Structural Health Monitoring of Composite Pipelines Utilizing Fiber Optic Sensors and an AI-Based Algorithm—A Comprehensive Numerical Study

In this paper, a structural health monitoring (SHM) system is proposed to provide automatic early warning for detecting damage and its location in composite pipelines at an early stage. The study considers a basalt fiber reinforced polymer (BFRP) pipeline with an embedded Fiber Bragg grating (FBG) s...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 23; no. 8; p. 3887
Main Authors Altabey, Wael A., Wu, Zhishen, Noori, Mohammad, Fathnejat, Hamed
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 11.04.2023
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s23083887

Cover

Abstract In this paper, a structural health monitoring (SHM) system is proposed to provide automatic early warning for detecting damage and its location in composite pipelines at an early stage. The study considers a basalt fiber reinforced polymer (BFRP) pipeline with an embedded Fiber Bragg grating (FBG) sensory system and first discusses the shortcomings and challenges with incorporating FBG sensors for accurate detection of damage information in pipelines. The novelty and the main focus of this study is, however, a proposed approach that relies on designing an integrated sensing-diagnostic SHM system that has the capability to detect damage in composite pipelines at an early stage via implementation of an artificial intelligence (AI)-based algorithm combining deep learning and other efficient machine learning methods using an Enhanced Convolutional Neural Network (ECNN) without retraining the model. The proposed architecture replaces the softmax layer by a k-Nearest Neighbor (k-NN) algorithm for inference. Finite element models are developed and calibrated by the results of pipe measurements under damage tests. The models are then used to assess the patterns of the strain distributions of the pipeline under internal pressure loading and under pressure changes due to bursts, and to find the relationship of strains at different locations axially and circumferentially. A prediction algorithm for pipe damage mechanisms using distributed strain patterns is also developed. The ECNN is designed and trained to identify the condition of pipe deterioration so the initiation of damage can be detected. The strain results from the current method and the available experimental results in the literature show excellent agreement. The average error between the ECNN data and FBG sensor data is 0.093%, thus confirming the reliability and accuracy of the proposed method. The proposed ECNN achieves high performance with 93.33% accuracy (P%), 91.18% regression rate (R%) and a 90.54% F1-score (F%).
AbstractList In this paper, a structural health monitoring (SHM) system is proposed to provide automatic early warning for detecting damage and its location in composite pipelines at an early stage. The study considers a basalt fiber reinforced polymer (BFRP) pipeline with an embedded Fiber Bragg grating (FBG) sensory system and first discusses the shortcomings and challenges with incorporating FBG sensors for accurate detection of damage information in pipelines. The novelty and the main focus of this study is, however, a proposed approach that relies on designing an integrated sensing-diagnostic SHM system that has the capability to detect damage in composite pipelines at an early stage via implementation of an artificial intelligence (AI)-based algorithm combining deep learning and other efficient machine learning methods using an Enhanced Convolutional Neural Network (ECNN) without retraining the model. The proposed architecture replaces the softmax layer by a k-Nearest Neighbor (k-NN) algorithm for inference. Finite element models are developed and calibrated by the results of pipe measurements under damage tests. The models are then used to assess the patterns of the strain distributions of the pipeline under internal pressure loading and under pressure changes due to bursts, and to find the relationship of strains at different locations axially and circumferentially. A prediction algorithm for pipe damage mechanisms using distributed strain patterns is also developed. The ECNN is designed and trained to identify the condition of pipe deterioration so the initiation of damage can be detected. The strain results from the current method and the available experimental results in the literature show excellent agreement. The average error between the ECNN data and FBG sensor data is 0.093%, thus confirming the reliability and accuracy of the proposed method. The proposed ECNN achieves high performance with 93.33% accuracy (P%), 91.18% regression rate (R%) and a 90.54% F1-score (F%).In this paper, a structural health monitoring (SHM) system is proposed to provide automatic early warning for detecting damage and its location in composite pipelines at an early stage. The study considers a basalt fiber reinforced polymer (BFRP) pipeline with an embedded Fiber Bragg grating (FBG) sensory system and first discusses the shortcomings and challenges with incorporating FBG sensors for accurate detection of damage information in pipelines. The novelty and the main focus of this study is, however, a proposed approach that relies on designing an integrated sensing-diagnostic SHM system that has the capability to detect damage in composite pipelines at an early stage via implementation of an artificial intelligence (AI)-based algorithm combining deep learning and other efficient machine learning methods using an Enhanced Convolutional Neural Network (ECNN) without retraining the model. The proposed architecture replaces the softmax layer by a k-Nearest Neighbor (k-NN) algorithm for inference. Finite element models are developed and calibrated by the results of pipe measurements under damage tests. The models are then used to assess the patterns of the strain distributions of the pipeline under internal pressure loading and under pressure changes due to bursts, and to find the relationship of strains at different locations axially and circumferentially. A prediction algorithm for pipe damage mechanisms using distributed strain patterns is also developed. The ECNN is designed and trained to identify the condition of pipe deterioration so the initiation of damage can be detected. The strain results from the current method and the available experimental results in the literature show excellent agreement. The average error between the ECNN data and FBG sensor data is 0.093%, thus confirming the reliability and accuracy of the proposed method. The proposed ECNN achieves high performance with 93.33% accuracy (P%), 91.18% regression rate (R%) and a 90.54% F1-score (F%).
In this paper, a structural health monitoring (SHM) system is proposed to provide automatic early warning for detecting damage and its location in composite pipelines at an early stage. The study considers a basalt fiber reinforced polymer (BFRP) pipeline with an embedded Fiber Bragg grating (FBG) sensory system and first discusses the shortcomings and challenges with incorporating FBG sensors for accurate detection of damage information in pipelines. The novelty and the main focus of this study is, however, a proposed approach that relies on designing an integrated sensing-diagnostic SHM system that has the capability to detect damage in composite pipelines at an early stage via implementation of an artificial intelligence (AI)-based algorithm combining deep learning and other efficient machine learning methods using an Enhanced Convolutional Neural Network (ECNN) without retraining the model. The proposed architecture replaces the softmax layer by a k-Nearest Neighbor (k-NN) algorithm for inference. Finite element models are developed and calibrated by the results of pipe measurements under damage tests. The models are then used to assess the patterns of the strain distributions of the pipeline under internal pressure loading and under pressure changes due to bursts, and to find the relationship of strains at different locations axially and circumferentially. A prediction algorithm for pipe damage mechanisms using distributed strain patterns is also developed. The ECNN is designed and trained to identify the condition of pipe deterioration so the initiation of damage can be detected. The strain results from the current method and the available experimental results in the literature show excellent agreement. The average error between the ECNN data and FBG sensor data is 0.093%, thus confirming the reliability and accuracy of the proposed method. The proposed ECNN achieves high performance with 93.33% accuracy (P%), 91.18% regression rate (R%) and a 90.54% F1-score (F%).
Audience Academic
Author Fathnejat, Hamed
Noori, Mohammad
Altabey, Wael A.
Wu, Zhishen
AuthorAffiliation 2 Department of Mechanical Engineering, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt
3 Department of Mechanical Engineering, California Polytechnic State University, San Luis Obispo, CA 93405, USA
1 International Institute for Urban Systems Engineering (IIUSE), Southeast University, Nanjing 210096, China; wael.altabey@gmail.com
5 Basque Center for Applied Mathematics, 48001 Bilbao, Spain; hamedfathnejat@gmail.com
4 School of Civil Engineering, University of Leeds, Leeds LS2 9JT, UK
AuthorAffiliation_xml – name: 4 School of Civil Engineering, University of Leeds, Leeds LS2 9JT, UK
– name: 3 Department of Mechanical Engineering, California Polytechnic State University, San Luis Obispo, CA 93405, USA
– name: 1 International Institute for Urban Systems Engineering (IIUSE), Southeast University, Nanjing 210096, China; wael.altabey@gmail.com
– name: 2 Department of Mechanical Engineering, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt
– name: 5 Basque Center for Applied Mathematics, 48001 Bilbao, Spain; hamedfathnejat@gmail.com
Author_xml – sequence: 1
  givenname: Wael A.
  orcidid: 0000-0002-3618-1187
  surname: Altabey
  fullname: Altabey, Wael A.
– sequence: 2
  givenname: Zhishen
  surname: Wu
  fullname: Wu, Zhishen
– sequence: 3
  givenname: Mohammad
  orcidid: 0000-0002-2793-5194
  surname: Noori
  fullname: Noori, Mohammad
– sequence: 4
  givenname: Hamed
  orcidid: 0000-0002-1146-8384
  surname: Fathnejat
  fullname: Fathnejat, Hamed
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37112228$$D View this record in MEDLINE/PubMed
BookMark eNp9kt9u0zAUhyM0xP7ABS-ALHEDSN0c26ntK1QqxioNhlR2HTnOSespsYPtDJUrXoA7npAnwVlHtU0IRVEs5_N3_Dv2YbZnnYUse57jY0olPgmEYkGF4I-yg5wRNhGE4L074_3sMIQrjAmlVDzJ9inPc0KIOMh-LqMfdBy8atEZqDau0UdnTXTe2BVyDZq7rnfBRECfTQ-tsRDQZTSt-T4Cp6YCjy76aDRagg3OB6RsnV40W0zeqQA1mrWrZIvr7vePX7Mbn4d1Ys01oE9DB97oVHwZh3rzNHvcqDbAs9vvUXZ5-v7L_GxyfvFhMZ-dT3SBZZxQzEDnvOKNUEWhC0UZlkzDFDAWVdUwUQlOKy6mlapykcuKSE65IFKophZAj7LF1ls7dVX23nTKb0qnTHkz4fyqVD5laqGUWtVMEFEr1TDVYKkLJouacApNVQFJrjdb12B7tfmm2nYnzHE5nk-5O58Ev93C_VB1UGuwMXX-3g7u_7FmXa7cdVLljEmCk-HVrcG7rwOEWHYmaGhbZcENoSQCc4mloHlCXz5Ar9zgbWrsSE0Liad4pI631EqluMY2LhXW6amhMzpdtMak-RlnvKCSsTHDi7sZdpv_e6kS8HoLaO9C8ND8tyEnD1htoorGjfFN-48VfwAie-1A
CitedBy_id crossref_primary_10_1080_17445302_2024_2424320
crossref_primary_10_1016_j_measurement_2023_114045
crossref_primary_10_1063_5_0187068
crossref_primary_10_1177_00219983241289490
crossref_primary_10_1007_s12145_024_01431_2
crossref_primary_10_3390_math12030432
crossref_primary_10_1016_j_oceaneng_2024_117773
crossref_primary_10_1109_JSEN_2024_3385203
crossref_primary_10_1016_j_compscitech_2024_110880
crossref_primary_10_22227_1997_0935_2024_1_105_114
crossref_primary_10_1007_s12596_023_01314_7
crossref_primary_10_3390_s24134415
crossref_primary_10_1002_pc_29300
crossref_primary_10_1016_j_conbuildmat_2024_136364
crossref_primary_10_1016_j_ijfatigue_2024_108277
crossref_primary_10_3390_s23167243
crossref_primary_10_3390_mi15091098
Cites_doi 10.1016/j.engstruct.2022.115311
10.3390/app8122564
10.1016/j.engstruct.2022.115576
10.1177/0967391120921701
10.1109/ICECCME55909.2022.9987998
10.3390/app122412726
10.3389/fmats.2021.683374
10.1109/WOCN.2008.4542530
10.1145/1236360.1236396
10.1016/j.compstruct.2006.02.013
10.1007/s00477-008-0259-x
10.1117/12.2185184
10.3390/app11135773
10.1016/j.yofte.2010.01.001
10.1007/s13349-023-00683-8
10.3390/ma15228071
10.1007/978-3-319-29982-2
10.1007/s11803-021-2049-0
10.1088/1361-665X/aacc99
10.1109/ICNSC.2008.4525259
10.1177/1475921710361328
10.1177/05831024030356001
10.1145/1795194.1795204
10.1109/ICECCME55909.2022.9988417
10.1115/OMAE2005-67369
10.1016/j.engappai.2023.105963
10.3390/app11136063
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/s23083887
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
Open Access - DOAJ
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
Publicly Available Content Database


PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_9cad4828daaf4af09c5495d273efbbe2
10.3390/s23083887
PMC10144920
A747539447
37112228
10_3390_s23083887
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 52178115
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ALIPV
ARAPS
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ADRAZ
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c509t-304ec17b7f8a55c5a34094ce6e008bbf48b873b786bab1819b297378298afd8e3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Fri Oct 03 12:44:22 EDT 2025
Sun Oct 26 04:03:04 EDT 2025
Tue Sep 30 17:14:45 EDT 2025
Fri Sep 05 12:42:44 EDT 2025
Tue Oct 07 07:42:17 EDT 2025
Mon Oct 20 16:53:12 EDT 2025
Wed Feb 19 02:23:46 EST 2025
Thu Oct 16 04:27:46 EDT 2025
Thu Apr 24 22:52:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords damage detection
deep learning
Fiber Bragg grating (FBG) sensory system
structural health monitoring (SHM)
composite pipelines
Convolutional Neural Network (CNN)
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-304ec17b7f8a55c5a34094ce6e008bbf48b873b786bab1819b297378298afd8e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1146-8384
0000-0002-2793-5194
0000-0002-3618-1187
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s23083887
PMID 37112228
PQID 2806590601
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_9cad4828daaf4af09c5495d273efbbe2
unpaywall_primary_10_3390_s23083887
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10144920
proquest_miscellaneous_2807909831
proquest_journals_2806590601
gale_infotracacademiconefile_A747539447
pubmed_primary_37112228
crossref_primary_10_3390_s23083887
crossref_citationtrail_10_3390_s23083887
PublicationCentury 2000
PublicationDate 20230411
PublicationDateYYYYMMDD 2023-04-11
PublicationDate_xml – month: 4
  year: 2023
  text: 20230411
  day: 11
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Wang (ref_38) 2021; 8
ref_36
ref_13
ref_35
ref_11
ref_33
ref_10
ref_32
Wu (ref_23) 2010; 9
Peairs (ref_17) 2010; 429
ref_19
Senthilkumar (ref_30) 2021; 29
Thien (ref_14) 2007; 7
ref_18
ref_16
Altabey (ref_7) 2023; 121
ref_15
ref_37
Park (ref_12) 2003; 35
Zhao (ref_27) 2021; 20
Wang (ref_34) 2023; 279
Yan (ref_22) 2010; 16
ref_24
ref_21
ref_20
ref_1
Haftchenari (ref_31) 2007; 79
ref_3
ref_28
ref_26
ref_9
Thodi (ref_2) 2009; 23
ref_8
Fathnejat (ref_25) 2023; 276
Zhao (ref_29) 2018; 27
ref_5
ref_4
ref_6
References_xml – volume: 276
  start-page: 115311
  year: 2023
  ident: ref_25
  article-title: A data-driven structural damage identification approach using deep convolutional-attention-recurrent neural architecture under temperature variations
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2022.115311
– ident: ref_3
– ident: ref_32
  doi: 10.3390/app8122564
– ident: ref_11
– volume: 279
  start-page: 115576
  year: 2023
  ident: ref_34
  article-title: Seismic response prediction of structures based on Runge-Kutta recurrent neural network with prior knowledge
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2022.115576
– volume: 29
  start-page: 528
  year: 2021
  ident: ref_30
  article-title: Nondestructive health monitoring techniques for composite materials: A review
  publication-title: Polym. Polym. Compos.
  doi: 10.1177/0967391120921701
– ident: ref_10
  doi: 10.1109/ICECCME55909.2022.9987998
– ident: ref_35
  doi: 10.3390/app122412726
– volume: 8
  start-page: 683374
  year: 2021
  ident: ref_38
  article-title: Dynamic Performance Detection of CFRP Composite Pipes based on Quasi-Distributed Optical Fiber Sensing Techniques
  publication-title: Front. Mater.
  doi: 10.3389/fmats.2021.683374
– ident: ref_5
  doi: 10.1109/WOCN.2008.4542530
– ident: ref_13
  doi: 10.1145/1236360.1236396
– volume: 79
  start-page: 381
  year: 2007
  ident: ref_31
  article-title: An energy- based fatigue damage parameter for off-axis unidirectional fibre reinforced composites
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2006.02.013
– ident: ref_37
– volume: 23
  start-page: 793
  year: 2009
  ident: ref_2
  article-title: The Selection of Corrosion prior Distributions for Risk Based-Integriy Modeling
  publication-title: Stoch. Environ. Res. Risk Assess
  doi: 10.1007/s00477-008-0259-x
– volume: 7
  start-page: 33
  year: 2007
  ident: ref_14
  article-title: Health Monitoring of Pipeline Systems using Macro-fiber Composite Active-Sensors
  publication-title: Steel Struct.
– ident: ref_1
– ident: ref_28
  doi: 10.1117/12.2185184
– ident: ref_6
  doi: 10.3390/app11135773
– ident: ref_21
– volume: 16
  start-page: 100
  year: 2010
  ident: ref_22
  article-title: Performance enhancement of BOTDR fiber optic sensor for oil and gas pipeline monitoring
  publication-title: Opt. Fiber Technol.
  doi: 10.1016/j.yofte.2010.01.001
– ident: ref_26
  doi: 10.1007/s13349-023-00683-8
– ident: ref_33
  doi: 10.3390/ma15228071
– ident: ref_18
  doi: 10.1007/978-3-319-29982-2
– ident: ref_4
– volume: 20
  start-page: 727
  year: 2021
  ident: ref_27
  article-title: Reaching Law Based Sliding Mode Control for a Frame Structure under Seismic Load
  publication-title: Earthq. Eng. Eng. Vib.
  doi: 10.1007/s11803-021-2049-0
– volume: 27
  start-page: 085023
  year: 2018
  ident: ref_29
  article-title: Fatigue Damage Identification for Composite Pipeline Systems Using Electrical Capacitance Sensors
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/aacc99
– ident: ref_24
  doi: 10.1109/ICNSC.2008.4525259
– volume: 429
  start-page: 012104
  year: 2010
  ident: ref_17
  article-title: Low Cost Impedance Monitoring Using Smart Materials
  publication-title: Mater. Sci. Eng.
– volume: 9
  start-page: 413
  year: 2010
  ident: ref_23
  article-title: Development and performance evaluation of non-slippage optical fiber as Brillouin scattering-based distributed sensors
  publication-title: Struct. Health Monit.
  doi: 10.1177/1475921710361328
– ident: ref_15
– volume: 35
  start-page: 451
  year: 2003
  ident: ref_12
  article-title: Overview of Piezoelectric Impedance-Based Health Monitoring and Path Forward
  publication-title: Shock Vib. Dig.
  doi: 10.1177/05831024030356001
– ident: ref_16
  doi: 10.1145/1795194.1795204
– ident: ref_36
– ident: ref_9
  doi: 10.1109/ICECCME55909.2022.9988417
– ident: ref_19
  doi: 10.1115/OMAE2005-67369
– ident: ref_20
– volume: 121
  start-page: 105963
  year: 2023
  ident: ref_7
  article-title: A deep-learning approach for predicting water absorption in composite pipes by extracting the material’s dielectric features
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.105963
– ident: ref_8
  doi: 10.3390/app11136063
SSID ssj0023338
Score 2.5496883
Snippet In this paper, a structural health monitoring (SHM) system is proposed to provide automatic early warning for detecting damage and its location in composite...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3887
SubjectTerms Algorithms
Analysis
Artificial intelligence
composite pipelines
Convolutional Neural Network (CNN)
Corrosion
damage detection
