Unexpected specificity within dynamic transcriptional protein–protein complexes

A key functional event in eukaryotic gene activation is the formation of dynamic protein–protein interaction networks between transcriptional activators and transcriptional coactivators. Seemingly incongruent with the tight regulation of transcription, many biochemical and biophysical studies sugges...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 117; no. 44; pp. 27346 - 27353
Main Authors Henley, Matthew J., Linhares, Brian M., Morgan, Brittany S., Cierpicki, Tomasz, Fierke, Carol A., Mapp, Anna K.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 03.11.2020
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.2013244117

Cover

Abstract A key functional event in eukaryotic gene activation is the formation of dynamic protein–protein interaction networks between transcriptional activators and transcriptional coactivators. Seemingly incongruent with the tight regulation of transcription, many biochemical and biophysical studies suggest that activators use nonspecific hydrophobic and/or electrostatic interactions to bind to coactivators, with few if any specific contacts. Here a mechanistic dissection of a set of representative dynamic activator●coactivator complexes, comprised of the ETV/PEA3 family of activators and the coactivator Med25, reveals a different molecular recognition model. The data demonstrate that small sequence variations within an activator family significantly redistribute the conformational ensemble of the complex while not affecting overall affinity, and distal residues within the activator—not often considered as contributing to binding—play a key role in mediating conformational redistribution. The ETV/PEA3●Med25 ensembles are directed by specific contacts between the disordered activator and the Med25 interface, which is facilitated by structural shifts of the coactivator binding surface. Taken together, these data highlight the critical role coactivator plasticity plays in recognition of disordered activators and indicate that molecular recognition models of disordered proteins must consider the ability of the binding partners to mediate specificity.
AbstractList A key functional event in eukaryotic gene activation is the formation of dynamic protein–protein interaction networks between transcriptional activators and transcriptional coactivators. Seemingly incongruent with the tight regulation of transcription, many biochemical and biophysical studies suggest that activators use nonspecific hydrophobic and/or electrostatic interactions to bind to coactivators, with few if any specific contacts. Here a mechanistic dissection of a set of representative dynamic activator●coactivator complexes, comprised of the ETV/PEA3 family of activators and the coactivator Med25, reveals a different molecular recognition model. The data demonstrate that small sequence variations within an activator family significantly redistribute the conformational ensemble of the complex while not affecting overall affinity, and distal residues within the activator—not often considered as contributing to binding—play a key role in mediating conformational redistribution. The ETV/PEA3●Med25 ensembles are directed by specific contacts between the disordered activator and the Med25 interface, which is facilitated by structural shifts of the coactivator binding surface. Taken together, these data highlight the critical role coactivator plasticity plays in recognition of disordered activators and indicate that molecular recognition models of disordered proteins must consider the ability of the binding partners to mediate specificity.
A key functional event in eukaryotic gene activation is the formation of dynamic protein–protein interaction networks between transcriptional activators and transcriptional coactivators. Seemingly incongruent with the tight regulation of transcription, many biochemical and biophysical studies suggest that activators use nonspecific hydrophobic and/or electrostatic interactions to bind to coactivators, with few if any specific contacts. Here a mechanistic dissection of a set of representative dynamic activator•coactivator complexes, comprised of the ETV/PEA3 family of activators and the coactivator Med25, reveals a different molecular recognition model. The data demonstrate that small sequence variations within an activator family significantly redistribute the conformational ensemble of the complex while not affecting overall affinity, and distal residues within the activator—not often considered as contributing to binding—play a key role in mediating conformational redistribution. The ETV/PEA3•Med25 ensembles are directed by specific contacts between the disordered activator and the Med25 interface, which is facilitated by structural shifts of the coactivator binding surface. Taken together, these data highlight the critical role coactivator plasticity plays in recognition of disordered activators and indicate that molecular recognition models of disordered proteins must consider the ability of the binding partners to mediate specificity.
Transcriptional activators represent a molecular recognition enigma. Their function in transcription initiation requires selective engagement of coactivators, yet the prevailing molecular recognition models propose this occurs via nonspecific intermolecular contacts. Here, mechanistic analysis of several related activator•coactivator complexes resolves this conundrum. In contrast to the expectations from nonspecific recognition models, even small sequence changes in the activators cause activator•coactivator complexes to undergo significant conformational redistribution, driven by specific intermolecular interactions and conformational changes in the coactivator itself. These unappreciated specific recognition mechanisms rationalize the high sequence variability of functional activators, opening new questions about the relationship between recognition and function. A key functional event in eukaryotic gene activation is the formation of dynamic protein–protein interaction networks between transcriptional activators and transcriptional coactivators. Seemingly incongruent with the tight regulation of transcription, many biochemical and biophysical studies suggest that activators use nonspecific hydrophobic and/or electrostatic interactions to bind to coactivators, with few if any specific contacts. Here a mechanistic dissection of a set of representative dynamic activator•coactivator complexes, comprised of the ETV/PEA3 family of activators and the coactivator Med25, reveals a different molecular recognition model. The data demonstrate that small sequence variations within an activator family significantly redistribute the conformational ensemble of the complex while not affecting overall affinity, and distal residues within the activator—not often considered as contributing to binding—play a key role in mediating conformational redistribution. The ETV/PEA3•Med25 ensembles are directed by specific contacts between the disordered activator and the Med25 interface, which is facilitated by structural shifts of the coactivator binding surface. Taken together, these data highlight the critical role coactivator plasticity plays in recognition of disordered activators and indicate that molecular recognition models of disordered proteins must consider the ability of the binding partners to mediate specificity.
A key functional event in eukaryotic gene activation is the formation of dynamic protein-protein interaction networks between transcriptional activators and transcriptional coactivators. Seemingly incongruent with the tight regulation of transcription, many biochemical and biophysical studies suggest that activators use nonspecific hydrophobic and/or electrostatic interactions to bind to coactivators, with few if any specific contacts. Here a mechanistic dissection of a set of representative dynamic activator•coactivator complexes, comprised of the ETV/PEA3 family of activators and the coactivator Med25, reveals a different molecular recognition model. The data demonstrate that small sequence variations within an activator family significantly redistribute the conformational ensemble of the complex while not affecting overall affinity, and distal residues within the activator-not often considered as contributing to binding-play a key role in mediating conformational redistribution. The ETV/PEA3•Med25 ensembles are directed by specific contacts between the disordered activator and the Med25 interface, which is facilitated by structural shifts of the coactivator binding surface. Taken together, these data highlight the critical role coactivator plasticity plays in recognition of disordered activators and indicate that molecular recognition models of disordered proteins must consider the ability of the binding partners to mediate specificity.A key functional event in eukaryotic gene activation is the formation of dynamic protein-protein interaction networks between transcriptional activators and transcriptional coactivators. Seemingly incongruent with the tight regulation of transcription, many biochemical and biophysical studies suggest that activators use nonspecific hydrophobic and/or electrostatic interactions to bind to coactivators, with few if any specific contacts. Here a mechanistic dissection of a set of representative dynamic activator•coactivator complexes, comprised of the ETV/PEA3 family of activators and the coactivator Med25, reveals a different molecular recognition model. The data demonstrate that small sequence variations within an activator family significantly redistribute the conformational ensemble of the complex while not affecting overall affinity, and distal residues within the activator-not often considered as contributing to binding-play a key role in mediating conformational redistribution. The ETV/PEA3•Med25 ensembles are directed by specific contacts between the disordered activator and the Med25 interface, which is facilitated by structural shifts of the coactivator binding surface. Taken together, these data highlight the critical role coactivator plasticity plays in recognition of disordered activators and indicate that molecular recognition models of disordered proteins must consider the ability of the binding partners to mediate specificity.
Author Morgan, Brittany S.
Henley, Matthew J.
Cierpicki, Tomasz
Linhares, Brian M.
Fierke, Carol A.
Mapp, Anna K.
Author_xml – sequence: 1
  givenname: Matthew J.
  surname: Henley
  fullname: Henley, Matthew J.
– sequence: 2
  givenname: Brian M.
  surname: Linhares
  fullname: Linhares, Brian M.
– sequence: 3
  givenname: Brittany S.
  surname: Morgan
  fullname: Morgan, Brittany S.
– sequence: 4
  givenname: Tomasz
  surname: Cierpicki
  fullname: Cierpicki, Tomasz
– sequence: 5
  givenname: Carol A.
  surname: Fierke
  fullname: Fierke, Carol A.
– sequence: 6
  givenname: Anna K.
  surname: Mapp
  fullname: Mapp, Anna K.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33077600$$D View this record in MEDLINE/PubMed
BookMark eNp9ksFu1DAQhi3Uim4LZ06gSFy4pB0ndmxfkFAFtFKlComeLceZUK8SO9hZ6N54B96QJ8Hb3S7QA6ex5O8f_zO_j8mBDx4JeUHhlIKozyZv0mkFtK4Yo1Q8IQsKipYNU3BAFgCVKCWr2BE5TmkJAIpLeEqO6hqEaAAW5NONx7sJ7YxdkXJ1vbNuXhff3XzrfNGtvRmdLeZofLLRTbML3gzFFMOMzv_68XN3KmwYpwHvMD0jh70ZEj7f1RNy8-H95_OL8ur64-X5u6vSclBzWVPWMi5ESylSg1B3vZWCs4Zz0zLB0SrFWkmhtyANV7KXElspewFdJ_LEJ-Tttu-0akfsLPpsctBTdKOJax2M0__eeHerv4RvWiiueKNygze7BjF8XWGa9eiSxWEwHsMq6YrxigPwqsno60foMqxiXsQ9JVUjM5upV3872lt52HYGzraAjSGliP0eoaA3eepNnvpPnlnBHylyOmYTQh7JDf_RvdzqlmkOcf9M1SiR_0dT_wYgFbEE
CitedBy_id crossref_primary_10_1002_1873_3468_14837
crossref_primary_10_1074_jbc_REV120_012928
crossref_primary_10_1016_j_sbi_2021_11_004
crossref_primary_10_1002_ange_202400781
crossref_primary_10_1039_D2CB00026A
crossref_primary_10_1016_j_jbc_2022_101963
crossref_primary_10_1016_j_chembiol_2020_12_012
crossref_primary_10_3389_fmolb_2021_795743
crossref_primary_10_1021_acscentsci_1c00389
crossref_primary_10_1021_jacs_1c03258
crossref_primary_10_1038_s41573_021_00199_0
crossref_primary_10_1101_cshperspect_a040949
crossref_primary_10_1146_annurev_pathmechdis_051222_013421
crossref_primary_10_1038_s41467_021_22441_4
crossref_primary_10_1038_s41580_022_00498_3
crossref_primary_10_1093_bbb_zbac119
crossref_primary_10_1093_molbev_msac217
crossref_primary_10_1016_j_jmb_2024_168766
crossref_primary_10_1038_s41467_024_44859_2
crossref_primary_10_1002_anie_202400781
crossref_primary_10_1021_jacs_1c04214
crossref_primary_10_1038_s41594_021_00613_6
crossref_primary_10_1016_j_sbi_2023_102732
crossref_primary_10_1002_jcb_30075
crossref_primary_10_1021_acs_biochem_3c00469
Cites_doi 10.1016/j.ygeno.2007.02.003
10.1002/anie.201206815
10.1021/ja0473889
10.1038/415549a
10.1038/nchembio.1962
10.1016/j.cels.2018.01.015
10.1073/pnas.1506692112
10.1016/j.celrep.2018.02.097
10.1093/nar/gkt199
10.1021/ja804754y
10.1038/nature05858
10.1073/pnas.1307337110
10.1073/pnas.1405815111
10.1016/j.bpj.2017.10.016
10.1073/pnas.1806202115
10.1038/nsmb.1997
10.1016/j.jmb.2017.06.024
10.1016/j.sbi.2007.08.013
10.1073/pnas.0401942101
10.1021/cb200308e
10.1016/j.cell.2018.10.042
10.1038/nature04942
10.15252/embj.201798896
10.1074/jbc.M113.496968
10.1073/pnas.1412088111
10.1016/j.molcel.2011.11.008
10.1038/nrc906
10.1073/pnas.0804221105
10.1126/science.aar3958
10.1074/jbc.M205051200
10.1016/0092-8674(87)90015-8
10.1038/365855a0
10.1093/nar/gkv650
10.1017/S0033583514000122
10.1021/cb900028j
10.1126/science.7529940
10.1016/S0092-8674(00)80463-8
10.1021/cb600463w
10.1006/jmbi.1998.1843
10.1021/ja036685v
10.1038/333635a0
10.1073/pnas.1406033111
10.1126/science.1130258
10.1016/j.sbi.2010.10.002
10.1038/nrm4032
10.1007/BF00197809
10.1021/cb3002733
10.15252/msb.20188190
10.1002/bip.20946
10.1038/s41568-019-0196-7
10.1093/bioinformatics/btu830
10.1002/pro.3059
10.1074/jbc.RA117.000634
10.1038/333210a0
10.1021/ja3122334
10.1021/bi1012996
10.1038/ncomms15896
ContentType Journal Article
Copyright Copyright © 2020 the Author(s). Published by PNAS.
Copyright National Academy of Sciences Nov 3, 2020
Copyright © 2020 the Author(s). Published by PNAS. 2020
Copyright_xml – notice: Copyright © 2020 the Author(s). Published by PNAS.
– notice: Copyright National Academy of Sciences Nov 3, 2020
– notice: Copyright © 2020 the Author(s). Published by PNAS. 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.2013244117
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE
Virology and AIDS Abstracts

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 27353
ExternalDocumentID PMC7959569
33077600
10_1073_pnas_2013244117
26970916
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA207272
– fundername: NIGMS NIH HHS
  grantid: R35 GM136356
– fundername: NIGMS NIH HHS
  grantid: F32 GM137527
– fundername: NIGMS NIH HHS
  grantid: R01 GM065330
– fundername: Welch Foundation
  grantid: A-1987
– fundername: HHS | NIH | National Cancer Institute (NCI)
  grantid: CA207272
– fundername: HHS | NIH | National Institute of General Medical Sciences (NIGMS)
  grantid: GM65530
– fundername: HHS | NIH | National Institute of General Medical Sciences (NIGMS)
  grantid: GM136356
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c509t-314b4577b11e1ae03dfc8754655ab475ec994b810fc08a598f88eb88f70dd7013
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 13:38:10 EDT 2025
Thu Sep 04 16:42:54 EDT 2025
Mon Jun 30 09:58:00 EDT 2025
Thu Apr 03 06:59:32 EDT 2025
Thu Apr 24 23:08:15 EDT 2025
Tue Jul 01 03:40:33 EDT 2025
Thu May 29 09:14:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 44
Keywords protein–protein interactions
Med25
transcriptional activator
ETV/PEA3
coactivator
Language English
License Copyright © 2020 the Author(s). Published by PNAS.
This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c509t-314b4577b11e1ae03dfc8754655ab475ec994b810fc08a598f88eb88f70dd7013
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Author contributions: M.J.H. and A.K.M. designed research; M.J.H., B.M.L., and B.S.M. performed research; M.J.H. contributed new reagents/analytic tools; M.J.H., B.M.L., B.S.M., T.C., C.A.F., and A.K.M. analyzed data; and M.J.H., B.S.M., T.C., C.A.F., and A.K.M. wrote the paper.
Edited by James E. Cleaver, University of California, San Francisco, CA, and approved September 23, 2020 (received for review June 25, 2020)
ORCID 0000-0002-0709-6186
0000-0003-0791-8327
0000-0002-1481-0579
0000-0002-0906-6191
0000-0003-1811-5589
0000-0003-2058-0658
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7959569
PMID 33077600
PQID 2458968452
PQPubID 42026
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7959569
proquest_miscellaneous_2452500526
proquest_journals_2458968452
pubmed_primary_33077600
crossref_primary_10_1073_pnas_2013244117
crossref_citationtrail_10_1073_pnas_2013244117
jstor_primary_26970916
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-03
PublicationDateYYYYMMDD 2020-11-03
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-03
  day: 03
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2020
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_4_3_2
e_1_3_4_1_2
e_1_3_4_9_2
e_1_3_4_7_2
e_1_3_4_40_2
e_1_3_4_5_2
e_1_3_4_23_2
e_1_3_4_44_2
e_1_3_4_21_2
e_1_3_4_42_2
e_1_3_4_27_2
e_1_3_4_48_2
e_1_3_4_25_2
e_1_3_4_46_2
e_1_3_4_29_2
e_1_3_4_30_2
e_1_3_4_51_2
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_57_2
e_1_3_4_55_2
e_1_3_4_32_2
e_1_3_4_53_2
e_1_3_4_15_2
e_1_3_4_38_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_2_2
e_1_3_4_8_2
e_1_3_4_41_2
e_1_3_4_6_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_45_2
e_1_3_4_20_2
e_1_3_4_43_2
e_1_3_4_26_2
e_1_3_4_49_2
e_1_3_4_24_2
e_1_3_4_47_2
e_1_3_4_28_2
e_1_3_4_52_2
e_1_3_4_50_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_54_2
e_1_3_4_10_2
e_1_3_4_31_2
e_1_3_4_16_2
e_1_3_4_37_2
e_1_3_4_14_2
e_1_3_4_35_2
e_1_3_4_56_2
e_1_3_4_18_2
e_1_3_4_39_2
References_xml – ident: e_1_3_4_5_2
  doi: 10.1016/j.ygeno.2007.02.003
– ident: e_1_3_4_18_2
  doi: 10.1002/anie.201206815
– ident: e_1_3_4_15_2
  doi: 10.1021/ja0473889
– ident: e_1_3_4_42_2
  doi: 10.1038/415549a
– ident: e_1_3_4_29_2
  doi: 10.1038/nchembio.1962
– ident: e_1_3_4_14_2
  doi: 10.1016/j.cels.2018.01.015
– ident: e_1_3_4_41_2
  doi: 10.1073/pnas.1506692112
– ident: e_1_3_4_11_2
  doi: 10.1016/j.celrep.2018.02.097
– ident: e_1_3_4_23_2
  doi: 10.1093/nar/gkt199
– ident: e_1_3_4_33_2
  doi: 10.1021/ja804754y
– ident: e_1_3_4_25_2
  doi: 10.1038/nature05858
– ident: e_1_3_4_38_2
  doi: 10.1073/pnas.1307337110
– ident: e_1_3_4_35_2
  doi: 10.1073/pnas.1405815111
– ident: e_1_3_4_40_2
  doi: 10.1016/j.bpj.2017.10.016
– ident: e_1_3_4_32_2
  doi: 10.1073/pnas.1806202115
– ident: e_1_3_4_34_2
  doi: 10.1038/nsmb.1997
– ident: e_1_3_4_31_2
  doi: 10.1016/j.jmb.2017.06.024
– ident: e_1_3_4_45_2
  doi: 10.1016/j.sbi.2007.08.013
– ident: e_1_3_4_54_2
  doi: 10.1073/pnas.0401942101
– ident: e_1_3_4_6_2
  doi: 10.1021/cb200308e
– ident: e_1_3_4_7_2
  doi: 10.1016/j.cell.2018.10.042
– ident: e_1_3_4_21_2
  doi: 10.1038/nature04942
– ident: e_1_3_4_13_2
  doi: 10.15252/embj.201798896
– ident: e_1_3_4_22_2
  doi: 10.1074/jbc.M113.496968
– ident: e_1_3_4_10_2
  doi: 10.1073/pnas.1412088111
– ident: e_1_3_4_9_2
  doi: 10.1016/j.molcel.2011.11.008
– ident: e_1_3_4_27_2
  doi: 10.1038/nrc906
– ident: e_1_3_4_26_2
  doi: 10.1073/pnas.0804221105
– ident: e_1_3_4_8_2
  doi: 10.1126/science.aar3958
– ident: e_1_3_4_20_2
  doi: 10.1074/jbc.M205051200
– ident: e_1_3_4_1_2
  doi: 10.1016/0092-8674(87)90015-8
– ident: e_1_3_4_19_2
  doi: 10.1038/365855a0
– ident: e_1_3_4_30_2
  doi: 10.1093/nar/gkv650
– ident: e_1_3_4_46_2
  doi: 10.1017/S0033583514000122
– ident: e_1_3_4_17_2
  doi: 10.1021/cb900028j
– ident: e_1_3_4_52_2
  doi: 10.1126/science.7529940
– ident: e_1_3_4_36_2
  doi: 10.1016/S0092-8674(00)80463-8
– ident: e_1_3_4_4_2
  doi: 10.1021/cb600463w
– ident: e_1_3_4_53_2
  doi: 10.1006/jmbi.1998.1843
– ident: e_1_3_4_49_2
  doi: 10.1021/ja036685v
– ident: e_1_3_4_2_2
  doi: 10.1038/333635a0
– ident: e_1_3_4_39_2
  doi: 10.1073/pnas.1406033111
– ident: e_1_3_4_24_2
  doi: 10.1126/science.1130258
– ident: e_1_3_4_47_2
  doi: 10.1016/j.sbi.2010.10.002
– ident: e_1_3_4_55_2
  doi: 10.1038/nrm4032
– ident: e_1_3_4_56_2
  doi: 10.1007/BF00197809
– ident: e_1_3_4_37_2
  doi: 10.1021/cb3002733
– ident: e_1_3_4_12_2
  doi: 10.15252/msb.20188190
– ident: e_1_3_4_16_2
  doi: 10.1002/bip.20946
– ident: e_1_3_4_28_2
  doi: 10.1038/s41568-019-0196-7
– ident: e_1_3_4_57_2
  doi: 10.1093/bioinformatics/btu830
– ident: e_1_3_4_44_2
  doi: 10.1002/pro.3059
– ident: e_1_3_4_50_2
  doi: 10.1074/jbc.RA117.000634
– ident: e_1_3_4_3_2
  doi: 10.1038/333210a0
– ident: e_1_3_4_48_2
  doi: 10.1021/ja3122334
– ident: e_1_3_4_43_2
  doi: 10.1021/bi1012996
– ident: e_1_3_4_51_2
  doi: 10.1038/ncomms15896
SSID ssj0009580
Score 2.4741366
Snippet A key functional event in eukaryotic gene activation is the formation of dynamic protein–protein interaction networks between transcriptional activators and...
A key functional event in eukaryotic gene activation is the formation of dynamic protein-protein interaction networks between transcriptional activators and...
Transcriptional activators represent a molecular recognition enigma. Their function in transcription initiation requires selective engagement of coactivators,...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 27346
SubjectTerms Amino Acid Sequence - genetics
Binding
Biological Sciences
Electrostatic properties
Gene regulation
Humans
Hydrophobicity
Mediator Complex - genetics
Mediator Complex - metabolism
Models, Molecular
Molecular modelling
Physical Sciences
Protein Binding - genetics
Protein Interaction Domains and Motifs - genetics
Proteins
Recognition
Transcription factors
Transcription Factors - metabolism
Transcriptional Activation - genetics
Transcriptional Activation - physiology
Title Unexpected specificity within dynamic transcriptional protein–protein complexes
URI https://www.jstor.org/stable/26970916
https://www.ncbi.nlm.nih.gov/pubmed/33077600
https://www.proquest.com/docview/2458968452
https://www.proquest.com/docview/2452500526
https://pubmed.ncbi.nlm.nih.gov/PMC7959569
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdZB6MvY93WzV03PNhDR3HnD8mSHkvZFgbN-pBA3oI_ZBro1LA6UPoH7O_enSTLTtbCtpckWLICup9Pd-e73xHyIZVJwWQlI6lABVI4kaMyz-rIdNoWYCErE8o-n-TjGf02Z_PR6Ncga2ndlifV3b11Jf8jVbgGcsUq2X-QrF8ULsBvkC98goTh869kPNNI0F-h0YgVk5j1g0Y1xlYxydU2m8cuENorByy8QmqGpY7ct80qV7cumdAZqhf-YLvp0ggmXdzwtK9Ccarh5jg6vpj0PY3HSrtY-DnSUCo0ZX1AGtzfS6x6stBCBdNnEpgmU26gbTEXwa95Bgf4alnZNttTTGu6G4YswD_FMKxVY8qqWbBSopzaRqFeD9siTgc4SodqlWc2UPmHwgcNhV2KdYHU6-BZg3VnlxmIf_XDyD_LkLoojvuTz-cjdkOPyOOUc_O6_-s8GZA3i7ijheLZp61_2yVPuvs3jBub33qf57KdgDuwaKbPyFPnioSnFld7ZKT0c7LXSTQ8cozkH1-Q7z3QwgHQQgu00AEt3AJauAW00APtJZl9-Tw9G0euE0dUgUHZwkFNS8o4L5NEJYWKs7qpwNFF7r2ipJypSkpaiiRuqljAsy8aIVQpRMPjuuawU_tkR19r9ZqEVNRpzVWTcd5QVoNHLfOGJVWeqAKs4yQgJ90WLipHU4_dUq4WJl2CZwvc_kW__QE58jesLEPLw1P3jUz8vDSXHKCYB-SwE9LCPd9wH2VC5oKyNCDv_TBoX3ylVmh1vTZzwIdAzqSAvLIy9Yt3oAgI35C2n4DM7psjenlpGN65ZJLl8uDBNd-Q3f7BOiQ77c-1egvWcVu-M9D9Dc-svFI
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unexpected+specificity+within+dynamic+transcriptional+protein-protein+complexes&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Henley%2C+Madeleine+J&rft.au=Linhares%2C+Brian+M&rft.au=Morgan%2C+Brittany+S&rft.au=Cierpicki%2C+Tomasz&rft.date=2020-11-03&rft.eissn=1091-6490&rft.volume=117&rft.issue=44&rft.spage=27346&rft_id=info:doi/10.1073%2Fpnas.2013244117&rft_id=info%3Apmid%2F33077600&rft.externalDocID=33077600
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon