XBP1 mRNA Splicing Triggers an Autophagic Response in Endothelial Cells through BECLIN-1 Transcriptional Activation

Sustained activation of X-box-binding protein 1 (XBP1) results in endothelial cell (EC) apoptosis and atherosclerosis development. The present study provides evidence that XBP1 mRNA splicing triggered an autophagic response in ECs by inducing autophagic vesicle formation and markers of autophagy BEC...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 288; no. 2; pp. 859 - 872
Main Authors Margariti, Andriana, Li, Hongling, Chen, Ting, Martin, Daniel, Vizcay-Barrena, Gema, Alam, Saydul, Karamariti, Eirini, Xiao, Qingzhong, Zampetaki, Anna, Zhang, Zhongyi, Wang, Wen, Jiang, Zhixin, Gao, Chan, Ma, Benyu, Chen, Ye-Guang, Cockerill, Gillian, Hu, Yanhua, Xu, Qingbo, Zeng, Lingfang
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 11.01.2013
American Society for Biochemistry and Molecular Biology
Subjects
Online AccessGet full text
ISSN0021-9258
1083-351X
1083-351X
DOI10.1074/jbc.M112.412783

Cover

Abstract Sustained activation of X-box-binding protein 1 (XBP1) results in endothelial cell (EC) apoptosis and atherosclerosis development. The present study provides evidence that XBP1 mRNA splicing triggered an autophagic response in ECs by inducing autophagic vesicle formation and markers of autophagy BECLIN-1 and microtubule-associated protein 1 light chain 3β (LC3-βII). Endostatin activated autophagic gene expression through XBP1 mRNA splicing in an inositol-requiring enzyme 1α (IRE1α)-dependent manner. Knockdown of XBP1 or IRE1α by shRNA in ECs ablated endostatin-induced autophagosome formation. Importantly, data from arterial vessels from XBP1 EC conditional knock-out (XBP1eko) mice demonstrated that XBP1 deficiency in ECs reduced the basal level of LC3β expression and ablated response to endostatin. Chromatin immunoprecipitation assays further revealed that the spliced XBP1 isoform bound directly to the BECLIN-1 promoter at the region from nt −537 to −755. BECLIN-1 deficiency in ECs abolished the XBP1-induced autophagy response, whereas spliced XBP1 did not induce transcriptional activation of a truncated BECLIN-1 promoter. These results suggest that XBP1 mRNA splicing triggers an autophagic signal pathway through transcriptional regulation of BECLIN-1. Background: Apoptosis and autophagy are two closely related systems that induce cell death. Results: X-box-binding protein 1 (XBP1) mRNA splicing regulates BECLIN-1 transcriptional activation, a fundamental player in the initiation of autophagy. Conclusion:XBP1 splicing induces an autophagic response in endothelial cells. Significance: XBP1 could be used as an important pharmacological target that can regulate the autophagic machinery and endothelial cell death.
AbstractList Background: Apoptosis and autophagy are two closely related systems that induce cell death. Results: X-box-binding protein 1 ( XBP1 ) mRNA splicing regulates BECLIN-1 transcriptional activation, a fundamental player in the initiation of autophagy. Conclusion: XBP1 splicing induces an autophagic response in endothelial cells. Significance: XBP1 could be used as an important pharmacological target that can regulate the autophagic machinery and endothelial cell death. Sustained activation of X-box-binding protein 1 (XBP1) results in endothelial cell (EC) apoptosis and atherosclerosis development. The present study provides evidence that XBP1 mRNA splicing triggered an autophagic response in ECs by inducing autophagic vesicle formation and markers of autophagy BECLIN-1 and microtubule-associated protein 1 light chain 3β (LC3-βII). Endostatin activated autophagic gene expression through XBP1 mRNA splicing in an inositol-requiring enzyme 1α ( IRE1 α)-dependent manner. Knockdown of XBP1 or IRE1α by shRNA in ECs ablated endostatin-induced autophagosome formation. Importantly, data from arterial vessels from XBP1 EC conditional knock-out ( XBP1eko ) mice demonstrated that XBP1 deficiency in ECs reduced the basal level of LC3β expression and ablated response to endostatin. Chromatin immunoprecipitation assays further revealed that the spliced XBP1 isoform bound directly to the BECLIN-1 promoter at the region from nt −537 to −755. BECLIN-1 deficiency in ECs abolished the XBP1 -induced autophagy response, whereas spliced XBP1 did not induce transcriptional activation of a truncated BECLIN-1 promoter. These results suggest that XBP1 mRNA splicing triggers an autophagic signal pathway through transcriptional regulation of BECLIN-1 .
Sustained activation of X-box-binding protein 1 (XBP1) results in endothelial cell (EC) apoptosis and atherosclerosis development. The present study provides evidence that XBP1 mRNA splicing triggered an autophagic response in ECs by inducing autophagic vesicle formation and markers of autophagy BECLIN-1 and microtubule-associated protein 1 light chain 3β (LC3-βII). Endostatin activated autophagic gene expression through XBP1 mRNA splicing in an inositol-requiring enzyme 1α (IRE1α)-dependent manner. Knockdown of XBP1 or IRE1α by shRNA in ECs ablated endostatin-induced autophagosome formation. Importantly, data from arterial vessels from XBP1 EC conditional knock-out (XBP1eko) mice demonstrated that XBP1 deficiency in ECs reduced the basal level of LC3β expression and ablated response to endostatin. Chromatin immunoprecipitation assays further revealed that the spliced XBP1 isoform bound directly to the BECLIN-1 promoter at the region from nt −537 to −755. BECLIN-1 deficiency in ECs abolished the XBP1-induced autophagy response, whereas spliced XBP1 did not induce transcriptional activation of a truncated BECLIN-1 promoter. These results suggest that XBP1 mRNA splicing triggers an autophagic signal pathway through transcriptional regulation of BECLIN-1. Background: Apoptosis and autophagy are two closely related systems that induce cell death. Results: X-box-binding protein 1 (XBP1) mRNA splicing regulates BECLIN-1 transcriptional activation, a fundamental player in the initiation of autophagy. Conclusion:XBP1 splicing induces an autophagic response in endothelial cells. Significance: XBP1 could be used as an important pharmacological target that can regulate the autophagic machinery and endothelial cell death.
Sustained activation of X-box-binding protein 1 (XBP1) results in endothelial cell (EC) apoptosis and atherosclerosis development. The present study provides evidence that XBP1 mRNA splicing triggered an autophagic response in ECs by inducing autophagic vesicle formation and markers of autophagy BECLIN-1 and microtubule-associated protein 1 light chain 3β (LC3-βII). Endostatin activated autophagic gene expression through XBP1 mRNA splicing in an inositol-requiring enzyme 1α (IRE1α)-dependent manner. Knockdown of XBP1 or IRE1α by shRNA in ECs ablated endostatin-induced autophagosome formation. Importantly, data from arterial vessels from XBP1 EC conditional knock-out (XBP1eko) mice demonstrated that XBP1 deficiency in ECs reduced the basal level of LC3β expression and ablated response to endostatin. Chromatin immunoprecipitation assays further revealed that the spliced XBP1 isoform bound directly to the BECLIN-1 promoter at the region from nt -537 to -755. BECLIN-1 deficiency in ECs abolished the XBP1-induced autophagy response, whereas spliced XBP1 did not induce transcriptional activation of a truncated BECLIN-1 promoter. These results suggest that XBP1 mRNA splicing triggers an autophagic signal pathway through transcriptional regulation of BECLIN-1.Sustained activation of X-box-binding protein 1 (XBP1) results in endothelial cell (EC) apoptosis and atherosclerosis development. The present study provides evidence that XBP1 mRNA splicing triggered an autophagic response in ECs by inducing autophagic vesicle formation and markers of autophagy BECLIN-1 and microtubule-associated protein 1 light chain 3β (LC3-βII). Endostatin activated autophagic gene expression through XBP1 mRNA splicing in an inositol-requiring enzyme 1α (IRE1α)-dependent manner. Knockdown of XBP1 or IRE1α by shRNA in ECs ablated endostatin-induced autophagosome formation. Importantly, data from arterial vessels from XBP1 EC conditional knock-out (XBP1eko) mice demonstrated that XBP1 deficiency in ECs reduced the basal level of LC3β expression and ablated response to endostatin. Chromatin immunoprecipitation assays further revealed that the spliced XBP1 isoform bound directly to the BECLIN-1 promoter at the region from nt -537 to -755. BECLIN-1 deficiency in ECs abolished the XBP1-induced autophagy response, whereas spliced XBP1 did not induce transcriptional activation of a truncated BECLIN-1 promoter. These results suggest that XBP1 mRNA splicing triggers an autophagic signal pathway through transcriptional regulation of BECLIN-1.
Sustained activation of X-box-binding protein 1 (XBP1) results in endothelial cell (EC) apoptosis and atherosclerosis development. The present study provides evidence that XBP1 mRNA splicing triggered an autophagic response in ECs by inducing autophagic vesicle formation and markers of autophagy BECLIN-1 and microtubule-associated protein 1 light chain 3β (LC3-βII). Endostatin activated autophagic gene expression through XBP1 mRNA splicing in an inositol-requiring enzyme 1α (IRE1α)-dependent manner. Knockdown of XBP1 or IRE1α by shRNA in ECs ablated endostatin-induced autophagosome formation. Importantly, data from arterial vessels from XBP1 EC conditional knock-out (XBP1eko) mice demonstrated that XBP1 deficiency in ECs reduced the basal level of LC3β expression and ablated response to endostatin. Chromatin immunoprecipitation assays further revealed that the spliced XBP1 isoform bound directly to the BECLIN-1 promoter at the region from nt -537 to -755. BECLIN-1 deficiency in ECs abolished the XBP1-induced autophagy response, whereas spliced XBP1 did not induce transcriptional activation of a truncated BECLIN-1 promoter. These results suggest that XBP1 mRNA splicing triggers an autophagic signal pathway through transcriptional regulation of BECLIN-1.
Author Alam, Saydul
Martin, Daniel
Gao, Chan
Jiang, Zhixin
Wang, Wen
Zeng, Lingfang
Cockerill, Gillian
Vizcay-Barrena, Gema
Karamariti, Eirini
Margariti, Andriana
Li, Hongling
Zampetaki, Anna
Chen, Ting
Ma, Benyu
Chen, Ye-Guang
Xu, Qingbo
Hu, Yanhua
Xiao, Qingzhong
Zhang, Zhongyi
Author_xml – sequence: 1
  givenname: Andriana
  surname: Margariti
  fullname: Margariti, Andriana
  email: andriani.margariti@kcl.ac.uk
  organization: From the Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, United Kingdom
– sequence: 2
  givenname: Hongling
  surname: Li
  fullname: Li, Hongling
  organization: From the Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, United Kingdom
– sequence: 3
  givenname: Ting
  surname: Chen
  fullname: Chen, Ting
  organization: the Department of Cardiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
– sequence: 4
  givenname: Daniel
  surname: Martin
  fullname: Martin, Daniel
  organization: From the Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, United Kingdom
– sequence: 5
  givenname: Gema
  surname: Vizcay-Barrena
  fullname: Vizcay-Barrena, Gema
  organization: the Centre for Ultrastructural Imaging, King's College London, Guy's Campus, London WC2R 2LS, United Kingdom
– sequence: 6
  givenname: Saydul
  surname: Alam
  fullname: Alam, Saydul
  organization: From the Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, United Kingdom
– sequence: 7
  givenname: Eirini
  surname: Karamariti
  fullname: Karamariti, Eirini
  organization: From the Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, United Kingdom
– sequence: 8
  givenname: Qingzhong
  surname: Xiao
  fullname: Xiao, Qingzhong
  organization: the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
– sequence: 9
  givenname: Anna
  surname: Zampetaki
  fullname: Zampetaki, Anna
  organization: From the Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, United Kingdom
– sequence: 10
  givenname: Zhongyi
  surname: Zhang
  fullname: Zhang, Zhongyi
  organization: From the Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, United Kingdom
– sequence: 11
  givenname: Wen
  surname: Wang
  fullname: Wang, Wen
  organization: the School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, United Kingdom
– sequence: 12
  givenname: Zhixin
  surname: Jiang
  fullname: Jiang, Zhixin
  organization: the Centre Laboratory, 305th Hospital of the People's Liberation Army, Beijing 100017, China
– sequence: 13
  givenname: Chan
  surname: Gao
  fullname: Gao, Chan
  organization: the State Key Laboratory of Bio-membrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China
– sequence: 14
  givenname: Benyu
  surname: Ma
  fullname: Ma, Benyu
  organization: the State Key Laboratory of Bio-membrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China
– sequence: 15
  givenname: Ye-Guang
  surname: Chen
  fullname: Chen, Ye-Guang
  organization: the State Key Laboratory of Bio-membrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China
– sequence: 16
  givenname: Gillian
  surname: Cockerill
  fullname: Cockerill, Gillian
  organization: the Department of Cardiovascular Science, St. George's University of London, London SW17 0RE, United Kingdom
– sequence: 17
  givenname: Yanhua
  surname: Hu
  fullname: Hu, Yanhua
  organization: From the Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, United Kingdom
– sequence: 18
  givenname: Qingbo
  surname: Xu
  fullname: Xu, Qingbo
  organization: From the Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, United Kingdom
– sequence: 19
  givenname: Lingfang
  surname: Zeng
  fullname: Zeng, Lingfang
  email: lingfang.zeng@kcl.ac.uk
  organization: From the Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23184933$$D View this record in MEDLINE/PubMed
BookMark eNp1Uc9v0zAUttAQ6wpnbshHLuns2G6cC1JXFTapDDSGtJvlOi-pp9TObKcS_z3uuiFA2rtYT_5-6H3fGTpx3gFC7ymZUVLx8_uNmX2ltJxxWlaSvUITSiQrmKB3J2hCSEmLuhTyFJ3FeE_y8Jq-Qaclo5LXjE1QvLv4TvHu5nqBfwy9NdZ1-DbYroMQsXZ4MSY_bHVnDb6BOHgXAVuHV67xaQu91T1eQt9HnLbBj90WX6yW66vrgmYV7aIJdkjWuwxbmGT3-rC8Ra9b3Ud49_RO0c_Pq9vlZbH-9uVquVgXRpA6FazkTMqa86aq50wwzYnglFaNLg1sNhWIylTtvJSCtwCENrXWVBpGSGukbFo2RZ-OusO42UFjwKWgezUEu9Phl_Laqn9_nN2qzu8VE5yR7DhFH58Egn8YISa1s9Hkc7UDP0aVM2eClGx-gH742-uPyXPSGSCOABN8jAFaZWx6jCNb215Rog6NqtyoOjSqjo1m3vl_vGfplxn1kQE5272FoKKx4Aw0NoBJqvH2Re5vf1C25A
CitedBy_id crossref_primary_10_1016_j_jhepr_2024_101012
crossref_primary_10_1016_j_mucimm_2023_05_007
crossref_primary_10_3390_ijms22115992
crossref_primary_10_1016_j_bbadis_2019_07_010
crossref_primary_10_1095_biolreprod_114_124149
crossref_primary_10_1161_CIRCRESAHA_116_303804
crossref_primary_10_1007_s11906_024_01300_9
crossref_primary_10_1093_femsre_fuab016
crossref_primary_10_1152_ajpcell_00009_2018
crossref_primary_10_3390_cancers11122034
crossref_primary_10_1183_16000617_0126_2020
crossref_primary_10_1002_ijc_29990
crossref_primary_10_1007_s10565_016_9374_5
crossref_primary_10_1093_toxsci_kfx184
crossref_primary_10_4161_auto_25900
crossref_primary_10_1016_j_bbamcr_2013_06_028
crossref_primary_10_1016_j_bbadis_2014_05_005
crossref_primary_10_1039_C6MB00653A
crossref_primary_10_1124_mol_113_090837
crossref_primary_10_1080_14728222_2018_1541318
crossref_primary_10_1155_2018_7687083
crossref_primary_10_4155_fsoa_2017_0020
crossref_primary_10_1016_j_jmb_2020_01_017
crossref_primary_10_1080_15548627_2019_1687214
crossref_primary_10_15758_ajk_2018_20_3_1
crossref_primary_10_1038_s41598_022_08791_z
crossref_primary_10_1080_15548627_2021_2002101
crossref_primary_10_1016_j_lfs_2020_118641
crossref_primary_10_1126_scisignal_aai7814
crossref_primary_10_1080_14728222_2023_2293746
crossref_primary_10_1080_15548627_2024_2414424
crossref_primary_10_1210_en_2017_00638
crossref_primary_10_1038_s41467_021_27337_x
crossref_primary_10_18632_oncotarget_9818
crossref_primary_10_3389_fphar_2024_1323491
crossref_primary_10_1016_j_ejcb_2018_05_002
crossref_primary_10_1038_s41419_023_05905_x
crossref_primary_10_3390_cells8111321
crossref_primary_10_3233_JPD_230030
crossref_primary_10_1016_j_bbrc_2014_02_054
crossref_primary_10_1080_10408444_2021_1881040
crossref_primary_10_1186_s12935_021_01892_1
crossref_primary_10_1111_1751_2980_12347
crossref_primary_10_1038_s41419_018_1142_4
crossref_primary_10_3892_etm_2018_6284
crossref_primary_10_7314_APJCP_2014_15_5_2153
crossref_primary_10_1111_php_13777
crossref_primary_10_1007_s11060_015_2003_y
crossref_primary_10_1016_j_coviro_2016_01_018
crossref_primary_10_1007_s00439_024_02697_8
crossref_primary_10_1038_s41392_023_01409_4
crossref_primary_10_3390_biom10030392
crossref_primary_10_1016_j_kint_2023_06_016
crossref_primary_10_1016_j_bbrc_2015_05_061
crossref_primary_10_1016_j_bbrc_2019_07_073
crossref_primary_10_1002_jcp_25785
crossref_primary_10_1080_2162402X_2021_1962591
crossref_primary_10_3389_fphys_2018_01058
crossref_primary_10_1002_ana_25288
crossref_primary_10_1080_15548627_2020_1788889
crossref_primary_10_3389_fcimb_2021_707107
crossref_primary_10_1016_j_jdermsci_2017_04_011
crossref_primary_10_1093_ibd_izy380
crossref_primary_10_1021_acsptsci_4c00617
crossref_primary_10_1371_journal_pone_0132761
crossref_primary_10_4196_kjpp_2023_27_1_1
crossref_primary_10_3389_fragi_2022_888190
crossref_primary_10_1016_j_semcancer_2013_05_008
crossref_primary_10_3389_fnmol_2024_1443401
crossref_primary_10_1038_cddis_2015_219
crossref_primary_10_1016_j_dci_2021_104093
crossref_primary_10_1186_s12967_015_0725_4
crossref_primary_10_1093_biolre_ioae066
crossref_primary_10_3390_cancers13040864
crossref_primary_10_1111_nyas_14305
crossref_primary_10_1038_s41598_017_18909_3
crossref_primary_10_1016_j_canlet_2021_01_005
crossref_primary_10_1016_j_semcancer_2015_04_002
crossref_primary_10_1016_j_chemosphere_2018_01_092
crossref_primary_10_1515_revneuro_2017_0071
crossref_primary_10_1111_cas_14740
crossref_primary_10_1007_s12042_016_9183_2
crossref_primary_10_1016_j_arr_2020_101026
crossref_primary_10_1089_ars_2022_0110
crossref_primary_10_1016_j_procbio_2019_09_006
crossref_primary_10_4103_1673_5374_391334
crossref_primary_10_1007_s12192_022_01301_0
crossref_primary_10_1074_jbc_RA118_002829
crossref_primary_10_1016_j_ejmech_2020_112635
crossref_primary_10_1016_j_ajpath_2023_06_006
crossref_primary_10_1016_j_neuroscience_2022_10_014
crossref_primary_10_3390_ijms22168674
crossref_primary_10_1080_15548627_2018_1463121
crossref_primary_10_1016_j_bbadis_2016_01_011
crossref_primary_10_1089_dna_2014_2552
crossref_primary_10_1038_s41420_020_00361_4
crossref_primary_10_18632_aging_101436
crossref_primary_10_3390_cells11233773
crossref_primary_10_1080_15548627_2021_1917129
crossref_primary_10_1007_s12011_022_03093_x
crossref_primary_10_1002_jcla_23437
crossref_primary_10_1080_13880209_2022_2107019
crossref_primary_10_1002_jcp_26747
crossref_primary_10_1080_13880209_2023_2210187
crossref_primary_10_1016_j_biocel_2019_105572
crossref_primary_10_1016_j_ajpath_2020_01_010
crossref_primary_10_1074_jbc_M114_571984
crossref_primary_10_1080_21505594_2020_1845040
crossref_primary_10_1002_ccs3_12056
crossref_primary_10_1016_j_lfs_2020_117601
crossref_primary_10_1186_2045_3701_4_71
crossref_primary_10_1016_j_neuropharm_2022_109277
crossref_primary_10_1016_j_matbio_2021_04_001
crossref_primary_10_3389_fcell_2018_00104
crossref_primary_10_1080_19768354_2023_2181217
crossref_primary_10_1016_j_cstres_2023_12_003
crossref_primary_10_1515_ersc_2017_0004
crossref_primary_10_1093_bfgp_elaa026
crossref_primary_10_3390_nu9060593
crossref_primary_10_1016_j_ejphar_2024_177210
crossref_primary_10_3389_fvets_2023_1214318
crossref_primary_10_3389_fmolb_2022_930223
crossref_primary_10_1016_j_biopha_2023_115867
crossref_primary_10_3389_fnagi_2017_00341
crossref_primary_10_1080_15548627_2016_1248018
crossref_primary_10_3389_fcell_2023_1156152
crossref_primary_10_3390_toxins12050316
crossref_primary_10_1111_bph_13516
crossref_primary_10_1155_2021_8832541
crossref_primary_10_1016_j_bbrc_2020_04_117
crossref_primary_10_1016_j_gene_2022_146821
crossref_primary_10_3109_08830185_2014_999156
crossref_primary_10_1007_s12192_020_01125_w
crossref_primary_10_18632_aging_203010
crossref_primary_10_26599_FSHW_2022_9250178
crossref_primary_10_1007_s40139_017_0145_7
crossref_primary_10_3892_ol_2019_10997
crossref_primary_10_3390_biom12111637
crossref_primary_10_1155_2014_160140
crossref_primary_10_18632_oncotarget_26038
crossref_primary_10_4161_auto_27954
crossref_primary_10_1038_cddis_2015_183
crossref_primary_10_3390_antiox9030214
crossref_primary_10_1016_j_gendis_2023_101174
crossref_primary_10_1002_jcp_26137
crossref_primary_10_3390_biology9010004
crossref_primary_10_3390_v13101967
crossref_primary_10_1042_BSR20190788
crossref_primary_10_3389_fnagi_2021_691881
crossref_primary_10_1038_s41598_017_02960_1
crossref_primary_10_1161_ATVBAHA_115_305420
crossref_primary_10_1038_s41418_023_01162_9
crossref_primary_10_1038_srep28627
crossref_primary_10_1159_000540654
crossref_primary_10_1371_journal_pone_0168339
crossref_primary_10_1111_acel_12460
crossref_primary_10_1016_j_ejphar_2019_04_019
crossref_primary_10_1016_j_biocel_2015_09_010
crossref_primary_10_1016_j_phrs_2020_105218
crossref_primary_10_3390_antiox11020304
crossref_primary_10_3390_ijms25084368
crossref_primary_10_1002_1873_3468_14000
crossref_primary_10_1016_j_lfs_2017_12_001
crossref_primary_10_1016_j_arr_2022_101774
crossref_primary_10_1186_s12917_022_03359_5
crossref_primary_10_1016_j_celrep_2022_110796
crossref_primary_10_1136_annrheumdis_2012_202925
crossref_primary_10_3390_ijms21197334
crossref_primary_10_1002_jcp_24889
crossref_primary_10_3390_nu15153495
crossref_primary_10_1007_s00204_013_1110_9
crossref_primary_10_1016_j_cstres_2024_11_005
crossref_primary_10_1016_j_biopha_2024_117690
crossref_primary_10_3390_cells12131779
crossref_primary_10_3389_fphys_2017_00600
crossref_primary_10_1152_ajpheart_00056_2015
crossref_primary_10_1186_ar4415
crossref_primary_10_1172_JCI95864
crossref_primary_10_1016_j_celrep_2018_09_013
crossref_primary_10_1016_j_semcancer_2019_11_007
crossref_primary_10_3892_ol_2015_3508
crossref_primary_10_1016_j_isci_2024_111372
crossref_primary_10_1016_j_lfs_2018_04_051
crossref_primary_10_1016_j_cca_2022_05_009
crossref_primary_10_1016_j_cophys_2023_100673
crossref_primary_10_1080_10409238_2021_1925219
crossref_primary_10_1080_15548627_2020_1794590
crossref_primary_10_1242_jcs_188920
crossref_primary_10_1016_j_coi_2013_10_010
crossref_primary_10_1126_sciadv_abb9614
crossref_primary_10_1098_rsob_190009
crossref_primary_10_1016_j_bbrc_2022_05_053
crossref_primary_10_1371_journal_ppat_1008169
crossref_primary_10_1007_s11011_021_00770_z
crossref_primary_10_1161_CIRCRESAHA_117_311450
crossref_primary_10_3390_cells11050851
crossref_primary_10_1038_s41598_017_16488_x
crossref_primary_10_3389_fimmu_2019_01789
crossref_primary_10_3389_fmmed_2022_971247
crossref_primary_10_1016_j_preteyeres_2014_12_001
crossref_primary_10_1080_15548627_2015_1091141
crossref_primary_10_1038_s41598_018_27278_4
crossref_primary_10_1038_s41467_024_44902_2
crossref_primary_10_1016_j_flm_2018_07_002
crossref_primary_10_18632_oncotarget_26745
crossref_primary_10_3892_etm_2024_12638
crossref_primary_10_1080_15548627_2020_1827778
crossref_primary_10_3389_fmicb_2014_00388
crossref_primary_10_3390_toxics11060544
crossref_primary_10_1016_j_bbrc_2019_11_160
crossref_primary_10_1165_rcmb_2023_0424OC
crossref_primary_10_1038_emm_2017_215
crossref_primary_10_1038_s41418_023_01201_5
crossref_primary_10_1016_j_fct_2018_02_019
Cites_doi 10.4161/auto.20139
10.4161/auto.1.2.1738
10.1038/cr.2011.58
10.1111/j.1440-1711.2006.01449.x
10.1038/cddis.2012.61
10.1073/pnas.1334037100
10.1158/0008-5472.CAN-05-4412
10.1159/000339066
10.1038/ncb2082
10.1016/j.bbrc.2010.03.026
10.1172/JCI40027
10.1038/nrm2239
10.1101/gad.964702
10.1016/j.cell.2007.02.023
10.1073/pnas.0903197106
10.1111/j.1582-4934.2009.00722.x
10.1006/bbrc.1997.7111
10.1093/hmg/dds040
10.1016/j.cell.2005.07.002
10.1161/ATVBAHA.111.224899
10.1038/onc.2010.191
10.1152/ajpcell.00164.2011
10.1182/blood-2006-11-059352
10.1161/CIRCRESAHA.108.188318
10.1371/journal.pone.0010409
10.1016/j.cmet.2012.02.011
10.1016/S1534-5807(04)00099-1
10.1242/jcs.034850
10.1016/j.cmet.2012.01.022
10.1083/jcb.200406136
10.1126/science.2321018
10.1074/jbc.M607007200
10.1126/science.290.5497.1717
10.1042/BJ20101293
10.1074/jbc.M112.363911
10.1038/cddis.2012.8
10.1038/35085509
10.1139/y04-095
10.1002/aja.1001970207
10.1016/S0092-8674(01)00611-0
10.3892/ijmm.2012.891
10.1172/JCI26390
10.1038/sj.cdd.4401765
10.1161/CIRCRESAHA.109.213165
10.4161/auto.19768
10.1101/gad.14.2.152
10.1016/j.yexcr.2011.11.008
10.1074/jbc.M700492200
10.1038/sj.onc.1207521
10.1073/pnas.0711094105
10.1073/pnas.1205526109
10.1006/dbio.2000.0106
10.1093/nar/24.10.1855
10.1007/s11883-008-0034-y
10.4161/auto.19716
ContentType Journal Article
Copyright 2013 © 2013 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.
2013 by The American Society for Biochemistry and Molecular Biology, Inc. 2013
Copyright_xml – notice: 2013 © 2013 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.
– notice: 2013 by The American Society for Biochemistry and Molecular Biology, Inc. 2013
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1074/jbc.M112.412783
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
DocumentTitleAlternate XBP1 Triggers Autophagy in Endothelial Cells
EISSN 1083-351X
EndPage 872
ExternalDocumentID PMC3543035
23184933
10_1074_jbc_M112_412783
S0021925820466323
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: British Heart Foundation
  grantid: FS/13/18/30207
– fundername: British Heart Foundation
  grantid: FS/09/044/28007
– fundername: British Heart Foundation
  grantid: PG/11/40/28891
GroupedDBID ---
-DZ
-ET
-~X
0SF
18M
29J
2WC
34G
39C
4.4
53G
5BI
5GY
5RE
5VS
6I.
79B
85S
AAEDW
AAFTH
AAFWJ
AARDX
AAXUO
ABDNZ
ABOCM
ABPPZ
ABRJW
ACGFO
ACNCT
ADBBV
ADIYS
ADNWM
AENEX
AEXQZ
AFOSN
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BAWUL
BTFSW
CJ0
CS3
DIK
DU5
E.L
E3Z
EBS
EJD
F5P
FDB
FRP
GROUPED_DOAJ
GX1
HH5
HYE
IH2
KQ8
L7B
N9A
OK1
P0W
P2P
R.V
RHF
RHI
RNS
ROL
RPM
SJN
TBC
TN5
TR2
UHB
UKR
UPT
VQA
W8F
WH7
WOQ
XSW
YQT
YSK
YWH
YZZ
ZA5
~02
~KM
.55
.7T
.GJ
0R~
186
3O-
41~
6TJ
AALRI
AAYJJ
AAYOK
AAYWO
AAYXX
ABFSI
ACSFO
ACVFH
ACYGS
ADCNI
ADVLN
ADXHL
AEUPX
AFFNX
AFPUW
AI.
AIGII
AITUG
AKBMS
AKRWK
AKYEP
C1A
CITATION
FA8
H13
J5H
MVM
NHB
OHT
P-O
QZG
UQL
VH1
WHG
X7M
XJT
Y6R
YYP
ZE2
ZGI
ZY4
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c509t-324388944d796353a4054117da2cebb7e57c7f62854fee01d9aa18c300fc88df3
ISSN 0021-9258
1083-351X
IngestDate Thu Aug 21 18:05:35 EDT 2025
Fri Sep 05 07:24:01 EDT 2025
Mon Jul 21 05:29:24 EDT 2025
Thu Apr 24 23:11:17 EDT 2025
Tue Jul 01 00:40:59 EDT 2025
Fri Feb 23 02:46:55 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords XBP1
Alternative Splicing
BECLIN-1
Atherosclerosis
Cell Death
Endothelial Cell
Autophagy
Electron Microscopy (EM)
Language English
License This is an open access article under the CC BY license.
http://creativecommons.org/licenses/by/4.0
https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c509t-324388944d796353a4054117da2cebb7e57c7f62854fee01d9aa18c300fc88df3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://dx.doi.org/10.1074/jbc.M112.412783
PMID 23184933
PQID 1273502365
PQPubID 23479
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3543035
proquest_miscellaneous_1273502365
pubmed_primary_23184933
crossref_citationtrail_10_1074_jbc_M112_412783
crossref_primary_10_1074_jbc_M112_412783
elsevier_sciencedirect_doi_10_1074_jbc_M112_412783
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-01-11
PublicationDateYYYYMMDD 2013-01-11
PublicationDate_xml – month: 01
  year: 2013
  text: 2013-01-11
  day: 11
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 9650 Rockville Pike, Bethesda, MD 20814, U.S.A
PublicationTitle The Journal of biological chemistry
PublicationTitleAlternate J Biol Chem
PublicationYear 2013
Publisher Elsevier Inc
American Society for Biochemistry and Molecular Biology
Publisher_xml – name: Elsevier Inc
– name: American Society for Biochemistry and Molecular Biology
References Hetz, Lee, Gonzalez-Romero, Thielen, Castilla, Soto, Glimcher (bib49) 2008; 105
Yoshimori (bib11) 2007; 128
Martinet, De Meyer (bib4) 2009; 104
Hu, Lai, Lu, Gao, He (bib52) 2012; 29
Debnath, Baehrecke, Kroemer (bib56) 2005; 1
Margariti, Xiao, Zampetaki, Zhang, Li, Martin, Hu, Zeng, Xu (bib23) 2009; 122
Zhang, Cao, Zhang, Liu, Tong, Xiao, Yang, Liu (bib54) 2010; 394
Vidal, Hetz (bib33) 2012; 8
Yoshimori (bib8) 2004; 49
Pehar, Jonas, Hare, Puglielli (bib47) 2012; 287
Ghavami, Yeganeh, Stelmack, Kashani, Sharma, Cunnington, Rattan, Bathe, Klonisch, Dixon, Freed, Halayko (bib32) 2012; 3
Oberstein, Jeffrey, Shi (bib42) 2007; 282
Sirois, Groleau, Pallet, Brassard, Hamelin, Londono, Pshezhetsky, Bendayan, Hébert (bib58) 2012; 8
Tao, Chen, Gao, Xue, Yang, Han, Zhou, Chen (bib45) 2011; 21
Maiuri, Zalckvar, Kimchi, Kroemer (bib27) 2007; 8
Schrijvers, De Meyer, Martinet (bib51) 2011; 31
Wang, Chen, Ouyang (bib46) 2011; 433
Sakai, Miyazaki (bib25) 1997; 237
Gozuacik, Kimchi (bib30) 2004; 23
Valenzuela, Collyer, Armentano, Parsons, Court, Hetz (bib48) 2012; 3
Lee, Tirasophon, Shen, Michalak, Prywes, Okada, Yoshida, Mori, Kaufman (bib17) 2002; 16
Yorimitsu, Klionsky (bib10) 2005; 12
Wang, Ling, Lin (bib28) 2010; 5
Vidal, Figueroa, Court, Thielen, Molina, Wirth, Caballero, Kiffin, Segura-Aguilar, Cuervo, Glimcher, Hetz (bib50) 2012; 21
Pattingre, Tassa, Qu, Garuti, Liang, Mizushima, Packer, Schneider, Levine (bib44) 2005; 122
Nguyen, Subramanian, Xiao, Ghosh, Nguyen, Kelekar, Ramakrishnan (bib29) 2009; 13
Reimold, Iwakoshi, Manis, Vallabhajosyula, Szomolanyi-Tsuda, Gravallese, Friend, Grusby, Alt, Glimcher (bib19) 2001; 412
Rzymski, Milani, Pike, Buffa, Mellor, Winchester, Pires, Hammond, Ragoussis, Harris (bib37) 2010; 29
Clauss, Gravallese, Darling, Shapiro, Glimcher, Glimcher (bib20) 1993; 197
Yorimitsu, Nair, Yang, Klionsky (bib35) 2006; 281
Razani, Feng, Coleman, Emanuel, Wen, Hwang, Ting, Virgin, Kastan, Semenkovich (bib2) 2012; 15
Klionsky, Emr (bib7) 2000; 290
Martinet, De Meyer (bib1) 2008; 10
Yoshida, Matsui, Yamamoto, Okada, Mori (bib18) 2001; 107
Rouschop, van den Beucken, Dubois, Niessen, Bussink, Savelkouls, Keulers, Mujcic, Landuyt, Voncken, Lambin, van der Kogel, Koritzinsky, Wouters (bib36) 2010; 120
Lee, Iwakoshi, Anderson, Glimcher (bib16) 2003; 100
Fouillet, Levet, Virgone, Robin, Dourlen, Rieusset, Belaidi, Ovize, Touret, Nataf, Mollereau (bib31) 2012; 8
Nguyen, Subramanian, Kelekar, Ramakrishnan (bib39) 2007; 109
Clauss, Chu, Zhao, Glimcher (bib13) 1996; 24
Margariti, Zampetaki, Xiao, Zhou, Karamariti, Martin, Yin, Mayr, Li, Zhang, De Falco, Hu, Cockerill, Xu, Zeng (bib22) 2010; 106
Liao, Sluimer, Wang, Subramanian, Brown, Pattison, Robbins, Martinez, Tabas (bib3) 2012; 15
Rovetta, Stacchiotti, Consiglio, Cadei, Grigolato, Lavazza, Rezzani, Aleo (bib34) 2012; 318
Levine, Yuan (bib57) 2005; 115
Margariti, Winkler, Karamariti, Zampetaki, Tsai, Baban, Ragoussis, Huang, Han, Zeng, Hu, Xu (bib24) 2012; 109
Kisanuki, Hammer, Miyazaki, Williams, Richardson, Yanagisawa (bib26) 2001; 230
Jia, Cheng, Agrawal (bib6) 2006; 84
Sriburi, Jackowski, Mori, Brewer (bib15) 2004; 167
Levine, Klionsky (bib9) 2004; 6
Du, Teng, Guan, Eis, Kaul, Konduri, Shi (bib55) 2012; 302
Gao, Cao, Bao, Zuo, Xie, Cai, Fu, Zhang, Wu, Zhang, Chen (bib41) 2010; 12
Chau, Lin, Chen, Tai (bib40) 2003; 18
Pattingre, Levine (bib43) 2006; 66
Zeng, Zampetaki, Margariti, Pepe, Alam, Martin, Xiao, Wang, Jin, Cockerill, Mori, Li, Hu, Chien, Xu (bib12) 2009; 106
Younce, Kolattukudy (bib38) 2012; 30
Mitra, Dhume, Agrawal (bib5) 2004; 82
Han, Zhang, You, Liu, Cao, Chen, Liu (bib53) 2011; 91
Liou, Boothby, Finn, Davidon, Nabavi, Zeleznik-Le, Ting, Glimcher (bib14) 1990; 247
Reimold, Etkin, Clauss, Perkins, Friend, Zhang, Horton, Scott, Orkin, Byrne, Grusby, Glimcher (bib21) 2000; 14
Martinet (10.1074/jbc.M112.412783_bib1) 2008; 10
Klionsky (10.1074/jbc.M112.412783_bib7) 2000; 290
Sirois (10.1074/jbc.M112.412783_bib58) 2012; 8
Ghavami (10.1074/jbc.M112.412783_bib32) 2012; 3
Yoshimori (10.1074/jbc.M112.412783_bib11) 2007; 128
Gao (10.1074/jbc.M112.412783_bib41) 2010; 12
Du (10.1074/jbc.M112.412783_bib55) 2012; 302
Pattingre (10.1074/jbc.M112.412783_bib44) 2005; 122
Razani (10.1074/jbc.M112.412783_bib2) 2012; 15
Nguyen (10.1074/jbc.M112.412783_bib39) 2007; 109
Martinet (10.1074/jbc.M112.412783_bib4) 2009; 104
Rovetta (10.1074/jbc.M112.412783_bib34) 2012; 318
Valenzuela (10.1074/jbc.M112.412783_bib48) 2012; 3
Debnath (10.1074/jbc.M112.412783_bib56) 2005; 1
Levine (10.1074/jbc.M112.412783_bib9) 2004; 6
Sakai (10.1074/jbc.M112.412783_bib25) 1997; 237
Wang (10.1074/jbc.M112.412783_bib28) 2010; 5
Pehar (10.1074/jbc.M112.412783_bib47) 2012; 287
Clauss (10.1074/jbc.M112.412783_bib13) 1996; 24
Jia (10.1074/jbc.M112.412783_bib6) 2006; 84
Han (10.1074/jbc.M112.412783_bib53) 2011; 91
Oberstein (10.1074/jbc.M112.412783_bib42) 2007; 282
Wang (10.1074/jbc.M112.412783_bib46) 2011; 433
Chau (10.1074/jbc.M112.412783_bib40) 2003; 18
Reimold (10.1074/jbc.M112.412783_bib19) 2001; 412
Margariti (10.1074/jbc.M112.412783_bib24) 2012; 109
Lee (10.1074/jbc.M112.412783_bib17) 2002; 16
Yorimitsu (10.1074/jbc.M112.412783_bib10) 2005; 12
Mitra (10.1074/jbc.M112.412783_bib5) 2004; 82
Gozuacik (10.1074/jbc.M112.412783_bib30) 2004; 23
Fouillet (10.1074/jbc.M112.412783_bib31) 2012; 8
Rouschop (10.1074/jbc.M112.412783_bib36) 2010; 120
Tao (10.1074/jbc.M112.412783_bib45) 2011; 21
Zeng (10.1074/jbc.M112.412783_bib12) 2009; 106
Maiuri (10.1074/jbc.M112.412783_bib27) 2007; 8
Liou (10.1074/jbc.M112.412783_bib14) 1990; 247
Vidal (10.1074/jbc.M112.412783_bib33) 2012; 8
Schrijvers (10.1074/jbc.M112.412783_bib51) 2011; 31
Sriburi (10.1074/jbc.M112.412783_bib15) 2004; 167
Yorimitsu (10.1074/jbc.M112.412783_bib35) 2006; 281
Hu (10.1074/jbc.M112.412783_bib52) 2012; 29
Yoshida (10.1074/jbc.M112.412783_bib18) 2001; 107
Younce (10.1074/jbc.M112.412783_bib38) 2012; 30
Levine (10.1074/jbc.M112.412783_bib57) 2005; 115
Margariti (10.1074/jbc.M112.412783_bib23) 2009; 122
Pattingre (10.1074/jbc.M112.412783_bib43) 2006; 66
Clauss (10.1074/jbc.M112.412783_bib20) 1993; 197
Hetz (10.1074/jbc.M112.412783_bib49) 2008; 105
Lee (10.1074/jbc.M112.412783_bib16) 2003; 100
Rzymski (10.1074/jbc.M112.412783_bib37) 2010; 29
Kisanuki (10.1074/jbc.M112.412783_bib26) 2001; 230
Yoshimori (10.1074/jbc.M112.412783_bib8) 2004; 49
Liao (10.1074/jbc.M112.412783_bib3) 2012; 15
Zhang (10.1074/jbc.M112.412783_bib54) 2010; 394
Vidal (10.1074/jbc.M112.412783_bib50) 2012; 21
Nguyen (10.1074/jbc.M112.412783_bib29) 2009; 13
Reimold (10.1074/jbc.M112.412783_bib21) 2000; 14
Margariti (10.1074/jbc.M112.412783_bib22) 2010; 106
References_xml – volume: 115
  start-page: 2679
  year: 2005
  end-page: 2688
  ident: bib57
  article-title: Autophagy in cell death. An innocent convict?
  publication-title: J. Clin. Invest.
– volume: 281
  start-page: 30299
  year: 2006
  end-page: 30304
  ident: bib35
  article-title: Endoplasmic reticulum stress triggers autophagy
  publication-title: J. Biol. Chem.
– volume: 122
  start-page: 927
  year: 2005
  end-page: 939
  ident: bib44
  article-title: Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy
  publication-title: Cell
– volume: 21
  start-page: 1619
  year: 2011
  end-page: 1633
  ident: bib45
  article-title: Xbp1-mediated histone H4 deacetylation contributes to DNA double-strand break repair in yeast
  publication-title: Cell Res.
– volume: 109
  start-page: 4793
  year: 2007
  end-page: 4802
  ident: bib39
  article-title: Kringle 5 of human plasminogen, an angiogenesis inhibitor, induces both autophagy and apoptotic death in endothelial cells
  publication-title: Blood
– volume: 21
  start-page: 2245
  year: 2012
  end-page: 2262
  ident: bib50
  article-title: Targeting the UPR transcription factor XBP1 protects against Huntington's disease through the regulation of FoxO1 and autophagy
  publication-title: Hum. Mol. Genet
– volume: 66
  start-page: 2885
  year: 2006
  end-page: 2888
  ident: bib43
  article-title: Bcl-2 inhibition of autophagy. A new route to cancer?
  publication-title: Cancer Res.
– volume: 412
  start-page: 300
  year: 2001
  end-page: 307
  ident: bib19
  article-title: Plasma cell differentiation requires the transcription factor XBP-1
  publication-title: Nature
– volume: 3
  start-page: e272
  year: 2012
  ident: bib48
  article-title: Activation of the unfolded protein response enhances motor recovery after spinal cord injury
  publication-title: Cell Death Dis.
– volume: 109
  start-page: 13793
  year: 2012
  end-page: 13798
  ident: bib24
  article-title: Direct reprogramming of fibroblasts into endothelial cells capable of angiogenesis and reendothelialization in tissue-engineered vessels
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 282
  start-page: 13123
  year: 2007
  end-page: 13132
  ident: bib42
  article-title: Crystal structure of the Bcl-XL-Beclin 1 peptide complex. Beclin 1 is a novel BH3-only protein
  publication-title: J. Biol. Chem.
– volume: 13
  start-page: 3687
  year: 2009
  end-page: 3698
  ident: bib29
  article-title: Endostatin induces autophagy in endothelial cells by modulating Beclin 1 and β-catenin levels
  publication-title: J. Cell Mol. Med.
– volume: 394
  start-page: 377
  year: 2010
  end-page: 382
  ident: bib54
  article-title: The autophagy-lysosome pathway. A novel mechanism involved in the processing of oxidized LDL in human vascular endothelial cells
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 15
  start-page: 545
  year: 2012
  end-page: 553
  ident: bib3
  article-title: Macrophage autophagy plays a protective role in advanced atherosclerosis
  publication-title: Cell Metab.
– volume: 197
  start-page: 146
  year: 1993
  end-page: 156
  ident: bib20
  article-title: hybridization studies suggest a role for the basic region-leucine zipper protein hXBP-1 in exocrine gland and skeletal development during mouse embryogenesis
  publication-title: Dev. Dyn.
– volume: 5
  start-page: e10409
  year: 2010
  ident: bib28
  article-title: 14-3-3Tau regulates Beclin 1 and is required for autophagy
  publication-title: PLoS One
– volume: 8
  start-page: 970
  year: 2012
  end-page: 972
  ident: bib33
  article-title: Crosstalk between the UPR and autophagy pathway contributes to handling cellular stress in neurodegenerative disease
  publication-title: Autophagy
– volume: 247
  start-page: 1581
  year: 1990
  end-page: 1584
  ident: bib14
  article-title: A new member of the leucine zipper class of proteins that binds to the HLA DR α promoter
  publication-title: Science
– volume: 290
  start-page: 1717
  year: 2000
  end-page: 1721
  ident: bib7
  article-title: Autophagy as a regulated pathway of cellular degradation
  publication-title: Science
– volume: 84
  start-page: 422
  year: 2006
  end-page: 429
  ident: bib6
  article-title: Differential effects of insulin-like growth factor-1 and atheroma-associated cytokines on cell proliferation and apoptosis in plaque smooth muscle cells of symptomatic and asymptomatic patients with carotid stenosis
  publication-title: Immunol. Cell Biol.
– volume: 29
  start-page: 4424
  year: 2010
  end-page: 4435
  ident: bib37
  article-title: Regulation of autophagy by ATF4 in response to severe hypoxia
  publication-title: Oncogene
– volume: 12
  start-page: 1542
  year: 2005
  end-page: 1552
  ident: bib10
  article-title: Autophagy. Molecular machinery for self-eating
  publication-title: Cell Death Differ.
– volume: 8
  start-page: 927
  year: 2012
  end-page: 937
  ident: bib58
  article-title: Caspase activation regulates the extracellular export of autophagic vacuoles
  publication-title: Autophagy
– volume: 31
  start-page: 2787
  year: 2011
  end-page: 2791
  ident: bib51
  article-title: Autophagy in atherosclerosis. A potential drug target for plaque stabilization
  publication-title: Arterioscler. Thromb. Vasc. Biol.
– volume: 106
  start-page: 8326
  year: 2009
  end-page: 8331
  ident: bib12
  article-title: Sustained activation of XBP1 splicing leads to endothelial apoptosis and atherosclerosis development in response to disturbed flow
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 287
  start-page: 29921
  year: 2012
  end-page: 29930
  ident: bib47
  article-title: SLC33A1/AT-1 protein regulates the induction of autophagy downstream of IRE1/XBP1 pathway
  publication-title: J. Biol. Chem.
– volume: 15
  start-page: 534
  year: 2012
  end-page: 544
  ident: bib2
  article-title: Autophagy links inflammasomes to atherosclerotic progression
  publication-title: Cell Metab.
– volume: 24
  start-page: 1855
  year: 1996
  end-page: 1864
  ident: bib13
  article-title: The basic domain/leucine zipper protein hXBP-1 preferentially binds to and transactivates CRE-like sequences containing an ACGT core
  publication-title: Nucleic Acids Res.
– volume: 122
  start-page: 460
  year: 2009
  end-page: 470
  ident: bib23
  article-title: Splicing of HDAC7 modulates the SRF-myocardin complex during stem-cell differentiation towards smooth muscle cells
  publication-title: J. Cell Sci.
– volume: 12
  start-page: 781
  year: 2010
  end-page: 790
  ident: bib41
  article-title: Autophagy negatively regulates Wnt signalling by promoting Dishevelled degradation
  publication-title: Nat. Cell Biol.
– volume: 18
  start-page: 715
  year: 2003
  end-page: 726
  ident: bib40
  article-title: Endostatin induces autophagic cell death in EAhy926 human endothelial cells
  publication-title: Histol. Histopathol.
– volume: 318
  start-page: 238
  year: 2012
  end-page: 250
  ident: bib34
  article-title: ER signaling regulation drives the switch between autophagy and apoptosis in NRK-52E cells exposed to cisplatin
  publication-title: Exp. Cell Res.
– volume: 6
  start-page: 463
  year: 2004
  end-page: 477
  ident: bib9
  article-title: Development by self-digestion. Molecular mechanisms and biological functions of autophagy
  publication-title: Dev. Cell
– volume: 105
  start-page: 757
  year: 2008
  end-page: 762
  ident: bib49
  article-title: Unfolded protein response transcription factor XBP-1 does not influence prion replication or pathogenesis
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 10
  start-page: 216
  year: 2008
  end-page: 223
  ident: bib1
  article-title: Autophagy in atherosclerosis
  publication-title: Curr. Atheroscler. Rep.
– volume: 1
  start-page: 66
  year: 2005
  end-page: 74
  ident: bib56
  article-title: Does autophagy contribute to cell death?
  publication-title: Autophagy
– volume: 8
  start-page: 741
  year: 2007
  end-page: 752
  ident: bib27
  article-title: Self-eating and self-killing. Cross-talk between autophagy and apoptosis
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 433
  start-page: 245
  year: 2011
  end-page: 252
  ident: bib46
  article-title: Regulation of unfolded protein response modulator XBP1s by acetylation and deacetylation
  publication-title: Biochem. J.
– volume: 82
  start-page: 860
  year: 2004
  end-page: 871
  ident: bib5
  article-title: “Vulnerable plaques.” Ticking of the time bomb
  publication-title: Can J. Physiol. Pharmacol.
– volume: 23
  start-page: 2891
  year: 2004
  end-page: 2906
  ident: bib30
  article-title: Autophagy as a cell death and tumor suppressor mechanism
  publication-title: Oncogene
– volume: 8
  start-page: 915
  year: 2012
  end-page: 926
  ident: bib31
  article-title: ER stress inhibits neuronal death by promoting autophagy
  publication-title: Autophagy
– volume: 237
  start-page: 318
  year: 1997
  end-page: 324
  ident: bib25
  article-title: A transgenic mouse line that retains Cre recombinase activity in mature oocytes irrespective of the cre transgene transmission
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 3
  start-page: e330
  year: 2012
  ident: bib32
  article-title: Apoptosis, autophagy, and ER stress in mevalonate cascade inhibition-induced cell death of human atrial fibroblasts
  publication-title: Cell Death Dis.
– volume: 302
  start-page: C383
  year: 2012
  end-page: C391
  ident: bib55
  article-title: Role of autophagy in angiogenesis in aortic endothelial cells
  publication-title: Am. J. Physiol. Cell Physiol.
– volume: 230
  start-page: 230
  year: 2001
  end-page: 242
  ident: bib26
  article-title: Tie2-Cre transgenic mice. A new model for endothelial cell-lineage analysis
  publication-title: Dev. Biol.
– volume: 120
  start-page: 127
  year: 2010
  end-page: 141
  ident: bib36
  article-title: The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5
  publication-title: J. Clin. Invest.
– volume: 167
  start-page: 35
  year: 2004
  end-page: 41
  ident: bib15
  article-title: XBP1. A link between the unfolded protein response, lipid biosynthesis, and biogenesis of the endoplasmic reticulum
  publication-title: J. Cell Biol.
– volume: 14
  start-page: 152
  year: 2000
  end-page: 157
  ident: bib21
  article-title: An essential role in liver development for transcription factor XBP-1
  publication-title: Genes Dev.
– volume: 29
  start-page: 613
  year: 2012
  end-page: 618
  ident: bib52
  article-title: ERK and Akt signaling pathways are involved in advanced glycation end product-induced autophagy in rat vascular smooth muscle cells
  publication-title: Int. J. Mol. Med.
– volume: 106
  start-page: 1202
  year: 2010
  end-page: 1211
  ident: bib22
  article-title: Histone deacetylase 7 controls endothelial cell growth through modulation of β-catenin
  publication-title: Circ. Res.
– volume: 49
  start-page: 1029
  year: 2004
  end-page: 1032
  ident: bib8
  article-title: [Autophagy as a bulk protein degradation system. It plays various roles]
  publication-title: Tanpakushitsu Kakusan Koso
– volume: 16
  start-page: 452
  year: 2002
  end-page: 466
  ident: bib17
  article-title: IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response
  publication-title: Genes Dev.
– volume: 104
  start-page: 304
  year: 2009
  end-page: 317
  ident: bib4
  article-title: Autophagy in atherosclerosis. A cell survival and death phenomenon with therapeutic potential
  publication-title: Circ. Res.
– volume: 100
  start-page: 9946
  year: 2003
  end-page: 9951
  ident: bib16
  article-title: Proteasome inhibitors disrupt the unfolded protein response in myeloma cells
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 107
  start-page: 881
  year: 2001
  end-page: 891
  ident: bib18
  article-title: XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor
  publication-title: Cell
– volume: 91
  start-page: 2216
  year: 2011
  end-page: 2220
  ident: bib53
  article-title: [Autophagy of human vascular endothelial cells by oxidized low-density lipoprotein. Involvement of oxidative stress but no oxidized low density lipoprotein-1]
  publication-title: Zhonghua Yi Xue Za Zhi
– volume: 128
  start-page: 833
  year: 2007
  end-page: 836
  ident: bib11
  article-title: Autophagy. paying Charon's toll
  publication-title: Cell
– volume: 30
  start-page: 307
  year: 2012
  end-page: 320
  ident: bib38
  article-title: MCP-1-induced protein promotes adipogenesis via oxidative stress, endoplasmic reticulum stress and autophagy
  publication-title: Cell Physiol. Biochem.
– volume: 8
  start-page: 970
  year: 2012
  ident: 10.1074/jbc.M112.412783_bib33
  article-title: Crosstalk between the UPR and autophagy pathway contributes to handling cellular stress in neurodegenerative disease
  publication-title: Autophagy
  doi: 10.4161/auto.20139
– volume: 1
  start-page: 66
  year: 2005
  ident: 10.1074/jbc.M112.412783_bib56
  article-title: Does autophagy contribute to cell death?
  publication-title: Autophagy
  doi: 10.4161/auto.1.2.1738
– volume: 21
  start-page: 1619
  year: 2011
  ident: 10.1074/jbc.M112.412783_bib45
  article-title: Xbp1-mediated histone H4 deacetylation contributes to DNA double-strand break repair in yeast
  publication-title: Cell Res.
  doi: 10.1038/cr.2011.58
– volume: 84
  start-page: 422
  year: 2006
  ident: 10.1074/jbc.M112.412783_bib6
  article-title: Differential effects of insulin-like growth factor-1 and atheroma-associated cytokines on cell proliferation and apoptosis in plaque smooth muscle cells of symptomatic and asymptomatic patients with carotid stenosis
  publication-title: Immunol. Cell Biol.
  doi: 10.1111/j.1440-1711.2006.01449.x
– volume: 3
  start-page: e330
  year: 2012
  ident: 10.1074/jbc.M112.412783_bib32
  article-title: Apoptosis, autophagy, and ER stress in mevalonate cascade inhibition-induced cell death of human atrial fibroblasts
  publication-title: Cell Death Dis.
  doi: 10.1038/cddis.2012.61
– volume: 100
  start-page: 9946
  year: 2003
  ident: 10.1074/jbc.M112.412783_bib16
  article-title: Proteasome inhibitors disrupt the unfolded protein response in myeloma cells
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1334037100
– volume: 66
  start-page: 2885
  year: 2006
  ident: 10.1074/jbc.M112.412783_bib43
  article-title: Bcl-2 inhibition of autophagy. A new route to cancer?
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-05-4412
– volume: 30
  start-page: 307
  year: 2012
  ident: 10.1074/jbc.M112.412783_bib38
  article-title: MCP-1-induced protein promotes adipogenesis via oxidative stress, endoplasmic reticulum stress and autophagy
  publication-title: Cell Physiol. Biochem.
  doi: 10.1159/000339066
– volume: 12
  start-page: 781
  year: 2010
  ident: 10.1074/jbc.M112.412783_bib41
  article-title: Autophagy negatively regulates Wnt signalling by promoting Dishevelled degradation
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2082
– volume: 394
  start-page: 377
  year: 2010
  ident: 10.1074/jbc.M112.412783_bib54
  article-title: The autophagy-lysosome pathway. A novel mechanism involved in the processing of oxidized LDL in human vascular endothelial cells
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2010.03.026
– volume: 120
  start-page: 127
  year: 2010
  ident: 10.1074/jbc.M112.412783_bib36
  article-title: The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI40027
– volume: 8
  start-page: 741
  year: 2007
  ident: 10.1074/jbc.M112.412783_bib27
  article-title: Self-eating and self-killing. Cross-talk between autophagy and apoptosis
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2239
– volume: 16
  start-page: 452
  year: 2002
  ident: 10.1074/jbc.M112.412783_bib17
  article-title: IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response
  publication-title: Genes Dev.
  doi: 10.1101/gad.964702
– volume: 128
  start-page: 833
  year: 2007
  ident: 10.1074/jbc.M112.412783_bib11
  article-title: Autophagy. paying Charon's toll
  publication-title: Cell
  doi: 10.1016/j.cell.2007.02.023
– volume: 106
  start-page: 8326
  year: 2009
  ident: 10.1074/jbc.M112.412783_bib12
  article-title: Sustained activation of XBP1 splicing leads to endothelial apoptosis and atherosclerosis development in response to disturbed flow
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0903197106
– volume: 13
  start-page: 3687
  year: 2009
  ident: 10.1074/jbc.M112.412783_bib29
  article-title: Endostatin induces autophagy in endothelial cells by modulating Beclin 1 and β-catenin levels
  publication-title: J. Cell Mol. Med.
  doi: 10.1111/j.1582-4934.2009.00722.x
– volume: 237
  start-page: 318
  year: 1997
  ident: 10.1074/jbc.M112.412783_bib25
  article-title: A transgenic mouse line that retains Cre recombinase activity in mature oocytes irrespective of the cre transgene transmission
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1006/bbrc.1997.7111
– volume: 21
  start-page: 2245
  year: 2012
  ident: 10.1074/jbc.M112.412783_bib50
  article-title: Targeting the UPR transcription factor XBP1 protects against Huntington's disease through the regulation of FoxO1 and autophagy
  publication-title: Hum. Mol. Genet
  doi: 10.1093/hmg/dds040
– volume: 122
  start-page: 927
  year: 2005
  ident: 10.1074/jbc.M112.412783_bib44
  article-title: Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy
  publication-title: Cell
  doi: 10.1016/j.cell.2005.07.002
– volume: 31
  start-page: 2787
  year: 2011
  ident: 10.1074/jbc.M112.412783_bib51
  article-title: Autophagy in atherosclerosis. A potential drug target for plaque stabilization
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.111.224899
– volume: 29
  start-page: 4424
  year: 2010
  ident: 10.1074/jbc.M112.412783_bib37
  article-title: Regulation of autophagy by ATF4 in response to severe hypoxia
  publication-title: Oncogene
  doi: 10.1038/onc.2010.191
– volume: 302
  start-page: C383
  year: 2012
  ident: 10.1074/jbc.M112.412783_bib55
  article-title: Role of autophagy in angiogenesis in aortic endothelial cells
  publication-title: Am. J. Physiol. Cell Physiol.
  doi: 10.1152/ajpcell.00164.2011
– volume: 109
  start-page: 4793
  year: 2007
  ident: 10.1074/jbc.M112.412783_bib39
  article-title: Kringle 5 of human plasminogen, an angiogenesis inhibitor, induces both autophagy and apoptotic death in endothelial cells
  publication-title: Blood
  doi: 10.1182/blood-2006-11-059352
– volume: 104
  start-page: 304
  year: 2009
  ident: 10.1074/jbc.M112.412783_bib4
  article-title: Autophagy in atherosclerosis. A cell survival and death phenomenon with therapeutic potential
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.108.188318
– volume: 5
  start-page: e10409
  year: 2010
  ident: 10.1074/jbc.M112.412783_bib28
  article-title: 14-3-3Tau regulates Beclin 1 and is required for autophagy
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0010409
– volume: 15
  start-page: 534
  year: 2012
  ident: 10.1074/jbc.M112.412783_bib2
  article-title: Autophagy links inflammasomes to atherosclerotic progression
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2012.02.011
– volume: 6
  start-page: 463
  year: 2004
  ident: 10.1074/jbc.M112.412783_bib9
  article-title: Development by self-digestion. Molecular mechanisms and biological functions of autophagy
  publication-title: Dev. Cell
  doi: 10.1016/S1534-5807(04)00099-1
– volume: 122
  start-page: 460
  year: 2009
  ident: 10.1074/jbc.M112.412783_bib23
  article-title: Splicing of HDAC7 modulates the SRF-myocardin complex during stem-cell differentiation towards smooth muscle cells
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.034850
– volume: 15
  start-page: 545
  year: 2012
  ident: 10.1074/jbc.M112.412783_bib3
  article-title: Macrophage autophagy plays a protective role in advanced atherosclerosis
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2012.01.022
– volume: 167
  start-page: 35
  year: 2004
  ident: 10.1074/jbc.M112.412783_bib15
  article-title: XBP1. A link between the unfolded protein response, lipid biosynthesis, and biogenesis of the endoplasmic reticulum
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200406136
– volume: 247
  start-page: 1581
  year: 1990
  ident: 10.1074/jbc.M112.412783_bib14
  article-title: A new member of the leucine zipper class of proteins that binds to the HLA DR α promoter
  publication-title: Science
  doi: 10.1126/science.2321018
– volume: 281
  start-page: 30299
  year: 2006
  ident: 10.1074/jbc.M112.412783_bib35
  article-title: Endoplasmic reticulum stress triggers autophagy
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M607007200
– volume: 49
  start-page: 1029
  year: 2004
  ident: 10.1074/jbc.M112.412783_bib8
  article-title: [Autophagy as a bulk protein degradation system. It plays various roles]
  publication-title: Tanpakushitsu Kakusan Koso
– volume: 290
  start-page: 1717
  year: 2000
  ident: 10.1074/jbc.M112.412783_bib7
  article-title: Autophagy as a regulated pathway of cellular degradation
  publication-title: Science
  doi: 10.1126/science.290.5497.1717
– volume: 433
  start-page: 245
  year: 2011
  ident: 10.1074/jbc.M112.412783_bib46
  article-title: Regulation of unfolded protein response modulator XBP1s by acetylation and deacetylation
  publication-title: Biochem. J.
  doi: 10.1042/BJ20101293
– volume: 287
  start-page: 29921
  year: 2012
  ident: 10.1074/jbc.M112.412783_bib47
  article-title: SLC33A1/AT-1 protein regulates the induction of autophagy downstream of IRE1/XBP1 pathway
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.363911
– volume: 3
  start-page: e272
  year: 2012
  ident: 10.1074/jbc.M112.412783_bib48
  article-title: Activation of the unfolded protein response enhances motor recovery after spinal cord injury
  publication-title: Cell Death Dis.
  doi: 10.1038/cddis.2012.8
– volume: 412
  start-page: 300
  year: 2001
  ident: 10.1074/jbc.M112.412783_bib19
  article-title: Plasma cell differentiation requires the transcription factor XBP-1
  publication-title: Nature
  doi: 10.1038/35085509
– volume: 82
  start-page: 860
  year: 2004
  ident: 10.1074/jbc.M112.412783_bib5
  article-title: “Vulnerable plaques.” Ticking of the time bomb
  publication-title: Can J. Physiol. Pharmacol.
  doi: 10.1139/y04-095
– volume: 197
  start-page: 146
  year: 1993
  ident: 10.1074/jbc.M112.412783_bib20
  article-title: In situ hybridization studies suggest a role for the basic region-leucine zipper protein hXBP-1 in exocrine gland and skeletal development during mouse embryogenesis
  publication-title: Dev. Dyn.
  doi: 10.1002/aja.1001970207
– volume: 107
  start-page: 881
  year: 2001
  ident: 10.1074/jbc.M112.412783_bib18
  article-title: XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor
  publication-title: Cell
  doi: 10.1016/S0092-8674(01)00611-0
– volume: 29
  start-page: 613
  year: 2012
  ident: 10.1074/jbc.M112.412783_bib52
  article-title: ERK and Akt signaling pathways are involved in advanced glycation end product-induced autophagy in rat vascular smooth muscle cells
  publication-title: Int. J. Mol. Med.
  doi: 10.3892/ijmm.2012.891
– volume: 115
  start-page: 2679
  year: 2005
  ident: 10.1074/jbc.M112.412783_bib57
  article-title: Autophagy in cell death. An innocent convict?
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI26390
– volume: 91
  start-page: 2216
  year: 2011
  ident: 10.1074/jbc.M112.412783_bib53
  article-title: [Autophagy of human vascular endothelial cells by oxidized low-density lipoprotein. Involvement of oxidative stress but no oxidized low density lipoprotein-1]
  publication-title: Zhonghua Yi Xue Za Zhi
– volume: 12
  start-page: 1542
  year: 2005
  ident: 10.1074/jbc.M112.412783_bib10
  article-title: Autophagy. Molecular machinery for self-eating
  publication-title: Cell Death Differ.
  doi: 10.1038/sj.cdd.4401765
– volume: 106
  start-page: 1202
  year: 2010
  ident: 10.1074/jbc.M112.412783_bib22
  article-title: Histone deacetylase 7 controls endothelial cell growth through modulation of β-catenin
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.109.213165
– volume: 8
  start-page: 927
  year: 2012
  ident: 10.1074/jbc.M112.412783_bib58
  article-title: Caspase activation regulates the extracellular export of autophagic vacuoles
  publication-title: Autophagy
  doi: 10.4161/auto.19768
– volume: 14
  start-page: 152
  year: 2000
  ident: 10.1074/jbc.M112.412783_bib21
  article-title: An essential role in liver development for transcription factor XBP-1
  publication-title: Genes Dev.
  doi: 10.1101/gad.14.2.152
– volume: 318
  start-page: 238
  year: 2012
  ident: 10.1074/jbc.M112.412783_bib34
  article-title: ER signaling regulation drives the switch between autophagy and apoptosis in NRK-52E cells exposed to cisplatin
  publication-title: Exp. Cell Res.
  doi: 10.1016/j.yexcr.2011.11.008
– volume: 282
  start-page: 13123
  year: 2007
  ident: 10.1074/jbc.M112.412783_bib42
  article-title: Crystal structure of the Bcl-XL-Beclin 1 peptide complex. Beclin 1 is a novel BH3-only protein
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M700492200
– volume: 23
  start-page: 2891
  year: 2004
  ident: 10.1074/jbc.M112.412783_bib30
  article-title: Autophagy as a cell death and tumor suppressor mechanism
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1207521
– volume: 105
  start-page: 757
  year: 2008
  ident: 10.1074/jbc.M112.412783_bib49
  article-title: Unfolded protein response transcription factor XBP-1 does not influence prion replication or pathogenesis
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0711094105
– volume: 109
  start-page: 13793
  year: 2012
  ident: 10.1074/jbc.M112.412783_bib24
  article-title: Direct reprogramming of fibroblasts into endothelial cells capable of angiogenesis and reendothelialization in tissue-engineered vessels
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1205526109
– volume: 230
  start-page: 230
  year: 2001
  ident: 10.1074/jbc.M112.412783_bib26
  article-title: Tie2-Cre transgenic mice. A new model for endothelial cell-lineage analysis in vivo
  publication-title: Dev. Biol.
  doi: 10.1006/dbio.2000.0106
– volume: 18
  start-page: 715
  year: 2003
  ident: 10.1074/jbc.M112.412783_bib40
  article-title: Endostatin induces autophagic cell death in EAhy926 human endothelial cells
  publication-title: Histol. Histopathol.
– volume: 24
  start-page: 1855
  year: 1996
  ident: 10.1074/jbc.M112.412783_bib13
  article-title: The basic domain/leucine zipper protein hXBP-1 preferentially binds to and transactivates CRE-like sequences containing an ACGT core
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/24.10.1855
– volume: 10
  start-page: 216
  year: 2008
  ident: 10.1074/jbc.M112.412783_bib1
  article-title: Autophagy in atherosclerosis
  publication-title: Curr. Atheroscler. Rep.
  doi: 10.1007/s11883-008-0034-y
– volume: 8
  start-page: 915
  year: 2012
  ident: 10.1074/jbc.M112.412783_bib31
  article-title: ER stress inhibits neuronal death by promoting autophagy
  publication-title: Autophagy
  doi: 10.4161/auto.19716
SSID ssj0000491
Score 2.5281646
Snippet Sustained activation of X-box-binding protein 1 (XBP1) results in endothelial cell (EC) apoptosis and atherosclerosis development. The present study provides...
Background: Apoptosis and autophagy are two closely related systems that induce cell death. Results: X-box-binding protein 1 ( XBP1 ) mRNA splicing regulates...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 859
SubjectTerms Alternative Splicing
Animals
Apoptosis Regulatory Proteins - genetics
Atherosclerosis
Autophagy
Autophagy - genetics
Base Sequence
BECLIN-1
Cell Biology
Cell Death
Cells, Cultured
Chromatin Immunoprecipitation
DNA Primers
DNA-Binding Proteins - genetics
Electron Microscopy (EM)
Endothelial Cell
Endothelium, Vascular - cytology
Endothelium, Vascular - metabolism
Fluorescent Antibody Technique, Indirect
Humans
Membrane Proteins - genetics
Mice
Mice, Knockout
Microscopy, Electron, Transmission
Real-Time Polymerase Chain Reaction
Regulatory Factor X Transcription Factors
Reverse Transcriptase Polymerase Chain Reaction
RNA Splicing
RNA, Messenger - genetics
Transcription Factors - genetics
Transcriptional Activation - genetics
X-Box Binding Protein 1
XBP1
Title XBP1 mRNA Splicing Triggers an Autophagic Response in Endothelial Cells through BECLIN-1 Transcriptional Activation
URI https://dx.doi.org/10.1074/jbc.M112.412783
https://www.ncbi.nlm.nih.gov/pubmed/23184933
https://www.proquest.com/docview/1273502365
https://pubmed.ncbi.nlm.nih.gov/PMC3543035
Volume 288
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKeIAXBBuXcpOREEKaUuLYaZLHruo0UFcuaqW-RY7jlEpbimj7AOLHc44dJ1m3SoOXqHLiNMr54vPZPuc7hLzVGrySXzBPipB7Alykl_C-76kiL5LM57lgmCh8PumfzcSneTjvdP60s0s2WU_9vjGv5H-sCm1gV8yS_QfL1jeFBvgN9oUjWBiOt7Lx_OQLO778Nhkcr3Eb2pZ8WC4WmJQL363comqAXBiVZhMKaxVCyhzTri5wrRzX7dd1sZ6T0XD8ceIxLBxR1uMJqgkoVwWtTWabtDJDaK2ek1UccWXkmgVvrKe7tLEDGEQJqKwdwthWzl5hRnHlSE3AgR0Rp622RvTApsa31yywfgTzqjHVDrNA_DCHYG690A1t1dgcxHELhEFrpI2tkPg1DwCUCD1ApnrnQCV7gmEpkcbZuQ3-yef0dDYep9PRfHqH3A0iYF64pf-10ZqHuROz6Rn2uZwwVCQ-7Nx-H6e5PmfZDb1tcZnpQ_KgshkdWEQ9Ih1dHpKjQSk3q8tf9B01YcFmv-WQ3Bs6Wx6RNQKOIuCoAxx1gKOypA3gqAMcXZa0BThqAEcrwFEHOLoDONoA7jGZnY6mwzOvqtrhKSCfGw8YOo_jRIg8gsE95BKmBIKxKJeB0lkW6TBSUWEydwutfZYnUrJYcd8vVBznBX9CDspVqZ8RGgV5IVSg_SQGoitDyXUm8n4BlDUIc-13Sc-991RVkvZYWeUiNaEVkUjBUCkaKrWG6pL3dYcfVs1l_6WBM2RakVFLMlNA2v5Ob5zJUzANvlJZ6tV2ncJpHmK1hrBLnloI1E8AU6xYJBx6R1fAUV-AEvBXz5TL70YKnocCOGj4_Bb_-4Lcbz7Fl-Rg83OrXwGh3mSvDe7_As0az0k
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=XBP1+mRNA+splicing+triggers+an+autophagic+response+in+endothelial+cells+through+BECLIN-1+transcriptional+activation&rft.jtitle=The+Journal+of+biological+chemistry&rft.au=Margariti%2C+Andriana&rft.au=Li%2C+Hongling&rft.au=Chen%2C+Ting&rft.au=Martin%2C+Daniel&rft.date=2013-01-11&rft.issn=1083-351X&rft.eissn=1083-351X&rft.volume=288&rft.issue=2&rft.spage=859&rft_id=info:doi/10.1074%2Fjbc.M112.412783&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9258&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9258&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9258&client=summon