deep learning
Energy consumption
Failure
Fiber Bragg grating (FBG) sensory system
Hydrocarbons
Machine learning
Methods
Natural gas
Neural networks
Pipe lines
R&D
Research & development
Sensors
structural health monitoring (SHM)
SummonAdditionalLinks – databaseName: Open Access - DOAJ
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL8ABlXfagsxDgkvUbJyHfUwRq4JEQSor9WbZjs2uFLKr7q6qcuIP9NZfyC9hxs5GWR7iwiGXeOQ49ow9nzzzDSEvXa6sNSWLtcGUHFPmsWYuiROsbAsIunAGs5E_nBTHk-z9WX42KPWFMWGBHjhM3KEwqs4AFtRKuUy5RBhANHkNp651Wlu_-yZcbMBUB7UYIK_AI8QA1B8uwdHmzMfNDU4fT9L_-1Y8OIt-jZO8uW4X6vJCNc3gEBrvkjud90irMOq75IZt75HbA07B--Tq1DPCIpsGDTlGNNgtNtO5o7gDYKSWpZ9mC8xGt0s6Wc2a2TcUGGMECf0IG4mhpwBx5-dLqtoaHlq9i4_gzKtp1XyB3lbTrz--X1e-v3M7DYHw9GQdroAaihGKlw_IZPz285vjuKu5EBtwHVYxSzJrRqUuHVd5bnLFEAAaW1hwFrR2Gde8ZLrkhVYavAOhsfgVuBmCK1dzyx6SnXbe2seEFsZkda1dksKSKbzQxKS6lOtCFQI6jsjrzVpI0xGSY12MRgIwwWWT_bJF5HkvuggsHH8SOsIF7QWQONu_AHWSnTrJf6lTRF6hOkg0bxiMUV2WAvwSEmXJCuBXjsnE8LmDjcbIzu6XMtxTI8dNRJ71zWCxeA2jWjtfe5lSJIIzkHkUFKwfMyvB_01THhG-pXpbP7Xd0s6mnhUciy5nIk0i8qLX0r9P1t7_mKx9cisFW8PLtdHogOyAftsn4KOt9FNvjj8BZvw-qQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6V7QE4VDxLSkHmIcElajbOwzkglEVdFSSWirJSb5Ht2N2VQrLsQ6ic-APc-IX8EmaSbNjldcglHjlOPDOeycx8A_DUhtIYHXNXaSrJ0XHoKm4916POtuhBR1ZTNfLbUXQyDt6ch-c7MFrXwlBa5Von1oo6rzT9Iz9qIoCEHvJy9smlrlEUXV230JBta4X8RQ0xdgV2fULG6sHu4Hh0-r5zwTh6ZA2-EEdn_2iBBrjgdT7dxqlUg_f_qaI3zqjf8yevrsqZvPwsi2LjcBregL3WqmRpwwY3YceUt-D6Btbgbfh2ViPFEsoGa2qPWCPPNMwqy0gzUAaXYafTGVWpmwUbL6fF9AsRDCmzhL1DBaPZGbq-1XzBZJnjxdLX7gDPwpylxQXOtpx8_PH1e1rPNzeTJkGejVZNaKhglLl4eQfGw-MPr07ctheDq9GkWLrcC4zuxyq2QoahDiUnx1CbyKARoZQNhBIxV7GIlFRoNSSKmmKh-ZEIaXNh-F3olVVp7gGLtA7yXFnP12EgKdBJxXa-UJGMEpzYgefrvch0C1RO_TKKDB0W2ras2zYHHnekswad429EA9rQjoAAtesb1fwia-UzS7TMA_Q-cyltIK2X4NqSMEfjzliljO_AM2KHjMQeF6NlW72Ar0QAWlmKbllIRcb4uMM1x2StPlhkv7jXgUfdMEoyhWdkaapVTRMnXiI40uw3DNatmcdoF_u-cEBssd7WS22PlNNJjRZOzZiDxPcceNJx6b8_1sH_V38frvkoRRRO6_cPoYecax6gVbZUD1tR-wkv4Tr-
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZQ9wAceD8CCzIPCS7ZpHEezgllEdWCRFlpqbScgu3Y24iQVH2Adk_8AW78Qn4JM4kbtQtISBx6qaeu3Y5nvolnviHkqYmE1iphrlRYkqOSyJXM-K6PnW0hgo6Nwmrkt-P4YBK-OY6ObZ_ThU2rhFC8bI00VmG54MF8L2Ae9xgcCG9WmBdf7KOkIZJngQ_DRtY7cQRgfEB2JuPD7ENbU2Q_3PEJMQjuvQUAbs7a_LkNL9SS9f9ukjd80vl8yYureiZOv4qq2nBGo6vk43obXQ7Kp73VUu6ps3MMj_-xz2vkigWqNOs06zq5oOsb5PIGfeFN8v2oJZ9F4g7alTPRzkTgMG0MRWODSWGaHpYzLHzXCzpZllV5hgIjTFah78BmKXoE0XQzX1BRF_Ci2Wt3H9xrQbPqBGZbTj___PYja-eb62mXc0_Hq-62qaKYDHl6i0xGr96_PHBtewdXAUpZuswPtRomMjFcRJGKBMNYU-lYAy6R0oRc8oTJhMdSSAAiqcQ-W4BoUi5MwTW7TQZ1U-u7hMZKhUUhjR-oKBR4d4r1ewGXsYhTmNghz9d_d64s9zm24KhyiIFQM_JeMxzyuBeddYQffxLaR53pBZCju32jmZ_k9sjnqRJFCAFtIYQJhfFTWFsaFYAXtZFSBw55hhqXoyWBxShhCyJgS8jJlWcQ6UVYtwxft7tWytyamEXeXYkjnY5DHvXDYBzwxkfUulm1Mknqp5yBzJ1Oh_s1swSgdhBwh_At7d7a1PZIXU5bAnLs7xymge-QJ_1B-PuPde-fpO6TSwHgR7yoGw53yQAUWD8AvLeUD-2Z_gUgrlJJ
  priority: 102
  providerName: Unpaywall
Title Structural Health Monitoring of Composite Pipelines Utilizing Fiber Optic Sensors and an AI-Based Algorithm—A Comprehensive Numerical Study
URI https://www.ncbi.nlm.nih.gov/pubmed/37112228
https://www.proquest.com/docview/2806590601
https://www.proquest.com/docview/2807909831
https://pubmed.ncbi.nlm.nih.gov/PMC10144920
https://www.mdpi.com/1424-8220/23/8/3887/pdf?version=1681208214
https://doaj.org/article/9cad4828daaf4af09c5495d273efbbe2
UnpaywallVersion publishedVersion
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: HH5
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ABDBF
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ADMLS
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: RPM
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 8FG
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M48
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELb2cQAOiDeBpTIPAZdAGufhHBBK0ZYFaUvFEqmcItuxt5VC0u1DUP4Cf5qZJI0aWCQO6SEeOU4845npzHxDyDPjC61VyGypsCRHhb4tmXFsBzvbggcdGIXVyKej4CTxPk78yR7ZpjU3H3B5qWuH_aSSRf7qx8XmLQj8G_Q4wWV_vQQzmjOQlufzCxv7SWHctWmusU8OQWdF2NTh1GvjCy5jVY9rLPOyQUU6NeZQd7aOpqoA_f8-tnf01p85lVfWxVxsvos831FYwxvkemNp0rhmjZtkTxe3yLUd_MHb5NdZhR6LyBu0rkeitYzjMC0NxdMCs7o0Hc_mWLmulzRZzfLZTyQYYrYJ_QSHjqJn4A6XiyUVRQYXjT_YA9CPGY3zc5htNf1mx9VsCz2tU-bpaF0Hi3KKuYybOyQZHn95d2I33RlsBUbGymaOp1U_lKHhwveVLxi6ikoHGswKKY3HJQ-ZDHkghQQ7IpLYJgsMkogLk3HN7pKDoiz0fUIDpbwsk8Zxle8JDH1i-Z3LZSCCCCa2yMvtTqSqgS7HDhp5Ci4MblrabppFnrSk8xqv4zKiAW5nS4AQ29WNcnGeNhKbRkpkHvijmRDGE8aJYG2Rn4G5p42U2rXIC2SGFFkTFqNEU88Ar4SQWmkMjpqPZcfwuKMtv6RbBk_riDai4VjkcTsMso0BG1Hocl3RhJETcQY092r2atfMQrCUXZdbhHcYr_NS3ZFiNq3ww7E9sxe5jkWetjz674_14D-W95BcdUGoMMrW7x-RA2Be_QiMtZXskf1wEsIvH77vkcPB8Wj8uVf98dGrJBLuJaNx_PU3zqpFoA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB6VcigcKnZcCgyb4GLV8XgZHxBygSihbUBqI-VmZsYzTSRjhyyqwok_wI3fwY_il_Ce7bgJ262HXDJPk3HeNp_fRshT4wutVchsqbAkR4W-LZlxbAcn2wKCDozCauSjXtDpe-8G_mCD_FjWwmBa5dImloY6LRS-I9-rIoDYPeTV-LONU6MwurocoVGJxYFenAFkm77svgH-PnPd9tuT1x27nipgK3COMxvwu1atUIaGC99XvmAIcZQONLhDKY3HJQ-ZDHkghQT_F0kc7wSONOLCpFwz2PcSuewxsCWgP-HgHOAxwHtV9yLGImdvCtd7zspsvRWfV44G-NMBrHjA37Mzt-b5WCzORJatuL72NbJd31lpXAnZdbKh8xvk6konw5vk23HZhxZ7eNCqsolW1gKXaWEo2h3MD9P0w2iMNfB6SvuzUTb6ggRtzFuh78F8KXoMwLqYTKnIU_jQuGvvg6dNaZydwm6z4aefX7_H5X4TPazS72lvXgWeMop5kYtbpH8hPLlNNvMi13cJDZTy0lQax1W-JzCMiqV8LpeBCCLY2CIvlrxIVN0GHadxZAnAIWRb0rDNIo8b0nHV--NvRPvI0IYA23WXXxST06TW_iRSIvUA26ZCGE8YJ4KzRX4KV0dtpNSuRZ6jOCRoVOAwStS1EfBI2J4riQH0-VjCDD-3u5SYpLY20-RcNyzyqFkGO4HBH5HrYl7ShJETcQY0dyoBa87MQrh1uy63CF8TvbWHWl_JR8OyFzmOevYi17HIk0ZK__1n7fz_9A_JVufk6DA57PYO7pErLmgUBu5arV2yCVKs78P9byYflEpHyceL1vJfrs5w4w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIkE5IJ7FUGB5CS5WHK8f6wNCLiVqKIRKbaTczO56t4lk7JCHqnDiD3Dj1_Bz-CXM2I6b8Lr1kEt2tFlnXjuemW8IeWp8obUKmS0VtuSo0LclM47t4GRbiKADo7Ab-X0v2O97bwf-YIP8WPbCYFnl0iaWhjotFL4jb1UZQEQPaZm6LOJwr_Nq_NnGCVKYaV2O06hE5EAvTiF8m77s7gGvn7lu583x6327njBgK3CUMxtiea3aoQwNF76vfMEw3FE60OAapTQelzxkMuSBFBJ8YSRx1BM41YgLk3LNYN8L5GLIWITlhOHgLNhjEPtVSEaw6LSmcNXnrKzcW_F_5ZiAP53Bijf8vVLz8jwfi8WpyLIVN9i5Rq7W91caVwJ3nWzo_Aa5soJqeJN8OyoxaRHPg1ZdTrSyHLhMC0PRBmGtmKaHozH2w-sp7c9G2egLEnSwhoV-AFOm6BEE2cVkSkWewofGXXsXvG5K4-wEdpsNP_38-j0u95voYVWKT3vzKgmVUayRXNwi_XPhyW2ymRe5vkNooJSXptI4rvI9gSlVbOtzuQxEEMHGFnmx5EWiakh0nMyRJRAaIduShm0WedyQjisckL8R7SJDGwKE7i6_KCYnSW0JkkiJ1IM4NxXCeMI4EZwt8lO4RmojpXYt8hzFIUEDA4dRou6TgEdCqK4khgDQx3Zm-LmdpcQkteWZJmd6YpFHzTLYDEwEiVwX85ImjJyIM6DZrgSsOTML4QbuutwifE301h5qfSUfDUtcchz77EWuY5EnjZT--8-6-__TPySXQL-Td93ewT2y5YJCYQ6v3d4hmyDE-j5cBWfyQalzlHw8byX_BfKsdSY
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZQ9wAceD8CCzIPCS7ZpHEezgllEdWCRFlpqbScgu3Y24iQVH2Adk_8AW78Qn4JM4kbtQtISBx6qaeu3Y5nvolnviHkqYmE1iphrlRYkqOSyJXM-K6PnW0hgo6Nwmrkt-P4YBK-OY6ObZ_ThU2rhFC8bI00VmG54MF8L2Ae9xgcCG9WmBdf7KOkIZJngQ_DRtY7cQRgfEB2JuPD7ENbU2Q_3PEJMQjuvQUAbs7a_LkNL9SS9f9ukjd80vl8yYureiZOv4qq2nBGo6vk43obXQ7Kp73VUu6ps3MMj_-xz2vkigWqNOs06zq5oOsb5PIGfeFN8v2oJZ9F4g7alTPRzkTgMG0MRWODSWGaHpYzLHzXCzpZllV5hgIjTFah78BmKXoE0XQzX1BRF_Ci2Wt3H9xrQbPqBGZbTj___PYja-eb62mXc0_Hq-62qaKYDHl6i0xGr96_PHBtewdXAUpZuswPtRomMjFcRJGKBMNYU-lYAy6R0oRc8oTJhMdSSAAiqcQ-W4BoUi5MwTW7TQZ1U-u7hMZKhUUhjR-oKBR4d4r1ewGXsYhTmNghz9d_d64s9zm24KhyiIFQM_JeMxzyuBeddYQffxLaR53pBZCju32jmZ_k9sjnqRJFCAFtIYQJhfFTWFsaFYAXtZFSBw55hhqXoyWBxShhCyJgS8jJlWcQ6UVYtwxft7tWytyamEXeXYkjnY5DHvXDYBzwxkfUulm1Mknqp5yBzJ1Oh_s1swSgdhBwh_At7d7a1PZIXU5bAnLs7xymge-QJ_1B-PuPde-fpO6TSwHgR7yoGw53yQAUWD8AvLeUD-2Z_gUgrlJJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+Health+Monitoring+of+Composite+Pipelines+Utilizing+Fiber+Optic+Sensors+and+an+AI-Based+Algorithm-A+Comprehensive+Numerical+Study&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Altabey%2C+Wael+A&rft.au=Wu%2C+Zhishen&rft.au=Noori%2C+Mohammad&rft.au=Fathnejat%2C+Hamed&rft.date=2023-04-11&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=23&rft.issue=8&rft_id=info:doi/10.3390%2Fs23083887&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon