The added value of temporal data and the best way to handle it: A use-case for atrial fibrillation using general practitioner data

Temporal data has numerous challenges for deep learning such as irregularity of sampling. New algorithms are being developed that can handle these temporal challenges better. However, it is unclear how the performance ranges from classical non-temporal models to newly developed algorithms. Therefore...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 171; p. 108097
Main Authors Bennis, Frank C., Aussems, Claire, Korevaar, Joke C., Hoogendoorn, Mark
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.03.2024
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0010-4825
1879-0534
1879-0534
DOI10.1016/j.compbiomed.2024.108097

Cover

Abstract Temporal data has numerous challenges for deep learning such as irregularity of sampling. New algorithms are being developed that can handle these temporal challenges better. However, it is unclear how the performance ranges from classical non-temporal models to newly developed algorithms. Therefore, this study compares different non-temporal and temporal algorithms for a relevant use case, the prediction of atrial fibrillation (AF) using general practitioner (GP) data. Three datasets with a 365-day observation window and prediction windows of 14, 180 and 360 days were used. Data consisted of medication, lab, symptom, and chronic diseases codings registered by the GP. The benchmark discarded temporality and used logistic regression, XGBoost models and neural networks on the presence of codings over the whole year. Pattern data extracted common patterns of GP codings and tested using the same algorithms. LSTM and CKConv models were trained as models incorporating temporality. Algorithms which incorporated temporality (LSTM and CKConv, (max AUC 0.734 at 360 days prediction window) outperformed both benchmark and pattern algorithms (max AUC 0.723, with a significant improvement using the 360 days prediction window (p = 0.04). The difference between the benchmark and the LSTM or CKConv algorithm decreased with smaller prediction windows, indicating temporal importance for longer prediction windows. The CKConv and LSTM algorithm performed similarly, possibly due to limited sequence length. Temporal models outperformed non-temporal models for the prediction of AF. For temporal models, CKConv is a promising algorithm to handle temporal data using GP data as it can handle irregular data. •Atrial fibrillation can be predicted one year in advance from GP data.•Temporal data significantly improves the prediction of AF using neural networks.•CKConv and LSTM outperform benchmark algorithms for AF prediction.•CKConv and LSTM perform similar for predicting AF.
AbstractList AbstractIntroductionTemporal data has numerous challenges for deep learning such as irregularity of sampling. New algorithms are being developed that can handle these temporal challenges better. However, it is unclear how the performance ranges from classical non-temporal models to newly developed algorithms. Therefore, this study compares different non-temporal and temporal algorithms for a relevant use case, the prediction of atrial fibrillation (AF) using general practitioner (GP) data. MethodsThree datasets with a 365-day observation window and prediction windows of 14, 180 and 360 days were used. Data consisted of medication, lab, symptom, and chronic diseases codings registered by the GP. The benchmark discarded temporality and used logistic regression, XGBoost models and neural networks on the presence of codings over the whole year. Pattern data extracted common patterns of GP codings and tested using the same algorithms. LSTM and CKConv models were trained as models incorporating temporality. ResultsAlgorithms which incorporated temporality (LSTM and CKConv, (max AUC 0.734 at 360 days prediction window) outperformed both benchmark and pattern algorithms (max AUC 0.723, with a significant improvement using the 360 days prediction window (p = 0.04). The difference between the benchmark and the LSTM or CKConv algorithm decreased with smaller prediction windows, indicating temporal importance for longer prediction windows. The CKConv and LSTM algorithm performed similarly, possibly due to limited sequence length. ConclusionTemporal models outperformed non-temporal models for the prediction of AF. For temporal models, CKConv is a promising algorithm to handle temporal data using GP data as it can handle irregular data.
Temporal data has numerous challenges for deep learning such as irregularity of sampling. New algorithms are being developed that can handle these temporal challenges better. However, it is unclear how the performance ranges from classical non-temporal models to newly developed algorithms. Therefore, this study compares different non-temporal and temporal algorithms for a relevant use case, the prediction of atrial fibrillation (AF) using general practitioner (GP) data. Three datasets with a 365-day observation window and prediction windows of 14, 180 and 360 days were used. Data consisted of medication, lab, symptom, and chronic diseases codings registered by the GP. The benchmark discarded temporality and used logistic regression, XGBoost models and neural networks on the presence of codings over the whole year. Pattern data extracted common patterns of GP codings and tested using the same algorithms. LSTM and CKConv models were trained as models incorporating temporality. Algorithms which incorporated temporality (LSTM and CKConv, (max AUC 0.734 at 360 days prediction window) outperformed both benchmark and pattern algorithms (max AUC 0.723, with a significant improvement using the 360 days prediction window (p = 0.04). The difference between the benchmark and the LSTM or CKConv algorithm decreased with smaller prediction windows, indicating temporal importance for longer prediction windows. The CKConv and LSTM algorithm performed similarly, possibly due to limited sequence length. Temporal models outperformed non-temporal models for the prediction of AF. For temporal models, CKConv is a promising algorithm to handle temporal data using GP data as it can handle irregular data. •Atrial fibrillation can be predicted one year in advance from GP data.•Temporal data significantly improves the prediction of AF using neural networks.•CKConv and LSTM outperform benchmark algorithms for AF prediction.•CKConv and LSTM perform similar for predicting AF.
IntroductionTemporal data has numerous challenges for deep learning such as irregularity of sampling. New algorithms are being developed that can handle these temporal challenges better. However, it is unclear how the performance ranges from classical non-temporal models to newly developed algorithms. Therefore, this study compares different non-temporal and temporal algorithms for a relevant use case, the prediction of atrial fibrillation (AF) using general practitioner (GP) data.MethodsThree datasets with a 365-day observation window and prediction windows of 14, 180 and 360 days were used. Data consisted of medication, lab, symptom, and chronic diseases codings registered by the GP. The benchmark discarded temporality and used logistic regression, XGBoost models and neural networks on the presence of codings over the whole year. Pattern data extracted common patterns of GP codings and tested using the same algorithms. LSTM and CKConv models were trained as models incorporating temporality.ResultsAlgorithms which incorporated temporality (LSTM and CKConv, (max AUC 0.734 at 360 days prediction window) outperformed both benchmark and pattern algorithms (max AUC 0.723, with a significant improvement using the 360 days prediction window (p = 0.04). The difference between the benchmark and the LSTM or CKConv algorithm decreased with smaller prediction windows, indicating temporal importance for longer prediction windows. The CKConv and LSTM algorithm performed similarly, possibly due to limited sequence length.ConclusionTemporal models outperformed non-temporal models for the prediction of AF. For temporal models, CKConv is a promising algorithm to handle temporal data using GP data as it can handle irregular data.
Temporal data has numerous challenges for deep learning such as irregularity of sampling. New algorithms are being developed that can handle these temporal challenges better. However, it is unclear how the performance ranges from classical non-temporal models to newly developed algorithms. Therefore, this study compares different non-temporal and temporal algorithms for a relevant use case, the prediction of atrial fibrillation (AF) using general practitioner (GP) data.INTRODUCTIONTemporal data has numerous challenges for deep learning such as irregularity of sampling. New algorithms are being developed that can handle these temporal challenges better. However, it is unclear how the performance ranges from classical non-temporal models to newly developed algorithms. Therefore, this study compares different non-temporal and temporal algorithms for a relevant use case, the prediction of atrial fibrillation (AF) using general practitioner (GP) data.Three datasets with a 365-day observation window and prediction windows of 14, 180 and 360 days were used. Data consisted of medication, lab, symptom, and chronic diseases codings registered by the GP. The benchmark discarded temporality and used logistic regression, XGBoost models and neural networks on the presence of codings over the whole year. Pattern data extracted common patterns of GP codings and tested using the same algorithms. LSTM and CKConv models were trained as models incorporating temporality.METHODSThree datasets with a 365-day observation window and prediction windows of 14, 180 and 360 days were used. Data consisted of medication, lab, symptom, and chronic diseases codings registered by the GP. The benchmark discarded temporality and used logistic regression, XGBoost models and neural networks on the presence of codings over the whole year. Pattern data extracted common patterns of GP codings and tested using the same algorithms. LSTM and CKConv models were trained as models incorporating temporality.Algorithms which incorporated temporality (LSTM and CKConv, (max AUC 0.734 at 360 days prediction window) outperformed both benchmark and pattern algorithms (max AUC 0.723, with a significant improvement using the 360 days prediction window (p = 0.04). The difference between the benchmark and the LSTM or CKConv algorithm decreased with smaller prediction windows, indicating temporal importance for longer prediction windows. The CKConv and LSTM algorithm performed similarly, possibly due to limited sequence length.RESULTSAlgorithms which incorporated temporality (LSTM and CKConv, (max AUC 0.734 at 360 days prediction window) outperformed both benchmark and pattern algorithms (max AUC 0.723, with a significant improvement using the 360 days prediction window (p = 0.04). The difference between the benchmark and the LSTM or CKConv algorithm decreased with smaller prediction windows, indicating temporal importance for longer prediction windows. The CKConv and LSTM algorithm performed similarly, possibly due to limited sequence length.Temporal models outperformed non-temporal models for the prediction of AF. For temporal models, CKConv is a promising algorithm to handle temporal data using GP data as it can handle irregular data.CONCLUSIONTemporal models outperformed non-temporal models for the prediction of AF. For temporal models, CKConv is a promising algorithm to handle temporal data using GP data as it can handle irregular data.
Temporal data has numerous challenges for deep learning such as irregularity of sampling. New algorithms are being developed that can handle these temporal challenges better. However, it is unclear how the performance ranges from classical non-temporal models to newly developed algorithms. Therefore, this study compares different non-temporal and temporal algorithms for a relevant use case, the prediction of atrial fibrillation (AF) using general practitioner (GP) data. Three datasets with a 365-day observation window and prediction windows of 14, 180 and 360 days were used. Data consisted of medication, lab, symptom, and chronic diseases codings registered by the GP. The benchmark discarded temporality and used logistic regression, XGBoost models and neural networks on the presence of codings over the whole year. Pattern data extracted common patterns of GP codings and tested using the same algorithms. LSTM and CKConv models were trained as models incorporating temporality. Algorithms which incorporated temporality (LSTM and CKConv, (max AUC 0.734 at 360 days prediction window) outperformed both benchmark and pattern algorithms (max AUC 0.723, with a significant improvement using the 360 days prediction window (p = 0.04). The difference between the benchmark and the LSTM or CKConv algorithm decreased with smaller prediction windows, indicating temporal importance for longer prediction windows. The CKConv and LSTM algorithm performed similarly, possibly due to limited sequence length. Temporal models outperformed non-temporal models for the prediction of AF. For temporal models, CKConv is a promising algorithm to handle temporal data using GP data as it can handle irregular data.
ArticleNumber 108097
Author Bennis, Frank C.
Hoogendoorn, Mark
Aussems, Claire
Korevaar, Joke C.
Author_xml – sequence: 1
  givenname: Frank C.
  orcidid: 0000-0002-6233-9101
  surname: Bennis
  fullname: Bennis, Frank C.
  email: f.c.bennis@vu.nl
  organization: Quantitative Data Analytics Group, Department of Computer Science, VU Amsterdam, Amsterdam, the Netherlands
– sequence: 2
  givenname: Claire
  surname: Aussems
  fullname: Aussems, Claire
  organization: Nivel, Netherlands Institute for Health Services Research, Utrecht, the Netherlands
– sequence: 3
  givenname: Joke C.
  orcidid: 0000-0001-9997-040X
  surname: Korevaar
  fullname: Korevaar, Joke C.
  organization: Nivel, Netherlands Institute for Health Services Research, Utrecht, the Netherlands
– sequence: 4
  givenname: Mark
  surname: Hoogendoorn
  fullname: Hoogendoorn, Mark
  organization: Quantitative Data Analytics Group, Department of Computer Science, VU Amsterdam, Amsterdam, the Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38412689$$D View this record in MEDLINE/PubMed
BookMark eNqVkl1rFTEQhoNU7Gn1L0jAG2_2ONnPxAuxFluFghfW65BNZtsc9yRrkm05t_5ys55WoSBUCCRMnnln5k2OyIHzDgmhDNYMWPtms9Z-O_XWb9GsSyjrHOYguidkxXgnCmiq-oCsABgUNS-bQ3IU4wYAaqjgGTmseM3KlosV-Xl5jVQZg4beqHFG6geacDv5oEZqVFJUOUNThnqMid6qHU2eXufgiNSmt_SEzhELrSLSwQeqUrA5c7B9sOOokvUuA9Zd0St0uIhOQelklwsMvys8J08HNUZ8cbcfk29nHy9PPxUXX84_n55cFLoBkYqKdV3HRTdUAjW2ulddWatOgep1VepGcY6mbYRuF0PqoR2EqcXASmgaML2pjonY685uUrtbNY5yCnarwk4ykIuvciP_-ioXGbn3Nee-3udOwf-YsxNya6PGPKFDP0dZiiqvthOQ0VcP0I2fg8uTZarpugqAt5l6eUfN_VLsvpP7l8kA3wM6-BgDDv_T7Id9KmY3bywGGbVFp9HYgDpJ4-1jRN49ENGjdVar8TvuMP6ZiclYSpBfl7-2fLWyzifOWBZ4_2-Bx_XwCwEQ6Kg
Cites_doi 10.1145/2508037.2508044
10.1007/s00134-021-06446-7
10.1161/CIRCOUTCOMES.116.002797
10.1109/LSP.2014.2337313
10.1093/europace/euac016
10.1161/JAHA.112.000102
10.1371/journal.pone.0224582
10.1007/s12028-020-00930-6
10.1145/3516367
10.1136/bmjopen-2021-060458
10.1007/s10916-019-1243-3
10.1016/j.compbiomed.2016.06.019
10.1161/CIRCULATIONAHA.121.057480
10.1093/jamia/ocw112
10.1016/S0140-6736(22)01637-3
10.1007/s00134-020-06045-y
ContentType Journal Article
Copyright 2024 The Author(s)
The Author(s)
Copyright © 2024 The Author(s). Published by Elsevier Ltd.. All rights reserved.
2024. The Author(s)
Copyright_xml – notice: 2024 The Author(s)
– notice: The Author(s)
– notice: Copyright © 2024 The Author(s). Published by Elsevier Ltd.. All rights reserved.
– notice: 2024. The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
JQ2
K9.
M7Z
NAPCQ
P64
7X8
ADTOC
UNPAY
DOI 10.1016/j.compbiomed.2024.108097
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
ProQuest Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nursing & Allied Health Premium
Technology Research Database
ProQuest Computer Science Collection
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList

Nursing & Allied Health Premium
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 108097
ExternalDocumentID 10.1016/j.compbiomed.2024.108097
38412689
10_1016_j_compbiomed_2024_108097
S0010482524001811
1_s2_0_S0010482524001811
Genre Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
77I
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
~HD
3V.
AACTN
AFCTW
AFKWA
AJOXV
ALIPV
AMFUW
M0N
RIG
6I.
AAFTH
AAIAV
ABLVK
ABYKQ
AJBFU
AQVPL
LCYCR
AAYXX
CITATION
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
JQ2
K9.
M7Z
P64
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c509t-31777897f39ece6cba724a7a0abc32c5a88ed659c620244f6f9d49f120550dbd3
IEDL.DBID .~1
ISSN 0010-4825
1879-0534
IngestDate Sun Oct 26 03:32:58 EDT 2025
Sun Sep 28 08:44:07 EDT 2025
Tue Oct 07 06:44:54 EDT 2025
Wed Feb 19 02:03:44 EST 2025
Wed Oct 01 04:08:04 EDT 2025
Sat Apr 13 16:38:46 EDT 2024
Tue Feb 25 20:08:36 EST 2025
Tue Oct 14 19:37:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Clinical prediction
CKConv
Temporal
Convolutional neural networks
General practitioner
Atrial fibrillation
Language English
License This is an open access article under the CC BY license.
Copyright © 2024 The Author(s). Published by Elsevier Ltd.. All rights reserved.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-31777897f39ece6cba724a7a0abc32c5a88ed659c620244f6f9d49f120550dbd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9997-040X
0000-0002-6233-9101
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0010482524001811
PMID 38412689
PQID 2957730086
PQPubID 1226355
PageCount 1
ParticipantIDs unpaywall_primary_10_1016_j_compbiomed_2024_108097
proquest_miscellaneous_2932936790
proquest_journals_2957730086
pubmed_primary_38412689
crossref_primary_10_1016_j_compbiomed_2024_108097
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2024_108097
elsevier_clinicalkeyesjournals_1_s2_0_S0010482524001811
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2024_108097
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2024
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References (bib19) 2021
Kop (bib10) 2016; 76
Szymanski (bib24) Sep. 2022; 24
Maragatham, Devi (bib12) May 2019; 43
Hill (bib8) Nov. 2019; 14
M. Ghassemi et al., “A Multivariate Timeseries Modeling Approach to Severity of Illness Assessment and Forecasting in ICU with Sparse, Heterogeneous Clinical Data.” [Online]. Available
Fleuren, Thoral, Shillan, Ercole, Elbers (bib4) Jul. 2020; 46
Choi, Schuetz, Stewart, Sun (bib11) Mar. 2017; 24
Friedman (bib21) 2001
Bennis, Hoogendoorn, Aussems, Korevaar (bib9) Aug. 2022; 12
Kazeev (bib23) 2021; 25
Khurshid (bib25) Jan. 2022; 145
Lea, Vidal, Reiter, Hager (bib15) Aug. 2016
Ng, Steinhubl, DeFilippi, Dey, Stewart (bib14) Nov. 2016; 9
Pascanu, Mikolov, Bengio (bib13) Nov. 2012
Bennis (bib3) 2020; 33
Romero, Kuzina, Bekkers, Tomczak, Hoogendoorn (bib16) 2021
Pang, “CEHR-BERT: Incorporating Temporal Information from Structured EHR Data to Improve Prediction Tasks.”.
Tipirneni, Reddy (bib6) Dec. 2022; 16
.
Nielen (bib17) 2021
Batal, Valizadegan, Cooper, Hauskrecht (bib20) Sep. 2013; 4
(bib18) 2005
Noseworthy (bib26) Oct. 2022; 400
Alonso (bib27) 2013; 2
van de Sande, van Genderen, Huiskens, Gommers, van Bommel (bib5) Jul. 2021; 47
Sun, Xu (bib22) Nov. 2014; 21
Choi, Bahadori, Kulas, Schuetz, Stewart, Sun (bib2) Aug. 2016
Tipirneni (10.1016/j.compbiomed.2024.108097_bib6) 2022; 16
Fleuren (10.1016/j.compbiomed.2024.108097_bib4) 2020; 46
Nielen (10.1016/j.compbiomed.2024.108097_bib17) 2021
(10.1016/j.compbiomed.2024.108097_bib18) 2005
10.1016/j.compbiomed.2024.108097_bib1
Batal (10.1016/j.compbiomed.2024.108097_bib20) 2013; 4
Hill (10.1016/j.compbiomed.2024.108097_bib8) 2019; 14
Lea (10.1016/j.compbiomed.2024.108097_bib15) 2016
Szymanski (10.1016/j.compbiomed.2024.108097_bib24) 2022; 24
10.1016/j.compbiomed.2024.108097_bib7
van de Sande (10.1016/j.compbiomed.2024.108097_bib5) 2021; 47
Kazeev (10.1016/j.compbiomed.2024.108097_bib23) 2021; 25
Choi (10.1016/j.compbiomed.2024.108097_bib11) 2017; 24
Pascanu (10.1016/j.compbiomed.2024.108097_bib13) 2012
Noseworthy (10.1016/j.compbiomed.2024.108097_bib26) 2022; 400
Alonso (10.1016/j.compbiomed.2024.108097_bib27) 2013; 2
Friedman (10.1016/j.compbiomed.2024.108097_bib21) 2001
Khurshid (10.1016/j.compbiomed.2024.108097_bib25) 2022; 145
Kop (10.1016/j.compbiomed.2024.108097_bib10) 2016; 76
Romero (10.1016/j.compbiomed.2024.108097_bib16) 2021
Choi (10.1016/j.compbiomed.2024.108097_bib2) 2016
Bennis (10.1016/j.compbiomed.2024.108097_bib9) 2022; 12
Ng (10.1016/j.compbiomed.2024.108097_bib14) 2016; 9
Bennis (10.1016/j.compbiomed.2024.108097_bib3) 2020; 33
Maragatham (10.1016/j.compbiomed.2024.108097_bib12) 2019; 43
(10.1016/j.compbiomed.2024.108097_bib19) 2021
Sun (10.1016/j.compbiomed.2024.108097_bib22) 2014; 21
References_xml – year: 2001
  ident: bib21
  article-title: REITZ LECTURE GREEDY FUNCTION APPROXIMATION: A GRADIENT BOOSTING MACHINE
– year: 2021
  ident: bib17
  article-title: Methode Vaststellen Cijfers Zorgverlening Huisartsen
– volume: 14
  year: Nov. 2019
  ident: bib8
  article-title: Predicting atrial fibrillation in primary care using machine learning
  publication-title: PLoS One
– volume: 76
  start-page: 30
  year: 2016
  end-page: 38
  ident: bib10
  article-title: Predictive modeling of colorectal cancer using a dedicated pre-processing pipeline on routine electronic medical records
  publication-title: Comput. Biol. Med.
– volume: 16
  start-page: 1
  year: Dec. 2022
  end-page: 17
  ident: bib6
  article-title: Self-supervised transformer for sparse and irregularly sampled multivariate clinical time-series
  publication-title: ACM Trans. Knowl. Discov. Data
– volume: 25
  year: 2021
  ident: bib23
  article-title: A Python implementation of an algorithm for computing the statistical significance of comparing two sets of predictions by ROC AUC
  publication-title: Nov
– reference: Pang, “CEHR-BERT: Incorporating Temporal Information from Structured EHR Data to Improve Prediction Tasks.”.
– volume: 24
  start-page: 361
  year: Mar. 2017
  end-page: 370
  ident: bib11
  article-title: Using recurrent neural network models for early detection of heart failure onset
  publication-title: J. Am. Med. Inf. Assoc.
– year: 2021
  ident: bib16
  article-title: CKConv: Continuous Kernel Convolution for Sequential Data
– volume: 21
  start-page: 1389
  year: Nov. 2014
  end-page: 1393
  ident: bib22
  article-title: Fast implementation of DeLong's algorithm for comparing the areas under correlated receiver operating characteristic curves
  publication-title: IEEE Signal Process. Lett.
– volume: 145
  start-page: 122
  year: Jan. 2022
  end-page: 133
  ident: bib25
  article-title: ECG-based deep learning and clinical risk factors to predict atrial fibrillation
  publication-title: Circulation
– volume: 46
  start-page: 1486
  year: Jul. 2020
  end-page: 1488
  ident: bib4
  article-title: Machine learning in intensive care medicine: ready for take-off?
  publication-title: Intensive Care Med.
– year: Aug. 2016
  ident: bib15
  article-title: Temporal Convolutional Networks: A Unified Approach to Action Segmentation
– reference: .
– volume: 24
  start-page: 1240
  year: Sep. 2022
  end-page: 1247
  ident: bib24
  article-title: Budget impact analysis of a machine learning algorithm to predict high risk of atrial fibrillation among primary care patients
  publication-title: Europace
– volume: 2
  year: 2013
  ident: bib27
  article-title: Simple risk model predicts incidence of atrial fibrillation in a racially and geographically diverse population: the CHARGE-AF consortium
  publication-title: J. Am. Heart Assoc.
– volume: 12
  year: Aug. 2022
  ident: bib9
  article-title: Prediction of heart failure 1 year before diagnosis in general practitioner patients using machine learning algorithms: a retrospective case–control study
  publication-title: BMJ Open
– year: 2021
  ident: bib19
  article-title: Guidelines for ATC Classification and DDD Assignment, 24th Ed
– year: 2005
  ident: bib18
  article-title: ICPC-2-R: Internatio
– volume: 4
  start-page: 1
  year: Sep. 2013
  end-page: 22
  ident: bib20
  article-title: A temporal pattern mining approach for classifying electronic health record data
  publication-title: ACM Trans Intell Syst Technol
– volume: 400
  start-page: 1206
  year: Oct. 2022
  end-page: 1212
  ident: bib26
  article-title: Artificial intelligence-guided screening for atrial fibrillation using electrocardiogram during sinus rhythm: a prospective non-randomised interventional trial
  publication-title: Lancet
– reference: M. Ghassemi et al., “A Multivariate Timeseries Modeling Approach to Severity of Illness Assessment and Forecasting in ICU with Sparse, Heterogeneous Clinical Data.” [Online]. Available:
– start-page: 3512
  year: Aug. 2016
  end-page: 3520
  ident: bib2
  article-title: RETAIN: an interpretable predictive model for healthcare using Reverse time attention mechanism
  publication-title: Adv Neural Inf Process Syst, no. Nips
– volume: 9
  start-page: 649
  year: Nov. 2016
  end-page: 658
  ident: bib14
  article-title: Early detection of heart failure using electronic health records
  publication-title: Circ Cardiovasc Qual Outcomes
– volume: 43
  start-page: 111
  year: May 2019
  ident: bib12
  article-title: LSTM model for prediction of heart failure in big data
  publication-title: J. Med. Syst.
– year: Nov. 2012
  ident: bib13
  article-title: On the Difficulty of Training Recurrent Neural Networks
– volume: 47
  start-page: 750
  year: Jul. 2021
  end-page: 760
  ident: bib5
  article-title: Moving from bytes to bedside: a systematic review on the use of artificial intelligence in the intensive care unit
  publication-title: Intensive Care Med.
– volume: 33
  start-page: 542
  year: 2020
  end-page: 551
  ident: bib3
  article-title: Improving prediction of favourable outcome after 6 Months in patients with severe traumatic brain injury using physiological cerebral parameters in a multivariable logistic regression model
  publication-title: Neurocritical Care
– volume: 4
  start-page: 1
  issue: 4
  year: 2013
  ident: 10.1016/j.compbiomed.2024.108097_bib20
  article-title: A temporal pattern mining approach for classifying electronic health record data
  publication-title: ACM Trans Intell Syst Technol
  doi: 10.1145/2508037.2508044
– volume: 47
  start-page: 750
  issue: 7
  year: 2021
  ident: 10.1016/j.compbiomed.2024.108097_bib5
  article-title: Moving from bytes to bedside: a systematic review on the use of artificial intelligence in the intensive care unit
  publication-title: Intensive Care Med.
  doi: 10.1007/s00134-021-06446-7
– year: 2021
  ident: 10.1016/j.compbiomed.2024.108097_bib17
– volume: 9
  start-page: 649
  issue: 6
  year: 2016
  ident: 10.1016/j.compbiomed.2024.108097_bib14
  article-title: Early detection of heart failure using electronic health records
  publication-title: Circ Cardiovasc Qual Outcomes
  doi: 10.1161/CIRCOUTCOMES.116.002797
– year: 2016
  ident: 10.1016/j.compbiomed.2024.108097_bib15
– volume: 21
  start-page: 1389
  issue: 11
  year: 2014
  ident: 10.1016/j.compbiomed.2024.108097_bib22
  article-title: Fast implementation of DeLong's algorithm for comparing the areas under correlated receiver operating characteristic curves
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2014.2337313
– volume: 24
  start-page: 1240
  issue: 8
  year: 2022
  ident: 10.1016/j.compbiomed.2024.108097_bib24
  article-title: Budget impact analysis of a machine learning algorithm to predict high risk of atrial fibrillation among primary care patients
  publication-title: Europace
  doi: 10.1093/europace/euac016
– volume: 2
  issue: 2
  year: 2013
  ident: 10.1016/j.compbiomed.2024.108097_bib27
  article-title: Simple risk model predicts incidence of atrial fibrillation in a racially and geographically diverse population: the CHARGE-AF consortium
  publication-title: J. Am. Heart Assoc.
  doi: 10.1161/JAHA.112.000102
– year: 2001
  ident: 10.1016/j.compbiomed.2024.108097_bib21
– volume: 14
  issue: 11
  year: 2019
  ident: 10.1016/j.compbiomed.2024.108097_bib8
  article-title: Predicting atrial fibrillation in primary care using machine learning
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0224582
– volume: 33
  start-page: 542
  issue: 2
  year: 2020
  ident: 10.1016/j.compbiomed.2024.108097_bib3
  article-title: Improving prediction of favourable outcome after 6 Months in patients with severe traumatic brain injury using physiological cerebral parameters in a multivariable logistic regression model
  publication-title: Neurocritical Care
  doi: 10.1007/s12028-020-00930-6
– volume: 16
  start-page: 1
  issue: 6
  year: 2022
  ident: 10.1016/j.compbiomed.2024.108097_bib6
  article-title: Self-supervised transformer for sparse and irregularly sampled multivariate clinical time-series
  publication-title: ACM Trans. Knowl. Discov. Data
  doi: 10.1145/3516367
– year: 2005
  ident: 10.1016/j.compbiomed.2024.108097_bib18
– volume: 12
  issue: 8
  year: 2022
  ident: 10.1016/j.compbiomed.2024.108097_bib9
  article-title: Prediction of heart failure 1 year before diagnosis in general practitioner patients using machine learning algorithms: a retrospective case–control study
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2021-060458
– year: 2012
  ident: 10.1016/j.compbiomed.2024.108097_bib13
– volume: 43
  start-page: 111
  issue: 5
  year: 2019
  ident: 10.1016/j.compbiomed.2024.108097_bib12
  article-title: LSTM model for prediction of heart failure in big data
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-019-1243-3
– start-page: 3512
  year: 2016
  ident: 10.1016/j.compbiomed.2024.108097_bib2
  article-title: RETAIN: an interpretable predictive model for healthcare using Reverse time attention mechanism
  publication-title: Adv Neural Inf Process Syst, no. Nips
– volume: 76
  start-page: 30
  year: 2016
  ident: 10.1016/j.compbiomed.2024.108097_bib10
  article-title: Predictive modeling of colorectal cancer using a dedicated pre-processing pipeline on routine electronic medical records
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2016.06.019
– year: 2021
  ident: 10.1016/j.compbiomed.2024.108097_bib19
– ident: 10.1016/j.compbiomed.2024.108097_bib7
– volume: 145
  start-page: 122
  issue: 2
  year: 2022
  ident: 10.1016/j.compbiomed.2024.108097_bib25
  article-title: ECG-based deep learning and clinical risk factors to predict atrial fibrillation
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.121.057480
– volume: 24
  start-page: 361
  issue: 2
  year: 2017
  ident: 10.1016/j.compbiomed.2024.108097_bib11
  article-title: Using recurrent neural network models for early detection of heart failure onset
  publication-title: J. Am. Med. Inf. Assoc.
  doi: 10.1093/jamia/ocw112
– ident: 10.1016/j.compbiomed.2024.108097_bib1
– year: 2021
  ident: 10.1016/j.compbiomed.2024.108097_bib16
– volume: 25
  year: 2021
  ident: 10.1016/j.compbiomed.2024.108097_bib23
  article-title: A Python implementation of an algorithm for computing the statistical significance of comparing two sets of predictions by ROC AUC
  publication-title: Nov
– volume: 400
  start-page: 1206
  issue: 10359
  year: 2022
  ident: 10.1016/j.compbiomed.2024.108097_bib26
  article-title: Artificial intelligence-guided screening for atrial fibrillation using electrocardiogram during sinus rhythm: a prospective non-randomised interventional trial
  publication-title: Lancet
  doi: 10.1016/S0140-6736(22)01637-3
– volume: 46
  start-page: 1486
  issue: 7
  year: 2020
  ident: 10.1016/j.compbiomed.2024.108097_bib4
  article-title: Machine learning in intensive care medicine: ready for take-off?
  publication-title: Intensive Care Med.
  doi: 10.1007/s00134-020-06045-y
SSID ssj0004030
Score 2.3810365
Snippet Temporal data has numerous challenges for deep learning such as irregularity of sampling. New algorithms are being developed that can handle these temporal...
AbstractIntroductionTemporal data has numerous challenges for deep learning such as irregularity of sampling. New algorithms are being developed that can...
IntroductionTemporal data has numerous challenges for deep learning such as irregularity of sampling. New algorithms are being developed that can handle these...
SourceID unpaywall
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 108097
SubjectTerms Algorithms
Atrial fibrillation
Atrial Fibrillation - diagnosis
Benchmarks
Blood pressure
Cardiac arrhythmia
Chronic illnesses
CKConv
Clinical prediction
Convolutional neural networks
Datasets
Deep learning
Disease
Fibrillation
General practitioner
General Practitioners
Humans
Internal Medicine
Logistic Models
Machine learning
Neural networks
Neural Networks, Computer
Other
Patients
Performance evaluation
Predictions
Primary care
Regression analysis
Temporal
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VrQTlwPsRKGiQuKZysk4cw2mFqCqkViBYqZws23Gqwiq76iaqypFfzjhOQnlqQcolSpyJ7cn4i_zNNwDPCSUbnRkXZ4XjMU-1jKVhmd-Dt6zSmWZdbcDDo_xgzt8cZ8dbwIZcmB_27zselqdWh1R0-ptLeUeKk-IKbOcZoe8JbM-P3s4-hoDLYl50dVZ9De2Y_Iv35J2_PepPK9KviPM6XGvrlb4414vFpVVo_ya8G94_kE8-77WN2bNffpJ2_JcO3oIbPSTFWfCh27Dl6jtw9bDfdL8LX8mV0AeoEr00uMNlhb2i1QI9wxR1XSIBSTTUDTzXF9gsMcg34GnzAmfYrl1sab1Egsiou0ohWPlkg0Wg4qGn35_gSdDAxtUlEaXOwj2Y77_-8Oog7ks3xJYQSEORXQhRSFFNpbMut0aLlGuhmTZ2mtpMF4UraQJt7rvMq7ySJZdVkjL6YypNOb0Pk5qMPPRJ5V4GT2pBSJGbpJKcFTZLKm6lf6yNIBmmT62CQocaqGuf1PfBVd6SCoMbgRzmWQ0ZqBQzFU3OBm3F79q6df_xr1Wi1qli6n2nfUT-6Gm6BKSSCF6OLXt8E3DLhnZ3B4dUo6lUZsJXHCjyCJ6NlylC-G0fXbtl6--Z0pELySJ4EBx5HKhpwZM0L2QE6ejZG4_io_9p9Bh2_Fmg8e3CpDlr3RPCdY152n_K3wBER0du
  priority: 102
  providerName: Unpaywall
Title The added value of temporal data and the best way to handle it: A use-case for atrial fibrillation using general practitioner data
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482524001811
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482524001811
https://dx.doi.org/10.1016/j.compbiomed.2024.108097
https://www.ncbi.nlm.nih.gov/pubmed/38412689
https://www.proquest.com/docview/2957730086
https://www.proquest.com/docview/2932936790
https://doi.org/10.1016/j.compbiomed.2024.108097
UnpaywallVersion publishedVersion
Volume 171
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AKRWK
  dateStart: 19700101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20250902
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 8FG
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB5CCn0cSt91m4Yp9OrGD9my2tMSut22ZOmhC-lJyLIcNizepesl5NJDf3lnLHuTkhwWCsbGD3ns0WhmhL6ZAXhHXnJpstKFWeFEKBKjQlVGGa_B26g2mYm62oAn03wyE19Ps9M9OB5iYRhW2et-r9M7bd1fOeq5ebSazznGl6YSNMFhFCTZqS6CXUiuYvD-9xXMQ0SpD0MhfcNP92gej_Fi2LYPc6eZYiI6wB2nf7rdRN10QR_AvU2zMpcXZrG4ZpbGj-Bh70_iyH_yY9hzzRO4e9KvmD-FPyQHyNqlQs7r7XBZY5-OaoEMD0XTVEheIJZEEi_MJbZL9LkXcN5-wBFu1i60ZOyQ_Fs0XZkPrDlSYOFxdMjY-TM88wmscXUtA1JH4RnMxp9-HE_Cvu5CaMl9aEktSykLJetUOetyWxqZCCNNZEqbJjYzReGqPFM2Z6aJOq9VJVQdJxFNd6qySp_DfkNEXnJEOOewU0aSmyfKuFYiKmwW18Iqfq0NIB5YrVc-vYYecGfn-qp7NFPSvnsCUEOf6CF8lBSeJhuwQ1t5W1u37kfuWsd6nehI35CuAD5uW_4joDvSPRiER29JJSqTXC6gyAN4u71Nw5vXbEzjlht-JqUtlyoK4IUXui2j0kLESV6oAJKtFO7MxVf_9T-v4T6feTDeAey3vzbuDXlnbXnYDT_aF-PPh3Bn9OXbZErH2fT76OdfZUw7eQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqIlF6QLwJFBgkrqGJY8cxnKqKaoFuT63Um-U4TrVolV2xWVW99MAvZyZO0qL2sBJSTomdScbjecjfzDD2Cb3k0srSx7LwIhbc6liXiaQzeJfUVtqk6w04PcknZ-LHuTzfYodDLgzBKnvdH3R6p637O_s9N_eXsxnl-GIogQEOoSDRTmEI9EBIrigC-3x9g_MQSRbyUFDh0PAezhNAXoTbDnnuGCpy0SHuqP7T_Tbqrg-6y3bWzdJeXdr5_JZdOnrCHvcOJRyEb37KtnzzjD2c9kfmz9kfFAQg9VIBFfb2sKihr0c1B8KHgm0qQDcQSiQJl_YK2gWE4gswa7_AAaxXPnZo7QAdXLBdnw-oKVVgHoB0QOD5C7gIFaxheasEUkfhBTs7-nZ6OIn7xguxQ_-hRb2slCq0qjPtnc9daRUXVtnEli7jTtqi8FUutcuJaaLOa10JXac8wXinKqvsJdtukMhrSgmnInbaKvTzRJnWWiSFk2ktnKbXuoilA6vNMtTXMAPw7Je5WR5DlExYnojpYU3MkD-KGs-gEdhgrrpvrl_1W3dlUrPiJjF3xCtiX8eZ_0johnT3BuExIymupaJ-AUUesY_jY9zfdGhjG79Y05gMr1zpJGKvgtCNjMoKkfK80BHjoxRuzMU3__U_H9jO5HR6bI6_n_x8yx7Rk4DM22Pb7e-1f4euWlu-77biXyQROng
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VrQTlwPsRKGiQuKZysk4cw2mFqCqkViBYqZws23Gqwiq76iaqypFfzjhOQnlqQcolSpyJ7cn4i_zNNwDPCSUbnRkXZ4XjMU-1jKVhmd-Dt6zSmWZdbcDDo_xgzt8cZ8dbwIZcmB_27zselqdWh1R0-ptLeUeKk-IKbOcZoe8JbM-P3s4-hoDLYl50dVZ9De2Y_Iv35J2_PepPK9KviPM6XGvrlb4414vFpVVo_ya8G94_kE8-77WN2bNffpJ2_JcO3oIbPSTFWfCh27Dl6jtw9bDfdL8LX8mV0AeoEr00uMNlhb2i1QI9wxR1XSIBSTTUDTzXF9gsMcg34GnzAmfYrl1sab1Egsiou0ohWPlkg0Wg4qGn35_gSdDAxtUlEaXOwj2Y77_-8Oog7ks3xJYQSEORXQhRSFFNpbMut0aLlGuhmTZ2mtpMF4UraQJt7rvMq7ySJZdVkjL6YypNOb0Pk5qMPPRJ5V4GT2pBSJGbpJKcFTZLKm6lf6yNIBmmT62CQocaqGuf1PfBVd6SCoMbgRzmWQ0ZqBQzFU3OBm3F79q6df_xr1Wi1qli6n2nfUT-6Gm6BKSSCF6OLXt8E3DLhnZ3B4dUo6lUZsJXHCjyCJ6NlylC-G0fXbtl6--Z0pELySJ4EBx5HKhpwZM0L2QE6ejZG4_io_9p9Bh2_Fmg8e3CpDlr3RPCdY152n_K3wBER0du
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+added+value+of+temporal+data+and+the+best+way+to+handle+it%3A+A+use-case+for+atrial+fibrillation+using+general+practitioner+data&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Bennis%2C+Frank+C&rft.au=Aussems%2C+Claire&rft.au=Korevaar%2C+Joke+C&rft.au=Hoogendoorn%2C+Mark&rft.date=2024-03-01&rft.issn=0010-4825&rft.volume=171&rft.spage=108097&rft.epage=108097&rft_id=info:doi/10.1016%2Fj.compbiomed.2024.108097&rft.externalDBID=ECK1-s2.0-S0010482524001811&rft.externalDocID=1_s2_0_S0010482524001811
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2Fcov200h.gif