M113_484493 S0021925819543988 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Cancer Research UK |
GroupedDBID | --- -DZ -ET -~X 0SF 18M 29J 2WC 34G 39C 4.4 53G 5BI 5GY 5RE 5VS 6I. 79B 85S AAEDW AAFTH AAFWJ AARDX AAXUO ABDNZ ABOCM ABPPZ ABRJW ACGFO ACNCT ADBBV ADIYS ADNWM AENEX AEXQZ AFOSN AFPKN ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BTFSW CJ0 CS3 DIK DU5 E.L E3Z EBS EJD F5P FDB FRP GROUPED_DOAJ GX1 HH5 HYE IH2 KQ8 L7B N9A OK1 P0W P2P R.V RHF RHI RNS ROL RPM SJN TBC TN5 TR2 UHB UKR UPT VQA W8F WH7 WOQ XSW YQT YSK YWH YZZ ZA5 ~02 ~KM .55 .7T .GJ 0R~ 186 3O- 41~ 6TJ AALRI AAYJJ AAYOK AAYWO AAYXX ABFSI ACSFO ACVFH ACYGS ADCNI ADVLN ADXHL AEUPX AFFNX AFPUW AI. AIGII AITUG AKBMS AKRWK AKYEP C1A CITATION FA8 H13 J5H MVM NHB OHT P-O QZG UQL VH1 WHG X7M XJT Y6R YYP ZE2 ZGI ZY4 CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c509t-396e259eb659339646280a584cb13ed427a194c0f88c2a3aae7389859488ddb3 |
ISSN | 0021-9258 1083-351X |
IngestDate | Thu Aug 21 13:48:23 EDT 2025 Thu Sep 04 22:49:09 EDT 2025 Thu Apr 03 07:10:28 EDT 2025 Thu Apr 24 23:08:16 EDT 2025 Tue Jul 01 00:47:53 EDT 2025 Fri Feb 23 02:46:49 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 47 |
Keywords | DNA Replication DNA Damage DNA Recombination DNA Repair DNA Helicase |
Language | English |
License | This is an open access article under the CC BY license. http://creativecommons.org/licenses/by/4.0 https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c509t-396e259eb659339646280a584cb13ed427a194c0f88c2a3aae7389859488ddb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. Deceased May 3 2012. |
OpenAccessLink | https://dx.doi.org/10.1074/jbc.M113.484493 |
PMID | 24108124 |
PQID | 1461869278 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3837158 proquest_miscellaneous_1461869278 pubmed_primary_24108124 crossref_primary_10_1074_jbc_M113_484493 crossref_citationtrail_10_1074_jbc_M113_484493 elsevier_sciencedirect_doi_10_1074_jbc_M113_484493 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-11-22 |
PublicationDateYYYYMMDD | 2013-11-22 |
PublicationDate_xml | – month: 11 year: 2013 text: 2013-11-22 day: 22 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 9650 Rockville Pike, Bethesda, MD 20814, U.S.A |
PublicationTitle | The Journal of biological chemistry |
PublicationTitleAlternate | J Biol Chem |
PublicationYear | 2013 |
Publisher | Elsevier Inc American Society for Biochemistry and Molecular Biology |
Publisher_xml | – name: Elsevier Inc – name: American Society for Biochemistry and Molecular Biology |
References | Benson, Stasiak, West (bib3) 1994; 13 Luo, Santoro, McDaniel, Nishijima, Mills, Youssoufian, Vogel, Schultz, Bradley (bib2) 2000; 26 Qiu, Antony, Doganay, Ran Koh, Lohman, Myong (bib34) 2013; 4 Veaute, Jeusset, Soustelle, Kowalczykowski, Le Cam, Fabre (bib9) 2003; 423 Farmer, McCabe, Lord, Tutt, Johnson, Richardson, Santarosa, Dillon, Hickson, Knights, Martin, Jackson, Smith, Ashworth (bib29) 2005; 434 Wu, Hickson (bib7) 2006; 40 Antony, Tomko, Xiao, Krejci, Lohman, Ellenberger (bib8) 2009; 35 Kohzaki, Hatanaka, Sonoda, Yamazoe, Kikuchi, Vu Trung, Szüts, Sale, Shinagawa, Watanabe, Takeda (bib17) 2007; 27 Chi, Van Komen, Sehorn, Sigurdsson, Sung (bib31) 2006; 5 Osman, Dixon, Barr, Whitby (bib15) 2005; 25 Liu, Doty, Gibson, Heyer (bib4) 2010; 17 Tan, Kanaar, Wyman (bib5) 2003; 2 Ha, Rasnik, Cheng, Babcock, Gauss, Lohman, Chu (bib26) 2002; 419 Krejci, Van Komen, Li, Villemain, Reddy, Klein, Ellenberger, Sung (bib10) 2003; 423 Bugreev, Yu, Egelman, Mazin (bib38) 2007; 21 Ward, Muzzini, Petalcorin, Martinez-Perez, Martin, Plevani, Cassata, Marini, Boulton (bib39) 2010; 37 Kim, Kim, Lee, Kim, Kang, Bae, Pan, Seo (bib12) 2002; 277 Fugger, Chu, Haahr, Kousholt, Beck, Payne, Hanada, Hickson, Sørensen (bib27) 2013; 4 Hu, Raynard, Sehorn, Lu, Bussen, Zheng, Stark, Barnes, Chi, Janscak, Jasin, Vogel, Sung, Luo (bib33) 2007; 21 Ogawa, Yu, Shinohara, Egelman (bib32) 1993; 259 Lorenz, Osman, Folkyte, Sofueva, Whitby (bib16) 2009; 29 Yodh, Stevens, Kanagaraj, Janscak, Ha (bib35) 2009; 28 Sigurdsson, Van Komen, Bussen, Schild, Albala, Sung (bib6) 2001; 15 Pierce, Jasin (bib21) 2005; 291 Rothenberg, Ha (bib25) 2010; 587 Morishita, Furukawa, Sakaguchi, Toda, Carr, Iwasaki, Shinagawa (bib14) 2005; 25 Bryant, Schultz, Thomas, Parker, Flower, Lopez, Kyle, Meuth, Curtin, Helleday (bib30) 2005; 434 Moldovan, Dejsuphong, Petalcorin, Hofmann, Takeda, Boulton, D'Andrea (bib11) 2012; 45 Bugreev, Mazina, Mazin (bib37) 2009; 284 Myong, Rasnik, Joo, Lohman, Ha (bib36) 2005; 437 Garcia, Liu, Jiricny, West, Janscak (bib24) 2004; 23 Kim, Kim, Kim, Ryu, Bae, Seo (bib13) 2004; 32 Fugger, Mistrik, Danielsen, Dinant, Falck, Bartek, Lukas, Mailand (bib19) 2009; 186 Heyer, Ehmsen, Liu (bib1) 2010; 44 Yusa, Horie, Kondoh, Kouno, Maeda, Kinoshita, Takeda (bib20) 2004; 429 Sigurdsson, Van Komen, Petukhova, Sung (bib22) 2002; 277 Laulier, Cheng, Huang, Stark (bib18) 2010; 9 Henricksen, Umbricht, Wold (bib23) 1994; 269 Fong, Boss, Yap, Tutt, Wu, Mergui-Roelvink, Mortimer, Swaisland, Lau, O'Connor, Ashworth, Carmichael, Kaye, Schellens, de Bono (bib28) 2009; 361 Yodh (10.1074/jbc.M113.484493_bib35) 2009; 28 Krejci (10.1074/jbc.M113.484493_bib10) 2003; 423 Pierce (10.1074/jbc.M113.484493_bib21) 2005; 291 Morishita (10.1074/jbc.M113.484493_bib14) 2005; 25 Bugreev (10.1074/jbc.M113.484493_bib38) 2007; 21 Ward (10.1074/jbc.M113.484493_bib39) 2010; 37 Kim (10.1074/jbc.M113.484493_bib12) 2002; 277 Osman (10.1074/jbc.M113.484493_bib15) 2005; 25 Garcia (10.1074/jbc.M113.484493_bib24) 2004; 23 Bugreev (10.1074/jbc.M113.484493_bib37) 2009; 284 Fugger (10.1074/jbc.M113.484493_bib19) 2009; 186 Hu (10.1074/jbc.M113.484493_bib33) 2007; 21 Benson (10.1074/jbc.M113.484493_bib3) 1994; 13 Sigurdsson (10.1074/jbc.M113.484493_bib6) 2001; 15 Fugger (10.1074/jbc.M113.484493_bib27) 2013; 4 Veaute (10.1074/jbc.M113.484493_bib9) 2003; 423 Kohzaki (10.1074/jbc.M113.484493_bib17) 2007; 27 Heyer (10.1074/jbc.M113.484493_bib1) 2010; 44 Ogawa (10.1074/jbc.M113.484493_bib32) 1993; 259 Sigurdsson (10.1074/jbc.M113.484493_bib22) 2002; 277 Fong (10.1074/jbc.M113.484493_bib28) 2009; 361 Qiu (10.1074/jbc.M113.484493_bib34) 2013; 4 Luo (10.1074/jbc.M113.484493_bib2) 2000; 26 Lorenz (10.1074/jbc.M113.484493_bib16) 2009; 29 Antony (10.1074/jbc.M113.484493_bib8) 2009; 35 Henricksen (10.1074/jbc.M113.484493_bib23) 1994; 269 Yusa (10.1074/jbc.M113.484493_bib20) 2004; 429 Myong (10.1074/jbc.M113.484493_bib36) 2005; 437 Farmer (10.1074/jbc.M113.484493_bib29) 2005; 434 Kim (10.1074/jbc.M113.484493_bib13) 2004; 32 Chi (10.1074/jbc.M113.484493_bib31) 2006; 5 Bryant (10.1074/jbc.M113.484493_bib30) 2005; 434 Rothenberg (10.1074/jbc.M113.484493_bib25) 2010; 587 Ha (10.1074/jbc.M113.484493_bib26) 2002; 419 Liu (10.1074/jbc.M113.484493_bib4) 2010; 17 Wu (10.1074/jbc.M113.484493_bib7) 2006; 40 Tan (10.1074/jbc.M113.484493_bib5) 2003; 2 Moldovan (10.1074/jbc.M113.484493_bib11) 2012; 45 Laulier (10.1074/jbc.M113.484493_bib18) 2010; 9 |
