Unexpected specificity within dynamic transcriptional protein–protein complexes
A key functional event in eukaryotic gene activation is the formation of dynamic protein–protein interaction networks between transcriptional activators and transcriptional coactivators. Seemingly incongruent with the tight regulation of transcription, many biochemical and biophysical studies sugges...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 117; no. 44; pp. 27346 - 27353 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
03.11.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.2013244117 |
Cover
Abstract | A key functional event in eukaryotic gene activation is the formation of dynamic protein–protein interaction networks between transcriptional activators and transcriptional coactivators. Seemingly incongruent with the tight regulation of transcription, many biochemical and biophysical studies suggest that activators use nonspecific hydrophobic and/or electrostatic interactions to bind to coactivators, with few if any specific contacts. Here a mechanistic dissection of a set of representative dynamic activator●coactivator complexes, comprised of the ETV/PEA3 family of activators and the coactivator Med25, reveals a different molecular recognition model. The data demonstrate that small sequence variations within an activator family significantly redistribute the conformational ensemble of the complex while not affecting overall affinity, and distal residues within the activator—not often considered as contributing to binding—play a key role in mediating conformational redistribution. The ETV/PEA3●Med25 ensembles are directed by specific contacts between the disordered activator and the Med25 interface, which is facilitated by structural shifts of the coactivator binding surface. Taken together, these data highlight the critical role coactivator plasticity plays in recognition of disordered activators and indicate that molecular recognition models of disordered proteins must consider the ability of the binding partners to mediate specificity. |
---|---|
AbstractList | A key functional event in eukaryotic gene activation is the formation of dynamic protein–protein interaction networks between transcriptional activators and transcriptional coactivators. Seemingly incongruent with the tight regulation of transcription, many biochemical and biophysical studies suggest that activators use nonspecific hydrophobic and/or electrostatic interactions to bind to coactivators, with few if any specific contacts. Here a mechanistic dissection of a set of representative dynamic activator●coactivator complexes, comprised of the ETV/PEA3 family of activators and the coactivator Med25, reveals a different molecular recognition model. The data demonstrate that small sequence variations within an activator family significantly redistribute the conformational ensemble of the complex while not affecting overall affinity, and distal residues within the activator—not often considered as contributing to binding—play a key role in mediating conformational redistribution. The ETV/PEA3●Med25 ensembles are directed by specific contacts between the disordered activator and the Med25 interface, which is facilitated by structural shifts of the coactivator binding surface. Taken together, these data highlight the critical role coactivator plasticity plays in recognition of disordered activators and indicate that molecular recognition models of disordered proteins must consider the ability of the binding partners to mediate specificity. A key functional event in eukaryotic gene activation is the formation of dynamic protein–protein interaction networks between transcriptional activators and transcriptional coactivators. Seemingly incongruent with the tight regulation of transcription, many biochemical and biophysical studies suggest that activators use nonspecific hydrophobic and/or electrostatic interactions to bind to coactivators, with few if any specific contacts. Here a mechanistic dissection of a set of representative dynamic activator•coactivator complexes, comprised of the ETV/PEA3 family of activators and the coactivator Med25, reveals a different molecular recognition model. The data demonstrate that small sequence variations within an activator family significantly redistribute the conformational ensemble of the complex while not affecting overall affinity, and distal residues within the activator—not often considered as contributing to binding—play a key role in mediating conformational redistribution. The ETV/PEA3•Med25 ensembles are directed by specific contacts between the disordered activator and the Med25 interface, which is facilitated by structural shifts of the coactivator binding surface. Taken together, these data highlight the critical role coactivator plasticity plays in recognition of disordered activators and indicate that molecular recognition models of disordered proteins must consider the ability of the binding partners to mediate specificity. Transcriptional activators represent a molecular recognition enigma. Their function in transcription initiation requires selective engagement of coactivators, yet the prevailing molecular recognition models propose this occurs via nonspecific intermolecular contacts. Here, mechanistic analysis of several related activator•coactivator complexes resolves this conundrum. In contrast to the expectations from nonspecific recognition models, even small sequence changes in the activators cause activator•coactivator complexes to undergo significant conformational redistribution, driven by specific intermolecular interactions and conformational changes in the coactivator itself. These unappreciated specific recognition mechanisms rationalize the high sequence variability of functional activators, opening new questions about the relationship between recognition and function. A key functional event in eukaryotic gene activation is the formation of dynamic protein–protein interaction networks between transcriptional activators and transcriptional coactivators. Seemingly incongruent with the tight regulation of transcription, many biochemical and biophysical studies suggest that activators use nonspecific hydrophobic and/or electrostatic interactions to bind to coactivators, with few if any specific contacts. Here a mechanistic dissection of a set of representative dynamic activator•coactivator complexes, comprised of the ETV/PEA3 family of activators and the coactivator Med25, reveals a different molecular recognition model. The data demonstrate that small sequence variations within an activator family significantly redistribute the conformational ensemble of the complex while not affecting overall affinity, and distal residues within the activator—not often considered as contributing to binding—play a key role in mediating conformational redistribution. The ETV/PEA3•Med25 ensembles are directed by specific contacts between the disordered activator and the Med25 interface, which is facilitated by structural shifts of the coactivator binding surface. Taken together, these data highlight the critical role coactivator plasticity plays in recognition of disordered activators and indicate that molecular recognition models of disordered proteins must consider the ability of the binding partners to mediate specificity. A key functional event in eukaryotic gene activation is the formation of dynamic protein-protein interaction networks between transcriptional activators and transcriptional coactivators. Seemingly incongruent with the tight regulation of transcription, many biochemical and biophysical studies suggest that activators use nonspecific hydrophobic and/or electrostatic interactions to bind to coactivators, with few if any specific contacts. Here a mechanistic dissection of a set of representative dynamic activator•coactivator complexes, comprised of the ETV/PEA3 family of activators and the coactivator Med25, reveals a different molecular recognition model. The data demonstrate that small sequence variations within an activator family significantly redistribute the conformational ensemble of the complex while not affecting overall affinity, and distal residues within the activator-not often considered as contributing to binding-play a key role in mediating conformational redistribution. The ETV/PEA3•Med25 ensembles are directed by specific contacts between the disordered activator and the Med25 interface, which is facilitated by structural shifts of the coactivator binding surface. Taken together, these data highlight the critical role coactivator plasticity plays in recognition of disordered activators and indicate that molecular recognition models of disordered proteins must consider the ability of the binding partners to mediate specificity.A key functional event in eukaryotic gene activation is the formation of dynamic protein-protein interaction networks between transcriptional activators and transcriptional coactivators. Seemingly incongruent with the tight regulation of transcription, many biochemical and biophysical studies suggest that activators use nonspecific hydrophobic and/or electrostatic interactions to bind to coactivators, with few if any specific contacts. Here a mechanistic dissection of a set of representative dynamic activator•coactivator complexes, comprised of the ETV/PEA3 family of activators and the coactivator Med25, reveals a different molecular recognition model. The data demonstrate that small sequence variations within an activator family significantly redistribute the conformational ensemble of the complex while not affecting overall affinity, and distal residues within the activator-not often considered as contributing to binding-play a key role in mediating conformational redistribution. The ETV/PEA3•Med25 ensembles are directed by specific contacts between the disordered activator and the Med25 interface, which is facilitated by structural shifts of the coactivator binding surface. Taken together, these data highlight the critical role coactivator plasticity plays in recognition of disordered activators and indicate that molecular recognition models of disordered proteins must consider the ability of the binding partners to mediate specificity. |
Author | Morgan, Brittany S. Henley, Matthew J. Cierpicki, Tomasz Linhares, Brian M. Fierke, Carol A. Mapp, Anna K. |
Author_xml | – sequence: 1 givenname: Matthew J. surname: Henley fullname: Henley, Matthew J. – sequence: 2 givenname: Brian M. surname: Linhares fullname: Linhares, Brian M. – sequence: 3 givenname: Brittany S. surname: Morgan fullname: Morgan, Brittany S. – sequence: 4 givenname: Tomasz surname: Cierpicki fullname: Cierpicki, Tomasz – sequence: 5 givenname: Carol A. surname: Fierke fullname: Fierke, Carol A. – sequence: 6 givenname: Anna K. surname: Mapp fullname: Mapp, Anna K. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33077600$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ksFu1DAQhi3Uim4LZ06gSFy4pB0ndmxfkFAFtFKlComeLceZUK8SO9hZ6N54B96QJ8Hb3S7QA6ex5O8f_zO_j8mBDx4JeUHhlIKozyZv0mkFtK4Yo1Q8IQsKipYNU3BAFgCVKCWr2BE5TmkJAIpLeEqO6hqEaAAW5NONx7sJ7YxdkXJ1vbNuXhff3XzrfNGtvRmdLeZofLLRTbML3gzFFMOMzv_68XN3KmwYpwHvMD0jh70ZEj7f1RNy8-H95_OL8ur64-X5u6vSclBzWVPWMi5ESylSg1B3vZWCs4Zz0zLB0SrFWkmhtyANV7KXElspewFdJ_LEJ-Tttu-0akfsLPpsctBTdKOJax2M0__eeHerv4RvWiiueKNygze7BjF8XWGa9eiSxWEwHsMq6YrxigPwqsno60foMqxiXsQ9JVUjM5upV3872lt52HYGzraAjSGliP0eoaA3eepNnvpPnlnBHylyOmYTQh7JDf_RvdzqlmkOcf9M1SiR_0dT_wYgFbEE |
CitedBy_id | crossref_primary_10_1002_1873_3468_14837 crossref_primary_10_1074_jbc_REV120_012928 crossref_primary_10_1016_j_sbi_2021_11_004 crossref_primary_10_1002_ange_202400781 crossref_primary_10_1039_D2CB00026A crossref_primary_10_1016_j_jbc_2022_101963 crossref_primary_10_1016_j_chembiol_2020_12_012 crossref_primary_10_3389_fmolb_2021_795743 crossref_primary_10_1021_acscentsci_1c00389 crossref_primary_10_1021_jacs_1c03258 crossref_primary_10_1038_s41573_021_00199_0 crossref_primary_10_1101_cshperspect_a040949 crossref_primary_10_1146_annurev_pathmechdis_051222_013421 crossref_primary_10_1038_s41467_021_22441_4 crossref_primary_10_1038_s41580_022_00498_3 crossref_primary_10_1093_bbb_zbac119 crossref_primary_10_1093_molbev_msac217 crossref_primary_10_1016_j_jmb_2024_168766 crossref_primary_10_1038_s41467_024_44859_2 crossref_primary_10_1002_anie_202400781 crossref_primary_10_1021_jacs_1c04214 crossref_primary_10_1038_s41594_021_00613_6 crossref_primary_10_1016_j_sbi_2023_102732 crossref_primary_10_1002_jcb_30075 crossref_primary_10_1021_acs_biochem_3c00469 |
Cites_doi | 10.1016/j.ygeno.2007.02.003 10.1002/anie.201206815 10.1021/ja0473889 10.1038/415549a 10.1038/nchembio.1962 10.1016/j.cels.2018.01.015 10.1073/pnas.1506692112 10.1016/j.celrep.2018.02.097 10.1093/nar/gkt199 10.1021/ja804754y 10.1038/nature05858 10.1073/pnas.1307337110 10.1073/pnas.1405815111 10.1016/j.bpj.2017.10.016 10.1073/pnas.1806202115 10.1038/nsmb.1997 10.1016/j.jmb.2017.06.024 10.1016/j.sbi.2007.08.013 10.1073/pnas.0401942101 10.1021/cb200308e 10.1016/j.cell.2018.10.042 10.1038/nature04942 10.15252/embj.201798896 10.1074/jbc.M113.496968 10.1073/pnas.1412088111 10.1016/j.molcel.2011.11.008 10.1038/nrc906 10.1073/pnas.0804221105 10.1126/science.aar3958 10.1074/jbc.M205051200 10.1016/0092-8674(87)90015-8 10.1038/365855a0 10.1093/nar/gkv650 10.1017/S0033583514000122 10.1021/cb900028j 10.1126/science.7529940 10.1016/S0092-8674(00)80463-8 10.1021/cb600463w 10.1006/jmbi.1998.1843 10.1021/ja036685v 10.1038/333635a0 10.1073/pnas.1406033111 10.1126/science.1130258 10.1016/j.sbi.2010.10.002 10.1038/nrm4032 10.1007/BF00197809 10.1021/cb3002733 10.15252/msb.20188190 10.1002/bip.20946 10.1038/s41568-019-0196-7 10.1093/bioinformatics/btu830 10.1002/pro.3059 10.1074/jbc.RA117.000634 10.1038/333210a0 10.1021/ja3122334 10.1021/bi1012996 10.1038/ncomms15896 |
ContentType | Journal Article |
Copyright | Copyright © 2020 the Author(s). Published by PNAS. Copyright National Academy of Sciences Nov 3, 2020 Copyright © 2020 the Author(s). Published by PNAS. 2020 |
Copyright_xml | – notice: Copyright © 2020 the Author(s). Published by PNAS. – notice: Copyright National Academy of Sciences Nov 3, 2020 – notice: Copyright © 2020 the Author(s). Published by PNAS. 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.2013244117 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE Virology and AIDS Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 27353 |
ExternalDocumentID | PMC7959569 33077600 10_1073_pnas_2013244117 26970916 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA207272 – fundername: NIGMS NIH HHS grantid: R35 GM136356 – fundername: NIGMS NIH HHS grantid: F32 GM137527 – fundername: NIGMS NIH HHS grantid: R01 GM065330 – fundername: Welch Foundation grantid: A-1987 – fundername: HHS | NIH | National Cancer Institute (NCI) grantid: CA207272 – fundername: HHS | NIH | National Institute of General Medical Sciences (NIGMS) grantid: GM65530 – fundername: HHS | NIH | National Institute of General Medical Sciences (NIGMS) grantid: GM136356 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c509t-314b4577b11e1ae03dfc8754655ab475ec994b810fc08a598f88eb88f70dd7013 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 13:38:10 EDT 2025 Thu Sep 04 16:42:54 EDT 2025 Mon Jun 30 09:58:00 EDT 2025 Thu Apr 03 06:59:32 EDT 2025 Thu Apr 24 23:08:15 EDT 2025 Tue Jul 01 03:40:33 EDT 2025 Thu May 29 09:14:38 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 44 |
Keywords | protein–protein interactions Med25 transcriptional activator ETV/PEA3 coactivator |
Language | English |
License | Copyright © 2020 the Author(s). Published by PNAS. This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c509t-314b4577b11e1ae03dfc8754655ab475ec994b810fc08a598f88eb88f70dd7013 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Author contributions: M.J.H. and A.K.M. designed research; M.J.H., B.M.L., and B.S.M. performed research; M.J.H. contributed new reagents/analytic tools; M.J.H., B.M.L., B.S.M., T.C., C.A.F., and A.K.M. analyzed data; and M.J.H., B.S.M., T.C., C.A.F., and A.K.M. wrote the paper. Edited by James E. Cleaver, University of California, San Francisco, CA, and approved September 23, 2020 (received for review June 25, 2020) |
ORCID | 0000-0002-0709-6186 0000-0003-0791-8327 0000-0002-1481-0579 0000-0002-0906-6191 0000-0003-1811-5589 0000-0003-2058-0658 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7959569 |
PMID | 33077600 |
PQID | 2458968452 |
PQPubID | 42026 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7959569 proquest_miscellaneous_2452500526 proquest_journals_2458968452 pubmed_primary_33077600 crossref_primary_10_1073_pnas_2013244117 crossref_citationtrail_10_1073_pnas_2013244117 jstor_primary_26970916 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-03 |
PublicationDateYYYYMMDD | 2020-11-03 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2020 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_4_3_2 e_1_3_4_1_2 e_1_3_4_9_2 e_1_3_4_7_2 e_1_3_4_40_2 e_1_3_4_5_2 e_1_3_4_23_2 e_1_3_4_44_2 e_1_3_4_21_2 e_1_3_4_42_2 e_1_3_4_27_2 e_1_3_4_48_2 e_1_3_4_25_2 e_1_3_4_46_2 e_1_3_4_29_2 e_1_3_4_30_2 e_1_3_4_51_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_57_2 e_1_3_4_55_2 e_1_3_4_32_2 e_1_3_4_53_2 e_1_3_4_15_2 e_1_3_4_38_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_2_2 e_1_3_4_8_2 e_1_3_4_41_2 e_1_3_4_6_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_45_2 e_1_3_4_20_2 e_1_3_4_43_2 e_1_3_4_26_2 e_1_3_4_49_2 e_1_3_4_24_2 e_1_3_4_47_2 e_1_3_4_28_2 e_1_3_4_52_2 e_1_3_4_50_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_54_2 e_1_3_4_10_2 e_1_3_4_31_2 e_1_3_4_16_2 e_1_3_4_37_2 e_1_3_4_14_2 e_1_3_4_35_2 e_1_3_4_56_2 e_1_3_4_18_2 e_1_3_4_39_2 |
References_xml | – ident: e_1_3_4_5_2 doi: 10.1016/j.ygeno.2007.02.003 – ident: e_1_3_4_18_2 doi: 10.1002/anie.201206815 – ident: e_1_3_4_15_2 doi: 10.1021/ja0473889 – ident: e_1_3_4_42_2 doi: 10.1038/415549a – ident: e_1_3_4_29_2 doi: 10.1038/nchembio.1962 – ident: e_1_3_4_14_2 doi: 10.1016/j.cels.2018.01.015 – ident: e_1_3_4_41_2 doi: 10.1073/pnas.1506692112 – ident: e_1_3_4_11_2 doi: 10.1016/j.celrep.2018.02.097 – ident: e_1_3_4_23_2 doi: 10.1093/nar/gkt199 – ident: e_1_3_4_33_2 doi: 10.1021/ja804754y – ident: e_1_3_4_25_2 doi: 10.1038/nature05858 – ident: e_1_3_4_38_2 doi: 10.1073/pnas.1307337110 – ident: e_1_3_4_35_2 doi: 10.1073/pnas.1405815111 – ident: e_1_3_4_40_2 doi: 10.1016/j.bpj.2017.10.016 – ident: e_1_3_4_32_2 doi: 10.1073/pnas.1806202115 – ident: e_1_3_4_34_2 doi: 10.1038/nsmb.1997 – ident: e_1_3_4_31_2 doi: 10.1016/j.jmb.2017.06.024 – ident: e_1_3_4_45_2 doi: 10.1016/j.sbi.2007.08.013 – ident: e_1_3_4_54_2 doi: 10.1073/pnas.0401942101 – ident: e_1_3_4_6_2 doi: 10.1021/cb200308e – ident: e_1_3_4_7_2 doi: 10.1016/j.cell.2018.10.042 – ident: e_1_3_4_21_2 doi: 10.1038/nature04942 – ident: e_1_3_4_13_2 doi: 10.15252/embj.201798896 – ident: e_1_3_4_22_2 doi: 10.1074/jbc.M113.496968 – ident: e_1_3_4_10_2 doi: 10.1073/pnas.1412088111 – ident: e_1_3_4_9_2 doi: 10.1016/j.molcel.2011.11.008 – ident: e_1_3_4_27_2 doi: 10.1038/nrc906 – ident: e_1_3_4_26_2 doi: 10.1073/pnas.0804221105 – ident: e_1_3_4_8_2 doi: 10.1126/science.aar3958 – ident: e_1_3_4_20_2 doi: 10.1074/jbc.M205051200 – ident: e_1_3_4_1_2 doi: 10.1016/0092-8674(87)90015-8 – ident: e_1_3_4_19_2 doi: 10.1038/365855a0 – ident: e_1_3_4_30_2 doi: 10.1093/nar/gkv650 – ident: e_1_3_4_46_2 doi: 10.1017/S0033583514000122 – ident: e_1_3_4_17_2 doi: 10.1021/cb900028j – ident: e_1_3_4_52_2 doi: 10.1126/science.7529940 – ident: e_1_3_4_36_2 doi: 10.1016/S0092-8674(00)80463-8 – ident: e_1_3_4_4_2 doi: 10.1021/cb600463w – ident: e_1_3_4_53_2 doi: 10.1006/jmbi.1998.1843 – ident: e_1_3_4_49_2 doi: 10.1021/ja036685v – ident: e_1_3_4_2_2 doi: 10.1038/333635a0 – ident: e_1_3_4_39_2 doi: 10.1073/pnas.1406033111 – ident: e_1_3_4_24_2 doi: 10.1126/science.1130258 – ident: e_1_3_4_47_2 doi: 10.1016/j.sbi.2010.10.002 – ident: e_1_3_4_55_2 doi: 10.1038/nrm4032 – ident: e_1_3_4_56_2 doi: 10.1007/BF00197809 – ident: e_1_3_4_37_2 doi: 10.1021/cb3002733 – ident: e_1_3_4_12_2 doi: 10.15252/msb.20188190 – ident: e_1_3_4_16_2 doi: 10.1002/bip.20946 – ident: e_1_3_4_28_2 doi: 10.1038/s41568-019-0196-7 – ident: e_1_3_4_57_2 doi: 10.1093/bioinformatics/btu830 – ident: e_1_3_4_44_2 doi: 10.1002/pro.3059 – ident: e_1_3_4_50_2 doi: 10.1074/jbc.RA117.000634 – ident: e_1_3_4_3_2 doi: 10.1038/333210a0 – ident: e_1_3_4_48_2 doi: 10.1021/ja3122334 – ident: e_1_3_4_43_2 doi: 10.1021/bi1012996 – ident: e_1_3_4_51_2 doi: 10.1038/ncomms15896 |
SSID | ssj0009580 |
Score | 2.4741366 |
Snippet | A key functional event in eukaryotic gene activation is the formation of dynamic protein–protein interaction networks between transcriptional activators and... A key functional event in eukaryotic gene activation is the formation of dynamic protein-protein interaction networks between transcriptional activators and... Transcriptional activators represent a molecular recognition enigma. Their function in transcription initiation requires selective engagement of coactivators,... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 27346 |
SubjectTerms | Amino Acid Sequence - genetics Binding Biological Sciences Electrostatic properties Gene regulation Humans Hydrophobicity Mediator Complex - genetics Mediator Complex - metabolism Models, Molecular Molecular modelling Physical Sciences Protein Binding - genetics Protein Interaction Domains and Motifs - genetics Proteins Recognition Transcription factors Transcription Factors - metabolism Transcriptional Activation - genetics Transcriptional Activation - physiology |
Title | Unexpected specificity within dynamic transcriptional protein–protein complexes |
URI | https://www.jstor.org/stable/26970916 https://www.ncbi.nlm.nih.gov/pubmed/33077600 https://www.proquest.com/docview/2458968452 https://www.proquest.com/docview/2452500526 https://pubmed.ncbi.nlm.nih.gov/PMC7959569 |
Volume | 117 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdZB6MvY93WzV03PNhDR3HnD8mSHkvZFgbN-pBA3oI_ZBro1LA6UPoH7O_enSTLTtbCtpckWLICup9Pd-e73xHyIZVJwWQlI6lABVI4kaMyz-rIdNoWYCErE8o-n-TjGf02Z_PR6Ncga2ndlifV3b11Jf8jVbgGcsUq2X-QrF8ULsBvkC98goTh869kPNNI0F-h0YgVk5j1g0Y1xlYxydU2m8cuENorByy8QmqGpY7ct80qV7cumdAZqhf-YLvp0ggmXdzwtK9Ccarh5jg6vpj0PY3HSrtY-DnSUCo0ZX1AGtzfS6x6stBCBdNnEpgmU26gbTEXwa95Bgf4alnZNttTTGu6G4YswD_FMKxVY8qqWbBSopzaRqFeD9siTgc4SodqlWc2UPmHwgcNhV2KdYHU6-BZg3VnlxmIf_XDyD_LkLoojvuTz-cjdkOPyOOUc_O6_-s8GZA3i7ijheLZp61_2yVPuvs3jBub33qf57KdgDuwaKbPyFPnioSnFld7ZKT0c7LXSTQ8cozkH1-Q7z3QwgHQQgu00AEt3AJauAW00APtJZl9-Tw9G0euE0dUgUHZwkFNS8o4L5NEJYWKs7qpwNFF7r2ipJypSkpaiiRuqljAsy8aIVQpRMPjuuawU_tkR19r9ZqEVNRpzVWTcd5QVoNHLfOGJVWeqAKs4yQgJ90WLipHU4_dUq4WJl2CZwvc_kW__QE58jesLEPLw1P3jUz8vDSXHKCYB-SwE9LCPd9wH2VC5oKyNCDv_TBoX3ylVmh1vTZzwIdAzqSAvLIy9Yt3oAgI35C2n4DM7psjenlpGN65ZJLl8uDBNd-Q3f7BOiQ77c-1egvWcVu-M9D9Dc-svFI |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unexpected+specificity+within+dynamic+transcriptional+protein-protein+complexes&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Henley%2C+Madeleine+J&rft.au=Linhares%2C+Brian+M&rft.au=Morgan%2C+Brittany+S&rft.au=Cierpicki%2C+Tomasz&rft.date=2020-11-03&rft.eissn=1091-6490&rft.volume=117&rft.issue=44&rft.spage=27346&rft_id=info:doi/10.1073%2Fpnas.2013244117&rft_id=info%3Apmid%2F33077600&rft.externalDocID=33077600 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |