XBP1 mRNA Splicing Triggers an Autophagic Response in Endothelial Cells through BECLIN-1 Transcriptional Activation
Sustained activation of X-box-binding protein 1 (XBP1) results in endothelial cell (EC) apoptosis and atherosclerosis development. The present study provides evidence that XBP1 mRNA splicing triggered an autophagic response in ECs by inducing autophagic vesicle formation and markers of autophagy BEC...
Saved in:
Published in | The Journal of biological chemistry Vol. 288; no. 2; pp. 859 - 872 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
11.01.2013
American Society for Biochemistry and Molecular Biology |
Subjects | |
Online Access | Get full text |
ISSN | 0021-9258 1083-351X 1083-351X |
DOI | 10.1074/jbc.M112.412783 |
Cover
Abstract | Sustained activation of X-box-binding protein 1 (XBP1) results in endothelial cell (EC) apoptosis and atherosclerosis development. The present study provides evidence that XBP1 mRNA splicing triggered an autophagic response in ECs by inducing autophagic vesicle formation and markers of autophagy BECLIN-1 and microtubule-associated protein 1 light chain 3β (LC3-βII). Endostatin activated autophagic gene expression through XBP1 mRNA splicing in an inositol-requiring enzyme 1α (IRE1α)-dependent manner. Knockdown of XBP1 or IRE1α by shRNA in ECs ablated endostatin-induced autophagosome formation. Importantly, data from arterial vessels from XBP1 EC conditional knock-out (XBP1eko) mice demonstrated that XBP1 deficiency in ECs reduced the basal level of LC3β expression and ablated response to endostatin. Chromatin immunoprecipitation assays further revealed that the spliced XBP1 isoform bound directly to the BECLIN-1 promoter at the region from nt −537 to −755. BECLIN-1 deficiency in ECs abolished the XBP1-induced autophagy response, whereas spliced XBP1 did not induce transcriptional activation of a truncated BECLIN-1 promoter. These results suggest that XBP1 mRNA splicing triggers an autophagic signal pathway through transcriptional regulation of BECLIN-1.
Background: Apoptosis and autophagy are two closely related systems that induce cell death.
Results: X-box-binding protein 1 (XBP1) mRNA splicing regulates BECLIN-1 transcriptional activation, a fundamental player in the initiation of autophagy.
Conclusion:XBP1 splicing induces an autophagic response in endothelial cells.
Significance: XBP1 could be used as an important pharmacological target that can regulate the autophagic machinery and endothelial cell death. |
---|---|
AbstractList | Background:
Apoptosis and autophagy are two closely related systems that induce cell death.
Results:
X-box-binding protein 1 (
XBP1
) mRNA splicing regulates
BECLIN-1
transcriptional activation, a fundamental player in the initiation of autophagy.
Conclusion:
XBP1
splicing induces an autophagic response in endothelial cells.
Significance:
XBP1 could be used as an important pharmacological target that can regulate the autophagic machinery and endothelial cell death.
Sustained activation of X-box-binding protein 1 (XBP1) results in endothelial cell (EC) apoptosis and atherosclerosis development. The present study provides evidence that
XBP1
mRNA splicing triggered an autophagic response in ECs by inducing autophagic vesicle formation and markers of autophagy BECLIN-1 and microtubule-associated protein 1 light chain 3β (LC3-βII). Endostatin activated autophagic gene expression through
XBP1
mRNA splicing in an inositol-requiring enzyme 1α (
IRE1
α)-dependent manner. Knockdown of XBP1 or IRE1α by shRNA in ECs ablated endostatin-induced autophagosome formation. Importantly, data from arterial vessels from XBP1 EC conditional knock-out (
XBP1eko
) mice demonstrated that XBP1 deficiency in ECs reduced the basal level of LC3β expression and ablated response to endostatin. Chromatin immunoprecipitation assays further revealed that the spliced XBP1 isoform bound directly to the
BECLIN-1
promoter at the region from nt −537 to −755.
BECLIN-1
deficiency in ECs abolished the
XBP1
-induced autophagy response, whereas spliced
XBP1
did not induce transcriptional activation of a truncated
BECLIN-1
promoter. These results suggest that
XBP1
mRNA splicing triggers an autophagic signal pathway through transcriptional regulation of
BECLIN-1
. Sustained activation of X-box-binding protein 1 (XBP1) results in endothelial cell (EC) apoptosis and atherosclerosis development. The present study provides evidence that XBP1 mRNA splicing triggered an autophagic response in ECs by inducing autophagic vesicle formation and markers of autophagy BECLIN-1 and microtubule-associated protein 1 light chain 3β (LC3-βII). Endostatin activated autophagic gene expression through XBP1 mRNA splicing in an inositol-requiring enzyme 1α (IRE1α)-dependent manner. Knockdown of XBP1 or IRE1α by shRNA in ECs ablated endostatin-induced autophagosome formation. Importantly, data from arterial vessels from XBP1 EC conditional knock-out (XBP1eko) mice demonstrated that XBP1 deficiency in ECs reduced the basal level of LC3β expression and ablated response to endostatin. Chromatin immunoprecipitation assays further revealed that the spliced XBP1 isoform bound directly to the BECLIN-1 promoter at the region from nt −537 to −755. BECLIN-1 deficiency in ECs abolished the XBP1-induced autophagy response, whereas spliced XBP1 did not induce transcriptional activation of a truncated BECLIN-1 promoter. These results suggest that XBP1 mRNA splicing triggers an autophagic signal pathway through transcriptional regulation of BECLIN-1. Background: Apoptosis and autophagy are two closely related systems that induce cell death. Results: X-box-binding protein 1 (XBP1) mRNA splicing regulates BECLIN-1 transcriptional activation, a fundamental player in the initiation of autophagy. Conclusion:XBP1 splicing induces an autophagic response in endothelial cells. Significance: XBP1 could be used as an important pharmacological target that can regulate the autophagic machinery and endothelial cell death. Sustained activation of X-box-binding protein 1 (XBP1) results in endothelial cell (EC) apoptosis and atherosclerosis development. The present study provides evidence that XBP1 mRNA splicing triggered an autophagic response in ECs by inducing autophagic vesicle formation and markers of autophagy BECLIN-1 and microtubule-associated protein 1 light chain 3β (LC3-βII). Endostatin activated autophagic gene expression through XBP1 mRNA splicing in an inositol-requiring enzyme 1α (IRE1α)-dependent manner. Knockdown of XBP1 or IRE1α by shRNA in ECs ablated endostatin-induced autophagosome formation. Importantly, data from arterial vessels from XBP1 EC conditional knock-out (XBP1eko) mice demonstrated that XBP1 deficiency in ECs reduced the basal level of LC3β expression and ablated response to endostatin. Chromatin immunoprecipitation assays further revealed that the spliced XBP1 isoform bound directly to the BECLIN-1 promoter at the region from nt -537 to -755. BECLIN-1 deficiency in ECs abolished the XBP1-induced autophagy response, whereas spliced XBP1 did not induce transcriptional activation of a truncated BECLIN-1 promoter. These results suggest that XBP1 mRNA splicing triggers an autophagic signal pathway through transcriptional regulation of BECLIN-1.Sustained activation of X-box-binding protein 1 (XBP1) results in endothelial cell (EC) apoptosis and atherosclerosis development. The present study provides evidence that XBP1 mRNA splicing triggered an autophagic response in ECs by inducing autophagic vesicle formation and markers of autophagy BECLIN-1 and microtubule-associated protein 1 light chain 3β (LC3-βII). Endostatin activated autophagic gene expression through XBP1 mRNA splicing in an inositol-requiring enzyme 1α (IRE1α)-dependent manner. Knockdown of XBP1 or IRE1α by shRNA in ECs ablated endostatin-induced autophagosome formation. Importantly, data from arterial vessels from XBP1 EC conditional knock-out (XBP1eko) mice demonstrated that XBP1 deficiency in ECs reduced the basal level of LC3β expression and ablated response to endostatin. Chromatin immunoprecipitation assays further revealed that the spliced XBP1 isoform bound directly to the BECLIN-1 promoter at the region from nt -537 to -755. BECLIN-1 deficiency in ECs abolished the XBP1-induced autophagy response, whereas spliced XBP1 did not induce transcriptional activation of a truncated BECLIN-1 promoter. These results suggest that XBP1 mRNA splicing triggers an autophagic signal pathway through transcriptional regulation of BECLIN-1. Sustained activation of X-box-binding protein 1 (XBP1) results in endothelial cell (EC) apoptosis and atherosclerosis development. The present study provides evidence that XBP1 mRNA splicing triggered an autophagic response in ECs by inducing autophagic vesicle formation and markers of autophagy BECLIN-1 and microtubule-associated protein 1 light chain 3β (LC3-βII). Endostatin activated autophagic gene expression through XBP1 mRNA splicing in an inositol-requiring enzyme 1α (IRE1α)-dependent manner. Knockdown of XBP1 or IRE1α by shRNA in ECs ablated endostatin-induced autophagosome formation. Importantly, data from arterial vessels from XBP1 EC conditional knock-out (XBP1eko) mice demonstrated that XBP1 deficiency in ECs reduced the basal level of LC3β expression and ablated response to endostatin. Chromatin immunoprecipitation assays further revealed that the spliced XBP1 isoform bound directly to the BECLIN-1 promoter at the region from nt -537 to -755. BECLIN-1 deficiency in ECs abolished the XBP1-induced autophagy response, whereas spliced XBP1 did not induce transcriptional activation of a truncated BECLIN-1 promoter. These results suggest that XBP1 mRNA splicing triggers an autophagic signal pathway through transcriptional regulation of BECLIN-1. |
Author | Alam, Saydul Martin, Daniel Gao, Chan Jiang, Zhixin Wang, Wen Zeng, Lingfang Cockerill, Gillian Vizcay-Barrena, Gema Karamariti, Eirini Margariti, Andriana Li, Hongling Zampetaki, Anna Chen, Ting Ma, Benyu Chen, Ye-Guang Xu, Qingbo Hu, Yanhua Xiao, Qingzhong Zhang, Zhongyi |
Author_xml | – sequence: 1 givenname: Andriana surname: Margariti fullname: Margariti, Andriana email: andriani.margariti@kcl.ac.uk organization: From the Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, United Kingdom – sequence: 2 givenname: Hongling surname: Li fullname: Li, Hongling organization: From the Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, United Kingdom – sequence: 3 givenname: Ting surname: Chen fullname: Chen, Ting organization: the Department of Cardiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China – sequence: 4 givenname: Daniel surname: Martin fullname: Martin, Daniel organization: From the Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, United Kingdom – sequence: 5 givenname: Gema surname: Vizcay-Barrena fullname: Vizcay-Barrena, Gema organization: the Centre for Ultrastructural Imaging, King's College London, Guy's Campus, London WC2R 2LS, United Kingdom – sequence: 6 givenname: Saydul surname: Alam fullname: Alam, Saydul organization: From the Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, United Kingdom – sequence: 7 givenname: Eirini surname: Karamariti fullname: Karamariti, Eirini organization: From the Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, United Kingdom – sequence: 8 givenname: Qingzhong surname: Xiao fullname: Xiao, Qingzhong organization: the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom – sequence: 9 givenname: Anna surname: Zampetaki fullname: Zampetaki, Anna organization: From the Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, United Kingdom – sequence: 10 givenname: Zhongyi surname: Zhang fullname: Zhang, Zhongyi organization: From the Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, United Kingdom – sequence: 11 givenname: Wen surname: Wang fullname: Wang, Wen organization: the School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, United Kingdom – sequence: 12 givenname: Zhixin surname: Jiang fullname: Jiang, Zhixin organization: the Centre Laboratory, 305th Hospital of the People's Liberation Army, Beijing 100017, China – sequence: 13 givenname: Chan surname: Gao fullname: Gao, Chan organization: the State Key Laboratory of Bio-membrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China – sequence: 14 givenname: Benyu surname: Ma fullname: Ma, Benyu organization: the State Key Laboratory of Bio-membrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China – sequence: 15 givenname: Ye-Guang surname: Chen fullname: Chen, Ye-Guang organization: the State Key Laboratory of Bio-membrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China – sequence: 16 givenname: Gillian surname: Cockerill fullname: Cockerill, Gillian organization: the Department of Cardiovascular Science, St. George's University of London, London SW17 0RE, United Kingdom – sequence: 17 givenname: Yanhua surname: Hu fullname: Hu, Yanhua organization: From the Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, United Kingdom – sequence: 18 givenname: Qingbo surname: Xu fullname: Xu, Qingbo organization: From the Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, United Kingdom – sequence: 19 givenname: Lingfang surname: Zeng fullname: Zeng, Lingfang email: lingfang.zeng@kcl.ac.uk organization: From the Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, United Kingdom |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23184933$$D View this record in MEDLINE/PubMed |
BookMark | eNp1Uc9v0zAUttAQ6wpnbshHLuns2G6cC1JXFTapDDSGtJvlOi-pp9TObKcS_z3uuiFA2rtYT_5-6H3fGTpx3gFC7ymZUVLx8_uNmX2ltJxxWlaSvUITSiQrmKB3J2hCSEmLuhTyFJ3FeE_y8Jq-Qaclo5LXjE1QvLv4TvHu5nqBfwy9NdZ1-DbYroMQsXZ4MSY_bHVnDb6BOHgXAVuHV67xaQu91T1eQt9HnLbBj90WX6yW66vrgmYV7aIJdkjWuwxbmGT3-rC8Ra9b3Ud49_RO0c_Pq9vlZbH-9uVquVgXRpA6FazkTMqa86aq50wwzYnglFaNLg1sNhWIylTtvJSCtwCENrXWVBpGSGukbFo2RZ-OusO42UFjwKWgezUEu9Phl_Laqn9_nN2qzu8VE5yR7DhFH58Egn8YISa1s9Hkc7UDP0aVM2eClGx-gH742-uPyXPSGSCOABN8jAFaZWx6jCNb215Rog6NqtyoOjSqjo1m3vl_vGfplxn1kQE5272FoKKx4Aw0NoBJqvH2Re5vf1C25A |
CitedBy_id | crossref_primary_10_1016_j_jhepr_2024_101012 crossref_primary_10_1016_j_mucimm_2023_05_007 crossref_primary_10_3390_ijms22115992 crossref_primary_10_1016_j_bbadis_2019_07_010 crossref_primary_10_1095_biolreprod_114_124149 crossref_primary_10_1161_CIRCRESAHA_116_303804 crossref_primary_10_1007_s11906_024_01300_9 crossref_primary_10_1093_femsre_fuab016 crossref_primary_10_1152_ajpcell_00009_2018 crossref_primary_10_3390_cancers11122034 crossref_primary_10_1183_16000617_0126_2020 crossref_primary_10_1002_ijc_29990 crossref_primary_10_1007_s10565_016_9374_5 crossref_primary_10_1093_toxsci_kfx184 crossref_primary_10_4161_auto_25900 crossref_primary_10_1016_j_bbamcr_2013_06_028 crossref_primary_10_1016_j_bbadis_2014_05_005 crossref_primary_10_1039_C6MB00653A crossref_primary_10_1124_mol_113_090837 crossref_primary_10_1080_14728222_2018_1541318 crossref_primary_10_1155_2018_7687083 crossref_primary_10_4155_fsoa_2017_0020 crossref_primary_10_1016_j_jmb_2020_01_017 crossref_primary_10_1080_15548627_2019_1687214 crossref_primary_10_15758_ajk_2018_20_3_1 crossref_primary_10_1038_s41598_022_08791_z crossref_primary_10_1080_15548627_2021_2002101 crossref_primary_10_1016_j_lfs_2020_118641 crossref_primary_10_1126_scisignal_aai7814 crossref_primary_10_1080_14728222_2023_2293746 crossref_primary_10_1080_15548627_2024_2414424 crossref_primary_10_1210_en_2017_00638 crossref_primary_10_1038_s41467_021_27337_x crossref_primary_10_18632_oncotarget_9818 crossref_primary_10_3389_fphar_2024_1323491 crossref_primary_10_1016_j_ejcb_2018_05_002 crossref_primary_10_1038_s41419_023_05905_x crossref_primary_10_3390_cells8111321 crossref_primary_10_3233_JPD_230030 crossref_primary_10_1016_j_bbrc_2014_02_054 crossref_primary_10_1080_10408444_2021_1881040 crossref_primary_10_1186_s12935_021_01892_1 crossref_primary_10_1111_1751_2980_12347 crossref_primary_10_1038_s41419_018_1142_4 crossref_primary_10_3892_etm_2018_6284 crossref_primary_10_7314_APJCP_2014_15_5_2153 crossref_primary_10_1111_php_13777 crossref_primary_10_1007_s11060_015_2003_y crossref_primary_10_1016_j_coviro_2016_01_018 crossref_primary_10_1007_s00439_024_02697_8 crossref_primary_10_1038_s41392_023_01409_4 crossref_primary_10_3390_biom10030392 crossref_primary_10_1016_j_kint_2023_06_016 crossref_primary_10_1016_j_bbrc_2015_05_061 crossref_primary_10_1016_j_bbrc_2019_07_073 crossref_primary_10_1002_jcp_25785 crossref_primary_10_1080_2162402X_2021_1962591 crossref_primary_10_3389_fphys_2018_01058 crossref_primary_10_1002_ana_25288 crossref_primary_10_1080_15548627_2020_1788889 crossref_primary_10_3389_fcimb_2021_707107 crossref_primary_10_1016_j_jdermsci_2017_04_011 crossref_primary_10_1093_ibd_izy380 crossref_primary_10_1021_acsptsci_4c00617 crossref_primary_10_1371_journal_pone_0132761 crossref_primary_10_4196_kjpp_2023_27_1_1 crossref_primary_10_3389_fragi_2022_888190 crossref_primary_10_1016_j_semcancer_2013_05_008 crossref_primary_10_3389_fnmol_2024_1443401 crossref_primary_10_1038_cddis_2015_219 crossref_primary_10_1016_j_dci_2021_104093 crossref_primary_10_1186_s12967_015_0725_4 crossref_primary_10_1093_biolre_ioae066 crossref_primary_10_3390_cancers13040864 crossref_primary_10_1111_nyas_14305 crossref_primary_10_1038_s41598_017_18909_3 crossref_primary_10_1016_j_canlet_2021_01_005 crossref_primary_10_1016_j_semcancer_2015_04_002 crossref_primary_10_1016_j_chemosphere_2018_01_092 crossref_primary_10_1515_revneuro_2017_0071 crossref_primary_10_1111_cas_14740 crossref_primary_10_1007_s12042_016_9183_2 crossref_primary_10_1016_j_arr_2020_101026 crossref_primary_10_1089_ars_2022_0110 crossref_primary_10_1016_j_procbio_2019_09_006 crossref_primary_10_4103_1673_5374_391334 crossref_primary_10_1007_s12192_022_01301_0 crossref_primary_10_1074_jbc_RA118_002829 crossref_primary_10_1016_j_ejmech_2020_112635 crossref_primary_10_1016_j_ajpath_2023_06_006 crossref_primary_10_1016_j_neuroscience_2022_10_014 crossref_primary_10_3390_ijms22168674 crossref_primary_10_1080_15548627_2018_1463121 crossref_primary_10_1016_j_bbadis_2016_01_011 crossref_primary_10_1089_dna_2014_2552 crossref_primary_10_1038_s41420_020_00361_4 crossref_primary_10_18632_aging_101436 crossref_primary_10_3390_cells11233773 crossref_primary_10_1080_15548627_2021_1917129 crossref_primary_10_1007_s12011_022_03093_x crossref_primary_10_1002_jcla_23437 crossref_primary_10_1080_13880209_2022_2107019 crossref_primary_10_1002_jcp_26747 crossref_primary_10_1080_13880209_2023_2210187 crossref_primary_10_1016_j_biocel_2019_105572 crossref_primary_10_1016_j_ajpath_2020_01_010 crossref_primary_10_1074_jbc_M114_571984 crossref_primary_10_1080_21505594_2020_1845040 crossref_primary_10_1002_ccs3_12056 crossref_primary_10_1016_j_lfs_2020_117601 crossref_primary_10_1186_2045_3701_4_71 crossref_primary_10_1016_j_neuropharm_2022_109277 crossref_primary_10_1016_j_matbio_2021_04_001 crossref_primary_10_3389_fcell_2018_00104 crossref_primary_10_1080_19768354_2023_2181217 crossref_primary_10_1016_j_cstres_2023_12_003 crossref_primary_10_1515_ersc_2017_0004 crossref_primary_10_1093_bfgp_elaa026 crossref_primary_10_3390_nu9060593 crossref_primary_10_1016_j_ejphar_2024_177210 crossref_primary_10_3389_fvets_2023_1214318 crossref_primary_10_3389_fmolb_2022_930223 crossref_primary_10_1016_j_biopha_2023_115867 crossref_primary_10_3389_fnagi_2017_00341 crossref_primary_10_1080_15548627_2016_1248018 crossref_primary_10_3389_fcell_2023_1156152 crossref_primary_10_3390_toxins12050316 crossref_primary_10_1111_bph_13516 crossref_primary_10_1155_2021_8832541 crossref_primary_10_1016_j_bbrc_2020_04_117 crossref_primary_10_1016_j_gene_2022_146821 crossref_primary_10_3109_08830185_2014_999156 crossref_primary_10_1007_s12192_020_01125_w crossref_primary_10_18632_aging_203010 crossref_primary_10_26599_FSHW_2022_9250178 crossref_primary_10_1007_s40139_017_0145_7 crossref_primary_10_3892_ol_2019_10997 crossref_primary_10_3390_biom12111637 crossref_primary_10_1155_2014_160140 crossref_primary_10_18632_oncotarget_26038 crossref_primary_10_4161_auto_27954 crossref_primary_10_1038_cddis_2015_183 crossref_primary_10_3390_antiox9030214 crossref_primary_10_1016_j_gendis_2023_101174 crossref_primary_10_1002_jcp_26137 crossref_primary_10_3390_biology9010004 crossref_primary_10_3390_v13101967 crossref_primary_10_1042_BSR20190788 crossref_primary_10_3389_fnagi_2021_691881 crossref_primary_10_1038_s41598_017_02960_1 crossref_primary_10_1161_ATVBAHA_115_305420 crossref_primary_10_1038_s41418_023_01162_9 crossref_primary_10_1038_srep28627 crossref_primary_10_1159_000540654 crossref_primary_10_1371_journal_pone_0168339 crossref_primary_10_1111_acel_12460 crossref_primary_10_1016_j_ejphar_2019_04_019 crossref_primary_10_1016_j_biocel_2015_09_010 crossref_primary_10_1016_j_phrs_2020_105218 crossref_primary_10_3390_antiox11020304 crossref_primary_10_3390_ijms25084368 crossref_primary_10_1002_1873_3468_14000 crossref_primary_10_1016_j_lfs_2017_12_001 crossref_primary_10_1016_j_arr_2022_101774 crossref_primary_10_1186_s12917_022_03359_5 crossref_primary_10_1016_j_celrep_2022_110796 crossref_primary_10_1136_annrheumdis_2012_202925 crossref_primary_10_3390_ijms21197334 crossref_primary_10_1002_jcp_24889 crossref_primary_10_3390_nu15153495 crossref_primary_10_1007_s00204_013_1110_9 crossref_primary_10_1016_j_cstres_2024_11_005 crossref_primary_10_1016_j_biopha_2024_117690 crossref_primary_10_3390_cells12131779 crossref_primary_10_3389_fphys_2017_00600 crossref_primary_10_1152_ajpheart_00056_2015 crossref_primary_10_1186_ar4415 crossref_primary_10_1172_JCI95864 crossref_primary_10_1016_j_celrep_2018_09_013 crossref_primary_10_1016_j_semcancer_2019_11_007 crossref_primary_10_3892_ol_2015_3508 crossref_primary_10_1016_j_isci_2024_111372 crossref_primary_10_1016_j_lfs_2018_04_051 crossref_primary_10_1016_j_cca_2022_05_009 crossref_primary_10_1016_j_cophys_2023_100673 crossref_primary_10_1080_10409238_2021_1925219 crossref_primary_10_1080_15548627_2020_1794590 crossref_primary_10_1242_jcs_188920 crossref_primary_10_1016_j_coi_2013_10_010 crossref_primary_10_1126_sciadv_abb9614 crossref_primary_10_1098_rsob_190009 crossref_primary_10_1016_j_bbrc_2022_05_053 crossref_primary_10_1371_journal_ppat_1008169 crossref_primary_10_1007_s11011_021_00770_z crossref_primary_10_1161_CIRCRESAHA_117_311450 crossref_primary_10_3390_cells11050851 crossref_primary_10_1038_s41598_017_16488_x crossref_primary_10_3389_fimmu_2019_01789 crossref_primary_10_3389_fmmed_2022_971247 crossref_primary_10_1016_j_preteyeres_2014_12_001 crossref_primary_10_1080_15548627_2015_1091141 crossref_primary_10_1038_s41598_018_27278_4 crossref_primary_10_1038_s41467_024_44902_2 crossref_primary_10_1016_j_flm_2018_07_002 crossref_primary_10_18632_oncotarget_26745 crossref_primary_10_3892_etm_2024_12638 crossref_primary_10_1080_15548627_2020_1827778 crossref_primary_10_3389_fmicb_2014_00388 crossref_primary_10_3390_toxics11060544 crossref_primary_10_1016_j_bbrc_2019_11_160 crossref_primary_10_1165_rcmb_2023_0424OC crossref_primary_10_1038_emm_2017_215 crossref_primary_10_1038_s41418_023_01201_5 crossref_primary_10_1016_j_fct_2018_02_019 |
Cites_doi | 10.4161/auto.20139 10.4161/auto.1.2.1738 10.1038/cr.2011.58 10.1111/j.1440-1711.2006.01449.x 10.1038/cddis.2012.61 10.1073/pnas.1334037100 10.1158/0008-5472.CAN-05-4412 10.1159/000339066 10.1038/ncb2082 10.1016/j.bbrc.2010.03.026 10.1172/JCI40027 10.1038/nrm2239 10.1101/gad.964702 10.1016/j.cell.2007.02.023 10.1073/pnas.0903197106 10.1111/j.1582-4934.2009.00722.x 10.1006/bbrc.1997.7111 10.1093/hmg/dds040 10.1016/j.cell.2005.07.002 10.1161/ATVBAHA.111.224899 10.1038/onc.2010.191 10.1152/ajpcell.00164.2011 10.1182/blood-2006-11-059352 10.1161/CIRCRESAHA.108.188318 10.1371/journal.pone.0010409 10.1016/j.cmet.2012.02.011 10.1016/S1534-5807(04)00099-1 10.1242/jcs.034850 10.1016/j.cmet.2012.01.022 10.1083/jcb.200406136 10.1126/science.2321018 10.1074/jbc.M607007200 10.1126/science.290.5497.1717 10.1042/BJ20101293 10.1074/jbc.M112.363911 10.1038/cddis.2012.8 10.1038/35085509 10.1139/y04-095 10.1002/aja.1001970207 10.1016/S0092-8674(01)00611-0 10.3892/ijmm.2012.891 10.1172/JCI26390 10.1038/sj.cdd.4401765 10.1161/CIRCRESAHA.109.213165 10.4161/auto.19768 10.1101/gad.14.2.152 10.1016/j.yexcr.2011.11.008 10.1074/jbc.M700492200 10.1038/sj.onc.1207521 10.1073/pnas.0711094105 10.1073/pnas.1205526109 10.1006/dbio.2000.0106 10.1093/nar/24.10.1855 10.1007/s11883-008-0034-y 10.4161/auto.19716 |
ContentType | Journal Article |
Copyright | 2013 © 2013 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology. 2013 by The American Society for Biochemistry and Molecular Biology, Inc. 2013 |
Copyright_xml | – notice: 2013 © 2013 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology. – notice: 2013 by The American Society for Biochemistry and Molecular Biology, Inc. 2013 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1074/jbc.M112.412783 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
DocumentTitleAlternate | XBP1 Triggers Autophagy in Endothelial Cells |
EISSN | 1083-351X |
EndPage | 872 |
ExternalDocumentID | PMC3543035 23184933 10_1074_jbc_M112_412783 S0021925820466323 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: British Heart Foundation grantid: FS/13/18/30207 – fundername: British Heart Foundation grantid: FS/09/044/28007 – fundername: British Heart Foundation grantid: PG/11/40/28891 |
GroupedDBID | --- -DZ -ET -~X 0SF 18M 29J 2WC 34G 39C 4.4 53G 5BI 5GY 5RE 5VS 6I. 79B 85S AAEDW AAFTH AAFWJ AARDX AAXUO ABDNZ ABOCM ABPPZ ABRJW ACGFO ACNCT ADBBV ADIYS ADNWM AENEX AEXQZ AFOSN AFPKN ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BTFSW CJ0 CS3 DIK DU5 E.L E3Z EBS EJD F5P FDB FRP GROUPED_DOAJ GX1 HH5 HYE IH2 KQ8 L7B N9A OK1 P0W P2P R.V RHF RHI RNS ROL RPM SJN TBC TN5 TR2 UHB UKR UPT VQA W8F WH7 WOQ XSW YQT YSK YWH YZZ ZA5 ~02 ~KM .55 .7T .GJ 0R~ 186 3O- 41~ 6TJ AALRI AAYJJ AAYOK AAYWO AAYXX ABFSI ACSFO ACVFH ACYGS ADCNI ADVLN ADXHL AEUPX AFFNX AFPUW AI. AIGII AITUG AKBMS AKRWK AKYEP C1A CITATION FA8 H13 J5H MVM NHB OHT P-O QZG UQL VH1 WHG X7M XJT Y6R YYP ZE2 ZGI ZY4 CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c509t-324388944d796353a4054117da2cebb7e57c7f62854fee01d9aa18c300fc88df3 |
ISSN | 0021-9258 1083-351X |
IngestDate | Thu Aug 21 18:05:35 EDT 2025 Fri Sep 05 07:24:01 EDT 2025 Mon Jul 21 05:29:24 EDT 2025 Thu Apr 24 23:11:17 EDT 2025 Tue Jul 01 00:40:59 EDT 2025 Fri Feb 23 02:46:55 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | XBP1 Alternative Splicing BECLIN-1 Atherosclerosis Cell Death Endothelial Cell Autophagy Electron Microscopy (EM) |
Language | English |
License | This is an open access article under the CC BY license. http://creativecommons.org/licenses/by/4.0 https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c509t-324388944d796353a4054117da2cebb7e57c7f62854fee01d9aa18c300fc88df3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://dx.doi.org/10.1074/jbc.M112.412783 |
PMID | 23184933 |
PQID | 1273502365 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3543035 proquest_miscellaneous_1273502365 pubmed_primary_23184933 crossref_citationtrail_10_1074_jbc_M112_412783 crossref_primary_10_1074_jbc_M112_412783 elsevier_sciencedirect_doi_10_1074_jbc_M112_412783 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-01-11 |
PublicationDateYYYYMMDD | 2013-01-11 |
PublicationDate_xml | – month: 01 year: 2013 text: 2013-01-11 day: 11 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 9650 Rockville Pike, Bethesda, MD 20814, U.S.A |
PublicationTitle | The Journal of biological chemistry |
PublicationTitleAlternate | J Biol Chem |
PublicationYear | 2013 |
Publisher | Elsevier Inc American Society for Biochemistry and Molecular Biology |
Publisher_xml | – name: Elsevier Inc – name: American Society for Biochemistry and Molecular Biology |
References | Hetz, Lee, Gonzalez-Romero, Thielen, Castilla, Soto, Glimcher (bib49) 2008; 105 Yoshimori (bib11) 2007; 128 Martinet, De Meyer (bib4) 2009; 104 Hu, Lai, Lu, Gao, He (bib52) 2012; 29 Debnath, Baehrecke, Kroemer (bib56) 2005; 1 Margariti, Xiao, Zampetaki, Zhang, Li, Martin, Hu, Zeng, Xu (bib23) 2009; 122 Zhang, Cao, Zhang, Liu, Tong, Xiao, Yang, Liu (bib54) 2010; 394 Vidal, Hetz (bib33) 2012; 8 Yoshimori (bib8) 2004; 49 Pehar, Jonas, Hare, Puglielli (bib47) 2012; 287 Ghavami, Yeganeh, Stelmack, Kashani, Sharma, Cunnington, Rattan, Bathe, Klonisch, Dixon, Freed, Halayko (bib32) 2012; 3 Oberstein, Jeffrey, Shi (bib42) 2007; 282 Sirois, Groleau, Pallet, Brassard, Hamelin, Londono, Pshezhetsky, Bendayan, Hébert (bib58) 2012; 8 Tao, Chen, Gao, Xue, Yang, Han, Zhou, Chen (bib45) 2011; 21 Maiuri, Zalckvar, Kimchi, Kroemer (bib27) 2007; 8 Schrijvers, De Meyer, Martinet (bib51) 2011; 31 Wang, Chen, Ouyang (bib46) 2011; 433 Sakai, Miyazaki (bib25) 1997; 237 Gozuacik, Kimchi (bib30) 2004; 23 Valenzuela, Collyer, Armentano, Parsons, Court, Hetz (bib48) 2012; 3 Lee, Tirasophon, Shen, Michalak, Prywes, Okada, Yoshida, Mori, Kaufman (bib17) 2002; 16 Yorimitsu, Klionsky (bib10) 2005; 12 Wang, Ling, Lin (bib28) 2010; 5 Vidal, Figueroa, Court, Thielen, Molina, Wirth, Caballero, Kiffin, Segura-Aguilar, Cuervo, Glimcher, Hetz (bib50) 2012; 21 Pattingre, Tassa, Qu, Garuti, Liang, Mizushima, Packer, Schneider, Levine (bib44) 2005; 122 Nguyen, Subramanian, Xiao, Ghosh, Nguyen, Kelekar, Ramakrishnan (bib29) 2009; 13 Reimold, Iwakoshi, Manis, Vallabhajosyula, Szomolanyi-Tsuda, Gravallese, Friend, Grusby, Alt, Glimcher (bib19) 2001; 412 Rzymski, Milani, Pike, Buffa, Mellor, Winchester, Pires, Hammond, Ragoussis, Harris (bib37) 2010; 29 Clauss, Gravallese, Darling, Shapiro, Glimcher, Glimcher (bib20) 1993; 197 Yorimitsu, Nair, Yang, Klionsky (bib35) 2006; 281 Razani, Feng, Coleman, Emanuel, Wen, Hwang, Ting, Virgin, Kastan, Semenkovich (bib2) 2012; 15 Klionsky, Emr (bib7) 2000; 290 Martinet, De Meyer (bib1) 2008; 10 Yoshida, Matsui, Yamamoto, Okada, Mori (bib18) 2001; 107 Rouschop, van den Beucken, Dubois, Niessen, Bussink, Savelkouls, Keulers, Mujcic, Landuyt, Voncken, Lambin, van der Kogel, Koritzinsky, Wouters (bib36) 2010; 120 Lee, Iwakoshi, Anderson, Glimcher (bib16) 2003; 100 Fouillet, Levet, Virgone, Robin, Dourlen, Rieusset, Belaidi, Ovize, Touret, Nataf, Mollereau (bib31) 2012; 8 Nguyen, Subramanian, Kelekar, Ramakrishnan (bib39) 2007; 109 Clauss, Chu, Zhao, Glimcher (bib13) 1996; 24 Margariti, Zampetaki, Xiao, Zhou, Karamariti, Martin, Yin, Mayr, Li, Zhang, De Falco, Hu, Cockerill, Xu, Zeng (bib22) 2010; 106 Liao, Sluimer, Wang, Subramanian, Brown, Pattison, Robbins, Martinez, Tabas (bib3) 2012; 15 Rovetta, Stacchiotti, Consiglio, Cadei, Grigolato, Lavazza, Rezzani, Aleo (bib34) 2012; 318 Levine, Yuan (bib57) 2005; 115 Margariti, Winkler, Karamariti, Zampetaki, Tsai, Baban, Ragoussis, Huang, Han, Zeng, Hu, Xu (bib24) 2012; 109 Kisanuki, Hammer, Miyazaki, Williams, Richardson, Yanagisawa (bib26) 2001; 230 Jia, Cheng, Agrawal (bib6) 2006; 84 Sriburi, Jackowski, Mori, Brewer (bib15) 2004; 167 Levine, Klionsky (bib9) 2004; 6 Du, Teng, Guan, Eis, Kaul, Konduri, Shi (bib55) 2012; 302 Gao, Cao, Bao, Zuo, Xie, Cai, Fu, Zhang, Wu, Zhang, Chen (bib41) 2010; 12 Chau, Lin, Chen, Tai (bib40) 2003; 18 Pattingre, Levine (bib43) 2006; 66 Zeng, Zampetaki, Margariti, Pepe, Alam, Martin, Xiao, Wang, Jin, Cockerill, Mori, Li, Hu, Chien, Xu (bib12) 2009; 106 Younce, Kolattukudy (bib38) 2012; 30 Mitra, Dhume, Agrawal (bib5) 2004; 82 Han, Zhang, You, Liu, Cao, Chen, Liu (bib53) 2011; 91 Liou, Boothby, Finn, Davidon, Nabavi, Zeleznik-Le, Ting, Glimcher (bib14) 1990; 247 Reimold, Etkin, Clauss, Perkins, Friend, Zhang, Horton, Scott, Orkin, Byrne, Grusby, Glimcher (bib21) 2000; 14 Martinet (10.1074/jbc.M112.412783_bib1) 2008; 10 Klionsky (10.1074/jbc.M112.412783_bib7) 2000; 290 Sirois (10.1074/jbc.M112.412783_bib58) 2012; 8 Ghavami (10.1074/jbc.M112.412783_bib32) 2012; 3 Yoshimori (10.1074/jbc.M112.412783_bib11) 2007; 128 Gao (10.1074/jbc.M112.412783_bib41) 2010; 12 Du (10.1074/jbc.M112.412783_bib55) 2012; 302 Pattingre (10.1074/jbc.M112.412783_bib44) 2005; 122 Razani (10.1074/jbc.M112.412783_bib2) 2012; 15 Nguyen (10.1074/jbc.M112.412783_bib39) 2007; 109 Martinet (10.1074/jbc.M112.412783_bib4) 2009; 104 Rovetta (10.1074/jbc.M112.412783_bib34) 2012; 318 Valenzuela (10.1074/jbc.M112.412783_bib48) 2012; 3 Debnath (10.1074/jbc.M112.412783_bib56) 2005; 1 Levine (10.1074/jbc.M112.412783_bib9) 2004; 6 Sakai (10.1074/jbc.M112.412783_bib25) 1997; 237 Wang (10.1074/jbc.M112.412783_bib28) 2010; 5 Pehar (10.1074/jbc.M112.412783_bib47) 2012; 287 Clauss (10.1074/jbc.M112.412783_bib13) 1996; 24 Jia (10.1074/jbc.M112.412783_bib6) 2006; 84 Han (10.1074/jbc.M112.412783_bib53) 2011; 91 Oberstein (10.1074/jbc.M112.412783_bib42) 2007; 282 Wang (10.1074/jbc.M112.412783_bib46) 2011; 433 Chau (10.1074/jbc.M112.412783_bib40) 2003; 18 Reimold (10.1074/jbc.M112.412783_bib19) 2001; 412 Margariti (10.1074/jbc.M112.412783_bib24) 2012; 109 Lee (10.1074/jbc.M112.412783_bib17) 2002; 16 Yorimitsu (10.1074/jbc.M112.412783_bib10) 2005; 12 Mitra (10.1074/jbc.M112.412783_bib5) 2004; 82 Gozuacik (10.1074/jbc.M112.412783_bib30) 2004; 23 Fouillet (10.1074/jbc.M112.412783_bib31) 2012; 8 Rouschop (10.1074/jbc.M112.412783_bib36) 2010; 120 Tao (10.1074/jbc.M112.412783_bib45) 2011; 21 Zeng (10.1074/jbc.M112.412783_bib12) 2009; 106 Maiuri (10.1074/jbc.M112.412783_bib27) 2007; 8 Liou (10.1074/jbc.M112.412783_bib14) 1990; 247 Vidal (10.1074/jbc.M112.412783_bib33) 2012; 8 Schrijvers (10.1074/jbc.M112.412783_bib51) 2011; 31 Sriburi (10.1074/jbc.M112.412783_bib15) 2004; 167 Yorimitsu (10.1074/jbc.M112.412783_bib35) 2006; 281 Hu (10.1074/jbc.M112.412783_bib52) 2012; 29 Yoshida (10.1074/jbc.M112.412783_bib18) 2001; 107 Younce (10.1074/jbc.M112.412783_bib38) 2012; 30 Levine (10.1074/jbc.M112.412783_bib57) 2005; 115 Margariti (10.1074/jbc.M112.412783_bib23) 2009; 122 Pattingre (10.1074/jbc.M112.412783_bib43) 2006; 66 Clauss (10.1074/jbc.M112.412783_bib20) 1993; 197 Hetz (10.1074/jbc.M112.412783_bib49) 2008; 105 Lee (10.1074/jbc.M112.412783_bib16) 2003; 100 Rzymski (10.1074/jbc.M112.412783_bib37) 2010; 29 Kisanuki (10.1074/jbc.M112.412783_bib26) 2001; 230 Yoshimori (10.1074/jbc.M112.412783_bib8) 2004; 49 Liao (10.1074/jbc.M112.412783_bib3) 2012; 15 Zhang (10.1074/jbc.M112.412783_bib54) 2010; 394 Vidal (10.1074/jbc.M112.412783_bib50) 2012; 21 Nguyen (10.1074/jbc.M112.412783_bib29) 2009; 13 Reimold (10.1074/jbc.M112.412783_bib21) 2000; 14 Margariti (10.1074/jbc.M112.412783_bib22) 2010; 106 |
References_xml | – volume: 115 start-page: 2679 year: 2005 end-page: 2688 ident: bib57 article-title: Autophagy in cell death. An innocent convict? publication-title: J. Clin. Invest. – volume: 281 start-page: 30299 year: 2006 end-page: 30304 ident: bib35 article-title: Endoplasmic reticulum stress triggers autophagy publication-title: J. Biol. Chem. – volume: 122 start-page: 927 year: 2005 end-page: 939 ident: bib44 article-title: Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy publication-title: Cell – volume: 21 start-page: 1619 year: 2011 end-page: 1633 ident: bib45 article-title: Xbp1-mediated histone H4 deacetylation contributes to DNA double-strand break repair in yeast publication-title: Cell Res. – volume: 109 start-page: 4793 year: 2007 end-page: 4802 ident: bib39 article-title: Kringle 5 of human plasminogen, an angiogenesis inhibitor, induces both autophagy and apoptotic death in endothelial cells publication-title: Blood – volume: 21 start-page: 2245 year: 2012 end-page: 2262 ident: bib50 article-title: Targeting the UPR transcription factor XBP1 protects against Huntington's disease through the regulation of FoxO1 and autophagy publication-title: Hum. Mol. Genet – volume: 66 start-page: 2885 year: 2006 end-page: 2888 ident: bib43 article-title: Bcl-2 inhibition of autophagy. A new route to cancer? publication-title: Cancer Res. – volume: 412 start-page: 300 year: 2001 end-page: 307 ident: bib19 article-title: Plasma cell differentiation requires the transcription factor XBP-1 publication-title: Nature – volume: 3 start-page: e272 year: 2012 ident: bib48 article-title: Activation of the unfolded protein response enhances motor recovery after spinal cord injury publication-title: Cell Death Dis. – volume: 109 start-page: 13793 year: 2012 end-page: 13798 ident: bib24 article-title: Direct reprogramming of fibroblasts into endothelial cells capable of angiogenesis and reendothelialization in tissue-engineered vessels publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 282 start-page: 13123 year: 2007 end-page: 13132 ident: bib42 article-title: Crystal structure of the Bcl-XL-Beclin 1 peptide complex. Beclin 1 is a novel BH3-only protein publication-title: J. Biol. Chem. – volume: 13 start-page: 3687 year: 2009 end-page: 3698 ident: bib29 article-title: Endostatin induces autophagy in endothelial cells by modulating Beclin 1 and β-catenin levels publication-title: J. Cell Mol. Med. – volume: 394 start-page: 377 year: 2010 end-page: 382 ident: bib54 article-title: The autophagy-lysosome pathway. A novel mechanism involved in the processing of oxidized LDL in human vascular endothelial cells publication-title: Biochem. Biophys. Res. Commun. – volume: 15 start-page: 545 year: 2012 end-page: 553 ident: bib3 article-title: Macrophage autophagy plays a protective role in advanced atherosclerosis publication-title: Cell Metab. – volume: 197 start-page: 146 year: 1993 end-page: 156 ident: bib20 article-title: hybridization studies suggest a role for the basic region-leucine zipper protein hXBP-1 in exocrine gland and skeletal development during mouse embryogenesis publication-title: Dev. Dyn. – volume: 5 start-page: e10409 year: 2010 ident: bib28 article-title: 14-3-3Tau regulates Beclin 1 and is required for autophagy publication-title: PLoS One – volume: 8 start-page: 970 year: 2012 end-page: 972 ident: bib33 article-title: Crosstalk between the UPR and autophagy pathway contributes to handling cellular stress in neurodegenerative disease publication-title: Autophagy – volume: 247 start-page: 1581 year: 1990 end-page: 1584 ident: bib14 article-title: A new member of the leucine zipper class of proteins that binds to the HLA DR α promoter publication-title: Science – volume: 290 start-page: 1717 year: 2000 end-page: 1721 ident: bib7 article-title: Autophagy as a regulated pathway of cellular degradation publication-title: Science – volume: 84 start-page: 422 year: 2006 end-page: 429 ident: bib6 article-title: Differential effects of insulin-like growth factor-1 and atheroma-associated cytokines on cell proliferation and apoptosis in plaque smooth muscle cells of symptomatic and asymptomatic patients with carotid stenosis publication-title: Immunol. Cell Biol. – volume: 29 start-page: 4424 year: 2010 end-page: 4435 ident: bib37 article-title: Regulation of autophagy by ATF4 in response to severe hypoxia publication-title: Oncogene – volume: 12 start-page: 1542 year: 2005 end-page: 1552 ident: bib10 article-title: Autophagy. Molecular machinery for self-eating publication-title: Cell Death Differ. – volume: 8 start-page: 927 year: 2012 end-page: 937 ident: bib58 article-title: Caspase activation regulates the extracellular export of autophagic vacuoles publication-title: Autophagy – volume: 31 start-page: 2787 year: 2011 end-page: 2791 ident: bib51 article-title: Autophagy in atherosclerosis. A potential drug target for plaque stabilization publication-title: Arterioscler. Thromb. Vasc. Biol. – volume: 106 start-page: 8326 year: 2009 end-page: 8331 ident: bib12 article-title: Sustained activation of XBP1 splicing leads to endothelial apoptosis and atherosclerosis development in response to disturbed flow publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 287 start-page: 29921 year: 2012 end-page: 29930 ident: bib47 article-title: SLC33A1/AT-1 protein regulates the induction of autophagy downstream of IRE1/XBP1 pathway publication-title: J. Biol. Chem. – volume: 15 start-page: 534 year: 2012 end-page: 544 ident: bib2 article-title: Autophagy links inflammasomes to atherosclerotic progression publication-title: Cell Metab. – volume: 24 start-page: 1855 year: 1996 end-page: 1864 ident: bib13 article-title: The basic domain/leucine zipper protein hXBP-1 preferentially binds to and transactivates CRE-like sequences containing an ACGT core publication-title: Nucleic Acids Res. – volume: 122 start-page: 460 year: 2009 end-page: 470 ident: bib23 article-title: Splicing of HDAC7 modulates the SRF-myocardin complex during stem-cell differentiation towards smooth muscle cells publication-title: J. Cell Sci. – volume: 12 start-page: 781 year: 2010 end-page: 790 ident: bib41 article-title: Autophagy negatively regulates Wnt signalling by promoting Dishevelled degradation publication-title: Nat. Cell Biol. – volume: 18 start-page: 715 year: 2003 end-page: 726 ident: bib40 article-title: Endostatin induces autophagic cell death in EAhy926 human endothelial cells publication-title: Histol. Histopathol. – volume: 318 start-page: 238 year: 2012 end-page: 250 ident: bib34 article-title: ER signaling regulation drives the switch between autophagy and apoptosis in NRK-52E cells exposed to cisplatin publication-title: Exp. Cell Res. – volume: 6 start-page: 463 year: 2004 end-page: 477 ident: bib9 article-title: Development by self-digestion. Molecular mechanisms and biological functions of autophagy publication-title: Dev. Cell – volume: 105 start-page: 757 year: 2008 end-page: 762 ident: bib49 article-title: Unfolded protein response transcription factor XBP-1 does not influence prion replication or pathogenesis publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 10 start-page: 216 year: 2008 end-page: 223 ident: bib1 article-title: Autophagy in atherosclerosis publication-title: Curr. Atheroscler. Rep. – volume: 1 start-page: 66 year: 2005 end-page: 74 ident: bib56 article-title: Does autophagy contribute to cell death? publication-title: Autophagy – volume: 8 start-page: 741 year: 2007 end-page: 752 ident: bib27 article-title: Self-eating and self-killing. Cross-talk between autophagy and apoptosis publication-title: Nat. Rev. Mol. Cell Biol. – volume: 433 start-page: 245 year: 2011 end-page: 252 ident: bib46 article-title: Regulation of unfolded protein response modulator XBP1s by acetylation and deacetylation publication-title: Biochem. J. – volume: 82 start-page: 860 year: 2004 end-page: 871 ident: bib5 article-title: “Vulnerable plaques.” Ticking of the time bomb publication-title: Can J. Physiol. Pharmacol. – volume: 23 start-page: 2891 year: 2004 end-page: 2906 ident: bib30 article-title: Autophagy as a cell death and tumor suppressor mechanism publication-title: Oncogene – volume: 8 start-page: 915 year: 2012 end-page: 926 ident: bib31 article-title: ER stress inhibits neuronal death by promoting autophagy publication-title: Autophagy – volume: 237 start-page: 318 year: 1997 end-page: 324 ident: bib25 article-title: A transgenic mouse line that retains Cre recombinase activity in mature oocytes irrespective of the cre transgene transmission publication-title: Biochem. Biophys. Res. Commun. – volume: 3 start-page: e330 year: 2012 ident: bib32 article-title: Apoptosis, autophagy, and ER stress in mevalonate cascade inhibition-induced cell death of human atrial fibroblasts publication-title: Cell Death Dis. – volume: 302 start-page: C383 year: 2012 end-page: C391 ident: bib55 article-title: Role of autophagy in angiogenesis in aortic endothelial cells publication-title: Am. J. Physiol. Cell Physiol. – volume: 230 start-page: 230 year: 2001 end-page: 242 ident: bib26 article-title: Tie2-Cre transgenic mice. A new model for endothelial cell-lineage analysis publication-title: Dev. Biol. – volume: 120 start-page: 127 year: 2010 end-page: 141 ident: bib36 article-title: The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5 publication-title: J. Clin. Invest. – volume: 167 start-page: 35 year: 2004 end-page: 41 ident: bib15 article-title: XBP1. A link between the unfolded protein response, lipid biosynthesis, and biogenesis of the endoplasmic reticulum publication-title: J. Cell Biol. – volume: 14 start-page: 152 year: 2000 end-page: 157 ident: bib21 article-title: An essential role in liver development for transcription factor XBP-1 publication-title: Genes Dev. – volume: 29 start-page: 613 year: 2012 end-page: 618 ident: bib52 article-title: ERK and Akt signaling pathways are involved in advanced glycation end product-induced autophagy in rat vascular smooth muscle cells publication-title: Int. J. Mol. Med. – volume: 106 start-page: 1202 year: 2010 end-page: 1211 ident: bib22 article-title: Histone deacetylase 7 controls endothelial cell growth through modulation of β-catenin publication-title: Circ. Res. – volume: 49 start-page: 1029 year: 2004 end-page: 1032 ident: bib8 article-title: [Autophagy as a bulk protein degradation system. It plays various roles] publication-title: Tanpakushitsu Kakusan Koso – volume: 16 start-page: 452 year: 2002 end-page: 466 ident: bib17 article-title: IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response publication-title: Genes Dev. – volume: 104 start-page: 304 year: 2009 end-page: 317 ident: bib4 article-title: Autophagy in atherosclerosis. A cell survival and death phenomenon with therapeutic potential publication-title: Circ. Res. – volume: 100 start-page: 9946 year: 2003 end-page: 9951 ident: bib16 article-title: Proteasome inhibitors disrupt the unfolded protein response in myeloma cells publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 107 start-page: 881 year: 2001 end-page: 891 ident: bib18 article-title: XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor publication-title: Cell – volume: 91 start-page: 2216 year: 2011 end-page: 2220 ident: bib53 article-title: [Autophagy of human vascular endothelial cells by oxidized low-density lipoprotein. Involvement of oxidative stress but no oxidized low density lipoprotein-1] publication-title: Zhonghua Yi Xue Za Zhi – volume: 128 start-page: 833 year: 2007 end-page: 836 ident: bib11 article-title: Autophagy. paying Charon's toll publication-title: Cell – volume: 30 start-page: 307 year: 2012 end-page: 320 ident: bib38 article-title: MCP-1-induced protein promotes adipogenesis via oxidative stress, endoplasmic reticulum stress and autophagy publication-title: Cell Physiol. Biochem. – volume: 8 start-page: 970 year: 2012 ident: 10.1074/jbc.M112.412783_bib33 article-title: Crosstalk between the UPR and autophagy pathway contributes to handling cellular stress in neurodegenerative disease publication-title: Autophagy doi: 10.4161/auto.20139 – volume: 1 start-page: 66 year: 2005 ident: 10.1074/jbc.M112.412783_bib56 article-title: Does autophagy contribute to cell death? publication-title: Autophagy doi: 10.4161/auto.1.2.1738 – volume: 21 start-page: 1619 year: 2011 ident: 10.1074/jbc.M112.412783_bib45 article-title: Xbp1-mediated histone H4 deacetylation contributes to DNA double-strand break repair in yeast publication-title: Cell Res. doi: 10.1038/cr.2011.58 – volume: 84 start-page: 422 year: 2006 ident: 10.1074/jbc.M112.412783_bib6 article-title: Differential effects of insulin-like growth factor-1 and atheroma-associated cytokines on cell proliferation and apoptosis in plaque smooth muscle cells of symptomatic and asymptomatic patients with carotid stenosis publication-title: Immunol. Cell Biol. doi: 10.1111/j.1440-1711.2006.01449.x – volume: 3 start-page: e330 year: 2012 ident: 10.1074/jbc.M112.412783_bib32 article-title: Apoptosis, autophagy, and ER stress in mevalonate cascade inhibition-induced cell death of human atrial fibroblasts publication-title: Cell Death Dis. doi: 10.1038/cddis.2012.61 – volume: 100 start-page: 9946 year: 2003 ident: 10.1074/jbc.M112.412783_bib16 article-title: Proteasome inhibitors disrupt the unfolded protein response in myeloma cells publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1334037100 – volume: 66 start-page: 2885 year: 2006 ident: 10.1074/jbc.M112.412783_bib43 article-title: Bcl-2 inhibition of autophagy. A new route to cancer? publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-05-4412 – volume: 30 start-page: 307 year: 2012 ident: 10.1074/jbc.M112.412783_bib38 article-title: MCP-1-induced protein promotes adipogenesis via oxidative stress, endoplasmic reticulum stress and autophagy publication-title: Cell Physiol. Biochem. doi: 10.1159/000339066 – volume: 12 start-page: 781 year: 2010 ident: 10.1074/jbc.M112.412783_bib41 article-title: Autophagy negatively regulates Wnt signalling by promoting Dishevelled degradation publication-title: Nat. Cell Biol. doi: 10.1038/ncb2082 – volume: 394 start-page: 377 year: 2010 ident: 10.1074/jbc.M112.412783_bib54 article-title: The autophagy-lysosome pathway. A novel mechanism involved in the processing of oxidized LDL in human vascular endothelial cells publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2010.03.026 – volume: 120 start-page: 127 year: 2010 ident: 10.1074/jbc.M112.412783_bib36 article-title: The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5 publication-title: J. Clin. Invest. doi: 10.1172/JCI40027 – volume: 8 start-page: 741 year: 2007 ident: 10.1074/jbc.M112.412783_bib27 article-title: Self-eating and self-killing. Cross-talk between autophagy and apoptosis publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2239 – volume: 16 start-page: 452 year: 2002 ident: 10.1074/jbc.M112.412783_bib17 article-title: IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response publication-title: Genes Dev. doi: 10.1101/gad.964702 – volume: 128 start-page: 833 year: 2007 ident: 10.1074/jbc.M112.412783_bib11 article-title: Autophagy. paying Charon's toll publication-title: Cell doi: 10.1016/j.cell.2007.02.023 – volume: 106 start-page: 8326 year: 2009 ident: 10.1074/jbc.M112.412783_bib12 article-title: Sustained activation of XBP1 splicing leads to endothelial apoptosis and atherosclerosis development in response to disturbed flow publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0903197106 – volume: 13 start-page: 3687 year: 2009 ident: 10.1074/jbc.M112.412783_bib29 article-title: Endostatin induces autophagy in endothelial cells by modulating Beclin 1 and β-catenin levels publication-title: J. Cell Mol. Med. doi: 10.1111/j.1582-4934.2009.00722.x – volume: 237 start-page: 318 year: 1997 ident: 10.1074/jbc.M112.412783_bib25 article-title: A transgenic mouse line that retains Cre recombinase activity in mature oocytes irrespective of the cre transgene transmission publication-title: Biochem. Biophys. Res. Commun. doi: 10.1006/bbrc.1997.7111 – volume: 21 start-page: 2245 year: 2012 ident: 10.1074/jbc.M112.412783_bib50 article-title: Targeting the UPR transcription factor XBP1 protects against Huntington's disease through the regulation of FoxO1 and autophagy publication-title: Hum. Mol. Genet doi: 10.1093/hmg/dds040 – volume: 122 start-page: 927 year: 2005 ident: 10.1074/jbc.M112.412783_bib44 article-title: Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy publication-title: Cell doi: 10.1016/j.cell.2005.07.002 – volume: 31 start-page: 2787 year: 2011 ident: 10.1074/jbc.M112.412783_bib51 article-title: Autophagy in atherosclerosis. A potential drug target for plaque stabilization publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.111.224899 – volume: 29 start-page: 4424 year: 2010 ident: 10.1074/jbc.M112.412783_bib37 article-title: Regulation of autophagy by ATF4 in response to severe hypoxia publication-title: Oncogene doi: 10.1038/onc.2010.191 – volume: 302 start-page: C383 year: 2012 ident: 10.1074/jbc.M112.412783_bib55 article-title: Role of autophagy in angiogenesis in aortic endothelial cells publication-title: Am. J. Physiol. Cell Physiol. doi: 10.1152/ajpcell.00164.2011 – volume: 109 start-page: 4793 year: 2007 ident: 10.1074/jbc.M112.412783_bib39 article-title: Kringle 5 of human plasminogen, an angiogenesis inhibitor, induces both autophagy and apoptotic death in endothelial cells publication-title: Blood doi: 10.1182/blood-2006-11-059352 – volume: 104 start-page: 304 year: 2009 ident: 10.1074/jbc.M112.412783_bib4 article-title: Autophagy in atherosclerosis. A cell survival and death phenomenon with therapeutic potential publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.108.188318 – volume: 5 start-page: e10409 year: 2010 ident: 10.1074/jbc.M112.412783_bib28 article-title: 14-3-3Tau regulates Beclin 1 and is required for autophagy publication-title: PLoS One doi: 10.1371/journal.pone.0010409 – volume: 15 start-page: 534 year: 2012 ident: 10.1074/jbc.M112.412783_bib2 article-title: Autophagy links inflammasomes to atherosclerotic progression publication-title: Cell Metab. doi: 10.1016/j.cmet.2012.02.011 – volume: 6 start-page: 463 year: 2004 ident: 10.1074/jbc.M112.412783_bib9 article-title: Development by self-digestion. Molecular mechanisms and biological functions of autophagy publication-title: Dev. Cell doi: 10.1016/S1534-5807(04)00099-1 – volume: 122 start-page: 460 year: 2009 ident: 10.1074/jbc.M112.412783_bib23 article-title: Splicing of HDAC7 modulates the SRF-myocardin complex during stem-cell differentiation towards smooth muscle cells publication-title: J. Cell Sci. doi: 10.1242/jcs.034850 – volume: 15 start-page: 545 year: 2012 ident: 10.1074/jbc.M112.412783_bib3 article-title: Macrophage autophagy plays a protective role in advanced atherosclerosis publication-title: Cell Metab. doi: 10.1016/j.cmet.2012.01.022 – volume: 167 start-page: 35 year: 2004 ident: 10.1074/jbc.M112.412783_bib15 article-title: XBP1. A link between the unfolded protein response, lipid biosynthesis, and biogenesis of the endoplasmic reticulum publication-title: J. Cell Biol. doi: 10.1083/jcb.200406136 – volume: 247 start-page: 1581 year: 1990 ident: 10.1074/jbc.M112.412783_bib14 article-title: A new member of the leucine zipper class of proteins that binds to the HLA DR α promoter publication-title: Science doi: 10.1126/science.2321018 – volume: 281 start-page: 30299 year: 2006 ident: 10.1074/jbc.M112.412783_bib35 article-title: Endoplasmic reticulum stress triggers autophagy publication-title: J. Biol. Chem. doi: 10.1074/jbc.M607007200 – volume: 49 start-page: 1029 year: 2004 ident: 10.1074/jbc.M112.412783_bib8 article-title: [Autophagy as a bulk protein degradation system. It plays various roles] publication-title: Tanpakushitsu Kakusan Koso – volume: 290 start-page: 1717 year: 2000 ident: 10.1074/jbc.M112.412783_bib7 article-title: Autophagy as a regulated pathway of cellular degradation publication-title: Science doi: 10.1126/science.290.5497.1717 – volume: 433 start-page: 245 year: 2011 ident: 10.1074/jbc.M112.412783_bib46 article-title: Regulation of unfolded protein response modulator XBP1s by acetylation and deacetylation publication-title: Biochem. J. doi: 10.1042/BJ20101293 – volume: 287 start-page: 29921 year: 2012 ident: 10.1074/jbc.M112.412783_bib47 article-title: SLC33A1/AT-1 protein regulates the induction of autophagy downstream of IRE1/XBP1 pathway publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.363911 – volume: 3 start-page: e272 year: 2012 ident: 10.1074/jbc.M112.412783_bib48 article-title: Activation of the unfolded protein response enhances motor recovery after spinal cord injury publication-title: Cell Death Dis. doi: 10.1038/cddis.2012.8 – volume: 412 start-page: 300 year: 2001 ident: 10.1074/jbc.M112.412783_bib19 article-title: Plasma cell differentiation requires the transcription factor XBP-1 publication-title: Nature doi: 10.1038/35085509 – volume: 82 start-page: 860 year: 2004 ident: 10.1074/jbc.M112.412783_bib5 article-title: “Vulnerable plaques.” Ticking of the time bomb publication-title: Can J. Physiol. Pharmacol. doi: 10.1139/y04-095 – volume: 197 start-page: 146 year: 1993 ident: 10.1074/jbc.M112.412783_bib20 article-title: In situ hybridization studies suggest a role for the basic region-leucine zipper protein hXBP-1 in exocrine gland and skeletal development during mouse embryogenesis publication-title: Dev. Dyn. doi: 10.1002/aja.1001970207 – volume: 107 start-page: 881 year: 2001 ident: 10.1074/jbc.M112.412783_bib18 article-title: XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor publication-title: Cell doi: 10.1016/S0092-8674(01)00611-0 – volume: 29 start-page: 613 year: 2012 ident: 10.1074/jbc.M112.412783_bib52 article-title: ERK and Akt signaling pathways are involved in advanced glycation end product-induced autophagy in rat vascular smooth muscle cells publication-title: Int. J. Mol. Med. doi: 10.3892/ijmm.2012.891 – volume: 115 start-page: 2679 year: 2005 ident: 10.1074/jbc.M112.412783_bib57 article-title: Autophagy in cell death. An innocent convict? publication-title: J. Clin. Invest. doi: 10.1172/JCI26390 – volume: 91 start-page: 2216 year: 2011 ident: 10.1074/jbc.M112.412783_bib53 article-title: [Autophagy of human vascular endothelial cells by oxidized low-density lipoprotein. Involvement of oxidative stress but no oxidized low density lipoprotein-1] publication-title: Zhonghua Yi Xue Za Zhi – volume: 12 start-page: 1542 year: 2005 ident: 10.1074/jbc.M112.412783_bib10 article-title: Autophagy. Molecular machinery for self-eating publication-title: Cell Death Differ. doi: 10.1038/sj.cdd.4401765 – volume: 106 start-page: 1202 year: 2010 ident: 10.1074/jbc.M112.412783_bib22 article-title: Histone deacetylase 7 controls endothelial cell growth through modulation of β-catenin publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.109.213165 – volume: 8 start-page: 927 year: 2012 ident: 10.1074/jbc.M112.412783_bib58 article-title: Caspase activation regulates the extracellular export of autophagic vacuoles publication-title: Autophagy doi: 10.4161/auto.19768 – volume: 14 start-page: 152 year: 2000 ident: 10.1074/jbc.M112.412783_bib21 article-title: An essential role in liver development for transcription factor XBP-1 publication-title: Genes Dev. doi: 10.1101/gad.14.2.152 – volume: 318 start-page: 238 year: 2012 ident: 10.1074/jbc.M112.412783_bib34 article-title: ER signaling regulation drives the switch between autophagy and apoptosis in NRK-52E cells exposed to cisplatin publication-title: Exp. Cell Res. doi: 10.1016/j.yexcr.2011.11.008 – volume: 282 start-page: 13123 year: 2007 ident: 10.1074/jbc.M112.412783_bib42 article-title: Crystal structure of the Bcl-XL-Beclin 1 peptide complex. Beclin 1 is a novel BH3-only protein publication-title: J. Biol. Chem. doi: 10.1074/jbc.M700492200 – volume: 23 start-page: 2891 year: 2004 ident: 10.1074/jbc.M112.412783_bib30 article-title: Autophagy as a cell death and tumor suppressor mechanism publication-title: Oncogene doi: 10.1038/sj.onc.1207521 – volume: 105 start-page: 757 year: 2008 ident: 10.1074/jbc.M112.412783_bib49 article-title: Unfolded protein response transcription factor XBP-1 does not influence prion replication or pathogenesis publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0711094105 – volume: 109 start-page: 13793 year: 2012 ident: 10.1074/jbc.M112.412783_bib24 article-title: Direct reprogramming of fibroblasts into endothelial cells capable of angiogenesis and reendothelialization in tissue-engineered vessels publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1205526109 – volume: 230 start-page: 230 year: 2001 ident: 10.1074/jbc.M112.412783_bib26 article-title: Tie2-Cre transgenic mice. A new model for endothelial cell-lineage analysis in vivo publication-title: Dev. Biol. doi: 10.1006/dbio.2000.0106 – volume: 18 start-page: 715 year: 2003 ident: 10.1074/jbc.M112.412783_bib40 article-title: Endostatin induces autophagic cell death in EAhy926 human endothelial cells publication-title: Histol. Histopathol. – volume: 24 start-page: 1855 year: 1996 ident: 10.1074/jbc.M112.412783_bib13 article-title: The basic domain/leucine zipper protein hXBP-1 preferentially binds to and transactivates CRE-like sequences containing an ACGT core publication-title: Nucleic Acids Res. doi: 10.1093/nar/24.10.1855 – volume: 10 start-page: 216 year: 2008 ident: 10.1074/jbc.M112.412783_bib1 article-title: Autophagy in atherosclerosis publication-title: Curr. Atheroscler. Rep. doi: 10.1007/s11883-008-0034-y – volume: 8 start-page: 915 year: 2012 ident: 10.1074/jbc.M112.412783_bib31 article-title: ER stress inhibits neuronal death by promoting autophagy publication-title: Autophagy doi: 10.4161/auto.19716 |
SSID | ssj0000491 |
Score | 2.5281646 |
Snippet | Sustained activation of X-box-binding protein 1 (XBP1) results in endothelial cell (EC) apoptosis and atherosclerosis development. The present study provides... Background: Apoptosis and autophagy are two closely related systems that induce cell death. Results: X-box-binding protein 1 ( XBP1 ) mRNA splicing regulates... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 859 |
SubjectTerms | Alternative Splicing Animals Apoptosis Regulatory Proteins - genetics Atherosclerosis Autophagy Autophagy - genetics Base Sequence BECLIN-1 Cell Biology Cell Death Cells, Cultured Chromatin Immunoprecipitation DNA Primers DNA-Binding Proteins - genetics Electron Microscopy (EM) Endothelial Cell Endothelium, Vascular - cytology Endothelium, Vascular - metabolism Fluorescent Antibody Technique, Indirect Humans Membrane Proteins - genetics Mice Mice, Knockout Microscopy, Electron, Transmission Real-Time Polymerase Chain Reaction Regulatory Factor X Transcription Factors Reverse Transcriptase Polymerase Chain Reaction RNA Splicing RNA, Messenger - genetics Transcription Factors - genetics Transcriptional Activation - genetics X-Box Binding Protein 1 XBP1 |
Title | XBP1 mRNA Splicing Triggers an Autophagic Response in Endothelial Cells through BECLIN-1 Transcriptional Activation |
URI | https://dx.doi.org/10.1074/jbc.M112.412783 https://www.ncbi.nlm.nih.gov/pubmed/23184933 https://www.proquest.com/docview/1273502365 https://pubmed.ncbi.nlm.nih.gov/PMC3543035 |
Volume | 288 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKeIAXBBuXcpOREEKaUuLYaZLHruo0UFcuaqW-RY7jlEpbimj7AOLHc44dJ1m3SoOXqHLiNMr54vPZPuc7hLzVGrySXzBPipB7Alykl_C-76kiL5LM57lgmCh8PumfzcSneTjvdP60s0s2WU_9vjGv5H-sCm1gV8yS_QfL1jeFBvgN9oUjWBiOt7Lx_OQLO778Nhkcr3Eb2pZ8WC4WmJQL363comqAXBiVZhMKaxVCyhzTri5wrRzX7dd1sZ6T0XD8ceIxLBxR1uMJqgkoVwWtTWabtDJDaK2ek1UccWXkmgVvrKe7tLEDGEQJqKwdwthWzl5hRnHlSE3AgR0Rp622RvTApsa31yywfgTzqjHVDrNA_DCHYG690A1t1dgcxHELhEFrpI2tkPg1DwCUCD1ApnrnQCV7gmEpkcbZuQ3-yef0dDYep9PRfHqH3A0iYF64pf-10ZqHuROz6Rn2uZwwVCQ-7Nx-H6e5PmfZDb1tcZnpQ_KgshkdWEQ9Ih1dHpKjQSk3q8tf9B01YcFmv-WQ3Bs6Wx6RNQKOIuCoAxx1gKOypA3gqAMcXZa0BThqAEcrwFEHOLoDONoA7jGZnY6mwzOvqtrhKSCfGw8YOo_jRIg8gsE95BKmBIKxKJeB0lkW6TBSUWEydwutfZYnUrJYcd8vVBznBX9CDspVqZ8RGgV5IVSg_SQGoitDyXUm8n4BlDUIc-13Sc-991RVkvZYWeUiNaEVkUjBUCkaKrWG6pL3dYcfVs1l_6WBM2RakVFLMlNA2v5Ob5zJUzANvlJZ6tV2ncJpHmK1hrBLnloI1E8AU6xYJBx6R1fAUV-AEvBXz5TL70YKnocCOGj4_Bb_-4Lcbz7Fl-Rg83OrXwGh3mSvDe7_As0az0k |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=XBP1+mRNA+splicing+triggers+an+autophagic+response+in+endothelial+cells+through+BECLIN-1+transcriptional+activation&rft.jtitle=The+Journal+of+biological+chemistry&rft.au=Margariti%2C+Andriana&rft.au=Li%2C+Hongling&rft.au=Chen%2C+Ting&rft.au=Martin%2C+Daniel&rft.date=2013-01-11&rft.issn=1083-351X&rft.eissn=1083-351X&rft.volume=288&rft.issue=2&rft.spage=859&rft_id=info:doi/10.1074%2Fjbc.M112.412783&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9258&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9258&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9258&client=summon |