References_xml | – volume: 13 start-page: 5764 year: 1994 end-page: 5771 ident: bib3 article-title: Purification and characterization of the human Rad51 protein, an analogue of publication-title: EMBO J – volume: 437 start-page: 1321 year: 2005 end-page: 1325 ident: bib36 article-title: Repetitive shuttling of a motor protein on DNA publication-title: Nature – volume: 32 start-page: 2287 year: 2004 end-page: 2297 ident: bib13 article-title: SCFhFBH1 can act as helicase and E3 ubiquitin ligase publication-title: Nucleic Acids Res – volume: 40 start-page: 279 year: 2006 end-page: 306 ident: bib7 article-title: DNA helicases required for homologous recombination and repair of damaged replication forks publication-title: Annu. Rev. Genet – volume: 45 start-page: 75 year: 2012 end-page: 86 ident: bib11 article-title: Inhibition of homologous recombination by the PCNA-interacting protein PARI publication-title: Mol. Cell – volume: 4 start-page: 1423 year: 2013 ident: bib27 article-title: FBH1 co-operates with MUS81 in inducing DNA double-strand breaks and cell death following replication stress publication-title: Nat. Commun – volume: 25 start-page: 8074 year: 2005 end-page: 8083 ident: bib14 article-title: Role of the publication-title: Mol. Cell Biol – volume: 284 start-page: 26349 year: 2009 end-page: 26359 ident: bib37 article-title: Bloom syndrome helicase stimulates RAD51 DNA strand exchange activity through a novel mechanism publication-title: J. Biol. Chem – volume: 35 start-page: 105 year: 2009 end-page: 115 ident: bib8 article-title: Srs2 disassembles Rad51 filaments by a protein-protein interaction triggering ATP turnover and dissociation of Rad51 from DNA publication-title: Mol. Cell – volume: 186 start-page: 655 year: 2009 end-page: 663 ident: bib19 article-title: Human Fbh1 helicase contributes to genome maintenance via pro- and anti-recombinase activities publication-title: J. Cell Biol – volume: 259 start-page: 1896 year: 1993 end-page: 1899 ident: bib32 article-title: Similarity of the yeast RAD51 filament to the bacterial RecA filament publication-title: Science – volume: 26 start-page: 424 year: 2000 end-page: 429 ident: bib2 article-title: Cancer predisposition caused by elevated mitotic recombination in Bloom mice publication-title: Nat. Genet – volume: 429 start-page: 896 year: 2004 end-page: 899 ident: bib20 article-title: Genome-wide phenotype analysis in ES cells by regulated disruption of Bloom's syndrome gene publication-title: Nature – volume: 291 start-page: 373 year: 2005 end-page: 384 ident: bib21 article-title: Measuring recombination proficiency in mouse embryonic stem cells publication-title: Methods Mol. Biol – volume: 28 start-page: 405 year: 2009 end-page: 416 ident: bib35 article-title: BLM helicase measures DNA unwound before switching strands and hRPA promotes unwinding reinitiation publication-title: EMBO J – volume: 269 start-page: 11121 year: 1994 end-page: 11132 ident: bib23 article-title: Recombinant replication protein A. Expression, complex formation, and functional characterization publication-title: J. Biol. Chem – volume: 25 start-page: 8084 year: 2005 end-page: 8096 ident: bib15 article-title: The F-Box DNA helicase Fbh1 prevents Rhp51-dependent recombination without mediator proteins publication-title: Mol. Cell Biol – volume: 27 start-page: 2812 year: 2007 end-page: 2820 ident: bib17 article-title: Cooperative roles of vertebrate Fbh1 and Blm DNA helicases in avoidance of crossovers during recombination initiated by replication fork collapse publication-title: Mol. Cell Biol – volume: 5 start-page: 381 year: 2006 end-page: 391 ident: bib31 article-title: Roles of ATP binding and ATP hydrolysis in human Rad51 recombinase function publication-title: DNA Repair – volume: 361 start-page: 123 year: 2009 end-page: 134 ident: bib28 article-title: Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers publication-title: N. Engl. J. Med – volume: 423 start-page: 305 year: 2003 end-page: 309 ident: bib10 article-title: DNA helicase Srs2 disrupts the Rad51 presynaptic filament publication-title: Nature – volume: 29 start-page: 4742 year: 2009 end-page: 4756 ident: bib16 article-title: Fbh1 limits Rad51-dependent recombination at blocked replication forks publication-title: Mol. Cell Biol – volume: 37 start-page: 259 year: 2010 end-page: 272 ident: bib39 article-title: Overlapping mechanisms promote postsynaptic RAD-51 filament disassembly during meiotic double-strand break repair publication-title: Mol. Cell – volume: 434 start-page: 917 year: 2005 end-page: 921 ident: bib29 article-title: Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy publication-title: Nature – volume: 419 start-page: 638 year: 2002 end-page: 641 ident: bib26 article-title: Initiation and re-initiation of DNA unwinding by the publication-title: Nature – volume: 23 start-page: 2882 year: 2004 end-page: 2891 ident: bib24 article-title: Human RECQ5beta, a protein with DNA helicase and strand-annealing activities in a single polypeptide publication-title: EMBO J – volume: 9 start-page: 708 year: 2010 end-page: 717 ident: bib18 article-title: Mammalian Fbh1 is important to restore normal mitotic progression following decatenation stress publication-title: DNA Repair – volume: 21 start-page: 3085 year: 2007 end-page: 3094 ident: bib38 article-title: Novel pro- and anti-recombination activities of the Bloom's syndrome helicase publication-title: Genes Dev – volume: 277 start-page: 42790 year: 2002 end-page: 42794 ident: bib22 article-title: Homologous DNA pairing by human recombination factors Rad51 and Rad54 publication-title: J. Biol. Chem – volume: 17 start-page: 1260 year: 2010 end-page: 1262 ident: bib4 article-title: Human BRCA2 protein promotes RAD51 filament formation on RPA-covered single-stranded DNA publication-title: Nat. Struct. Mol. Biol – volume: 15 start-page: 3308 year: 2001 end-page: 3318 ident: bib6 article-title: Mediator function of the human Rad51B-Rad51C complex in Rad51/RPA-catalyzed DNA strand exchange publication-title: Genes Dev – volume: 423 start-page: 309 year: 2003 end-page: 312 ident: bib9 article-title: The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments publication-title: Nature – volume: 21 start-page: 3073 year: 2007 end-page: 3084 ident: bib33 article-title: RECQL5/Recql5 helicase regulates homologous recombination and suppresses tumor formation via disruption of Rad51 presynaptic filaments publication-title: Genes Dev – volume: 2 start-page: 787 year: 2003 end-page: 794 ident: bib5 article-title: Rad54, a Jack of all trades in homologous recombination publication-title: DNA Repair – volume: 434 start-page: 913 year: 2005 end-page: 917 ident: bib30 article-title: Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase publication-title: Nature – volume: 44 start-page: 113 year: 2010 end-page: 139 ident: bib1 article-title: Regulation of homologous recombination in eukaryotes publication-title: Annu. Rev. Genet – volume: 587 start-page: 29 year: 2010 end-page: 43 ident: bib25 article-title: Single-molecule FRET analysis of helicase functions publication-title: Methods Mol. Biol – volume: 277 start-page: 24530 year: 2002 end-page: 24537 ident: bib12 article-title: The novel human DNA helicase hFBH1 is an F-box protein publication-title: J. Biol. Chem – volume: 4 start-page: 2281 year: 2013 ident: bib34 article-title: Srs2 prevents Rad51 filament formation by repetitive motion on DNA publication-title: Nat. Commun – volume: 269 start-page: 11121 year: 1994 ident: 10.1074/jbc.M113.484493_bib23 article-title: Recombinant replication protein A. Expression, complex formation, and functional characterization publication-title: J. Biol. Chem doi: 10.1016/S0021-9258(19)78100-9 – volume: 437 start-page: 1321 year: 2005 ident: 10.1074/jbc.M113.484493_bib36 article-title: Repetitive shuttling of a motor protein on DNA publication-title: Nature doi: 10.1038/nature04049 – volume: 587 start-page: 29 year: 2010 ident: 10.1074/jbc.M113.484493_bib25 article-title: Single-molecule FRET analysis of helicase functions publication-title: Methods Mol. Biol doi: 10.1007/978-1-60327-355-8_3 – volume: 37 start-page: 259 year: 2010 ident: 10.1074/jbc.M113.484493_bib39 article-title: Overlapping mechanisms promote postsynaptic RAD-51 filament disassembly during meiotic double-strand break repair publication-title: Mol. Cell doi: 10.1016/j.molcel.2009.12.026 – volume: 291 start-page: 373 year: 2005 ident: 10.1074/jbc.M113.484493_bib21 article-title: Measuring recombination proficiency in mouse embryonic stem cells publication-title: Methods Mol. Biol – volume: 4 start-page: 1423 year: 2013 ident: 10.1074/jbc.M113.484493_bib27 article-title: FBH1 co-operates with MUS81 in inducing DNA double-strand breaks and cell death following replication stress publication-title: Nat. Commun doi: 10.1038/ncomms2395 – volume: 45 start-page: 75 year: 2012 ident: 10.1074/jbc.M113.484493_bib11 article-title: Inhibition of homologous recombination by the PCNA-interacting protein PARI publication-title: Mol. Cell doi: 10.1016/j.molcel.2011.11.010 – volume: 434 start-page: 913 year: 2005 ident: 10.1074/jbc.M113.484493_bib30 article-title: Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase publication-title: Nature doi: 10.1038/nature03443 – volume: 259 start-page: 1896 year: 1993 ident: 10.1074/jbc.M113.484493_bib32 article-title: Similarity of the yeast RAD51 filament to the bacterial RecA filament publication-title: Science doi: 10.1126/science.8456314 – volume: 44 start-page: 113 year: 2010 ident: 10.1074/jbc.M113.484493_bib1 article-title: Regulation of homologous recombination in eukaryotes publication-title: Annu. Rev. Genet doi: 10.1146/annurev-genet-051710-150955 – volume: 28 start-page: 405 year: 2009 ident: 10.1074/jbc.M113.484493_bib35 article-title: BLM helicase measures DNA unwound before switching strands and hRPA promotes unwinding reinitiation publication-title: EMBO J doi: 10.1038/emboj.2008.298 – volume: 21 start-page: 3085 year: 2007 ident: 10.1074/jbc.M113.484493_bib38 article-title: Novel pro- and anti-recombination activities of the Bloom's syndrome helicase publication-title: Genes Dev doi: 10.1101/gad.1609007 – volume: 25 start-page: 8084 year: 2005 ident: 10.1074/jbc.M113.484493_bib15 article-title: The F-Box DNA helicase Fbh1 prevents Rhp51-dependent recombination without mediator proteins publication-title: Mol. Cell Biol doi: 10.1128/MCB.25.18.8084-8096.2005 – volume: 13 start-page: 5764 year: 1994 ident: 10.1074/jbc.M113.484493_bib3 article-title: Purification and characterization of the human Rad51 protein, an analogue of E. coli RecA publication-title: EMBO J doi: 10.1002/j.1460-2075.1994.tb06914.x – volume: 23 start-page: 2882 year: 2004 ident: 10.1074/jbc.M113.484493_bib24 article-title: Human RECQ5beta, a protein with DNA helicase and strand-annealing activities in a single polypeptide publication-title: EMBO J doi: 10.1038/sj.emboj.7600301 – volume: 423 start-page: 305 year: 2003 ident: 10.1074/jbc.M113.484493_bib10 article-title: DNA helicase Srs2 disrupts the Rad51 presynaptic filament publication-title: Nature doi: 10.1038/nature01577 – volume: 15 start-page: 3308 year: 2001 ident: 10.1074/jbc.M113.484493_bib6 article-title: Mediator function of the human Rad51B-Rad51C complex in Rad51/RPA-catalyzed DNA strand exchange publication-title: Genes Dev doi: 10.1101/gad.935501 – volume: 40 start-page: 279 year: 2006 ident: 10.1074/jbc.M113.484493_bib7 article-title: DNA helicases required for homologous recombination and repair of damaged replication forks publication-title: Annu. Rev. Genet doi: 10.1146/annurev.genet.40.110405.090636 – volume: 429 start-page: 896 year: 2004 ident: 10.1074/jbc.M113.484493_bib20 article-title: Genome-wide phenotype analysis in ES cells by regulated disruption of Bloom's syndrome gene publication-title: Nature doi: 10.1038/nature02646 – volume: 277 start-page: 24530 year: 2002 ident: 10.1074/jbc.M113.484493_bib12 article-title: The novel human DNA helicase hFBH1 is an F-box protein publication-title: J. Biol. Chem doi: 10.1074/jbc.M201612200 – volume: 29 start-page: 4742 year: 2009 ident: 10.1074/jbc.M113.484493_bib16 article-title: Fbh1 limits Rad51-dependent recombination at blocked replication forks publication-title: Mol. Cell Biol doi: 10.1128/MCB.00471-09 – volume: 434 start-page: 917 year: 2005 ident: 10.1074/jbc.M113.484493_bib29 article-title: Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy publication-title: Nature doi: 10.1038/nature03445 – volume: 361 start-page: 123 year: 2009 ident: 10.1074/jbc.M113.484493_bib28 article-title: Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers publication-title: N. Engl. J. Med doi: 10.1056/NEJMoa0900212 – volume: 423 start-page: 309 year: 2003 ident: 10.1074/jbc.M113.484493_bib9 article-title: The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments publication-title: Nature doi: 10.1038/nature01585 – volume: 32 start-page: 2287 year: 2004 ident: 10.1074/jbc.M113.484493_bib13 article-title: SCFhFBH1 can act as helicase and E3 ubiquitin ligase publication-title: Nucleic Acids Res doi: 10.1093/nar/gkh534 – volume: 4 start-page: 2281 year: 2013 ident: 10.1074/jbc.M113.484493_bib34 article-title: Srs2 prevents Rad51 filament formation by repetitive motion on DNA publication-title: Nat. Commun doi: 10.1038/ncomms3281 – volume: 35 start-page: 105 year: 2009 ident: 10.1074/jbc.M113.484493_bib8 article-title: Srs2 disassembles Rad51 filaments by a protein-protein interaction triggering ATP turnover and dissociation of Rad51 from DNA publication-title: Mol. Cell doi: 10.1016/j.molcel.2009.05.026 – volume: 5 start-page: 381 year: 2006 ident: 10.1074/jbc.M113.484493_bib31 article-title: Roles of ATP binding and ATP hydrolysis in human Rad51 recombinase function publication-title: DNA Repair doi: 10.1016/j.dnarep.2005.11.005 – volume: 284 start-page: 26349 year: 2009 ident: 10.1074/jbc.M113.484493_bib37 article-title: Bloom syndrome helicase stimulates RAD51 DNA strand exchange activity through a novel mechanism publication-title: J. Biol. Chem doi: 10.1074/jbc.M109.029371 – volume: 186 start-page: 655 year: 2009 ident: 10.1074/jbc.M113.484493_bib19 article-title: Human Fbh1 helicase contributes to genome maintenance via pro- and anti-recombinase activities publication-title: J. Cell Biol doi: 10.1083/jcb.200812138 – volume: 26 start-page: 424 year: 2000 ident: 10.1074/jbc.M113.484493_bib2 article-title: Cancer predisposition caused by elevated mitotic recombination in Bloom mice publication-title: Nat. Genet doi: 10.1038/82548 – volume: 2 start-page: 787 year: 2003 ident: 10.1074/jbc.M113.484493_bib5 article-title: Rad54, a Jack of all trades in homologous recombination publication-title: DNA Repair doi: 10.1016/j.dnarep.2003.04.001 – volume: 9 start-page: 708 year: 2010 ident: 10.1074/jbc.M113.484493_bib18 article-title: Mammalian Fbh1 is important to restore normal mitotic progression following decatenation stress publication-title: DNA Repair doi: 10.1016/j.dnarep.2010.03.011 – volume: 17 start-page: 1260 year: 2010 ident: 10.1074/jbc.M113.484493_bib4 article-title: Human BRCA2 protein promotes RAD51 filament formation on RPA-covered single-stranded DNA publication-title: Nat. Struct. Mol. Biol doi: 10.1038/nsmb.1904 – volume: 25 start-page: 8074 year: 2005 ident: 10.1074/jbc.M113.484493_bib14 article-title: Role of the Schizosaccharomyces pombe F-Box DNA helicase in processing recombination intermediates publication-title: Mol. Cell Biol doi: 10.1128/MCB.25.18.8074-8083.2005 – volume: 277 start-page: 42790 year: 2002 ident: 10.1074/jbc.M113.484493_bib22 article-title: Homologous DNA pairing by human recombination factors Rad51 and Rad54 publication-title: J. Biol. Chem doi: 10.1074/jbc.M208004200 – volume: 21 start-page: 3073 year: 2007 ident: 10.1074/jbc.M113.484493_bib33 article-title: RECQL5/Recql5 helicase regulates homologous recombination and suppresses tumor formation via disruption of Rad51 presynaptic filaments publication-title: Genes Dev doi: 10.1101/gad.1609107 – volume: 27 start-page: 2812 year: 2007 ident: 10.1074/jbc.M113.484493_bib17 article-title: Cooperative roles of vertebrate Fbh1 and Blm DNA helicases in avoidance of crossovers during recombination initiated by replication fork collapse publication-title: Mol. Cell Biol doi: 10.1128/MCB.02043-06 – volume: 419 start-page: 638 year: 2002 ident: 10.1074/jbc.M113.484493_bib26 article-title: Initiation and re-initiation of DNA unwinding by the Escherichia coli Rep helicase publication-title: Nature doi: 10.1038/nature01083 |
SSID | ssj0000491 |
Score | 2.4072073 |
Snippet | Efficient repair of DNA double strand breaks and interstrand cross-links requires the homologous recombination (HR) pathway, a potentially error-free process... Background: Homologous recombination is regulated both positively and negatively in eukaryotic cells to suppress genomic instability. Results: FBH1 can disrupt... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 34168 |
SubjectTerms | Animals Cells, Cultured Chromatin - enzymology Chromatin - genetics DNA - genetics DNA - metabolism DNA and Chromosomes DNA Damage DNA Helicase DNA Helicases - genetics DNA Helicases - metabolism DNA Recombination DNA Repair DNA Replication DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism Embryonic Stem Cells - cytology Embryonic Stem Cells - metabolism F-Box Proteins - genetics F-Box Proteins - metabolism Homologous Recombination - physiology Humans Mice Multienzyme Complexes - genetics Multienzyme Complexes - metabolism Protein Binding Rad51 Recombinase - genetics Rad51 Recombinase - metabolism |
Title | FBH1 Helicase Disrupts RAD51 Filaments in Vitro and Modulates Homologous Recombination in Mammalian Cells |
URI | https://dx.doi.org/10.1074/jbc.M113.484493 https://www.ncbi.nlm.nih.gov/pubmed/24108124 https://www.proquest.com/docview/1461869278 https://pubmed.ncbi.nlm.nih.gov/PMC3837158 |
Volume | 288 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1083-351X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000491 issn: 0021-9258 databaseCode: HH5 dateStart: 19050101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1083-351X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000491 issn: 0021-9258 databaseCode: KQ8 dateStart: 19051001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1083-351X dateEnd: 20240930 omitProxy: true ssIdentifier: ssj0000491 issn: 0021-9258 databaseCode: DIK dateStart: 20080101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1083-351X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000491 issn: 0021-9258 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1083-351X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000491 issn: 0021-9258 databaseCode: AKRWK dateStart: 19051001 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAQN databaseName: PubMed Central (Free e-resource, activated by CARLI) customDbUrl: eissn: 1083-351X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000491 issn: 0021-9258 databaseCode: RPM dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9NAFB7q-qAvorvq1hsjiAgltblNksdutZRdKipVii9hMplgsElKmwrrb_ZHeM5Mbt21oPtSmjRp0vm-njln8p1zCHk1YgKiBukaibBswwkSZnDLcQ3H9rxE2D6PA8xGnn9gsy_O-dJd9nq_O6qlXRkNxa-_5pXcBFXYB7hilux_INt8KeyA94AvvALC8PpPGE_PZiZOHDDQW4mFNDe7dbkdfB6_c83BNAWwVf5amg--puWm0KKKIsaOXRIFMhlaPtTAYhCaQYzMa-njnGeZXgGZyNVq23Vh22Qy5cbqKk66zkjdPK5ZtkkzLOJQ_NSC3LT80UwC38COrSKuuyzXEpv2edalXmidpxtc6RicD1sZwk7JAnk6uEjL7pqFaWPyntVGuM3DqK4y9SwtmtusxqPqD1y15eyaRiUssXTR96HUphucScxLWHZtu-X7HRLr2p6VqYbpm_mdeR-2dU-pa5MKeFk4qURiODdNe-j4jqO7OnYots4Ux8AfGqHL1M6ujebx43yCqwGm698ity2PMey3cfGprW0PsZru71j9troQlee8vXJtrGBdXeiQO3U9XLqq-u24UYv75F5FHDrWZH5AejI_JidjYF6RXdLXVCmSFQ7H5M6kRuqEpMh1WnOd1lyniuu04TpNc6q4TgFb2nCdtlyne1zH4xuuU8X1h2Qxfb-YzIyqTYghwNstDTtgEoJ4GTE3sGEDs61HHBxrEZm2jB3L42bgiFHi-8LiNufSAy_dxzpFfhxH9iNylBe5PCVUSNNKAhaPZBRAmCAiL_EZ48LjzIxNFvfJsB7sUFQl9LGTyypUUg7PCQGoEIEKNVB98qY5Ya2rxxw-1KrRCyvnVzu1IdDw8Ekva5xDwAOf9fFcwlhiRI_N5izP75PHGvfmDmru9Im3x4jmACw5v_9Jnn5XpecrBj-58ZlPyd3WIDwjR-VmJ5-DW19GL9S_4Q-mXPpc |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FBH1+Helicase+Disrupts+RAD51+Filaments+in+Vitro+and+Modulates+Homologous+Recombination+in+Mammalian+Cells&rft.jtitle=The+Journal+of+biological+chemistry&rft.au=Simandlova%2C+Jitka&rft.au=Zagelbaum%2C+Jennifer&rft.au=Payne%2C+Miranda+J.&rft.au=Chu%2C+Wai+Kit&rft.date=2013-11-22&rft.pub=American+Society+for+Biochemistry+and+Molecular+Biology&rft.issn=0021-9258&rft.eissn=1083-351X&rft.volume=288&rft.issue=47&rft.spage=34168&rft.epage=34180&rft_id=info:doi/10.1074%2Fjbc.M113.484493&rft_id=info%3Apmid%2F24108124&rft.externalDocID=PMC3837158 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9258&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9258&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9258&client=summon |