Structural Health Monitoring of Composite Pipelines Utilizing Fiber Optic Sensors and an AI-Based Algorithm—A Comprehensive Numerical Study
In this paper, a structural health monitoring (SHM) system is proposed to provide automatic early warning for detecting damage and its location in composite pipelines at an early stage. The study considers a basalt fiber reinforced polymer (BFRP) pipeline with an embedded Fiber Bragg grating (FBG) s...
        Saved in:
      
    
          | Published in | Sensors (Basel, Switzerland) Vol. 23; no. 8; p. 3887 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Switzerland
          MDPI AG
    
        11.04.2023
     MDPI  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1424-8220 1424-8220  | 
| DOI | 10.3390/s23083887 | 
Cover
| Abstract | In this paper, a structural health monitoring (SHM) system is proposed to provide automatic early warning for detecting damage and its location in composite pipelines at an early stage. The study considers a basalt fiber reinforced polymer (BFRP) pipeline with an embedded Fiber Bragg grating (FBG) sensory system and first discusses the shortcomings and challenges with incorporating FBG sensors for accurate detection of damage information in pipelines. The novelty and the main focus of this study is, however, a proposed approach that relies on designing an integrated sensing-diagnostic SHM system that has the capability to detect damage in composite pipelines at an early stage via implementation of an artificial intelligence (AI)-based algorithm combining deep learning and other efficient machine learning methods using an Enhanced Convolutional Neural Network (ECNN) without retraining the model. The proposed architecture replaces the softmax layer by a k-Nearest Neighbor (k-NN) algorithm for inference. Finite element models are developed and calibrated by the results of pipe measurements under damage tests. The models are then used to assess the patterns of the strain distributions of the pipeline under internal pressure loading and under pressure changes due to bursts, and to find the relationship of strains at different locations axially and circumferentially. A prediction algorithm for pipe damage mechanisms using distributed strain patterns is also developed. The ECNN is designed and trained to identify the condition of pipe deterioration so the initiation of damage can be detected. The strain results from the current method and the available experimental results in the literature show excellent agreement. The average error between the ECNN data and FBG sensor data is 0.093%, thus confirming the reliability and accuracy of the proposed method. The proposed ECNN achieves high performance with 93.33% accuracy (P%), 91.18% regression rate (R%) and a 90.54% F1-score (F%). | 
    
|---|---|
| AbstractList | In this paper, a structural health monitoring (SHM) system is proposed to provide automatic early warning for detecting damage and its location in composite pipelines at an early stage. The study considers a basalt fiber reinforced polymer (BFRP) pipeline with an embedded Fiber Bragg grating (FBG) sensory system and first discusses the shortcomings and challenges with incorporating FBG sensors for accurate detection of damage information in pipelines. The novelty and the main focus of this study is, however, a proposed approach that relies on designing an integrated sensing-diagnostic SHM system that has the capability to detect damage in composite pipelines at an early stage via implementation of an artificial intelligence (AI)-based algorithm combining deep learning and other efficient machine learning methods using an Enhanced Convolutional Neural Network (ECNN) without retraining the model. The proposed architecture replaces the softmax layer by a k-Nearest Neighbor (k-NN) algorithm for inference. Finite element models are developed and calibrated by the results of pipe measurements under damage tests. The models are then used to assess the patterns of the strain distributions of the pipeline under internal pressure loading and under pressure changes due to bursts, and to find the relationship of strains at different locations axially and circumferentially. A prediction algorithm for pipe damage mechanisms using distributed strain patterns is also developed. The ECNN is designed and trained to identify the condition of pipe deterioration so the initiation of damage can be detected. The strain results from the current method and the available experimental results in the literature show excellent agreement. The average error between the ECNN data and FBG sensor data is 0.093%, thus confirming the reliability and accuracy of the proposed method. The proposed ECNN achieves high performance with 93.33% accuracy (P%), 91.18% regression rate (R%) and a 90.54% F1-score (F%).In this paper, a structural health monitoring (SHM) system is proposed to provide automatic early warning for detecting damage and its location in composite pipelines at an early stage. The study considers a basalt fiber reinforced polymer (BFRP) pipeline with an embedded Fiber Bragg grating (FBG) sensory system and first discusses the shortcomings and challenges with incorporating FBG sensors for accurate detection of damage information in pipelines. The novelty and the main focus of this study is, however, a proposed approach that relies on designing an integrated sensing-diagnostic SHM system that has the capability to detect damage in composite pipelines at an early stage via implementation of an artificial intelligence (AI)-based algorithm combining deep learning and other efficient machine learning methods using an Enhanced Convolutional Neural Network (ECNN) without retraining the model. The proposed architecture replaces the softmax layer by a k-Nearest Neighbor (k-NN) algorithm for inference. Finite element models are developed and calibrated by the results of pipe measurements under damage tests. The models are then used to assess the patterns of the strain distributions of the pipeline under internal pressure loading and under pressure changes due to bursts, and to find the relationship of strains at different locations axially and circumferentially. A prediction algorithm for pipe damage mechanisms using distributed strain patterns is also developed. The ECNN is designed and trained to identify the condition of pipe deterioration so the initiation of damage can be detected. The strain results from the current method and the available experimental results in the literature show excellent agreement. The average error between the ECNN data and FBG sensor data is 0.093%, thus confirming the reliability and accuracy of the proposed method. The proposed ECNN achieves high performance with 93.33% accuracy (P%), 91.18% regression rate (R%) and a 90.54% F1-score (F%). In this paper, a structural health monitoring (SHM) system is proposed to provide automatic early warning for detecting damage and its location in composite pipelines at an early stage. The study considers a basalt fiber reinforced polymer (BFRP) pipeline with an embedded Fiber Bragg grating (FBG) sensory system and first discusses the shortcomings and challenges with incorporating FBG sensors for accurate detection of damage information in pipelines. The novelty and the main focus of this study is, however, a proposed approach that relies on designing an integrated sensing-diagnostic SHM system that has the capability to detect damage in composite pipelines at an early stage via implementation of an artificial intelligence (AI)-based algorithm combining deep learning and other efficient machine learning methods using an Enhanced Convolutional Neural Network (ECNN) without retraining the model. The proposed architecture replaces the softmax layer by a k-Nearest Neighbor (k-NN) algorithm for inference. Finite element models are developed and calibrated by the results of pipe measurements under damage tests. The models are then used to assess the patterns of the strain distributions of the pipeline under internal pressure loading and under pressure changes due to bursts, and to find the relationship of strains at different locations axially and circumferentially. A prediction algorithm for pipe damage mechanisms using distributed strain patterns is also developed. The ECNN is designed and trained to identify the condition of pipe deterioration so the initiation of damage can be detected. The strain results from the current method and the available experimental results in the literature show excellent agreement. The average error between the ECNN data and FBG sensor data is 0.093%, thus confirming the reliability and accuracy of the proposed method. The proposed ECNN achieves high performance with 93.33% accuracy (P%), 91.18% regression rate (R%) and a 90.54% F1-score (F%).  | 
    
| Audience | Academic | 
    
| Author | Fathnejat, Hamed Noori, Mohammad Altabey, Wael A. Wu, Zhishen  | 
    
| AuthorAffiliation | 2 Department of Mechanical Engineering, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt 3 Department of Mechanical Engineering, California Polytechnic State University, San Luis Obispo, CA 93405, USA 1 International Institute for Urban Systems Engineering (IIUSE), Southeast University, Nanjing 210096, China; wael.altabey@gmail.com 5 Basque Center for Applied Mathematics, 48001 Bilbao, Spain; hamedfathnejat@gmail.com 4 School of Civil Engineering, University of Leeds, Leeds LS2 9JT, UK  | 
    
| AuthorAffiliation_xml | – name: 4 School of Civil Engineering, University of Leeds, Leeds LS2 9JT, UK – name: 3 Department of Mechanical Engineering, California Polytechnic State University, San Luis Obispo, CA 93405, USA – name: 1 International Institute for Urban Systems Engineering (IIUSE), Southeast University, Nanjing 210096, China; wael.altabey@gmail.com – name: 2 Department of Mechanical Engineering, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt – name: 5 Basque Center for Applied Mathematics, 48001 Bilbao, Spain; hamedfathnejat@gmail.com  | 
    
| Author_xml | – sequence: 1 givenname: Wael A. orcidid: 0000-0002-3618-1187 surname: Altabey fullname: Altabey, Wael A. – sequence: 2 givenname: Zhishen surname: Wu fullname: Wu, Zhishen – sequence: 3 givenname: Mohammad orcidid: 0000-0002-2793-5194 surname: Noori fullname: Noori, Mohammad – sequence: 4 givenname: Hamed orcidid: 0000-0002-1146-8384 surname: Fathnejat fullname: Fathnejat, Hamed  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37112228$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNp9kt9u0zAUhyM0xP7ABS-ALHEDSN0c26ntK1QqxioNhlR2HTnOSespsYPtDJUrXoA7npAnwVlHtU0IRVEs5_N3_Dv2YbZnnYUse57jY0olPgmEYkGF4I-yg5wRNhGE4L074_3sMIQrjAmlVDzJ9inPc0KIOMh-LqMfdBy8atEZqDau0UdnTXTe2BVyDZq7rnfBRECfTQ-tsRDQZTSt-T4Cp6YCjy76aDRagg3OB6RsnV40W0zeqQA1mrWrZIvr7vePX7Mbn4d1Ys01oE9DB97oVHwZh3rzNHvcqDbAs9vvUXZ5-v7L_GxyfvFhMZ-dT3SBZZxQzEDnvOKNUEWhC0UZlkzDFDAWVdUwUQlOKy6mlapykcuKSE65IFKophZAj7LF1ls7dVX23nTKb0qnTHkz4fyqVD5laqGUWtVMEFEr1TDVYKkLJouacApNVQFJrjdb12B7tfmm2nYnzHE5nk-5O58Ev93C_VB1UGuwMXX-3g7u_7FmXa7cdVLljEmCk-HVrcG7rwOEWHYmaGhbZcENoSQCc4mloHlCXz5Ar9zgbWrsSE0Liad4pI631EqluMY2LhXW6amhMzpdtMak-RlnvKCSsTHDi7sZdpv_e6kS8HoLaO9C8ND8tyEnD1htoorGjfFN-48VfwAie-1A | 
    
| CitedBy_id | crossref_primary_10_1080_17445302_2024_2424320 crossref_primary_10_1016_j_measurement_2023_114045 crossref_primary_10_1063_5_0187068 crossref_primary_10_1177_00219983241289490 crossref_primary_10_1007_s12145_024_01431_2 crossref_primary_10_3390_math12030432 crossref_primary_10_1016_j_oceaneng_2024_117773 crossref_primary_10_1109_JSEN_2024_3385203 crossref_primary_10_1016_j_compscitech_2024_110880 crossref_primary_10_22227_1997_0935_2024_1_105_114 crossref_primary_10_1007_s12596_023_01314_7 crossref_primary_10_3390_s24134415 crossref_primary_10_1002_pc_29300 crossref_primary_10_1016_j_conbuildmat_2024_136364 crossref_primary_10_1016_j_ijfatigue_2024_108277 crossref_primary_10_3390_s23167243 crossref_primary_10_3390_mi15091098  | 
    
| Cites_doi | 10.1016/j.engstruct.2022.115311 10.3390/app8122564 10.1016/j.engstruct.2022.115576 10.1177/0967391120921701 10.1109/ICECCME55909.2022.9987998 10.3390/app122412726 10.3389/fmats.2021.683374 10.1109/WOCN.2008.4542530 10.1145/1236360.1236396 10.1016/j.compstruct.2006.02.013 10.1007/s00477-008-0259-x 10.1117/12.2185184 10.3390/app11135773 10.1016/j.yofte.2010.01.001 10.1007/s13349-023-00683-8 10.3390/ma15228071 10.1007/978-3-319-29982-2 10.1007/s11803-021-2049-0 10.1088/1361-665X/aacc99 10.1109/ICNSC.2008.4525259 10.1177/1475921710361328 10.1177/05831024030356001 10.1145/1795194.1795204 10.1109/ICECCME55909.2022.9988417 10.1115/OMAE2005-67369 10.1016/j.engappai.2023.105963 10.3390/app11136063  | 
    
| ContentType | Journal Article | 
    
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023  | 
    
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023  | 
    
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY DOA  | 
    
| DOI | 10.3390/s23083887 | 
    
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall Open Access - DOAJ  | 
    
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database PubMed  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1424-8220 | 
    
| ExternalDocumentID | oai_doaj_org_article_9cad4828daaf4af09c5495d273efbbe2 10.3390/s23083887 PMC10144920 A747539447 37112228 10_3390_s23083887  | 
    
| Genre | Journal Article | 
    
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 52178115  | 
    
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ALIPV ARAPS HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM ADRAZ ADTOC IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c509t-304ec17b7f8a55c5a34094ce6e008bbf48b873b786bab1819b297378298afd8e3 | 
    
| IEDL.DBID | M48 | 
    
| ISSN | 1424-8220 | 
    
| IngestDate | Fri Oct 03 12:44:22 EDT 2025 Sun Oct 26 04:03:04 EDT 2025 Tue Sep 30 17:14:45 EDT 2025 Fri Sep 05 12:42:44 EDT 2025 Tue Oct 07 07:42:17 EDT 2025 Mon Oct 20 16:53:12 EDT 2025 Wed Feb 19 02:23:46 EST 2025 Thu Oct 16 04:27:46 EDT 2025 Thu Apr 24 22:52:30 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 8 | 
    
| Keywords | damage detection deep learning Fiber Bragg grating (FBG) sensory system structural health monitoring (SHM) composite pipelines Convolutional Neural Network (CNN)  | 
    
| Language | English | 
    
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c509t-304ec17b7f8a55c5a34094ce6e008bbf48b873b786bab1819b297378298afd8e3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0002-1146-8384 0000-0002-2793-5194 0000-0002-3618-1187  | 
    
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s23083887 | 
    
| PMID | 37112228 | 
    
| PQID | 2806590601 | 
    
| PQPubID | 2032333 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_9cad4828daaf4af09c5495d273efbbe2 unpaywall_primary_10_3390_s23083887 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10144920 proquest_miscellaneous_2807909831 proquest_journals_2806590601 gale_infotracacademiconefile_A747539447 pubmed_primary_37112228 crossref_primary_10_3390_s23083887 crossref_citationtrail_10_3390_s23083887  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20230411 | 
    
| PublicationDateYYYYMMDD | 2023-04-11 | 
    
| PublicationDate_xml | – month: 4 year: 2023 text: 20230411 day: 11  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Switzerland | 
    
| PublicationPlace_xml | – name: Switzerland – name: Basel  | 
    
| PublicationTitle | Sensors (Basel, Switzerland) | 
    
| PublicationTitleAlternate | Sensors (Basel) | 
    
| PublicationYear | 2023 | 
    
| Publisher | MDPI AG MDPI  | 
    
| Publisher_xml | – name: MDPI AG – name: MDPI  | 
    
| References | Wang (ref_38) 2021; 8 ref_36 ref_13 ref_35 ref_11 ref_33 ref_10 ref_32 Wu (ref_23) 2010; 9 Peairs (ref_17) 2010; 429 ref_19 Senthilkumar (ref_30) 2021; 29 Thien (ref_14) 2007; 7 ref_18 ref_16 Altabey (ref_7) 2023; 121 ref_15 ref_37 Park (ref_12) 2003; 35 Zhao (ref_27) 2021; 20 Wang (ref_34) 2023; 279 Yan (ref_22) 2010; 16 ref_24 ref_21 ref_20 ref_1 Haftchenari (ref_31) 2007; 79 ref_3 ref_28 ref_26 ref_9 Thodi (ref_2) 2009; 23 ref_8 Fathnejat (ref_25) 2023; 276 Zhao (ref_29) 2018; 27 ref_5 ref_4 ref_6  | 
    
| References_xml | – volume: 276 start-page: 115311 year: 2023 ident: ref_25 article-title: A data-driven structural damage identification approach using deep convolutional-attention-recurrent neural architecture under temperature variations publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2022.115311 – ident: ref_3 – ident: ref_32 doi: 10.3390/app8122564 – ident: ref_11 – volume: 279 start-page: 115576 year: 2023 ident: ref_34 article-title: Seismic response prediction of structures based on Runge-Kutta recurrent neural network with prior knowledge publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2022.115576 – volume: 29 start-page: 528 year: 2021 ident: ref_30 article-title: Nondestructive health monitoring techniques for composite materials: A review publication-title: Polym. Polym. Compos. doi: 10.1177/0967391120921701 – ident: ref_10 doi: 10.1109/ICECCME55909.2022.9987998 – ident: ref_35 doi: 10.3390/app122412726 – volume: 8 start-page: 683374 year: 2021 ident: ref_38 article-title: Dynamic Performance Detection of CFRP Composite Pipes based on Quasi-Distributed Optical Fiber Sensing Techniques publication-title: Front. Mater. doi: 10.3389/fmats.2021.683374 – ident: ref_5 doi: 10.1109/WOCN.2008.4542530 – ident: ref_13 doi: 10.1145/1236360.1236396 – volume: 79 start-page: 381 year: 2007 ident: ref_31 article-title: An energy- based fatigue damage parameter for off-axis unidirectional fibre reinforced composites publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2006.02.013 – ident: ref_37 – volume: 23 start-page: 793 year: 2009 ident: ref_2 article-title: The Selection of Corrosion prior Distributions for Risk Based-Integriy Modeling publication-title: Stoch. Environ. Res. Risk Assess doi: 10.1007/s00477-008-0259-x – volume: 7 start-page: 33 year: 2007 ident: ref_14 article-title: Health Monitoring of Pipeline Systems using Macro-fiber Composite Active-Sensors publication-title: Steel Struct. – ident: ref_1 – ident: ref_28 doi: 10.1117/12.2185184 – ident: ref_6 doi: 10.3390/app11135773 – ident: ref_21 – volume: 16 start-page: 100 year: 2010 ident: ref_22 article-title: Performance enhancement of BOTDR fiber optic sensor for oil and gas pipeline monitoring publication-title: Opt. Fiber Technol. doi: 10.1016/j.yofte.2010.01.001 – ident: ref_26 doi: 10.1007/s13349-023-00683-8 – ident: ref_33 doi: 10.3390/ma15228071 – ident: ref_18 doi: 10.1007/978-3-319-29982-2 – ident: ref_4 – volume: 20 start-page: 727 year: 2021 ident: ref_27 article-title: Reaching Law Based Sliding Mode Control for a Frame Structure under Seismic Load publication-title: Earthq. Eng. Eng. Vib. doi: 10.1007/s11803-021-2049-0 – volume: 27 start-page: 085023 year: 2018 ident: ref_29 article-title: Fatigue Damage Identification for Composite Pipeline Systems Using Electrical Capacitance Sensors publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/aacc99 – ident: ref_24 doi: 10.1109/ICNSC.2008.4525259 – volume: 429 start-page: 012104 year: 2010 ident: ref_17 article-title: Low Cost Impedance Monitoring Using Smart Materials publication-title: Mater. Sci. Eng. – volume: 9 start-page: 413 year: 2010 ident: ref_23 article-title: Development and performance evaluation of non-slippage optical fiber as Brillouin scattering-based distributed sensors publication-title: Struct. Health Monit. doi: 10.1177/1475921710361328 – ident: ref_15 – volume: 35 start-page: 451 year: 2003 ident: ref_12 article-title: Overview of Piezoelectric Impedance-Based Health Monitoring and Path Forward publication-title: Shock Vib. Dig. doi: 10.1177/05831024030356001 – ident: ref_16 doi: 10.1145/1795194.1795204 – ident: ref_36 – ident: ref_9 doi: 10.1109/ICECCME55909.2022.9988417 – ident: ref_19 doi: 10.1115/OMAE2005-67369 – ident: ref_20 – volume: 121 start-page: 105963 year: 2023 ident: ref_7 article-title: A deep-learning approach for predicting water absorption in composite pipes by extracting the material’s dielectric features publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.105963 – ident: ref_8 doi: 10.3390/app11136063  | 
    
| SSID | ssj0023338 | 
    
| Score | 2.5496883 | 
    
| Snippet | In this paper, a structural health monitoring (SHM) system is proposed to provide automatic early warning for detecting damage and its location in composite... | 
    
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source  | 
    
| StartPage | 3887 | 
    
| SubjectTerms | Algorithms Analysis Artificial intelligence composite pipelines Convolutional Neural Network (CNN) Corrosion damage detection deep learning Energy consumption Failure Fiber Bragg grating (FBG) sensory system Hydrocarbons Machine learning Methods Natural gas Neural networks Pipe lines R&D Research & development Sensors structural health monitoring (SHM)  | 
    
| SummonAdditionalLinks | – databaseName: Open Access - DOAJ dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL8ABlXfagsxDgkvUbJyHfUwRq4JEQSor9WbZjs2uFLKr7q6qcuIP9NZfyC9hxs5GWR7iwiGXeOQ49ow9nzzzDSEvXa6sNSWLtcGUHFPmsWYuiROsbAsIunAGs5E_nBTHk-z9WX42KPWFMWGBHjhM3KEwqs4AFtRKuUy5RBhANHkNp651Wlu_-yZcbMBUB7UYIK_AI8QA1B8uwdHmzMfNDU4fT9L_-1Y8OIt-jZO8uW4X6vJCNc3gEBrvkjud90irMOq75IZt75HbA07B--Tq1DPCIpsGDTlGNNgtNtO5o7gDYKSWpZ9mC8xGt0s6Wc2a2TcUGGMECf0IG4mhpwBx5-dLqtoaHlq9i4_gzKtp1XyB3lbTrz--X1e-v3M7DYHw9GQdroAaihGKlw_IZPz285vjuKu5EBtwHVYxSzJrRqUuHVd5bnLFEAAaW1hwFrR2Gde8ZLrkhVYavAOhsfgVuBmCK1dzyx6SnXbe2seEFsZkda1dksKSKbzQxKS6lOtCFQI6jsjrzVpI0xGSY12MRgIwwWWT_bJF5HkvuggsHH8SOsIF7QWQONu_AHWSnTrJf6lTRF6hOkg0bxiMUV2WAvwSEmXJCuBXjsnE8LmDjcbIzu6XMtxTI8dNRJ71zWCxeA2jWjtfe5lSJIIzkHkUFKwfMyvB_01THhG-pXpbP7Xd0s6mnhUciy5nIk0i8qLX0r9P1t7_mKx9cisFW8PLtdHogOyAftsn4KOt9FNvjj8BZvw-qQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6V7QE4VDxLSkHmIcElajbOwzkglEVdFSSWirJSb5Ht2N2VQrLsQ6ic-APc-IX8EmaSbNjldcglHjlOPDOeycx8A_DUhtIYHXNXaSrJ0XHoKm4916POtuhBR1ZTNfLbUXQyDt6ch-c7MFrXwlBa5Von1oo6rzT9Iz9qIoCEHvJy9smlrlEUXV230JBta4X8RQ0xdgV2fULG6sHu4Hh0-r5zwTh6ZA2-EEdn_2iBBrjgdT7dxqlUg_f_qaI3zqjf8yevrsqZvPwsi2LjcBregL3WqmRpwwY3YceUt-D6Btbgbfh2ViPFEsoGa2qPWCPPNMwqy0gzUAaXYafTGVWpmwUbL6fF9AsRDCmzhL1DBaPZGbq-1XzBZJnjxdLX7gDPwpylxQXOtpx8_PH1e1rPNzeTJkGejVZNaKhglLl4eQfGw-MPr07ctheDq9GkWLrcC4zuxyq2QoahDiUnx1CbyKARoZQNhBIxV7GIlFRoNSSKmmKh-ZEIaXNh-F3olVVp7gGLtA7yXFnP12EgKdBJxXa-UJGMEpzYgefrvch0C1RO_TKKDB0W2ras2zYHHnekswad429EA9rQjoAAtesb1fwia-UzS7TMA_Q-cyltIK2X4NqSMEfjzliljO_AM2KHjMQeF6NlW72Ar0QAWlmKbllIRcb4uMM1x2StPlhkv7jXgUfdMEoyhWdkaapVTRMnXiI40uw3DNatmcdoF_u-cEBssd7WS22PlNNJjRZOzZiDxPcceNJx6b8_1sH_V38frvkoRRRO6_cPoYecax6gVbZUD1tR-wkv4Tr- priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZQ9wAceD8CCzIPCS7ZpHEezgllEdWCRFlpqbScgu3Y24iQVH2Adk_8AW78Qn4JM4kbtQtISBx6qaeu3Y5nvolnviHkqYmE1iphrlRYkqOSyJXM-K6PnW0hgo6Nwmrkt-P4YBK-OY6ObZ_ThU2rhFC8bI00VmG54MF8L2Ae9xgcCG9WmBdf7KOkIZJngQ_DRtY7cQRgfEB2JuPD7ENbU2Q_3PEJMQjuvQUAbs7a_LkNL9SS9f9ukjd80vl8yYureiZOv4qq2nBGo6vk43obXQ7Kp73VUu6ps3MMj_-xz2vkigWqNOs06zq5oOsb5PIGfeFN8v2oJZ9F4g7alTPRzkTgMG0MRWODSWGaHpYzLHzXCzpZllV5hgIjTFah78BmKXoE0XQzX1BRF_Ci2Wt3H9xrQbPqBGZbTj___PYja-eb62mXc0_Hq-62qaKYDHl6i0xGr96_PHBtewdXAUpZuswPtRomMjFcRJGKBMNYU-lYAy6R0oRc8oTJhMdSSAAiqcQ-W4BoUi5MwTW7TQZ1U-u7hMZKhUUhjR-oKBR4d4r1ewGXsYhTmNghz9d_d64s9zm24KhyiIFQM_JeMxzyuBeddYQffxLaR53pBZCju32jmZ_k9sjnqRJFCAFtIYQJhfFTWFsaFYAXtZFSBw55hhqXoyWBxShhCyJgS8jJlWcQ6UVYtwxft7tWytyamEXeXYkjnY5DHvXDYBzwxkfUulm1Mknqp5yBzJ1Oh_s1swSgdhBwh_At7d7a1PZIXU5bAnLs7xymge-QJ_1B-PuPde-fpO6TSwHgR7yoGw53yQAUWD8AvLeUD-2Z_gUgrlJJ priority: 102 providerName: Unpaywall  | 
    
| Title | Structural Health Monitoring of Composite Pipelines Utilizing Fiber Optic Sensors and an AI-Based Algorithm—A Comprehensive Numerical Study | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/37112228 https://www.proquest.com/docview/2806590601 https://www.proquest.com/docview/2807909831 https://pubmed.ncbi.nlm.nih.gov/PMC10144920 https://www.mdpi.com/1424-8220/23/8/3887/pdf?version=1681208214 https://doaj.org/article/9cad4828daaf4af09c5495d273efbbe2  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 23 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: HH5 dateStart: 20010101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ADMLS dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1424-8220 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M48 dateStart: 20030101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELb2cQAOiDeBpTIPAZdAGufhHBBK0ZYFaUvFEqmcItuxt5VC0u1DUP4Cf5qZJI0aWCQO6SEeOU4845npzHxDyDPjC61VyGypsCRHhb4tmXFsBzvbggcdGIXVyKej4CTxPk78yR7ZpjU3H3B5qWuH_aSSRf7qx8XmLQj8G_Q4wWV_vQQzmjOQlufzCxv7SWHctWmusU8OQWdF2NTh1GvjCy5jVY9rLPOyQUU6NeZQd7aOpqoA_f8-tnf01p85lVfWxVxsvos831FYwxvkemNp0rhmjZtkTxe3yLUd_MHb5NdZhR6LyBu0rkeitYzjMC0NxdMCs7o0Hc_mWLmulzRZzfLZTyQYYrYJ_QSHjqJn4A6XiyUVRQYXjT_YA9CPGY3zc5htNf1mx9VsCz2tU-bpaF0Hi3KKuYybOyQZHn95d2I33RlsBUbGymaOp1U_lKHhwveVLxi6ikoHGswKKY3HJQ-ZDHkghQQ7IpLYJgsMkogLk3HN7pKDoiz0fUIDpbwsk8Zxle8JDH1i-Z3LZSCCCCa2yMvtTqSqgS7HDhp5Ci4MblrabppFnrSk8xqv4zKiAW5nS4AQ29WNcnGeNhKbRkpkHvijmRDGE8aJYG2Rn4G5p42U2rXIC2SGFFkTFqNEU88Ar4SQWmkMjpqPZcfwuKMtv6RbBk_riDai4VjkcTsMso0BG1Hocl3RhJETcQY092r2atfMQrCUXZdbhHcYr_NS3ZFiNq3ww7E9sxe5jkWetjz674_14D-W95BcdUGoMMrW7x-RA2Be_QiMtZXskf1wEsIvH77vkcPB8Wj8uVf98dGrJBLuJaNx_PU3zqpFoA | 
    
| linkProvider | Scholars Portal | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB6VcigcKnZcCgyb4GLV8XgZHxBygSihbUBqI-VmZsYzTSRjhyyqwok_wI3fwY_il_Ce7bgJ262HXDJPk3HeNp_fRshT4wutVchsqbAkR4W-LZlxbAcn2wKCDozCauSjXtDpe-8G_mCD_FjWwmBa5dImloY6LRS-I9-rIoDYPeTV-LONU6MwurocoVGJxYFenAFkm77svgH-PnPd9tuT1x27nipgK3COMxvwu1atUIaGC99XvmAIcZQONLhDKY3HJQ-ZDHkghQT_F0kc7wSONOLCpFwz2PcSuewxsCWgP-HgHOAxwHtV9yLGImdvCtd7zspsvRWfV44G-NMBrHjA37Mzt-b5WCzORJatuL72NbJd31lpXAnZdbKh8xvk6konw5vk23HZhxZ7eNCqsolW1gKXaWEo2h3MD9P0w2iMNfB6SvuzUTb6ggRtzFuh78F8KXoMwLqYTKnIU_jQuGvvg6dNaZydwm6z4aefX7_H5X4TPazS72lvXgWeMop5kYtbpH8hPLlNNvMi13cJDZTy0lQax1W-JzCMiqV8LpeBCCLY2CIvlrxIVN0GHadxZAnAIWRb0rDNIo8b0nHV--NvRPvI0IYA23WXXxST06TW_iRSIvUA26ZCGE8YJ4KzRX4KV0dtpNSuRZ6jOCRoVOAwStS1EfBI2J4riQH0-VjCDD-3u5SYpLY20-RcNyzyqFkGO4HBH5HrYl7ShJETcQY0dyoBa87MQrh1uy63CF8TvbWHWl_JR8OyFzmOevYi17HIk0ZK__1n7fz_9A_JVufk6DA57PYO7pErLmgUBu5arV2yCVKs78P9byYflEpHyceL1vJfrs5w4w | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIkE5IJ7FUGB5CS5WHK8f6wNCLiVqKIRKbaTczO56t4lk7JCHqnDiD3Dj1_Bz-CXM2I6b8Lr1kEt2tFlnXjuemW8IeWp8obUKmS0VtuSo0LclM47t4GRbiKADo7Ab-X0v2O97bwf-YIP8WPbCYFnl0iaWhjotFL4jb1UZQEQPaZm6LOJwr_Nq_NnGCVKYaV2O06hE5EAvTiF8m77s7gGvn7lu583x6327njBgK3CUMxtiea3aoQwNF76vfMEw3FE60OAapTQelzxkMuSBFBJ8YSRx1BM41YgLk3LNYN8L5GLIWITlhOHgLNhjEPtVSEaw6LSmcNXnrKzcW_F_5ZiAP53Bijf8vVLz8jwfi8WpyLIVN9i5Rq7W91caVwJ3nWzo_Aa5soJqeJN8OyoxaRHPg1ZdTrSyHLhMC0PRBmGtmKaHozH2w-sp7c9G2egLEnSwhoV-AFOm6BEE2cVkSkWewofGXXsXvG5K4-wEdpsNP_38-j0u95voYVWKT3vzKgmVUayRXNwi_XPhyW2ymRe5vkNooJSXptI4rvI9gSlVbOtzuQxEEMHGFnmx5EWiakh0nMyRJRAaIduShm0WedyQjisckL8R7SJDGwKE7i6_KCYnSW0JkkiJ1IM4NxXCeMI4EZwt8lO4RmojpXYt8hzFIUEDA4dRou6TgEdCqK4khgDQx3Zm-LmdpcQkteWZJmd6YpFHzTLYDEwEiVwX85ImjJyIM6DZrgSsOTML4QbuutwifE301h5qfSUfDUtcchz77EWuY5EnjZT--8-6-__TPySXQL-Td93ewT2y5YJCYQ6v3d4hmyDE-j5cBWfyQalzlHw8byX_BfKsdSY | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZQ9wAceD8CCzIPCS7ZpHEezgllEdWCRFlpqbScgu3Y24iQVH2Adk_8AW78Qn4JM4kbtQtISBx6qaeu3Y5nvolnviHkqYmE1iphrlRYkqOSyJXM-K6PnW0hgo6Nwmrkt-P4YBK-OY6ObZ_ThU2rhFC8bI00VmG54MF8L2Ae9xgcCG9WmBdf7KOkIZJngQ_DRtY7cQRgfEB2JuPD7ENbU2Q_3PEJMQjuvQUAbs7a_LkNL9SS9f9ukjd80vl8yYureiZOv4qq2nBGo6vk43obXQ7Kp73VUu6ps3MMj_-xz2vkigWqNOs06zq5oOsb5PIGfeFN8v2oJZ9F4g7alTPRzkTgMG0MRWODSWGaHpYzLHzXCzpZllV5hgIjTFah78BmKXoE0XQzX1BRF_Ci2Wt3H9xrQbPqBGZbTj___PYja-eb62mXc0_Hq-62qaKYDHl6i0xGr96_PHBtewdXAUpZuswPtRomMjFcRJGKBMNYU-lYAy6R0oRc8oTJhMdSSAAiqcQ-W4BoUi5MwTW7TQZ1U-u7hMZKhUUhjR-oKBR4d4r1ewGXsYhTmNghz9d_d64s9zm24KhyiIFQM_JeMxzyuBeddYQffxLaR53pBZCju32jmZ_k9sjnqRJFCAFtIYQJhfFTWFsaFYAXtZFSBw55hhqXoyWBxShhCyJgS8jJlWcQ6UVYtwxft7tWytyamEXeXYkjnY5DHvXDYBzwxkfUulm1Mknqp5yBzJ1Oh_s1swSgdhBwh_At7d7a1PZIXU5bAnLs7xymge-QJ_1B-PuPde-fpO6TSwHgR7yoGw53yQAUWD8AvLeUD-2Z_gUgrlJJ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+Health+Monitoring+of+Composite+Pipelines+Utilizing+Fiber+Optic+Sensors+and+an+AI-Based+Algorithm-A+Comprehensive+Numerical+Study&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Altabey%2C+Wael+A&rft.au=Wu%2C+Zhishen&rft.au=Noori%2C+Mohammad&rft.au=Fathnejat%2C+Hamed&rft.date=2023-04-11&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=23&rft.issue=8&rft_id=info:doi/10.3390%2Fs23083887&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |